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ABSTRACT

SMOTE (Synthetic Minority Oversampling Technique) is the established geomet-
ric approach to random oversampling to balance classes in the imbalanced classes
learning problem, followed by many extensions. Its idea is to introduce synthetic
data points of the minor class, with each new point being the convex combination
of an existing data point and one of its k-nearest neighbors. This could be viewed
as a sampling from the edges of a geometric neighborhood graph. Borrowing tools
from the topological data analysis, we propose a generalization of the sampling
approach, thus sampling from the simplices of the geometric neighborhood sim-
plicial complex. A new point is defined by the barycentric coordinates concerning
a simplex spanned by an arbitrary number of data points being sufficiently close
rather than a pair. We evaluate the generalized technique, Simplicial SMOTE, on
23 benchmark datasets and conclude that it outperforms the original SMOTE and
its extensions. Moreover, we show how simplicial sampling can be integrated into
several popular SMOTE extensions, with our simplicial generalization of Border-
line SMOTE further improving the performance on benchmark datasets.

1 INTRODUCTION

The imbalanced learning problem is the learning from data when the minority class is dominated by
the majority one (He & Garcia, |2009). Many problems in data mining and data analysis are inher-
ently imbalanced in the areas like finance (fraud detection) (Wang et al.| 2019; Jiang et al.| [2023),
marketing (churn prediction) (Liu et al.| 2018), medicine (medical diagnosis) (Han et al., |2019),
industry (predictive maintenance) (Sridhar & Sanagavarapu, 2021)), etc. Often, the rare minority
class (a credit fraud, a canceled subscription, the presence of a disease, an equipment failure) is of
much more interest than the common majority one. Class imbalance causes the bias of classifiers
towards the majority class (Wallace et al.l [2011])), as the naive classifier assigning all data points to
the majority class will achieve an accuracy equal to the majority class proportion.

There are several solutions to overcome this problem: 1) cost-sensitive learning using a class-
weighted loss function (Thai-Nghe et al., 2010) or specialized classifier algorithms (Krawczyk,
2016; [Esposito et al.l 2021)), 2) matching the class cardinalities by undersampling the majority class
(Hoyos-Osorio et al., [2021)), which leads to loss of data, and alternatively 3) oversampling the mi-
nority class by introducing new synthetic data points of the minority class (Santoso et al., 2017).

Upsampling techniques include local ones, such as random oversampling (Batista et al.| 2004), i.e.,
randomly duplicating the required number of the minority class instances and global ones, such as
Mixup (Zhang et al.,[2017) (without labels interpolation), which introduces the new synthetic points
as the random convex combinations of randomly selected pairs of the minority class instances. The
established oversampling method, Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002)) introduces the new synthetic points as the random convex combinations of pairs con-
sisting of a point and its nearest neighbors. This could be seen as the sampling from the edges of the
neighborhood graph.

Neighborhood graphs model the data as the union of 1-dimensional cells, spanned by pairs of
points, which is insufficient to sample from high-dimensional spaces. For example, even for a
2-dimensional dataset, one could not introduce samples from the entire convex hull spanned by data
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Figure 1: Geometric oversampling algorithms: a) Random oversampling, b) Mixup, ¢) SMOTE, d)
Simplicial SMOTE. Data’s graph or simplicial models in blue, selected edges or simplices to sample
and sampled synthetic points in red. With no inductive assumptions on data, Random oversampling
just duplicates existing points. Assuming that synthetic data points lie within a convex hull of
existing points, global methods like Mixup do not respect the intrinsic properties of data such as
clusters and holes. While SMOTE, being a local method, improves on this, it still models the
data with a union of 1-dimensional cells, unable to sample all of the data’s support. Simplicial
SMOTE, by modeling data with a union of higher-dimensional simplices, samples dense areas of
data’s support while avoiding sampling from topological holes.

points using SMOTE. Instead, if we model the data with the union of cells whose dimension is equal
to the feature space, for example, a union of 2-dimensional triangles, which are simplices spanned
by triples of points, we could sample it.

Therefore, we introduce the generalization of SMOTE, called Simplicial SMOTE, thus sampling
from the higher-dimensional simplices of the clique complex of a neighborhood graph. That is, a
position of a new point is defined by the barycentric coordinates concerning a simplex spanned by
an arbitrary number of data points being sufficiently close, i.e., being in the p-ary proximity relation.

OUR CONTRIBUTION

» we propose a novel simplicial extension to the SMOTE algorithm and its modifications,
where the new points are sampled from the simplices of the geometric neighborhood sim-
plicial complex,

» we demonstrated that the proposed simplicial extension is orthogonal to various modifica-
tions of the SMOTE method by introducing simplicial generalizations of several popular
SMOTE variants such as Borderline SMOTE, Safe-level SMOTE, and ADASYN,

* we experimentally demonstrate the the proposed technique is characterized by
significant increase in performance for various classifiers and datasets from the
imbalanced-learn library.

2 RELATED WORK

The original SMOTE algorithm introduces synthetic points from the geometric model of the minor-
ity class manifold. Several variants of SMOTE instead propose to sample synthetic points from the
minority class part of the decision manifold, i.e., the minority points lying on the boundary between
classes. The decision manifold is estimated in several ways; Borderline SMOTE (Han et al., [2005)
estimates the decision manifold by taking the minority class local density around each minority data
point, while SVM SMOTE (Nguyen et al., 2011) first takes the points corresponding to the support
vectors of the SVM classifier.

In Safe-level SMOTE (Bunkhumpornpat et al.l [2009), a value called safe level ratio is assigned to
each edge of the neighborhood graph built over minority class instances, which is the ratio of the
numbers of minority class instances for a point x and its neighbor z’. If the number of the minority
class instances in the neighborhoods of x and z’ are zero, no synthetic examples are generated
from that edge. Otherwise, a new synthetic sample is a convex combination of the points, and the
coefficient depends on the ratio, being close to the minority example with more neighbors of the
minority class.



Under review as a conference paper at ICLR 2024

In ADASYN (He et al) 2008)), for each minority point, a ratio of majority examples in the neigh-
borhood is computed. The new points are the convex combination of minority class points, with
the number of synthetic examples generated using a given minority example being inversely propor-
tional to that ratio.

Several SMOTE extension use clustering schemes for oversampling. MWMOTE (Barua et al., 2012)
first identifies the hard-to-learn informative minority class samples and then generates the synthetic
samples from the weighted informative minority class samples using a clustering approach. In AHC
(Cohen et al.,|2006)), the minority class is clustered using agglomerative hierarchical clustering, ob-
taining several clusters at different levels of resulting dendrograms. The new points are the centroids
of the clusters, points in the interior of the polytopes spanned by an arbitrary number of points, with
the distance less or equal to the chosen histogram level.

In Density-based SMOTE (DBSMOTE) (Bunkhumpornpat et al., |2012), minority class examples
are partitioned into disjointed clusters by the DBSCAN algorithm (Ester et al., [1996)). The new
points are the random convex combinations of two points from the random edge of the shortest path
connecting minority points with the pseudo-centroid point, which is the closest to the cluster cen-
troid. LVQ-SMOTE (Nakamura et al.||2013) oversamples the minority class, first approximating is
using a set of prototype points obtained by LVQ (Learning Vector Quantization) algorithm |De Vries
et al.| (2016).

Mixup, a geometric method, introduces new synthetic points as a convex combination of a pair of
existing points randomly chosen from a dataset (Zhang et al.,[2017). Fitting parametric distributions
to data, such as the Gaussian distribution, is also used for the minority class oversampling in the
imbalanced data classification problem (Xie et al., 2020).

