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ABSTRACT

Decentralized learning distributes the training process across multiple nodes, en-
abling collaborative model training without relying on a central server. Each node
performs local training using its own data, with model updates exchanged directly
between connected nodes within a given network topology. Various algorithms
have been developed within this decentralized learning framework and have been
proven to converge under specific assumptions. However, two key challenges
remain: 1) ensuring robust performance with both a high degree of gradient com-
pression and data heterogeneity, and 2) providing a general convergence upper
bound under commonly used assumptions. To address these challenges, we pro-
pose the Discounted Error-Feedback Decentralized Parallel Stochastic Gradient
Descent (DEFD-PSGD) algorithm, which efficiently manages both high levels
of gradient compression and data heterogeneity, without sacrificing communica-
tion efficiency. The core idea is to introduce controllable residual error feedback
that effectively balances the impact of gradient compression and data heterogene-
ity. Additionally, we develop novel proof techniques to derive a convergence up-
per bound under relaxed assumptions. Finally, we present experimental results
demonstrating that DEFD-PSGD outperforms other state-of-the-art decentralized
learning algorithms, particularly in scenarios involving high compression and sig-
nificant data heterogeneity.

1 INTRODUCTION

In recent years, decentralized learning has become an important technology in machine learning
due to its computational scalability for parallel computing (Nedic & Ozdaglar, 2009 [Lian et al.,
2017), communication efficiency (Tang et al.l |2019; |2018}; [Koloskova et al., 2019; |Pu & Nedic}
2021), and data locality for data privacy (Wangni et al., 2018} |[Reisizadeh et al., 2019). Specifically,
decentralized learning distributes the training process across multiple nodes in a network and allows
them to collaboratively train a shared model without a central server. We consider the scenario where
each node possesses its own data. During training, every node performs local updates based on its
own data, where different nodes may have different data distributions. Then, each node exchanges
model updates with connected nodes according to the network’s connectivity.

General Challenges. In the decentralized learning framework, one of the most persistent chal-
lenges is the communication efficiency. To address this, recent research has focused on designing
algorithms that use compressed model updates (Wangni et al., 2018} [Reisizadeh et al., 2019; Tang
et al.,[2019;2018; |Koloskova et al.,[2019). One of their drawbacks is the degradation of performance
when the degree of compression level is high or when the compression is biased. To mitigate the
performance degradation due to compression, error feedback can be applied. Its core idea is to ac-
cumulate and correct the errors that occur during gradient updates, thereby improving the accuracy
and stability of the learning process. Earlier works on error feedback focuses on centralized settings
with parameter server architecture (Stich et al., 2018; |Wu et al.| |2018}; |Karimireddy et al., [2019).
However, because the local models of nodes are not fully synchronized in the decentralized setting,
directly applying error feedback to the seminal DCD-PSGD algorithm (Tang et al.,|2018)) can be in-
effective. [Koloskova et al.|(2019) introduced the CHOCO-PSGD algorithm where error feedback is
applied to the decentralized learning procedure. By using error feedback in the decentralized learn-
ing scenario, both theoretical and empirical studies show that CHOCO-PSGD is robust to gradient
compression. However, one drawback of CHOCO-PSGD is its inefficiency in handling the scenario
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of non-IID data across nodes, especially when the degree of data heterogeneity is high. Hence, in
decentralized learning, it is challenging to handle both the high degree of gradient compression and
high degree of data heterogeneity simultaneously.

Motivating Example. To illustrate the aforementioned challenges, we consider a network of 20
nodes, each connected to 4 neighbors. As shown in Figure [1} applying error feedback directly to
DCD-PSGD leads to divergence. Additionally, in this example, when the data is highly hetero-
geneous (e.g., with Dirichlet parameter a = 0.05, see later for definitions), CHOCO-PSGD also
fails due to its specific model update mechanism, despite handling data compression well under
homogeneous local data distributions. Moreover, the DCD-PSGD algorithm without error feed-
back, although convergent, suffers from significant performance degradation in this scenario due to
the high compression (e.g., top-k compression with k& = 0.1, see later for definitions). Therefore,
managing both a high degree of compression and significant data heterogeneity simultaneously is
challenging.

In this paper, we address the following important question: 0013
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There are two main challenges in answering this question.
First, as discussed before, applying naive error feedback in

the decentralized setting can cause divergence, as shown in Z:Zi ‘ ‘ ‘ | | ‘
Figure[I} This is because different nodes can have different gty 0
local model parameters in decentralized learning. With er-

ror feedback, the model updates computed on such different  Figure 1: Global loss for
local models can be partially accumulated locally and trans-  FashionMNIST dataset, using Dirichlet
mitted to neighboring nodes at a later time. In addition, each parameter @« = 0.05 and top-k with

node can only transmit its updates to its neighbors, which

k = 0.1. The network consists of 20

means that it can take a long time for an update transmitted nodes and each connected 4 nodes.

by each node to reach nodes that are many hops away from

it. This can cause a high degree of asynchronicity in different nodes’ model parameters, which
may ultimately cause divergence of the learning process. In [Koloskova et al.| (2019), the authors
mitigate this potential negative impact of error feedback by reducing the weights of neighboring
models during model aggregation. However, this leads to very limited information exchange among
neighboring nodes, making CHOCO-PSGD ineffective in handling high data heterogeneity. Hence,
we need to design a new error feedback algorithm capable of handling both high compression ratios
and significant data heterogeneity. Second, analyzing the convergence of decentralized learning with
error feedback is challenging. Existing literature either lacks convergence analysis or relies on strict
assumptions, such as bounded gradients and consistent gradient averages across iterations. There-
fore, we need to develop new proof techniques to handle error feedback under relaxed assumptions.

To overcome the above challenges, we propose the Discounted Error-Feedback Decentralized Par-
allel Stochastic Gradient Descent (DEFD-PSGD) algorithm, where we develop a novel approach to
incorporate the error feedback to DCD-PSGD. Our DEFD-PSGD algorithm includes a new discount
factor multiplied to the error feedback term to control its impact on the convergence behavior. We
show that DEFD-PSGD can address both obstacles effectively and have the same communication
efficiency with the state-of-the-art algorithms. In particular, we demonstrate that DEFD-PSGD out-
performs DCD-PSGD in scenarios of high data compression and surpasses CHOCO-PSGD when
the data distribution is highly heterogeneous. This can be seen from our motivating example in Fig-
ure[I] In addition, we introduce new proof techniques to analyze the convergence upper bound of
the proposed DEFD-PSGD with error feedback under relaxed assumptions.

Our Contributions. In this paper, our novel contributions are summarized as follows.

1. We propose the DEFD-PSGD algorithm, designed to effectively manage both model com-
pression and data heterogeneity. This algorithm innovatively incorporates residual error
feedback into the decentralized learning process and introduces a new discount parameter,
v, to regulate the impact of error feedback during the decentralized training.

2. We analyze the convergence upper bound of DEFD-PSGD using a novel approach to handle
error feedback. Under the most commonly used assumptions in decentralized learning, the
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derived convergence upper bound achieves the same order of convergence rate as existing
literature, but under significantly relaxed parameter conditions, such as allowing a broader
range for the model compression ratio. The insights of the convergence results are also
discussed.

3. The proposed DEFD-PSGD algorithm outperforms state-of-the-art algorithms, particularly
in scenarios involving high degree of model compression and highly heterogeneous data
distributions.