Our work improves the SMOTE modeling and sampling scheme by modeling data with a geometric
simplicial complex (Boissonnat et al.| 2018} Dey & Wang] [2022), which is the higher-dimensional
generalization of a graph. Contrary to global methods such as Mixup or fitting Gaussian distribution,
it respects local topological features of data such as clusters and topological holes. The new sampling
scheme is orthogonal to most SMOTE improvements and could be used cooperatively with them.

3 METHODS

Geometric sampling methods assume that a synthetic point combines (several) existing data point(s).
When designing such algorithms, one should decide upon 1) a neighborhood size of each data point,
ranging from a point itself to all points of the dataset, and 2) several points a synthetic point is a
combination of. Neighborhood relations can describe the former, while the latter corresponds to the
relation arity. While popular sampling methods like Mixup or SMOTE model data with a graph,
complete or local, based on the binary neighborhood relations, our choice is to model the data with
a simplicial complex based on neighborhood relations of arity greater than 2.

Consider a complete graph H,, with a vertex set X € R? of cardinality n. A neighborhood graph
G = (X, E) C H, is a subgraph of H,, such that the edge set £ C (g) is instantiated according to
arelation R defining a neighborhood of each point

N(z)={z" | zRz'}. (1)

For example, let X be endowed with a distance function d : X x X — R,. A (symmetrized)

k-nearest neighbor relation R*NN on X defining a k-nearest neighbors neighborhood graph param-
eterized by k € N\ {0} is

RFWN (k) = {(a:,y) | d(z,y) < mingd(z,2), 2z € X }, 2)

where miny (-) denotes the k-th minimum, hence arg miny (z, z) is the k-th neighbor of z.

An e-ball relation 12° on X defining the e-ball neighborhood graph given a scale parameter e € R>¢
is

R (e) = {(z,y) | d(z,y) < e}, 3)
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meaning that balls B, (¢/2) N B, (¢/2) # () of radius €/2 centered at x and 2’ intersect.

Given a binary relation R, a p-ary relation P of R is defined as a subset Y of X of cardinality p
such that Y x Y C R, thatis, a set Y iff x Rz’ for any pair (x,2") € Y. A maximal p-ary relation
C of R defined as a subset Y of X of cardinality p that is maximal concerning inclusion (Henry},
2011).

Whether a binary neighborhood relation corresponds to an edge in a neighborhood graph, a p-ary
relation corresponds to a graph’s (p + 1)-clique, more generally, a p-simplex in a neighborhood
simplicial complex over the vertex set X . Points can belong to more than one simplex. All simplices
containing a point z are subsets of its neighborhood A (z) (Henry, 2011).

3.1 CLASSIFICATION OF GEOMETRIC SAMPLING METHODS

We classify the existing geometric sampling methods based on the neighborhood and the arity of the
neighborhood relation, summarizing them in Table[T]

Table 1: Classification of geometric sampling methods.

| Neighborhood size Relation arity
Random 1 1
Mixup n 2
SMOTE k 2
Simplicial SMOTE k [3, K]

For random oversampling, a neighborhood of each point is only the point itself, resulting in synthetic
points being duplicates of existing data points.

For Mixup, a neighborhood of each point is global, resulting in the complete graph as the data model,
with synthetic points as convex combinations of pairs of data points sampled from the edges of the
complete graph.

For SMOTE, a neighborhood of each point is local, defined via a kNN or e-ball neighborhood
relation, resulting in a neighborhood subgraph of the complete graph as the data model. Synthetic
points are convex combinations of pairs of data points from the neighborhood graph edges.

Xxp,%1 (o) = axo + (1 — a)x;. 4)

3.2 SiMpLICIAL SMOTE

We classified the existing approaches to geometric data modeling and sampling based on the neigh-
borhood relation size and arity. We propose a simple yet effective generalization of SMOTE by
considering a general k-ary proximity relation. That is, instead of binary relation leading to the
proximity graphs, we believe the k-ary relation leads to proximity simplicial complex, resulting in
the high-dimensional data model, contrary to a graph which is locally 1-dimensional.

Given a set X, an (abstract) simplicial complex K is a collection of subsets of X called simplices
such that if a simplex o is in K, then all of its subsets 7 C ¢ are also in K. Let A, be the set of all

vectors of p + 1 elements, such that \; > 0 and Zf:o A = 1. Given a set of p + 1 points {x;}}_,
in an d-dimensional Euclidean space a geometric p-simplex o is defined

p
Oxgyexy = {Z Aixi | A€ Ap} : (5)
=0

We call the elements of X barycentric coordinates w.r.t. the points spanning a simplex. Barycentric
coordinates could be mapped into Euclidean coordinates, resulting in a synthetic point.

Xp ()\) = )\0X0 + -+ )\kXp. (6)

.....
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An example of a geometric complex is the Vieforis-Rips complex parameterized by the scale param-
etere € R>g

KYR(e) = {(zo, ..., 7p) | d(zi, ;) <e, Vi,j}. (7

More generally, with any graph, its clique complex could be associated by expansion, that is, a
complex K (G) has the same vertices and edges G, and (k + 1)-cliques of G are simplices of K (G).
The Vietoris-Rips complex is the clique complex of an e-ball neighborhood graph.

Simplicial complexes can be huge as they grow exponentially w.r.t. p, so one can work with its
smaller subcomplexes. A p-skeleton L of a simplicial complex K is the subcomplex of K with
the dimension of simplices at most p. Algorithmically, this corresponds to finding cliques up to
dimension p + 1 instead of maximal cliques.

We outline the Simplicial SMOTE method in Algorithm [I] Note that it has only two hyperparam-
eters, namely the neighborhood size (k for kNN neighborhood graph) and the maximal arity of
neighborhood relation (with p = "maximal” by default).

Algorithm 1: Proposed Simplicial SMOTE

Input : Minority class points X ™.
Parameters : A neighborhood graph G parameters 6,
maximal simplex dimension p,
Output : Synthetic minority class points X+,
Construct a neighborhood graph Gy (X ™), either
a) a k-NN neighborhood graph, 6 = k, or
b) an e-ball neighborhood graph, 6 = ¢.
Compute a full clique complex or its p-skeleton (K, o Gy)(X 1), eigher finding a) maximal
cliques ¥,40, p = "maximal”, or
b) cliques up to dimension (p + 1) ¥,, p € R>o.
Sample from X,,,,,, or X, m =n~ — nT maximal simplices of dimension p;,
Y= {ngi)}iel7... ,m-
foriel,...,mdo
Sample barycentric coordinates \; ~ Dir(a), where a = (1,...,1) € R+,

Compute Euclidean coordinates x; = A7 X, w.r.t. a simplex Ji(p D= (x0,...,%Xp,) € Xof
dimension p;.

return {X; }ic1,...m

3.3 SIMPLICIAL GENERALIZATIONS OF SMOTE VARIANTS

Consider a dataset X = {x;, y; }ie1,....n, Where x; € R™ and y; € {0,1}. By convention, we denote
the minority class X = {x; | y; = 1};c1,. n+ as positive, and the majority class X~ = {x; |
yi = 0},c1.. n- asnegative of sizes n™ < n™ respectively, withn = nt <n~.

We denote the minority neighborhood of x; are the points of the minority class within a given neigh-
borhood of a point Nt (x;) = {x; | x; ~ xj,y; = 1},e1,.._x+, and the majority neighborhood
of x; as N7 (x;) = {x; | i ~ Xj,y; = 0}je1,.. - of sizes kT and k~ respectively. The ma-
jority and minority points ratios within a given neighborhood are defined as A™(x;) = k*/k and
A~ (x;) = k™ /k respectively. Given two points from a majority class x, x', the safe-level ratio is
defined

Vo) = A0 K0 k) .

CATX) k(x) k()

The original SMOTE algorithm constructs the minority neighborhood graph and samples points
from its edges without considering the majority class. Several variants of the SMOTE algorithm
improve reinforcing the points close to the boundary between types by considering the density of
the majority class relative to the points from the minority.
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* Borderline SMOTE hard modifies the minority neighborhood graph, setting zero probabil-
ity to sample synthetic points based on only points outside the borderline subset (i.e., the
union of safe and noise points). The probability of sample points from simplices spanned
by borderline and borderline and outside points remains the same.

* ADASYN hard/soft modifies the minority neighborhood graph, zeroing/lowering probabil-
ities to sample synthetic points using points in the safe region. The probability of sample
points from simplices changes proportionally to their safety/homogeneity ratio (the higher
the homogeneity - the lower the probability).

 Safe-level SMOTE leaves the minority neighborhood graph intact but modifies the barycen-
tric coordinate weights on simplices, adding more weight to sample synthetic points using
points with a higher safety/homogeneity ratio.

We generalize the SMOTE algorithm variants to use the simplicial sampling scheme.

3.3.1 SIMPLICIAL BORDERLINE SMOTE

The extension assumption is that the examples on the borderline and the ones nearby are more apt
to be misclassified than the ones far from the borderline and, thus, more important for classification.
The examples far from the borderline may contribute little to classification results.

The borderline subset of the minority class B(X ™) is defined

VT (i) }
BXT) ={x,y: =0 "2 < 1/2,INT(x; 0 9
) = S =0 Bl <) £ ®
that is the points whose the larger part of the nearest neighbors belong to the majority class, except
those whose nearest neighbors are completely majority class instances and are considered noise.
The new points are the convex combination of the simplices of a simplicial complex built upon the
borderline points and their nearest neighbors from the minority class.

3.3.2 SIMPLICIAL SAFE-LEVEL SMOTE

The original SMOTE algorithm considers sampling from a k-simplex according to the Dirichlet dis-
tribution Dir(a), where o € R’;O. Without any further assumptions, the distribution is symmetric,
i.e., all of the vector «« elements have the same value (usually 1, resulting in the uniform distribution
on a simplex). Safe-level SMOTE (Bunkhumpornpat et al., 2009) modifies the elements of o by
setting them based on the ratio of majority neighborhood ratios, resulting in synthetic points to be
generated closer to safer minority points, i.e., having a larger proportion of neighbors of the same
class. A simplicial generalization is to set the parameter a; = 1 + A1 (x;).

3.3.3 SimpLICIAL ADASYN

While Borderline SMOTE answers the question from which simplex to sample, selecting simplices
spanned by borderline points, and Safe-level SMOTE answers the question from where precisely
on a simplex to sample sampling closer to safer points, ADASYN answers the question of how
much to sample from a simplex, inversely proportional to the average safety of points. Therefore,
its simplicial generalization is to average arbitrary safety values instead of just a pair.

3.4 COMPLEXITY ANALYSIS

Algorithm complexity depends on complexity of the neighborhood graph construction and expan-
sion. The naive nearest neighbor search have complexity of O(n?), while approximated nearest
neighbor search lowers it to O(n).

Enumerating all maximal cliques in a graph with n vertices and m edges is an NP-complete problem,
requiring exponential time in the worst case. Up to n™/3 maximal cliques exist in a graph with n
vertices (Moon & Moser] [1965). Yet, as the neighborhood graphs are sparse, the various bounds
were given regarding the number of edges, node degree, and arboricity of a graph. In a graph with
maximum degree & the time complexity of MCE is O(3*) per clique and O((n — §)3%/35%) total
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Figure 2: Synthetic data: a) moons, b) swiss rolls, ¢) a Gaussian inside a sphere, d) a sphere inside

a sphere.

(Makino & Uno, 2004} [Eppstein et al., 2013). The arboricity is the minimum number of edge-
disjoint spanning forests into which the graph can be decomposed. For a graph of arboricity a, the
complexity of MCE is O(am) (Chiba & Nishizekil |1985).

Graph expansion could also be done via maximal clique enumeration (MCE). It is shown that the
time complexity of MCE is O(m), thus linear in the number of edges (Yu & Liu, 2017 [2019).
Enumeration of all cliques up to the size p can be done in either inductive, incremental, or top-
down enumeration approach after solving the MCE problem (Zomorodian, 2010). Recently, an
algorithm conjectured to be optimal was proposed for this task, which is on average was shown to
be approximately a magnitude faster than the incremental algorithm in practice Rieser|(2023).

4 RESULTS

4.1 SYNTHETIC DATA

First, we evaluated the proposed method and its alternatives, in comparison with the original SMOTE
(Chawla et al.l [2002), sampling from a fitted Gaussian (Xie et al., 2020), random oversampling
(Batista et al., [2004), and the Mixup (Zhang et all [2017) algorithms, on several model datasets to
emphasize the importance of modeling the data locally, as well as the advantage of the simplicial
complex data model.

As the model data, we have generated the following datasets partially using the scikit-learn
library (Pedregosa et al.l [2011)), shown in Figure 2: moons, swiss rolls, a Gaussian inside a circle,
a circle inside a circle. As model datasets have complex geometric structures, global methods are
conjectured to underperform by generating synthetic points of minority class within the support of
the majority class.

Table 2: Synthetic data classification results.

Imbal d G Rand Mixup SMOTE Simplicial
moons 09511 0.8830 0.9485 0.9348 0.9694 0.9694
swiss_rolls  0.5317 0.6673 0.7168 0.6774 0.7208 0.6823
g_circle 0.7129 0.6750 0.7089 0.6542 0.6937 0.7269
circles 0.6541 0.7060 0.6777 0.6356 0.7005 0.7139
rank 4.0000 4.5000 3.2500 5.2500 2.3750 1.6250

All model datasets consist of n = 350 points, with the size of the minority class n* = 50 (shown in
red) and the size of the majority class n~ = 300 (shown in blue), with class imbalance ratio of 6.

For SMOTE and Simplicial SMOTE, we performed a grid search for the neighborhood size param-
eter k of the kNN neighborhood graph ranging from 3 to 8 with a step 1. We report the F1 score
averaged over 5 runs using 4-fold cross validation in Table 2 for the k-nearest neighbors classifier
with default hyperparameters from the scikit-1learn library (Pedregosa et al.,2011).

Results show when data is of complex geometric structure, global methods such as fitting a Gaus-
sian or sampling from a complete graph using Mixup underperform the local techniques such as
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SMOTE and Simplicial SMOTE, as well as the simple random oversampling. Simplicial SMOTE
has performed the best, achieving the highest rank among all sampling methods, and is generally
better than its graph- based counterpart.

Table 3: Classification results on benchmark datasets for the k-nearest neighbor classifier. F1 score
averaged over 10 runs using 5-fold cross-validation is reported. Best and second-best ranked results
are highlighted.