2 RELATED WORKS

Under a centralized framework, [Stich et al.| (2018)); [Wu et al.| (2018) introduce error-compensated
SGD with compressed updates, including analysis for (strongly) convex functions. Karimireddy
et al.| (2019) analyze the impact of error feedback for Sign-SGD and other compression schemes
for weakly convex and non-convex functions. However, the centralized error feedback algorithms
require information aggregation among all nodes.

In decentralized learning, gossip algorithms are among the most popular approaches due to their
simplicity (Kempe et al.,[2003} Johansson & Johansson, |2008; Boyd et al., 2006; [Lian et al., [ 2017).
In a gossip algorithm, each node first computes the Stochastic Gradient Descent (SGD) locally and
then sends its update to its connected nodes. Under certain network connectivity assumptions, [Lian
et al. (2017) show that the convergence rate of this algorithm is O(1/v/nT), where n is the total
number of nodes and 7' is the total number of iterations. Notably, this convergence rate matches that
of centralized SGD, where a central server aggregates the SGDs and updates the model parameters
in each iteration.

To reduce communication overhead between connected nodes, compression techniques such as
quantization and sparsification are applied on the model updates transmitted among nodes. These
techniques are widely used in the federated learning literature (Basu et al., 2019;|Haddadpour et al.,
2021} |Alistarh et al., 2017} Bernstein et al.l [2018; [Shlezinger et al., [2020; |[Reisizadeh et al., 2020;
Wangni et al.| 2018} |Sattler et al.,[2019];|/Albasyoni et al.,|2020; Gorbunov et al.,2021;|Alistarh et al.,
2018 [Stich & Karimireddy, 2020; | Karimireddy et al.| 2019) as well as decentralized learning liter-
ature (Wangni et al.| 2018; [Reisizadeh et al.,|2019; Tang et al.|[2019; 2018}, [Koloskova et al.,[2019).
In particular, Tang et al.| (2018)) introduce the compression methods on the model updates shared
in gossip algorithms and propose the DCD-PSGD and ECD-PSGD algorithms, demonstrating that
their convergence when using unbiased compressors or compressors with bounded noise. However,
directly applying these compression techniques can adversely affect the convergence rate of gossip
algorithms, and may even lead to divergence if the compression noise is large. The reason is that the
lost information due to compression is not compensated.

The CHOCO-PSGD algorithm, introduced by |[Koloskova et al.[(2019), is another approach aimed at
improving the compression rate in decentralized learning. It incorporates a consensus step size pa-
rameter to regulate model aggregation at each node along with error feedback. However, it struggles
to handle highly heterogeneous data distributions effectively. Recently, a few other algorithms were
designed based on CHOCO-PSGD. In particular, AdaG-PSGD (Aketi et al.,|2024) was proposed to
dynamically adjust the consensus steps used in [Koloskova et al.| (2019). |Choudhary et al.| (2024)
proposed Q-SADDLe algorithm, which applied additional gradient descent to seek flatter loss land-
scapes in decentralized setting. This flatter loss landscapes allow more compression to alleviate
the local over-fitting with non-IID data. |Aketi et al.| (2021)) proposed Sparse-Push (SP) algorithm,
which includes additional communication round to handle the time-varying network topologies.
Nassif et al.| (2024) proposed the DEF-ATC algorithm, introducing a damping coefficient in front
of the updates in Koloskova et al.|(2019). DEF-ATC promises a maintaining performance while re-
ducing communication overheads in small step-size regime. Since these algorithms share the same
limitation as CHOCO-PSGD when dealing with high degree of data heterogeneity, in this paper, we
use DCD-PSGD and CHOCO-PSGD as our baselines in the main paper. The comparison among all
the algorithms will be presented in the Appendix

In this paper, the proposed DEFD-PSGD algorithm incorporates residual error feedback to effec-
tively manage biased compressors and those with higher compression noise. We validate its effec-
tiveness both analytically and empirically. In addition, we introduces a new discount parameter, 7,
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in DEFD-PSGD. We empirically study the impact of v and show that ~y can effectively balance the
impact of gradient compression and data heterogeneity.

3  PROBLEM FORMULATION

Objective Function. Let the total number of nodes be n, we consider a decentralized optimization
problem as follows:

. 1¢
in fla) =~ ;fi(w)a Q)

where z € RY represents the model parameters and f;(x) = E¢p, [Fi(2;€)],i € {1,2,...,n}.
Here, F;(x; &) represents the local loss function of node 4, D; denotes local data distribution of node
1 and £ is node ¢’s data samples from the local data distribution D;,.

Decentralized Setting. In decentralized learning algorithms, such as Decentralized Parallel
Stochastic Gradient Descent (D-PSGD), a real connectivity matrix W is employed, which restricts
each node to communicate only with its connected nodes. After sending the corresponding local
model to its connected nodes, each node ¢ computes a weighted average update according to the real
connectivity matrix W, specifically as 2 = Z?Zl W;ja?, where W;; represents weight of node j
related to node 4, and it is non-negative. Specifically, W;; is positive if nodes ¢ and j are connected,
and W;; is equal to zero if nodes 7 and j are not connected. We make some assumptions for the real
connectivity matrix W in Assumption [I|that is presented later.

Decentralized Parallel Stochastic Gradient Descent. Before discussing our proposed algorithm,
we first introduce the D-PSGD algorithm, which typically involves the following steps and notations.

At the beginning of each iteration, each node computes the averaged model parameters according
to the update rule z{ = 2?21 W;ja]. Simultaneously, each node ¢ randomly selects the samples

¢! according to the local data distribution D;, then uses the samples ¢! and the current model z¢ to
compute the local stochastic gradient V F; (:E;; 5@). The model parameter for the next iteration is

updated according to the update rule 11 = ri —nVFE; (wi, 5;) where 7) denotes the learning rate.

To simplify the notations, we define the vector X; := [z},27,...,27] and G(X;) :=
[Gl(th)a GQ(th)v SRR) Gn(thﬂ = [VFl(ZL'%,ftl), VFQ(x%7§1£2)7 LR VFn(x?,ﬁf)] for each itera-
tion ¢. Therefore, the general update rule for D-PSGD can be written as X; 1 = X; — nG(X3).

4 DEFD-PSGD ALGORITHM
In this section, we introduce and discuss the details of the proposed DEFD-PSGD algorithm.

4.1 PROPOSED ALGORITHM

We design the proposed DEFD-PSGD algorithm based on the general decentralized parallel gra-
dient descent algorithm. The key idea of DEFD-PSGD is to introduce controllable residual error
feedback on the local model update, using a control parameter -, to balance the impacts of gradient
compression and data heterogeneity. The DEFD-PSGD algorithm is described in Algorithm [I] and
consists of two main stages.