‘ Imbalanced Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 0.5567  0.5492  0.5965 0.5922 0.6109  0.5871 0.5878 0.6011 0.6192  0.5988 0.6022 0.6382 0.6238
optical_digits 0.9636  0.9489 0.9414 0.9418 0.9541  0.9432 0.9419 0.9369 0.9491 09588 0.9647 0.9482 0.9541
satimage 0.6899  0.6535 0.5982  0.6065 0.5964  0.5978 0.5880 0.5749 0.6815  0.6659 0.6527 0.5990 0.5944
pen_digits 0.9928 0.9901 0.9892  0.9909 0.9928  0.9903 0.9920 0.9896 0.9920 0.9929 0.9919 0.9925 0.9927
abalone 0.1853  0.3305 0.3851 0.3520 0.3678  0.3769 0.3463 0.3749 0.3242 03117 0.3076 0.3710 0.3728
sick_euthyroid 0.5575 0.5706  0.5926 0.5754 0.5681  0.5311 0.5626 0.5621 0.6218 0.5688 0.6064 0.6141 0.6087
spectrometer 0.7730  0.8494 0.8369  0.8568 0.8495  0.8243 0.8426 0.8493 0.7882 0.8345 0.8287 0.8621 0.8490
car_eval 34 0.6148 0.5505 0.5655 0.5796 0.5800  0.6012 0.5742 0.6517 0.5505 0.7223  0.6358 0.6248 0.6082
us_crime 0.3703  0.4419 0.4454 0.4320 0.4635  0.4484 0.4230 0.4167 0.4419  0.4665 0.4557 0.4536 0.4890
yeast_ml8 0.0445  0.1469 0.1601  0.1651 0.1675  0.1625 0.1655 0.1607 0.1469  0.1596 0.1621 0.1631 0.1673
scene 0.0954 0.2459 0.2513  0.2393 02520 0.2524 0.2362 0.2338 0.1110 02777 0.25%4 0.2271 0.2589
libras_move 0.7182  0.8121 0.7495 0.7815 0.7780  0.7350 0.7754 0.7741 0.8121  0.8066 0.7663 0.8028 0.7847
thyroid_sick 0.5067 0.5246 0.5261  0.5235 0.5309  0.4653 0.5251 0.5283 0.5303  0.5081 0.5520 0.5672 0.5647
c0il 2000 0.0454 0.1738 0.1702  0.1744 0.1770  0.1716 0.1738 0.1718 0.0502 0.1184 0.1657 0.1744 0.1770
arrhythmia 0.0305 0.2225 0.1859 0.1935 0.1984  0.1647 0.2008 0.2091 02225 0.1753  0.2331 0.1931 0.1860
solar_flare_m0 0.0496  0.2243  0.2069 0.2138 0.2398  0.2388 0.2213 0.2063 0.0488 02384 0.1854 0.2225 0.2388
oil 03302  0.4614 04623 0.4583 0.4833  0.4080 0.4403 0.4336 04614 05017 0.5140 0.5331 0.5444
car_eval 4 0.0966 0.3884 0.48386 0.4513 04503  0.4141 0.4528 0.5130 0.3884 0.7011 0.3312 0.5658 0.5600
wine_quality 0.1218 03044 0.2143  0.2548 02766  0.2521 0.2542 0.2213 0.1459  0.2353  0.3241 0.2580 0.2797
letter_img 09712 0.9522 0.9098 0.9403 0.9607  0.9298 0.9543 0.9120 0.9651  0.9677 0.9701 0.9652 0.9608
yeast_me2 02597 03260 0.2692  0.2943 0.3637  0.3067 0.2931 0.3111 03184 0.2704 0.3764 0.3255 0.3714
ozone_level 0.1633  0.2328 0.2047 0.2077 0.2308  0.2326 0.2075 0.2089 02328 0.2607  0.2861 0.2266 0.2532
abalone_19 0.0000  0.0346  0.0482  0.0448 0.0555  0.0367 0.0450 0.0252 0.0410  0.0337  0.0050 0.0568 0.0598
rank 104783  7.1739 85652 7.5217 49130  8.5652 8.1304 8.4783 74348 59130 5.5652 4.5217 3.7391

Table 4: Classification results on benchmark datasets for the gradient boosting classifier. F1 score
averaged over 10 runs using 5-fold cross-validation is reported. Best and second-best ranked results
are highlighted.

‘ Imbalanced Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 0.6351  0.6125 0.6193  0.6444 0.6226  0.6145  0.6346 0.6055 0.5973  0.6561  0.6450 0.6614 0.6340
optical_digits 0.8713  0.8550 0.9086 0.9048 0.8888  0.8987  0.8991 0.9031 0.8520 0.8681 0.8879 0.9039 0.8908
satimage 0.5857 0.5494 0.5879  0.5799 0.5522  0.5772  0.5436 0.5752 0.5750 0.6144  0.6101 0.5974 0.5821
pen_digits 0.9471  0.9487 0.9054 0.9562 09196  0.9559  0.9235 0.9397 0.9523 09425 0.9551 0.9597 0.9219
abalone 0.0339  0.3890 0.4250  0.3990 0.4033  0.3947  0.3928 0.4024 0.3976 03876 0.3126 0.4139 0.4154
sick_euthyroid 0.8642 0.8388 0.8415 0.8433 0.8408 0.7852  0.8412 0.8397 0.8726  0.8572  0.8504 0.8557 0.8466
spectrometer 0.7683  0.7973 0.7778  0.8109 0.7998  0.8234  0.8126 0.7816 0.7897  0.7805  0.7926 0.8350 0.8110
car_eval 34 0.8870  0.8359 0.9511 0.9254 0.8999  0.8461 0.9172 0.9196 0.8364 0.9013 09107 0.9389 0.9385
us_crime 0.4790 0.4946 0.5095 0.4952 0.5138  0.5031 0.4894 0.4919 0.4938 05187 0.5158 0.5175 0.5198
yeast_ml8 0.0145 0.1226 0.1385 0.1324 0.1403  0.1555  0.1302 0.1267 0.1196  0.1247  0.0011 0.1337 0.1373
scene 0.0836  0.2938 0.2724 0.2676 0.2808 0.2816  0.2645 0.2575 0.1404  0.0847 0.1830 0.2625 0.2757
libras_move 0.6488 0.8015 0.7913  0.7982 0.8146  0.7828  0.7957 0.7944 0.8222  0.8078 0.7407 0.8058 0.7900
thyroid_sick 0.8431 0.8258 0.8079 0.8316 0.8309  0.6430  0.8274 0.7905 0.8282 0.8237 0.8399 0.8384 0.8420
c0il 2000 0.0099  0.2217 0.0060  0.1682 0.2060  0.2321 0.1743 0.0197 0.0716  0.0097  0.0080 0.1062 0.1467
arrhythmia 0.7730  0.7799 0.7950  0.8057 0.8043  0.5991 0.8069 0.8053 0.7757  0.7745  0.7900 0.8050 0.8068
solar_flare_m0 0.0996  0.1930 0.1202  0.2080 0.2028  0.2092  0.1989 0.1892 0.0793  0.1417 0.1076 0.1554 0.1964
oil 04772  0.5593 0.5806 0.5727 0.5675  0.4988  0.5671 0.5494 0.5529 0.5618 0.5287 0.5884 0.5845
car_eval 4 0.9529  0.8257 0.9487 0.8998 0.8918 0.8418  0.8950 0.8769 0.8277 09123  0.9470 0.9178 0.9185
wine_quality 0.1939  0.2746  0.2164  0.2475 02796  0.2554  0.2443 0.2342 02175 02912 0.2467 0.2439 0.2717
letter_img 0.8621  0.6956 0.8541 0.7882 0.7543  0.7559  0.7571 0.7973 0.8042 0.8448 0.8663 0.8523 0.8063
yeast_me2 02956 0.3314 0.3124 03311 03717 0.3108  0.3227 0.3496 0.3525 03325 0.3649 0.3556 0.3988
ozone_level 0.1458  0.3422  0.3031 03151 03552 0.2984  0.3174 0.3211 0.3442 03184 0.2476 0.3404 0.3543
abalone_19 0.0000  0.0479  0.0503  0.0550 0.0774  0.0529  0.0570 0.0542 0.0544  0.0530  0.0000 0.0740 0.0913
rank 9.5000 8.4348 7.1304 5.5217 5.6957 7.8696  7.1739 8.2609 8.4348 7.0870 7.5000 4.0435 4.3478
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4.2 REAL DATA

In the following, we evaluated the proposed Simplicial SMOTE and its simplicial Borderline exten-
sion, comparing it to random oversampling, Mixup (without label smoothing), and several SMOTE
variants from the imbalanced-learn (Lemaitre et al.,[2017) and smote-variants (Kovacs,
2019) libraries. Evaluation was done on 23 benchmark datasets from the imbalanced-learn
library. All datasets contain two data classes and are summarized in the appendix [A] The class im-
balance ratio ranges from 9 to 130. Data dimensionality ranges from 6 to 617. Each dataset was
normalized to zero mean and unit variance.

We performed a grid search for the neighborhood size parameter & of the kNN neighborhood graph
and the maximal simplex dimension p for SMOTE-based methods and (Borderline) Simplicial
SMOTE, respectively. The neighborhood size k ranged from 3 to (3eil(\3/rT+ + log d) with a step
2, where nt is the minority class size and d is the dimension of the dataset. The maximal simplex
dimension p ranged from 3 to k, with a step 1.

We report the F1 score and the Matthew’s correlation coefficient in averaged over 10 runs using
5-fold cross-validation for 3 classifiers — k-nearest neighbors, gradient boosting, and multilayer per-
ceptron from the scikit-learn library (Pedregosa et al.,|2011). We provide F1 score tables for
k-nearest neighbors, gradient boosting classifiers in the results section, for the additional experi-
ments, refer to the appendix [Bl We used default hyperparameters for k-nearest neighbor classifier,
set maximum tree depth to 2 for gradient boosting. For multilayer perception, we reduced the hidden
layer’s size to 32 and increased the maximum number of iterations to 500.

Classification results on benchmark imbalanced datasets show the advantage of the proposed method
over its counterparts, including the original SMOTE in terms of F1 and Matthew’s correlation co-
efficient scores. The former one is the metric of choice when one is interested most in the correct
classification in the minority class over the majority one (Davis & Goadrichl [2006). The latter
considers all cells of the contingency table (Chicco & Jurman|(2020; 2023).

We performed statistical significance testing of the performance Simplicial SMOTE and Borderline
SMOTE over original SMOTE using Wilcoxon signed-rank test. For all classifiers and metrics the
number of significant wins over datasets is greater than number os losses. Refer to the appendix [C]
for p-values and the information on wins, losses, and draws.

5 CONCLUSIONS

In our work, we classified the existing approaches to geometric data modeling and sampling based
on the neighborhood relation size and arity. We proposed a new instance of geometric oversam-
pling called Simplicial SMOTE. As the original SMOTE algorithm, it models data locally by the
neighborhood size £ much less than the amount n of data points. Yet, instead of a graph model of
data, which sample synthetic points as random convex combinations from the neighborhood graph
edges, it uses a simplicial complex to model the data to sample synthetic points as random convex
combinations from its simplices, formed by points being in p-ary neighborhood relation.

Experimentally, we have shown on model and real imbalanced datasets that this approach to data
modeling and sampling performs better than several sampling methods, including Mixup, original
SMOTE and several its popular variants, to solve the classification problem in the presence of data
imbalance.

In our experiments, we have concluded that the best number of points to span a simplex generally is
not maximal, as the synthetic points, which are a convex combination of a large number of existing
data points, could be potentially either too similar for small neighborhood size, or over smoothed
for the large one. Thus, we recommend doing a grid search over the maximal simplex dimension p
instead of specifying it as maximal by inclusion.

As our method improves the original SMOTE algorithm only in terms of sampling, we have shown
that it is orthogonal and compatible with one of the most popular SMOTE variants, namely Bor-
derline SMOTE, Safe-level SMOTE, and ADASYN. We have experimentally evaluated Simplicial
Borderline SMOTE, showing its increased performance relative to both original SMOTE and Bor-
derline SMOTE.
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A DATASETS PROPERTIES

Table 5: Benchmark datasets and their properties.

Features Size Minor Major Ratio

ecoli 7 336 35 301 9
optical _digits 64 5620 554 5066 10
satimage 36 6435 626 5809 10
pen_digits 16 10992 1055 9937 10
abalone 10 4177 391 3786 10
sick_euthyroid 42 3163 293 2870 10
spectrometer 93 531 45 486 11
car_eval_34 21 1728 134 1594 12
us_crime 100 1994 150 1844 13
yeast_ml8 103 2417 178 2239 13
scene 294 2407 177 2230 13
libras_move 90 360 24 336 14
thyroid_sick 52 3772 231 3541 16
co0il_2000 85 9822 586 9236 16
arrhythmia 278 452 25 427 18
solar_flare_mQ 32 1389 68 1321 20
oil 49 937 41 896 22
car_eval 4 21 1728 65 1663 26
wine_quality 11 4898 183 4715 26
letter_img 16 20000 734 19266 27
yeast_me2 8 1484 51 1433 29
ozone_level 72 2536 73 2463 34
abalone_19 10 4177 32 4145 130

13
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B ADDITIONAL EXPERIMENTS

Table 6: Classification results on benchmark datasets for the k-nearest neighbor classifier. Matthew’s
correlation coefficient averaged over 10 runs using 5-fold cross-validation is reported. Best and
second-best ranked results are highlighted.