Computation and Communication. The first stage involves local computation and updates ag-
gregation, including the steps in Lines [2]to ] of Algorithm[I] Specifically, in Lines [3] and {4} each
node ¢ randomly selects the samples &; according to local data distribution D; at the beginning of
each iteration ¢ and computes the local stochastic gradients V F;(z¢; ;). Node i then computes

temporary model parameters :c; 41 using the weighted average model Z?:l w; jxi’j and the local

stochastic gradients VF;(xi; £}). Here, the 2% denotes the local model parameters on node i, and
xy” represents the model parameters of connected node j stored at node i. This setup allows node
i to access the model parameters of connected nodes without requiring additional communication
rounds. In Line |5, we compute the update vector b%. We incorporate the residual error ¢! from the
past iterations, scaled by a hyperparameter called discount parameter , which adjusts the impact
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Algorithm 1: DEFD-PSGD Algorithm

Input: n >0, W, T

Output: {z}} N
Initialize: e} < 0,Vi, {x{}}, = xo, {5’} = xo

fort <+ 0,1,2,...., T —1do

for each node i + 1,2,...,n do
Randomly sample ¢; from local dataset; ¢ for each node i < 1,2,...,n do
95;; “ Z;}:l wijxhd — Y Fy(ai; €)1 Update local parameters:
i i i i 1 Ty = T+
by < 2 | —x;+ vel; : ,
i i+ 12 Update neighbor’s parameters:
v < Ci(b}); 3 for each j, w;; # 0 do
Cip1 S by — v . 14 L xyly — xy? + v
Send v} and receive vy; L

of the residual error ¢. In Line @ we apply the compressor C(+) to obtain the transmitted update
vector v?, thereby reducing the communication load. In Line [7, we accumulate the error from this
iteration for future computations. Finally, in Line each node 7 transmits the update vector v} to its
connected nodes j € {1,2,...,n} according to the real connectivity matrix W.

Model Update. The second stage is the model updating process, which is described in Lines [9] to
of Algorithm |1} In Line node ¢ updates the local model parameters following the update
rule x},; = x} + v;. In Line node ¢ updates the model parameters of its connected nodes
j €{1,2,...,n} using the update vector received from node j during the communication process
in Line [8§} We would like to emphasize that in Line [1 1| and the update rule for local model of

node 7 and its neighbors’ models are identical by adding the compressed vectors v¢ or vg. Therefore,
each node’s model is synchronized with its neightbors’ model.

4.2 CONVERGENCE ANALYSIS

Before we show the convergence upper bound of Algorithm [T} we introduce some assumptions
which are commonly used in the literature (Lian et al., 2017} Tang et al., |2018}; |[Koloskova et al.,
2019).

Assumption 1. Throughout this paper, we assume:

o Symmetric doubly stochastic matrix: The real connectivity matrix W is symmetric, satis-
fying W = WT, and doubly stochastic, satisfying and W1,, = 1,,, where 1,, is a vector
of all one entries with length 7.

* Spectral gap: Let A\;(W) denote the i-th largest eigenvalue of W. Then, given W, we
define p := max{| 2 (W)|, |A\n(W)|} and assume p < 1.

* Lipschitzian gradient: All function f;(-)’s are with L-Lipschitzian gradients.

IVFi(y) = V(@) < Llly —all, Va,ye RYie{l,....n}.
* Bounded gradient variance:
E¢wp, |VF; (:6) = Vf; (2)|* < 0, Vi,Ve € RY.
* Bounded gradient divergence:

I” <&, VivaeRY.

=Y [V @) - VT (@)

where V f (z) = 1V f; (2).

T n
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* Unbiased stochastic compression: The stochastic compression operator C(-) is unbiased,
which satisfies B [C(b)] = b forany b € Rd.

* Bounded compression error: ||b} — C’(bf&)”2 <p HbinforO <p <1

In Assumption 1} the bounded variance o2 captures the stochastic gradient noise, and the bounded
gradient divergence €? characterizes the degree of heterogeneity of data distribution across all nodes.
The value of €2 equals to zero if all nodes share the same data distribution. The parameter 3 in the
bounded compression error is important to capture the degree of compression. If an algorithm allows
a larger (3, it means that this algorithm can handle a higher degree of compression.
First, we provide the general convergence upper bound for DEFD-PSGD Algorithm|l|as follows.
Theorem 1. When assumption (l| holds, and a, b and c are some positive constants, let § <
2
Ud=p) v > % and 1 satisfies 1 — By > 0, Algorithm

p#2(1+a)(1+b)+p272 (1+a)(1+0- 1) (I+o)+v2(1+a) (1-p)2’
ensures that

P (o [5s (5)] 0 momrsre)

2(f(0) — f* L 8PL? .
<O (B o w00 () )

8n? L? 9 nL? L 9

where |1 = max |[A; — 1|, f(0) is the initial model parameters which is the same among all the
1=2,3,...,n

ceey

nodes and f* is the true minimum of function f, and

B2l +a)(1+bH(1+c)+2(1+a 1) (1 —p)?)

TP AP+ a1+ - PP+ )+ b (1 +e D+ 20+ a D= )
3)
and an?L> L? L
By = <77L+(1n_p)2+47701(1+72) (117_p2 +2n>> 4)

The major challenge in the proof of Theorem [I] is to upper bound the residual error term,
Z:OI Y E, [Hei 11 ||2} We develop a novel technique to obtain the following iterative rela-
tion,

~

n T-1 T-1

> E [HeiHHQ} <M Zn:Et [Heﬂﬂ + A2 > zn:Et [HGZ.(Xg)HQ} 6

t i=1 t=0 i=1 t=0 i=1

Il
o

where A; and A, are some positive constants related to the system parameters and given in
and in Appendix [B] In addition, unlike the strict assumptions used by [Koloskova et al.[(2019)
such as bounded gradients and consistent gradient averages across iterations, the proof of Theorem|I]
only uses Assumption |1} which is widely used in distributed optimization and federated learning
literature.

From Theorem [I] we observe that the only term influenced by f$ is the value of C;. The parameter

B is defined such that Hbi — C(bf;)”2 < B Hb§| > where 0 < B < 1. Tt can be seen that the
convergence upper bound increases as 3 grows, indicating that higher compression errors lead to a
higher convergence bound. However, a larger upper limit for 3 also implies that the algorithm can
handle higher levels of compression. This will be discussed in detail later. In order to get a better
understanding of the impact of different parameters in DEFD-PSGD, by choosing specific values of
a, b, c, we obtain the following corollary.

"We emphasize that the unbiased compressor assumption is only made to be consistent with the assumption
in (Tang et al 2018). In Section [5] we show empirically that DEFD-PSGD can outperform state-of-the-art
algorithms when biased compression such as top-k is used.
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; _ V29(l-p) 3 _ _
Corollary 1. When Assumptlonholds, and a = (VIrT1) b=+V2yandc =1, lety > 0,

and n satisfies 1 — Bs > 0, Algorithm|l|ensures that

(1-p)®
B < G

;jz_:_ol <]E {Vf (anl)] +(1-B)E W(Xt)])
<WO-S) (nL 8L, 8v2n(1+7) CZ( % L>>02

=4 +
n o (1-p)? v 1—p?