‘ Imbalanced  Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 05328 0.5132  0.5721  0.5659 0.5840  0.5622  0.5630 0.5713 0.5865 0.5739  0.5660 0.6110 0.5955
optical_digits 0.9601  0.9437 09359 0.9363 0.9494 09378  0.9362 0.9312 0.9439  0.9544  0.9610 0.9431 0.9494
satimage 0.6585  0.6340 0.5890 0.5978 0.5861  0.5817  0.5820 0.5704 0.6499  0.6304  0.6302 0.5909 0.5851
pen_digits 0.9921  0.9891 0.9881  0.9899 0.9920  0.9893  0.9911 0.9885 09912 0.9922  0.9911 0.9917 0.9920
abalone 0.1450  0.2585 0.3278  0.3023 0.3149  0.3384  0.2955 0.3290 02491 0.2344  0.2270 0.3157 0.3168
sick_euthyroid 0.5430  0.5400 0.5592  0.5483 0.5378  0.4983  0.5369 0.5345 0.5827 0.5323  0.5662 0.5754 0.5738
spectrometer 0.7784  0.8410 0.8267 0.8472 0.8408 0.8129  0.8324 0.8405 0.7904  0.8265 0.8259 0.8537 0.8388
car_eval 34 0.6274  0.5492  0.5855 0.5927 0.5876  0.6054  0.5883 0.6599 0.5492  0.7160  0.6085 0.6294 0.6160
us_crime 0.3809  0.4006 0.4309 0.4215 0.4496  0.4365  0.4146 0.4047 0.4006 0.4257 0.4146 0.4370 0.4642
yeast_ml8 0.0763  0.0533 0.0851  0.0879 0.0862  0.0820  0.0908 0.0865 0.0533  0.0665 0.0861 0.0988 0.0949
scene 0.1324  0.1777 0.2324  0.2162 02222 0.2008  0.2146 0.2094 0.1338  0.2161 0.2362 0.2010 0.2256
libras_move 0.7374  0.8067 0.7496  0.7805 0.7767  0.7314  0.7756 0.7698 0.8067 0.8001 0.7632 0.7989 0.7795
thyroid_sick 0.5278 0.5014 0.5044 0.5061 0.5100  0.4511 0.5086 0.5127 0.5103  0.5040 0.5279 0.5405 0.5406
c0il 2000 0.0497  0.1097 0.1076  0.1147 0.1150  0.1160  0.1141 0.1108 0.0554 0.0815 0.1039 0.1134 0.1152
arrhythmia 0.0271  0.1801 0.1685 0.1794 0.1830  0.1152  0.1904 0.1874 0.1801  0.1231  0.2089 0.1931 0.1739
solar_flare_mO 0.0486 0.1820 0.1695 0.1754 0.2003  0.2007  0.1823 0.1667 0.0443  0.1975 0.1393 0.1845 0.1992
oil 0.3956  0.4462 04573 0.4552 0.4758  0.3929  0.4391 0.4227 0.4462  0.4851 0.5028 0.5209 0.5316
car_eval 4 0.1646  0.4052 0.5447 0.5101 0.5093 04746  0.5129 0.5525 0.4052  0.7192  0.3259 0.6016 0.5965
wine_quality 0.1779  0.2852 0.2304 0.2543 0.2667  0.2408  0.2529 0.2324 0.1366  0.2126  0.3003 0.2573 0.2720
letter_img 0.9702  0.9512 0.9100 0.9396 0.9597 0.9292  0.9534 0.9121 0.9638  0.9665 0.9692 0.9641 0.9598
yeast_me2 0.3104 0.3193 0.2987 0.3109 0.3603  0.3108  0.3093 0.3166 0.3283  0.2768 0.3598 0.3364 0.3682
ozone_level 02031  0.2223 0.2483  0.2462 0.2637  0.2475  0.2435 0.2400 02223  0.2614 0.2788 0.2593 0.2715
abalone_19 -0.0001  0.0269 0.0704 0.0660 0.0586 0.0318  0.0622 0.0176 0.0338  0.0425 0.0026 0.0807 0.0630
rank 9.4783  8.4348 8.0000 6.7826 52174  8.8261 7.7391 8.1304 82174 6.6087 6.0435 3.7826 3.7391

Table 7: Classification results on benchmark datasets for the gradient boosting classifier. Matthew’s
correlation coefficient averaged over 10 runs using 5-fold cross-validation is reported. Best and
second-best ranked results are highlighted.

‘ Imbalanced  Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 0.6220  0.5746  0.5838 0.6134 0.5847  0.5817 0.6016 0.5681 0.5633  0.6281  0.6192 0.6307 0.5975
optical_digits 0.8650  0.8427 0.8994 0.8948 0.8769  0.8879 0.8884 0.8930 0.8395 0.8581  0.8803 0.8939 0.8793
satimage 0.5600 0.5293 0.5522  0.5510 0.5288  0.5501 0.5232 0.5462 0.5448 0.5750  0.5686 0.5576 0.5504
pen_digits 0.9430  0.9437 0.8954 0.9516 09116 09514 0.9156 0.9340 0.9473 0.9372  0.9512 0.9556 0.9141
abalone 0.0523  0.3669 0.3678 0.3733 03732 0.3732 0.3715 0.3658 0.3699 0.3543  0.2580 0.3710 0.3697
sick_euthyroid 0.8510 0.8253 0.8267 0.8296 0.8268  0.7703 0.8275 0.8252 0.8602 0.8431  0.8355 0.8414 0.8320
spectrometer 0.7665  0.7853 0.7642  0.7976 0.7877  0.8103 0.8004 0.7669 0.7822  0.7652  0.7851 0.8279 0.7997
car_eval 34 0.8819  0.8338 0.9478 0.9220 0.8966  0.8436 0.9139 0.9157 0.8343  0.8960  0.9053 0.9352 0.9346
us_crime 0.4637 04697 0.4724 0.4621 04815  0.4824 0.4584 0.4581 0.4690 0.4859  0.4862 0.4825 0.4840
yeast_ml8 0.0167  0.0259 0.0413  0.0304 0.0471  0.0587 0.0277 0.0264 0.0224  0.0434 -0.0063 0.0431 0.0495
scene 0.1244  0.2346  0.2095 0.2045 02177  0.2256 0.2007 0.1910 0.1772  0.1106  0.2120 0.1970 0.2122
libras_move 0.6801  0.8103 0.7928 0.7994 0.8149  0.7788 0.7972 0.8014 0.8286  0.8070  0.7587 0.8122 0.7901
thyroid_sick 0.8350 0.8205 0.7987 0.8265 0.8255  0.6493 0.8226 0.7820 0.8181 0.8139  0.8305 0.8287 0.8327
coil 2000 0.0209 0.1992 0.0156 0.1391 0.1559  0.1847 0.1417 0.0370 0.0735 0.0305  0.0294 0.1093 0.1271
arrhythmia 0.7696  0.7780 0.7921  0.8041 0.8014  0.5841 0.8051 0.8028 0.7738 0.7713  0.7866 0.8031 0.8048
solar_flare_m0O 0.1140  0.1787 0.1293  0.1654 0.1592  0.1932 0.1567 0.1508 0.0259 0.1582  0.1179 0.1379 0.1741
oil 0.4823  0.5447 0.5657 0.5627 0.5539  0.4924 0.5544 0.5348 0.5367 0.5497  0.5238 0.5766 0.5714
car_eval 4 0.9527 0.8325 0.9484 0.9015 0.8940  0.8475 0.8970 0.8798 0.8344 09112 0.9470 0.9174 0.9183
wine_quality 02255 0.2913  0.2301  0.2624 0.2828  0.2733 0.2627 0.2474 0.1863 0.2832  0.2533 0.2582 0.2746
letter_img 0.8635 0.7148 0.8498 0.7903 0.7567  0.7641 0.7660 0.7991 0.7971  0.8394  0.8656 0.8471 0.8028
yeast_me2 03055 0.3485 03307 0.3517 0.3659  0.3263 0.3417 0.3558 0.3475  0.3239  0.3605 0.3624 0.3869
ozone_level 0.1595 0.3482 03135 0.3249 0.3443  0.3091 0.3230 0.3188 0.3485 0.3039  0.2602 0.3265 0.3400
abalone_19 -0.0036  0.0644 0.0744  0.0947 0.0927  0.0826 0.0974 0.0574 0.0502  0.0943 -0.0023 0.0972 0.1046
rank 9.1304  7.6522 7.6087 5.3913 6.1739  7.3913 6.8261 8.8261 8.8261 72174  7.1739 4.1304 4.6522
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Table 8: Classification results on benchmark datasets for multilayer perceptron classifier. F1 score
averaged over 10 runs using 5-fold cross-validation is reported. Best and second-best ranked results
are highlighted.

‘ Imbalanced Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 0.6060  0.6409 0.6493  0.6563 0.6301  0.6381 0.6346 0.6552 0.6812  0.6389  0.6679 0.6743 0.6550
optical_digits 0.9687 0.9654 0.9657  0.9666 0.9657  0.9705 0.9668 0.9659 0.9632  0.9656 0.9709 0.9654 0.9671
satimage 0.6728  0.6622 0.6594  0.6708 0.6532  0.6543 0.6616 0.6525 0.6615  0.6562 0.6717 0.6651 0.6607
pen_digits 0.9885 0.9922 0.9879 0.9912 0.9902  0.9913 0.9910 0.9900 0.9895  0.9888  0.9902 0.9899 0.9911
abalone 0.0162  0.4027 04385 0.4044 0.4096  0.4070 0.3961 0.4147 0.3988 0.3778 0.3813 0.4175 0.4195
sick_euthyroid 07822 0.7273  0.7629  0.7320 0.7483  0.6546 0.7193 0.7063 0.7609  0.7748  0.7908 0.7739 0.7657
spectrometer 0.8326  0.8135 0.8029 0.8028 0.8348  0.8269 0.8244 0.8132 0.8159 0.8367 0.8217 0.8276 0.8259
car_eval 34 09632  0.9666 0.9697 0.9651 0.9664  0.9525 0.9696 0.9706 0.9660 0.9599 0.9759 0.9735 0.9727
us_crime 0.4642  0.4857 0.4830 0.5052 0.4879  0.5119 0.4890 0.4860 0.4784 0.4941 0.4839 0.4993 0.5066
yeast_ml8 0.0642 0.1025 0.1050 0.1193 0.1200  0.1356 0.1134 0.1104 0.0855  0.0907 0.0751 0.1291 0.1049
scene 02654 0.2536 0.2695 0.2645 0.2801  0.2835 0.2442 0.2582 0.2451 02529 0.2567 0.2635 0.2773
libras_move 0.8461  0.8055 0.8466 0.8497 0.8480  0.7955 0.8377 0.8486 0.8428 0.8644 0.8368 0.8373 0.8645
thyroid_sick 0.7244  0.7167 0.7142 0.7161 0.7258  0.5893 0.7159 0.6887 0.7173  0.7248 0.7191 0.7220 0.7235
c0il 2000 0.1232  0.1607 0.1564 0.1557 0.1625  0.1678 0.1647 0.1597 0.1298 0.1411  0.1354 0.1509 0.1621
arrhythmia 0.1893  0.2562 0.2744 0.2815 0.2288  0.3580 0.2764 0.1996 0.2606 0.2491 0.2565 0.3072 0.2751
solar_flare_m0 0.0770  0.1879 0.1649  0.1599 0.1528  0.2074 0.1694 0.1498 0.0951 0.1627 0.0888 0.1521 0.1579
oil 0.5539  0.5396 0.5394 0.5402 0.5461  0.4782 0.5463 0.5324 0.5158 0.5634 0.5393 0.5422 0.5900
car_eval 4 0.9569 0.9563 0.9588 0.9446 0.9589  0.9373 0.9609 0.9565 09534  0.9214 0.9752 0.9599 0.9539
wine_quality 02375 03065 0.2241  0.2841 03175  0.2706  0.2883 0.2493 02782 0.2437  0.2866 0.2833 0.2994
letter_img 0.9695  0.9652 0.9537 0.9667 0.9616  0.9544  0.9669 0.9622 0.9566 0.9597  0.9691 0.9636 0.9611
yeast_me2 0.2450  0.3790 0.3008  0.3549 03951  0.3218  0.3635 0.3528 0.4064 0.3448  0.4042 0.3628 0.4105
ozone_level 0.2527  0.2581 0.2605  0.2679 0.2846  0.2865 0.2900 0.2786 02513 0.2722  0.2658 0.2982 0.2924
abalone_19 0.0000  0.0572  0.0642 0.0621 0.0532  0.0483 0.0626 0.0579 0.0400  0.0492  0.0000 0.0677 0.0609
rank 8.5870  7.4348 7.6957 6.3043 6.0435  7.1739  6.0000 8.1304 9.2174 8.0435 6.7609 5.1739 4.4348

Table 9: Classification results on benchmark datasets for multilayer perceptron classifier. Matthew’s
correlation coefficient averaged over 10 runs using 5-fold cross-validation is reported. Best and
second-best ranked results are highlighted.

‘ Imbalanced  Random Mixup SMOTE B-SMOTE Safelevel ADASYN MWMOTE DBSMOTE LVQ AHC ‘ Simplicial ~ B-Simplicial
ecoli 0.5737 0.6143  0.6208  0.6284 0.5995 0.6126  0.6051 0.6265 0.6531  0.6139  0.6372 0.6439 0.6236
optical_digits 0.9655  0.9618 0.9621  0.9631 0.9621  0.9674  0.9633 0.9623 0.9593  0.9621  0.9680 0.9619 0.9636
satimage 0.6435  0.6289 0.6248  0.6368 0.6196  0.6258  0.6273 0.6158 0.6297 0.6193  0.6364 0.6291 0.6247
pen_digits 09873  0.9914 0.9866 0.9903 0.9891  0.9903  0.9900 0.9889 0.9884  0.9876  0.9891 0.9888 0.9902
abalone 0.0194 0.3821 0.3904 0.3774 03810  0.3834  0.3729 0.3852 0.3710  0.3434  0.3170 0.3771 0.3823
sick_euthyroid 0.7627  0.7050  0.7405  0.7098 0.7259  0.6356  0.6977 0.6815 0.7375  0.7522  0.7698 0.7511 0.7424
spectrometer 0.8250 0.8013 0.7896  0.7882 0.8253  0.8166  0.8129 0.7999 0.8050 0.8252 0.8124 0.8163 0.8149
car_eval 34 0.9605 0.9645 0.9678  0.9630 0.9644  0.9500  0.9678 0.9687 0.9640 09573 0.9743 0.9717 0.9710
us_crime 0.4285 0.4471 0.4476  0.4666 0.4477 04774  0.4494 0.4463 0.4379  0.4541 0.4505 0.4600 0.4696
yeast_ml8 0.0299  0.0405 0.0335 0.0547 0.0571  0.0455  0.0425 0.0440 0.0234  0.0333  0.0334 0.0630 0.0421
scene 0.2348  0.1994 0.2099  0.2100 02274  0.2234  0.1889 0.2018 0.2049 0.2043  0.2159 0.2101 0.2278
libras_move 0.8510 0.8047 0.8480 0.8488 0.8482  0.7916  0.8371 0.8485 0.8423  0.8623 0.8415 0.8401 0.8678
thyroid_sick 0.7127  0.7003  0.6969  0.6985 0.7090  0.5801 0.6992 0.6707 0.7002  0.7106  0.7045 0.7052 0.7086
c0il 2000 0.0843  0.0970 0.0956  0.0952 0.1036  0.1039  0.1021 0.0994 0.0874  0.0975 0.0847 0.0927 0.1014
arrhythmia 0.1513  0.2095 0.2322 0.2418 0.1808  0.3344  0.2342 0.1496 02212 02049 0.2212 0.2668 0.2433
solar_flare_mO 0.0528 0.1445 0.1185 0.1100 0.1029  0.1705  0.1222 0.1011 0.0570  0.1253  0.0596 0.1089 0.1165
oil 0.5572  0.5232  0.5237 0.5232 0.5311 04627  0.5307 0.5174 0.4974  0.5480 0.5360 0.5289 0.5818
car_eval 4 0.9570  0.9562 0.9587 0.9446 0.9587 0.9374  0.9610 0.9565 0.9532 09213 09752 0.9597 0.9537
wine_quality 02667 0.2950 0.2242  0.2716 02980 0.2708  0.2781 0.2377 0.2550 0.2134 0.2775 0.2663 0.2749
letter_img 0.9685 0.9642 0.9522 0.9656 0.9603  0.9533  0.9659 0.9609 0.9550 0.9583  0.9680 0.9623 0.9597
yeast_me2 02817 0.3742  0.2996  0.3467 0.3899  0.3303  0.3626 0.3453 0.3933 03469  0.3962 0.3546 0.3951
ozone_level 02418 0.2380 0.2403  0.2477 02649  0.2815  0.2702 0.2585 0.2309 0.2528 0.2497 0.2796 0.2739
abalone_19 0.0000 0.0633 0.0745 0.0716 0.0506  0.0680  0.0704 0.0548 0.0322  0.0752  0.0000 0.0732 0.0572
rank 77609 7.5652 82174  6.6957 6.2609  6.7391 6.3913 8.4783 9.2609 7.4783 5.8478 5.6087 4.6957
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C STATISTICAL SIGNIFICANCE