2712 2 2
+ <(877 L 8Vl +y )02< anz +L)> e, 6)

1—p)? v 2n

where | = max |[Ai — 1|, f(0) is the initial model parameters which is the same among all the
1=2,9,...,1

nodes and f* is the true minimum of function f, and

c, = Bt A=) (u(v2y+ 1) + v2y(1 = p)) o
(1=p)? = Bu(V2y +1) +V29(1 = p))?

and

2712 2 2
an?L 4\/§n(1+7)02( nL L)) )

By = | nL =
? (nJr(lp)ZjL gl -2 " 2n

The upper bound of 3. From Corollary [I} it can be seen that with a proper choice of a,b and c,
then we have

(1—p)?
(B(V2y + 1)+ V2y(1 — p))?’

where v > 0. It can be seen that for a given decentralized network topology, we can always find
a unique value yp = m so that when v € (0, 7], the upper bound of S in (ﬂ) is larger

than the one given in the DCD-PSGD algorithm by [Tang et al.[(2018), which is 5 < %. This
means that DEFD-PSGD allows more compression compared to DCD-PSGD under the same net-
work topology. Numerically, this can also be seen from Table |1} where the random-y network
means that we choose y connected nodes uniformly at random for each node and guarantee that the
connectivity matrix W satisfies Assumption [I]

B < ©))

Table 1: The upper bound of 3 with different network topologies. DCD-PSGD has a consistent
bound for each network topology. DEFD-PSGD has a upper bound range with different choice of
~ € (0, 1] for each network topology.

Network Topology | DCD-PSGD DEFD-PSGD
Ring 8.49¢=%? (5.83e732,3.40e 3]
Random-4 0.04 (0.0024, 0.0162]
Random-9 0.051 (0.22,0.205)

Fully Connected 0.25 (0.068,0.99]

Comparison between DEFD-PSGD and DCD-PSGD. In Theorem [1} if we choose v = 0 and
a =b = c¢ = 1in (), we can recover the convergence upper bound for DCD-PSGD up to some
constants. Comparing this DCD-PSGD convergence upper bound with (6) in Corollary [I] if we
choose the optimal ~ € (0, 7o) to minimize (6) , we find that (6) is smaller than that of DCD-PSGD
with a given real connectivity matrix 1/ and (. In addition, the minima of (6)) can also be found in
the range of v € (0,7]. One example can be found in Figure in Appendix In addition,
under the same setting, in Figure[A.2b] we plot the upper bound of DCD-PSGD and (6) for different
value of 3, where (6) is optimized over ~. Here, it can be seen that 1) DCD-PSGD goes to infinity
when 8 = 0.004 while the proposed DEFD-PSGD does not and 2) we show empirically that (6) is
smaller than the upper bound of DCD-PSGD.
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Comparison between DEFD-PSGD and CHOCO-PSGD. As discussed in Section |1, CHOCO-
PSGD and related algorithms propose another approach using residual error feedback. Even though
these algorithms can tolerate a higher degree of gradient compression, they cannot handle a high
degree of data heterogeneity. In order to illustrate this, we rewrite the CHOCO-PSGD algorithm in
terms of error feedback to explicitly show the difference compared to DEFD-PSGD. From Algo-
rithm[A.T]in Appendix[A.4] it can be seen that the models are not synchronized among neighboring
nodes. This means that each node computes a “compressed” copy of the model for each connected

node, e.g., node ¢ compute i";frl which is the computed model of its neighboring node j at node %

where 2}/, is not the same as x7, ;. Hence, in order to make CHOCO-PSGD converge, it needs to
introduce a parameter ' to control the model update in each iteration, in which 4’ is much less than
1 in practice. This reduces the impact of model aggregation among connected nodes significantly
so that when data is highly heterogeneous, the CHOCO-PSGD may diverge. The role of v in the
proposed DEFD-PSGD is similar to 4’ in CHOCO-PSGD, in that ~y can also control the impact of
model aggregation among neighboring nodes in DEFD-PSGD. However, due to the fact that the
models are perfectly synchronized among connected nodes, v can be much larger compared to 4’ in
CHOCO-PSGD. This is shown in Table[A.T|in Appendix [A.2]

NG

. (1—p)?
if we have 8 < ;1,2(1+a)(1+b)+;¢2'y2(1+a)(1£b*1)(1+c)+72(1+a)(17p)2 and treat vy as constant, the

convergence rate becomes
T-1 2
1 Xt]-n 2 €3 1
N E|V — 0| —=+—=>5+=], 10
T; [f( - )} (TLT+T§+T> (10)

The Corollary |7| shows that we can achieve the same convergence rate as [Tang et al| (2018));

Koloskova et al.[ (2019). Moreover, the dominant term of convergence rate is O (\/%), which

1s consistent with the convergence rate of centralized SGD. In addition, the first two dominant terms

2
are O ( "T + ;32), which are consistent with D-PSGD in|Lian et al.|(2017).
n 3

-1
Corollary 2. Let learning rate n = (L 4oV 4 E%T%) in Algorithm according to Theorem

NG

5 EXPERIMENTS

In this section, we provide the experimental setup including details on the models, datasets, and
compression schemes used. We include two baseline algorithms, DCD-PSGD (Tang et al., [2018)
and CHOCO-PSGD (Koloskova et al., 2019), for comparison, since they are most representative.
Comparisons between DEFD-PSGD and other algorithms can be found in Appendix

5.1 EXPERIMENTAL SETUP

Dataset and Models. In our experiments, we evaluate the proposed DEFD-PSGD alongside two
baseline algorithms, DCD-PSGD and CHOCO-PSGD, using two popular datasets, FashionMNIST
(Xiao et al.l 2017) and CIFAR10 (Krizhevsky & Hinton, 2009). For the FashionMNIST dataset, we
use a two-layer neural network. For CIFAR10 dataset, we employ a Convolutional Neural Network
(CNN) consisting of two convolutional layers, each paired with a max-pool layer (with a 3 x 3 kernel
padding, 32 filters and a 2 x 2 max-pool), followed by three fully connected layers (with sizes 256,
64, 10) (Wang et al., [2023)). We apply ReLLU activation functions to all layers except the final output
layer and use Kaiming initialization (He et al., 2015) for the initial model parameters. To ensure a
fair comparison, we provide the average results from four runs with different random seeds.

Data distribution. To control the degree of heterogeneity for the data distributions across the nodes,
we apply the Dirichlet distribution which is parameterized by «. The details about Dirichlet distri-
bution is described in (Tzu-Ming Harry et all |2019). Specifically, if the Dirichlet parameter
approaches zero, the data distribution becomes extremely heterogeneous, which means the data dis-
tribution on each node mainly contains one class of data. Otherwise, if the Dirichlet parameter o
goes to infinity, the local data distribution tends to be the same across all nodes. In our experiments,
we employ the Dirichlet parameter o = 0.05 to evaluate the performance of different algorithms
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on highly heterogeneous data. We provide further experimental results with additional Dirichlet
parameters’ values in Appendix

Network topology. We consider a decentralized network topology where each node communicates
only with their neighboring nodes. The real connectivity matrix W is generated based on the total
number of nodes and the number of connected nodes per node. We select the neighboring nodes
for each node uniformly at random and ensure that the real connectivity matrix W is a symmetric
doubly stochastic matrix, satisfying Assumption [I] More specifically, in our experiments, we use a
20 x 20 symmetric doubly stochastic matrix, where each node is connected to 4 other nodes.

Compression. In our experiments, we employ both unbiased and biased compression techniques
to evaluate the performance of the proposed DEFD-PSGD and other algorithms. For the unbi-
ased compression, we use element-wise random quantization, as described in [Zhang et al.| (2017).
Specifically, each element is randomly quantized into one of the two closest quantization levels. The
probability for each level is calculated based on the distance between the element and the quantiza-
tion levels normalized by the distance between the two quantization levels. For biased compression,
we apply the Top-k compression (Stich et al., 2018} |Alistarh et al., 2018)), which selects the top &
fraction of all elements according to the magnitude and sets other elements to zero. For quantization,
we apply 4-bit and 6-bit random quantization for FashionMNIST dataset and 6-bit and 8-bit random
quantization for CIFAR10 dataset. For top-k compression, we use top-k ratio of 0.1 and 0.2 for
both FashionMNIST and CIFAR10 dataset. With these parameters, all the algorithms used in our
experiments have been shown to converge empirically.

5.2 EXPERIMENTAL RESULTS

In this section, we provide the experimental results for FashionMNIST and CIFAR10 dataset with
different compression methods. For each experiment with different compression schemes, to find
the proper value of hyper-parameters in order to achieve the best performance of each algorithm, we
perform a grid search for every hyper-parameter in each algorithm. The details about finding proper
hyper-parameters is shown in Appendix Here, we would like to emphasize the the choice of
depends on the range of 3 (see Table|l) for the proposed DEFD-PSGD.

Table 2: Test accuracy of both top-k and quantization methods using FashionMNIST dataset. The
results are averaged over four experiments with different initial model parameters, we list the aver-
aged accuracy and the standard variance.

FashionMNIST Top-k (%) Quantization
Algorithm 10% 20% 4 bits 6 bits
DCD-PSGD 75.43 +1.39 | 78.18 £ 1.21 | 71.05 £0.85 | 79.59 £+ 1.07
CHOCO-PSGD 76.21 +£1.73 | 76.04 £ 1.71 | 75.97+1.29 | 76.31 £ 1.58
DEFD-PSGD (ours) | 77.63 +1.27 | 79.30 + 1.46 | 78.84 + 0.63 | 80.21 + 0.69

Table 3: Test accuracy of both top-k and quantization methods using CIFAR10 dataset. The results
are averaged over four experiments with different initial model parameters, we list the averaged
accuracy and the standard variance.

CIFAR10 Top-k (%) Quantization

Algorithm 10% 20% 6 bits 8 bits
DCD-PSGD 62.14 +0.84 | 67.05£0.78 | 53.48 £2.21 | 66.57 £ 1.01
CHOCO-PSGD 63.27 +£1.42 | 63.26 £ 1.78 | 63.28 = 1.21 | 63.66 & 1.20
DEFD-PSGD (ours) | 67.27 +=0.89 | 69.27 =0.89 | 69.81 +1.24 | 70.50 + 0.91

From Tables [2] 3] and Figures [2] [3] our general observation is that the proposed DEFD-PSGD
provides the highest test accuracy compared to both baselines. In particular, first, we can see that
DCD-PSGD does not perform well when the degree of compression is high. For example, for the
FashionMNIST dataset and when top-k£ is used, it can be observed that the test accuracy of DCD-
PSGD drops from 78.18 to 75.43 when k reduces from 0.2 to 0.1. Second, CHOCO-PSGD can
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Figure 2: Global loss and test accuracy for FashionMNIST dataset with different compression
schemes: Top-k compression with & = 0.1 and £ = 0.2, and random quantization with 4-bit and

6-bit.
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Figure 3: Global loss and test accuracy for CIFAR10 dataset with different compression schemes:
Top-k compression with £ = 0.1 and k£ = 0.2, and random quantization with 6-bit and 8-bit.

indeed handle a high degree of gradient compression. For instance, for the FashionMNIST dataset
with top-k compression, the test accuracy stays almost the same as % drops from 0.2 to 0.1. Third, as
we can see in Figure [A:4] CHOCO-PSGD cannot handle a high degree of data heterogeneity when
the consensus step is not small enough. Here, when we choose the optimal consensus step, it can be
seen that the proposed DEFD-PSGD can still outperform CHOCO-PSGD. This is consistent with
our intuition. The reason is that due to a small consensus step parameter ' in CHOCO-PSGD, nodes
cannot obtain enough gradient update information from neighbors, while DEFD-PSGD can use the
discount parameter + to effectively balance between gradient compression and data heterogeneity.

6 CONCLUSION

In this paper, we address the challenging problem of decentralized learning, particularly in scenarios
involving high gradient compression and significant data heterogeneity. To tackle these challenges,
we propose the DEFD-PSGD algorithm, which introduces controllable error feedback to effectively
manage gradient compression and data heterogeneity while maintaining communication efficiency.
In addition, we develop novel proof techniques to establish a convergence upper bound under more
relaxed assumptions. Finally, our experimental results align with the theoretical analysis and demon-
strate that DEFD-PSGD outperforms other state-of-the-art decentralized learning algorithms.

10
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A ADDITIONAL DETAILS ON EXPERIMENTS AND FURTHER EMPIRICAL
STUDIES

A.1 HYPER-PARAMETERS AND EXAMPLE NETWORK TOPOLOGY

To achieve the best performance for the proposed DEFD-PSGD algorithm and baseline algorithms,
we need to properly choose the hyper-parameters such as learning rate 1 and discount coefficient .
For all the algorithms in the experiments, we use a grid search process to find the proper learning rate
n € {1073,10727° 10725 ...,107925 10°}. To find the value of discount coefficient ~y that has
the best performance for DEFD-PSGD, we compare the results with different discount coefficient
values v € {0.05,0.1,0.15,...,0.95, 1}. Before running the experiments, we perform a grid search
for all hyper-parameters for each algorithm with a given compression level and Dirichlet parameter.
Therefore, we have different values of learning rate n and v for different scenarios of gradient
compression and data heterogeneity. Also, we provide one example of the network topology, which
we are using in our experiments in Figure[A.T]

Figure A.1: Network Topology with total nodes of 20 and each connected 4 nodes. Each edge
represents a two way communication link.

A.2 CONVERGENCE UPPER BOUND COMPARISON BETWEEN DEFD-PSGD AND
DCD-PSGD

We consider a network with n = 20 nodes and each is connected to 4 nodes. In Theorem [T} if we
let 1 — By > 0, C is the only part which impacts the value of convergence upper bound. Here, we
compare the value of C; with different values of ~ or 3 in Figure[A.2] In Figure[A.2a] we compare
the two upper bounds when 8 = 0.002. In Figure[A.2b we plot the upper bound of DCD-PSGD
and () for different value of 3, where (6) is optimized over 7.
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minima value. Given 8 = 0.002.

Figure A.2: Convergence upper bound comparison between DEFD-PSGD and DCD-PSGD.

14



[

Under review as a conference paper at ICLR 2025

A.3 CHOCO-PSGD As ERROR FEEDBACK

Algorithm A.1: CHOCO-PSGD as Error Feedback

Input: n > 0, W, T

Output: {z}} N
Initialize: e < 0,Vi, {x{}}; = 2o, {Z}7=; = 0, {25 }j=, =0
fort < 0,1,2,...., T —1do

for each node i + 1,2,...,n do

Randomly sample £; from local dataset; 9 for each node i <— 1,2, ...,n do
) ) i " 10 ;’C‘Z % ;’C‘Z _"_ ,UZ

it L+ Y wij (xw - 331) t+1 Tt
Z_t it_f . Zﬂi—l AN ) for each j, w;; # 0 do

by <= wp —xh_ 1 +ep; ” | 0, @ o]
) Cz(bl) .

v o Randoml le & from D

e, bl — s 13 andomly sample &; from D;
t+1 > i i i g

; . j 14 x — z; —nVF; (z};
| Send v} and receive v}; t+3 P nVE (36

A.4 STUDY THE IMPACTS OF v IN DEFD-PSGD AND +' IN CHOCO-PSGD

We provide further experimental results to study the impact of v in DEFD-PSGD and 7/ in CHOCO-
PSGD. The network topology is given in Figure[A.T]and Dirichlet parameter o = 0.05. We choose
values for v and v/ in the range (0, 1], with a step size of 0.1. In Figure the aqua line represents
DCD-PSGD with direct error feedback applied.
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Figure A.3: Experimental results with different values of v in Algorithm Dirichlet parameter
a = 0.05.