Table 10: Statistical significance for the F1 score. SMOTE vs Simplicial SMOTE and SMOTE vs
Borderline Simplicial SMOTE. Significant p-values of either win or lose are underlined.

k-Nearest neighbors

Gradient boosting

Multilayer perceptron

Simplicial B-Simplicial | Simplicial B-Simplicial | Simplicial B-Simplicial
ecoli 1.284e-06 7.882¢-04 8.253e-02 3.217e-01 9.249¢-02 9.571e-01
optical _digits 7.612e-05 1.549e-07 6.154e-01 2.856e-05 2.196e-01 7.995e-01
satimage 2.737e-05 1.130e-07 3.365e-07 4.037e-01 1.517e-01 8.525e-03
pen_digits 7.211e-03 7.221e-04 4.517e-02 9.068e-10 1.101e-03 8.233e-01
abalone 2.011e-07 8.020e-06 4.000e-05 2.027e-05 8.776e-06 1.253e-05
sick_euthyroid | 1.016e-07 2.474e-07 3.358e-04 2.268e-01 5.366e-09 7.785e-08
spectrometer 5.904e-01 6.542e-01 8.419e-02 9.329e-01 8.878e-03 1.235e-02
car_eval 34 6.759¢e-09 3.561e-06 3.127e-03 4.026e-03 5.352e-02 2.157e-02
us_crime 4.533e-05 3.367e-09 1.159e-02 9.816e-03 3.722e-01 8.853e-01
yeast_ml8 5.061e-02 4.780e-01 8.130e-01 3.667e-01 3.566e-01 2.359e-02
scene 1.810e-06 5.576e-06 3.131e-01 1.602e-01 9.326e-01 7.491e-02
libras_move 1.417e-01 9.715e-01 5.007e-01 7.651e-01 1.554e-01 3.324e-01
thyroid_sick 6.381e-09 9.002e-09 2.113e-01 5.534e-02 3.320e-01 1.720e-01
coil_2000 9.961e-01 7.334e-02 7.557e-10 2.310e-05 2.113e-01 1.126e-01
arrhythmia 7.670e-01 3.914e-01 1.000e000 9.721e-01 3.252e-01 5.517e-01
solar_flare m0 | 6.097e-02 4.439¢-05 5.270e-04 4.677e-01 2.972e-01 4.586e-01
oil 2.011e-07 1.013e-06 2.230e-01 1.954e-01 9.250e-01 6.813e-04
car_eval 4 1.087e-09 1.087e-09 5.761e-02 1.386e-02 3.798e-03 7.188e-02
wine_quality 7.589¢-02 5.058e-08 1.602e-01 1.550e-07 8.295e-01 3.839e-02
letter_img 8.031e-10 8.029¢-10 7.557e-10 2.513e-05 5.043e-03 1.796e-04
yeast_me?2 1.913e-04 9.637e-08 4.517e-02 3.679e-06 2.997e-01 8.774e-06
ozone_level 4.519e-04 3.267e-08 8.053e-03 8.824e-04 5.173e-04 1.328e-02
abalone_19 3.080e-04 1.630e-02 1.245e-04 1.004e-05 3.572e-01 7.881e-01
wins 14 17 10 9 5 8
losses 2 1 2 3 2 3
draws 7 5 11 11 16 12
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Table 11: Statistical significance for the Matthew’s correlation coefficient. SMOTE vs Simplicial
SMOTE and SMOTE vs Borderline Simplicial SMOTE. Significant p-values of either win or lose

are underlined.

k-Nearest neighbors

Gradient boosting

Multilayer perceptron

Simplicial B-Simplicial | Simplicial B-Simplicial | Simplicial B-Simplicial
ecoli 3.537e-06 4.672e-03 1.318e-01 2.383e-01 1.918e-01 5.618e-01
optical _digits 2.576e-04 5.338e-08 6.224e-01 2.856e-05 2.620e-01 8.241e-01
satimage 4.338e-04 4.563e-07 3.173e-02 7.390e-01 4.622e-02 3.499¢-03
pen_digits 6.563e-03 7.055e-04 3.662e-02 9.068e-10 9.440e-04 8.451e-01
abalone 2.638e-03 8.824e-04 4.661e-01 4.037e-01 9.643e-01 1.630e-01
sick_euthyroid | 2.979e-05 3.051e-06 9.414e-04 3.787e-01 1.266e-08 1.909e-07
spectrometer 4.841e-01 4.228e-01 5.261e-02 9.587e-01 5.176e-03 1.034e-02
car_eval 34 1.016e-07 4.835e-05 4.098e-03 6.659¢-03 6.836e-02 2.168e-02
us_crime 4.749¢-03 8.308e-07 5.061e-02 4.314e-02 3.299¢-01 9.643e-01
yeast_ml8 2.543e-02 5.810e-02 6.881e-02 1.293e-02 4.037e-01 5.785e-02
scene 1.835e-04 1.213e-01 2.294e-01 2.949¢-01 9.247e-01 2.608e-02
libras_move 2.292e-01 9.353e-01 5.559%¢e-01 5.55%¢e-01 3.270e-01 2.057e-01
thyroid_sick 1.633e-07 1.495e-05 5.399¢-01 3.085e-01 2.986e-01 6.452e-02
coil_2000 1.962e-01 6.958e-01 3.679e-06 1.307e-02 6.328e-01 1.478e-01
arrhythmia 2.444e-01 7.995e-01 6.784e-01 8.888e-01 5.254e-01 9.115e-01
solar_flarem0 | 1.652e-01 1.800e-04 7.334e-02 4.901e-01 5.921e-01 9.269¢-01
oil 1.644e-06 3.679¢-06 4.894e-01 3.391e-01 4.841e-01 1.582e-04
car_eval 4 2.229e-09 3.784e-09 6.748e-02 1.608e-02 5.324e-03 7.852e-02
wine_quality 1.057e-01 6.834e-05 2.385e-01 2.398e-03 4.544e-01 5.592e-01
letter_img 8.031e-10 8.532e-10 7.557e-10 1.570e-03 4.894¢-03 1.796e-04
yeast_me?2 8.232e-04 2.191e-06 1.774e-01 2.108e-03 5.763e-01 7.716e-05
ozone_level 1.479e-02 2.737e-05 4.314e-01 1.573e-01 4.214e-04 1.214e-02
abalone_19 2.527e-06 9.730e-01 7.246e-01 4.544¢-01 3.616e-01 2.113e-01
wins 15 15 5 7 4 7
losses 2 1 1 3 2 2
draws 6 7 17 13 17 14
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