We also provide Table to show the impact of different values of v in DEFD-PSGD and ~'
in CHOCO-PSGD under the same compression method and data distribution. In Table [AT] we
compare the test accuracy of CHOCO-PSGD with different value of 7' and DEFD-PSGD with
different value of . We show that the choice range of v can be larger than the range of 4" without
causing divergence. Although « and + serve as different coefficients in DEFD-PSGD and CHOCO-
PSGD, we illustrate that DEFD-PSGD offers greater flexibility in selecting the coefficient.
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Table A.1: The comparison between ~ in Algorithm |1{ and " in Algorithm given Dirichlet
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parameter a = 0.05, top-k compression with £ = 0.1 and learning rate n = 0.056.

~"/~ | CHOCO-PSGD | DEFD-PSGD | 7//v [ CHOCO-PSGD | DEFD-PSGD
0.1 71.04 +1.86 72.35£2.10 | 0.6 Diverge 77.33 £1.66
0.2 76.22 +1.73 73.00+1.26 | 0.7 Diverge 74.73 £0.98
0.3 68.83 £ 3.31 73.08+1.55 | 0.8 Diverge 75.67 £ 1.24
0.4 74.14 £0.82 73.78 £0.91 | 0.9 Diverge 72.28 +1.83
0.5 Diverge 73.36 £1.28 | 1.0 Diverge Diverge

In Figure we show that directly adding error feedback to DCD-PSGD does not lead to con-
vergence when the data distribution is highly heterogeneous. Moreover, by applying discounted
error feedback, we can find an appropriate discount coefficient ~ that optimizes the performance of
DEFD-PSGD. In Figure we show that the value of 7/ for CHOCO-PSGD cannot be too large
when the degree of data heterogeneity is high.

A.5 ADDITIONAL EXPERIMENTAL RESULTS

Before presenting additional experimental results, we first discuss the impact of data heterogeneity.
In summary, a larger Dirichlet parameter « results in a more homogeneous data distribution. For the
case of a = 0.01, each node predominantly contains a single class of data, with only a few samples
from the other classes. In contrast, for « = 0.5, each node has data from nearly all classes, with one
or two classes being the majority.

Table A.2: The comparison between DEFD-PSGD, DCD-PSGD and CHOCO-PSGD when the
Dirichlet parameter o« = 0.01 with random quantization and top-k compression.

CIFARI10 Top-k (%) Quantization
Algorithm 10% 20% 4 bits 6 bits
DCD-PSGD 64.82 +5.01 | 69.49 +5.39 | 65.89 +2.98 | 71.26 +6.10
CHOCO-PSGD 64.02 +£7.00 | 63.63 +7.06 | 64.26 + 7.17 | 63.99 + 6.69
DEFD-PSGD (ours) | 69.21 £5.78 | 70.61 =6.06 | 72.14 £ 7.17 | 72.75 4+ 6.32
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Figure A.5: Global loss and test accuracy for FashionMNIST dataset with different compression
schemes: top-k compression with £k = 0.1 and k£ = 0.2, and random quantization with 4-bit and
6-bit. Dirichlet parameter o = 0.01.

Table A.3: The comparison between DEFD-PSGD, DCD-PSGD and CHOCO-PSGD when the
Dirichlet parameter o = 0.5 with random quantization and Top-k compression scheme.

CIFARI0 Top-k (%) Quantization
Algorithm 10% 20% 4 bits 6 bits
DCD-PSGD 80.80 £0.72 | 82.29 £ 0.47 | 77.51 £0.87 | 83.15 £ 0.67
CHOCO-PSGD 83.11 +0.68 | 83.46 =0.59 | 83.41 £ 0.56 | 83.45 £ 0.46
DEFD-PSGD (ours) | 82.59 £ 0.70 | 83.55+0.59 | 82.51 £0.93 | 83.65 £ 0.52
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Figure A.6: Global loss and test accuracy for FashionMNIST dataset with different compression
schemes: top-k compression with & = 0.1 and £ = 0.2, and random quantization with 4-bit and

6-bit. Dirichlet parameter o = 0.5.

In Figure[A5] we present the comparison results of DEFD-PSGD, DCD-PSGD and CHOCO-PSGD
for Dirichlet parameter o = 0.01, which represents an extremely high level of data heterogene-
ity. We demonstrate that DEFD-PSGD can tolerate higher level of compression while maintaining
promising performance. In Figure [A.6] we compare the results for Dirichlet parameter v = 0.5,
where the data distribution becomes more homogeneous. We show that DEFD-PSGD and CHOCO-
PSGD offer similar performance levels for biased compression. Moreover, all three algorithms
achieve a similar performance level with unbiased compression.
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We also provide a comparison with other state-of-art algorithms, such as AdaG-PSGD and Comp
Q-SADDLe. In Figure we set Dirichlet parameter @ = 0.05 and perform a grid search for
consensus value of AdaG-PSGD and Comp Q-SADDLe within the range of (0, 1]. or other coeffi-
cients mentioned in AdaG-PSGD and Comp Q-SADDLe algorithms, we use the values suggested in
(Aketi et al.| 2024; |Choudhary et al.| [2024). We observe that the performance of AdaG-PSGD and
Comp Q-SADDLe could be varied on the choice of coefficient values.

—— CHOCO-PSGD AdaG-PSGD —— Comp Q-SADDLe —— DCD-PSGD —— DEFD-PSGD (ours)
Top-k k=0.1 Top-k k=0.2 Quantization 4-bit Quantization 6-bit
0.008 0.008 0.008 0.008
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o o o o
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o K= o K=
O 0.004 © 0.004 O o0.004 © 0.004
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00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
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e S 2 S
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00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Aggregations 1le3 Aggregations 1e3 Aggregations 1le3 Aggregations 1e3

Figure A.7: Global loss and test accuracy for FashionMNIST dataset with different compression
schemes: top-k compression with & = 0.1 and £ = 0.2, and random quantization with 4-bit and
6-bit.

In Figure [A7} we present a comparison of experimental results for CHOCO-PSGD, AdaG-PSGD,
Comp Q-SADDLe, DCD-PSGD and DEFD-PSGD. We set Dirichlet parameter o = 0.05 and ap-
ply the network topology in Figure [A7T] We demonstrate that the proposed DEFD-PSGD outper-
forms other algorithms in terms of test accuracy and global loss with biased compression. For
unbiased compression, while DEFD-PSGD still has the best level of performance, AdaG-PSGD of-
fers promising performance under high level of compression and DCD-PSGD achieves similar level
of performance compared to DEFD-PSGD when the compression level is low.
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B PROOF OF THEOREMI]

We introduce the following notations.
o Xy = [zf,2}, .2}
* Ry = [r},r},...,r}], where rf = C(b}) — bi.
© G(Xy) = [VF(2}56)), V(a7 67), ., VR (75 6]
* Assumption: ||bj — C(b}é)”2 <g Hb§H2 for0 < <1

First, following the steps in Algorithm |1} we have the update rule of z¢ 11 as follows,
Tipy =T+
=x;+b; —ej
:x§+x;+% — 2y +yep —ejq
:xz+% +vep —ejyq

mn
= wijal —nGi(a}) + el — efyy
j=1

> wia] — nGi(x}) + vei — (b — C(b}))
=1

~
Il

wijr] —nGi(x}) +vep + C(b;) — b}, (B.1)

I
NIE

1

<.
I

We define M; = ~y[e}, ..., e?]. Then, the update rule becomes X1 = X;W —nG(X;)+ M; + Ry.
Then, since W is symmetric and doubly stochastic matrix, we have W1,, = 1,, and

Xt+117L o Xt]-n _ G(Xt)]-n + Mt]-n + Rt]-n.

(B.2)
n n n n n

Now, we can start the derivation by applying the property of Lipschitz continuous gradient.

sl (P <= (%) =

x, [<vf (Xt1n> KL, | ML, R, >} B4

n n n n

G(Xt)]-n + Mf]-n + Rt]-n

L
+ —E;
2 n n n

2
H—n ] . (B.5)

Then, we compute the last two terms, (B.4) and (B.3)), separately.
First, we compute (B-4) as follows.

n n n n

- (s (52) 5
oo (o (K0 B [ (B, )]
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(o () o)

<o (5] g ]« 3 o (%) 7o
=<4 fos ()] 32 7o

+ 5Ky évh (X;1”> - Vi ()’ ]

=g (552 -3 w7’

’]’7 n X
L E :
St |

()

In (a), we apply

21
? 77L2 - Xt]-n i
s ST )] + 2 Y ’ dn

i=1

(c)

< g,
2

2
] . (B.6)

E, {Rtln} _ (B [O(B)] = B¢ [Be])1n 0,

and

E, |:Mt1n:| _ Y(E¢ [Bi—1] — E¢ [C(Bi—1)])) 1y _o

n n

We use the Jensen’s Inequality in (b) of (B.6). The Jensen’s inequality can be written as

n 2
SV (ij") Vfi () ]<nZEt U‘Vfi(m
i=1

2) -V )

|

Moreover, (c) in (B.6) applies the L-Lipschitz continuous gradients property.
Second, we derive the second part as follows.

G(X)1, M1, R1,|>
7}Et H—’I] ( t) + L + i ]
n n n
L —nG(X,)1, M1L,|*| L Ri1,|?
:*Et il ( t) + ! "‘F*Et t
2 n n 2 n
X1, M1 1,
+L]Et |:<—T]G( t) n+ t n;Et |:Rt L:|>:|
n n n
27 2 M1, | G(X)1, M1,
- T |25 [ | e (o e [ ]
n n
L Ril,
+ S By ‘t ]
2 n
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n n

27 2 2
2L 1< i g ; ;
:%]Et E;VR (xff,ft’) —|—%Et [ i;ei ] —l—gIEt |: :le_;’l“z ]
2:
2L 1 n ; ; 2L n ; L n
=B || VA i) | |+ g 2 [l + g oI
27, ; .,j L , "
P2 S () [4])] S (o ]
i#i! i
’ -
L RS P L i
B || X VR |+ g 2B e [llil’] + 5 ; e[l
27, n ) n ) ?
_%]Et %ZVFZ (‘T;7§t - Z fz .%'t %vaz (LL‘;) ]
=1 = =1
2L B ] + e S I
2n? — L 2n? — L
LEt{inJz— (a}) ] LS (VE () — Vi (1) }
=1 i=1
+n2LE, <iZ(Et [VE; (21;€))] = V fi (2})) Zsz x >]
=1
n Con L n )
%g ¢ lle]”] +272;Et [N
_n’L

Z ACHAERGACA)

= T]Et ["W(Xt)|‘ ] + 7Et [

|

n ;LZE i ] + TZE (1741
T [T oI ]+ 3 o [l + 5 2o 1]
zEt (197 (wis6) = 1 @]
221; (B0 [VFs (w35€)] = Vi (1) B [VFo (21360) | = i (1))
- e [I97 o] + e S )+ o S [l
Zig IV E (ai:6) — 97 @) )]
v

B 197 00l + 3 3 (1] + 5 3 [0+

i=1

(B.7)

Then, we replace and with (B.6) and (B.7), and obtain
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()] <o (22)] -

(32

2

] - 9 [[VF (x|’

77 Xi1, i 772L = 2
Tzl l w e |+ R IVl

n?o’L 7L & 12 L <& 112

T +WZE et ] + gz e [l (B.3)

Before we continue on the derivation, we rewrite X; as follows.

t—1 t—1
XO—nZG IWIET LN MW Y R (B.9)
s=0 s=0

Next, we compute > | E, [H e HQ] and obtain

>

=1

(%) 9 Z E, ”
i=1

2
[

‘thn

t—1 t—1
ZMSWt_S_lei . Msln> + <Z RsWt_S_lei N Rs]-n>
n

|

s=0 s=0 n
n |: t—1 G(X )1 2
=2 E |||y ( G(X )Wt e, > ")H
i=1 s=0 n
n t—1 M 1 2
+2) K ‘ ( MWt 1e, n”)
=1 s=0
n t—1 2
+2) E ‘( RWt s 1e; Rj}”) ]
=1 s=0
n t—1 1 t—1 1
+4) B < E; [M,] (Wt—é—lel ”) > Ei[R] (Wt—é—le ”>>1
i=1 5=0 nj 5 n
. = e G(XD1,
=2> E ||n G(X )Wt 1e, -
=1 s=0
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JrZiSEt l

Msln
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i=1 s=0 n
n t—1 2
—_8s— R«Sln
23S \(stt“ez-— )]
1=1 s=0
1

+4§:2Et

e
(em

+2ZEt (132 (A= PT —wo]) 7]

23R [ (R (PAPT — o) 2]

1 1

t—1 )\578*1 0
= 2B, ||n>_ G(X,)P - PT
s=0 .
—s—1
AL 0 B
— 1 1 2 -
Moms—t 0
+2 Z E, | ||M,P , — ) P’
- .
i A 0 F
~ 1 1 2
At—s—l 0
+23 E |||R.P 2 , - . PT
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0 2
t—1 )\gfsfl
=2E,; |||n)_ G(X.)P . Pt
s=0 ’ /\t—s—l
n F
- 2 —
t—1 )\;7871
+2 Z E, | ||M.P . P’
s=0 ‘
i At F
- 0 2
t—1 )\37871
+2 Z E, | [|R,P , pPT
s=0 i
_ voed)
O 2
t—1 At—s—l
2
= 2B, ||n>_ G(X.)P
s=0
/\ﬁ;sfl »
~ 0 27
t—1 )\g—s—l
+2 Z E, | ||M,P
s=0
i A )
- . )
t—1 >\t2—s—1
+2) By |||R.P
s=0
i S VA
-1 2 t—1 t—1
<2, (|0 GXP| | 2D B [[lo M| ] 2D B ([l R P
s=0 F s=0 s=0
[ /i—1 2 -1 , -1 ,
= 2, (Z npt =1 ||G<Xs>|lF> +2) B [0 M 2 B [T R
s=0 s=0 s=0

(B.10)

where the (a) in (B.I0) applies the update rule in (B.9), the X term is removed since all nodes share
the same initial model parameters Xj.

Therefore, after summing over 7' — 1 iterations, for the third term in (BI0), using the fact that the
initial parameters are same when ¢ = 0 and the initial value R_; = 0, we have

T—1t—1 9 T—1t—-1 9 T—-2 T-1
S S E IR = S IR = S AR IR
t=0 s=0 t=1 s=0 s=0 t=s+1
T—2T—-s5-2 o 5 (a) 1 T—2 ) 1 T-1 )
= 2 2 o< Ey [”RG”F} < 11— p2 ;]Et [HR@”F} < 1_ p2 ; E; [HR@HF} , (B.11)

T—s—2 , 00 ,
where (a) is due to Y p* < 3 p* = 1_1p2. The same technique can be applied to the
=0 =0

second term in (B:10).
Let G(X_1) = 0, the first term in (B.10) can be computed as
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T-1 t—1 2
Z]Et [(ZWPtSl ||G(Xe)||F> }
s=0

t=0
T—1 t—1 2
=2 E ( np' G(Xs)IIF>
t=1 s=0
T—1t—1 t—1
=Y DD AT T TR [IG(X) ) B (G (X))
t=1 s=0s'=
(a) Ltizlizt (B G A + Ee [ GX ) || 1)
2 T gt ¢ [1G(Xs) I ] : ¢ 1G(Xs)ll ]
t=1 s=0s'=0
2 T—-1t-1
= ? pt—s—lE [HG HF} Z pt s'—1
t=1 s=0 =0
? T—1 t—1 t—1
+y P TR [IlG X)) Y
t=1 s/'=0 s=0
7’]2 T—1t—1 t—1 772 T—1 t—1
S 3D A [0 STADDEE DD DY i [ [0 ]Zp
t=1 s= r=0 t=1 s’'=0
772 T—1t—1 , . ) 7]2 T—1 t—1 1 )
< P T E | IGX) R | + P = TR, || G(Xe)||
2(1—,0);; ’{ i F} 2(1—p)t:1§::0 t{ * F}
"72 T—2
DI [EESTARE i ZE [lexol?]
772 T—-2
= G(X,)|?
T 2 B Il
772 T-1
< E ([IG(X)|7| B.12
< o o B (16K ®12)

where we apply 2ab < a? + b? in (a).

Then, we plug (B-T1) and (B:12) back into (B.10), and we have

T—1 n X1 2 T—1 ) 9 T—1 )
t i
;;E U - ] <1 2%1&2 (12113 +ﬁ§:joxg (1R
27 = 2
o 2 E[lEIE]. (B.13)
p t=0
Let H, = [ef,...,e}], then, inequality (B.8) becomes
1 2= X411, 1 = X1, N1 = X1, |2
pam ()| gm0 - gr v ()
t=0 t=0 t=0
nl ! = 2 n?L 1 i 2
— = BV I + 5 DB [IVT ()]
t=0 t=0
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T-1

2 .2 372
noL n°L 2
+ o+ s r 2 B IO

+(7”ﬁin 2n2) ZEt[IHtH]

L2
+<n(1n—p 2n2) ZEt[HRtHF} (B.14)

Before further simplification, we provide the following expression.

Xip1 = XeW —nG(Xy) + My + Ry = Xy PAPT — nG(X,) + M, + Ry, (B.15)
Xy 1P = XiPA — nG(X:)P + MyP + RiP, (B.16)

and
Y;5+1 :Y;gA—T]Jt'FNt‘FKt (Bl7)

So Y B, [, (W - DII2] = EZEM& PA-DPTIE] = T E [ D] we
t=0 t=0

also know connected matrix W is a doubly symmetric stochastic matrix and the formula for eigen-
decomposition is W = PAPT, where P = (v, vs,...,v,) and PT P = PPT = I. So, we have
WP = PA and YoA = XoPA = XgWP = XyP = Y}, then according to the update rule of Y;,
we can rewrite Y; (A — I) = Y;A — Y; as follows.

t—1
Yi(A—1)=Y,A-Y; = (Z A5 —nJs + Ng + Ks)> (A-1). (B.18)

5=0
Note that we have
15 = c@h” < sIE°
and apply inequality
lz1 + 22 < (1) lan]* + (L4 et 2]

where ¢, is a constant which satisfies ¢; > 0.

Then, we have

T-1

By (1R} ]
t=0

T-1

<BY B [IX(W — D) = nG(Xe) + v Hill3

= T-1 T-1

< B(1+a) 3B [IX(W = DIE] + 50 +a) 3 [|-nG(X0) + v Hil 2]
t=0 t=0

.
L

T—1
<B(L+a) Y B 1X(W = DF] + 28021+ ) 3B 1G]
t=0

t

I
=)
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+267y(1+a™") ) By {I\Htllﬂ, (B.19)
t=0

where (a) applies the following technique. We further define 1 = _Inax |A; — 1] and obtain

777777
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T—1 n t—1 ] ) ) 2
<BP(1+a) Y S E, (Zpt‘s‘ll\—njé+ni+ki||>

< E, |||—nii + ni + ki 2
=T B ek
2 1 T-1
5?1(_:)2@) E, [||—th +Nt+Kt||H7 (B.20)
t=0

where (a) applies the same technique in (B.12).
By rearranging (B.19), we have the following expression for || R¢|| .

T—1 T-1
B2+ @)+ b1+ ) +2(1+ a7 (1 - p)?) 2
> B [I] < o G LT > B 1]
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(B.21)

We know that the Frobenius Norm [|A]|3, = 37 [|a;||%, we have 37" 2" | E; [H—eiﬂ H2] =

ST S B ek ] = S S e [[7] = S50 e IRl Now we have
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Then, we have the expression of [, [Heﬂﬂ as follows.
i|[2 t Q|2 = t—s—1 2
B [[lef])”] < ALE: [[leb 7] + 42 3 AR [llGaxd)]] - (B.25)
s=0

We know that e}, = 0. Therefore, by applying the geometric series, we have
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where we define C as

= Brtn®(1+a)(1+ b~ (1 +¢) +28n* (1 +a”)(1 = p)?

(1—=p)2=Bp2(1+a)(1+0b) +p2y2(1+a)(1+b0"H(1+c1)+292(1 + a*l)(l(B—2p7))2)'

Then, combining (B.26) and (B:22), we have
T-1 T-1
SR (Il <o SR lGal] (B.28)
t=0 t=0

Then, combining and (B:21), we have
T-1

T-1
SUE[IRE] < 00 Y B lGx) ] - (B.29)
t=0

t=0

Next, we compute >, ' S | E, [HGl(a:i) ||2} as follows.

Sy mflewl] - 3w [Iv G|
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+

=1
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<
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N
<
K,j
iy

t=0 i=1

Z 20, [||[VF (X0)|*] +4 (0% + &) nT. (B.30)
t=0

Combining (B.14), (B.28), (B.29) and (B.30), and taking the total expectation and rearranging, we

have
P (e [os (5)] + 0wz

20/ = )
<20
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8n°L? o [ nL* LYY »
+((1_p)2+8’001(1+’}/ ) 1_p2+% €, (B.31)

where B; and C are defined in Theorem £(0) is the initial model parameters which is the same
for all the nodes and f* is the optimal solution for function f.

Hence, we finish the proof of Theorem ]
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