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Abstract

Radiology report summarization (RRS) is cru-001
cial for patient care, requiring concise “Impres-002
sions” from detailed “Findings.” This paper003
introduces a novel prompting strategy to en-004
hance RRS by first generating a layperson sum-005
mary. This approach normalizes key observa-006
tions and simplifies complex information using007
non-expert communication techniques inspired008
by doctor-patient interactions. Combined with009
few-shot in-context learning, this method im-010
proves the model’s ability to link general terms011
to specific findings. We evaluate this approach012
on the MIMIC-CXR, CheXpert, and MIMIC-013
III datasets, benchmarking it against 7B/8B014
parameter state-of-the-art open-source large015
language models (LLMs) like Llama-3.1-8B-016
Instruct. Our results demonstrate improve-017
ments in summarization accuracy and accessi-018
bility, particularly in out-of-domain tests, with019
improvements as high as 5% for some metrics.020

1 Introduction021

Radiology reports summarization (RRS) is an inter-022

esting task to explore natural language processing023

(NLP) methods in the biomedical domain from a024

computational perspective (Van Veen et al., 2023a).025

RRS involves generating concise “Impressions”026

from the detailed “Findings” and images in radiol-027

ogy reports. These reports, critical for patient diag-028

nosis, treatment planning, and maintaining compre-029

hensive records, are written by radiologists based030

on medical imaging techniques like X-rays, CT031

scans, MRI scans, and ultrasounds. The “Find-032

ings” section details objective observations from033

the imaging, while the “Impressions” section pro-034

vides the radiologist’s professional interpretation035

and diagnostic conclusions.036

In biomedical applications, the effectiveness of037

large language models (LLMs) models largely de-038

pends on their adaptation through domain- and task-039

specific fine-tuning (Singhal et al., 2023). LLMs040

have shown remarkable proficiency in natural lan- 041

guage understanding and generation, making them 042

adaptable to various tasks. However, fine-tuning 043

large models like GPT-3, with billions of parame- 044

ters, requires substantial computational resources 045

and high costs. To address these issues, researchers 046

have shifted towards more efficient techniques like 047

parameter-efficient fine-tuning (PEFT) and prompt- 048

ing (Van Veen et al., 2023a,b), leveraging existing 049

model capabilities while reducing computational 050

demands (Liu et al., 2022). 051

In contrast, prompting through in-context learn- 052

ing (ICL) (Brown et al., 2020; Dong et al., 2023) 053

provides a practical alternative to extensive fine- 054

tuning of LLMs. In ICL, relevant information 055

is embedded directly within prompts, allowing 056

LLMs to adapt to tasks with few-shot demonstra- 057

tions (Lampinen et al., 2022) quickly. By care- 058

fully crafting these prompts, researchers can guide 059

LLMs to generate accurate responses by provid- 060

ing clear context and examples. Techniques such 061

as Retrieval-Augmented Generation (Wang et al., 062

2023b) can further improve this process. Prompt- 063

ing has also proven effective in converting com- 064

plex radiological data into clear and concise sum- 065

maries (Chen et al., 2023a). Moreover, Nori et al. 066

(2023) found that combining ICL with explana- 067

tions enhances the adaptation of general LLMs to 068

specialized tasks, such as medical question answer- 069

ing, by integrating intermediate reasoning steps and 070

thus improving problem-solving abilities (Zhang 071

et al., 2023). However, generating explanations for 072

summarization tasks is inherently more challeng- 073

ing compared to question-answering and traditional 074

text classification. 075

Moreover, LLMs trained on general text cor- 076

pora often lack the specific knowledge required for 077

specialized fields, limiting their performance (Yao 078

et al., 2023a; Holmes et al., 2023). Addressing this 079

deficiency typically involves extensive fine-tuning, 080

which is resource-intensive and costly. While ICL 081
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can help by embedding relevant information within082

prompts, this alone is not always sufficient (Brown083

et al., 2020; Dong et al., 2023). Intuitively, non-084

fine-tuned models are “non-experts” in the medical085

domain, especially smaller open-source models.086

However, in real-world settings (e.g., in actual087

doctor-patient conversations), research indicates088

that scientific or technical knowledge can be ef-089

fectively transferred to non-experts through com-090

munication techniques like reformulation and sim-091

plification, which simplifies complex information092

and uses straightforward language to enhance un-093

derstanding (Gülich, 2003). Hence, inspired by094

effective doctor-patient communication methods,095

this paper proposes a novel prompting strategy that096

combines simplification techniques with ICL to097

enhance the performance of non-expert LLMs in098

specialized areas. This approach aims to improve099

model performance without needing costly fine-100

tuning (Nori et al., 2023; Zhang et al., 2023) by101

simplifying complex information and incorporat-102

ing it through prompts before an expert summary103

is generated. The in-context examples have layper-104

son/simplified language as part of them to help105

guide the model for a new example. From another106

perspective, we introduce a novel approach that107

first generates a layperson (non-expert) summary108

to normalize key observations. Radiologists often109

have distinct reporting styles, leading to variations110

in terminology and impacting the consistency of111

medical documentation (Yan et al., 2023). Addi-112

tionally, the vast number of illnesses increases the113

variety of vocabulary encountered in reports. Nor-114

malizing terms in the layperson summary can bet-115

ter identify patterns between simplified summaries116

and detailed expert impressions, making it easier117

to link general terms to specific findings (Peter118

et al., 2024). For example, normalizing “pneumo-119

nia” and “bronchitis” to “infection of the lungs”120

helps the model recognize important concepts in121

the in-context examples, even if pneumonia is used122

in the test instance while bronchitis is used in the123

in-context examples. The LLM can then connect124

them back to the findings (summary).125

Overall, this paper has threefold contributions:126

1. We introduce a novel prompting approach in-127

spired by doctor-patient communication tech-128

niques that generate a simplified (layperson)129

summary before the expert summary. This130

strategy, combines with a few-shot ICL with131

the layperson summary, enhances RRS using132

non-expert LLMs.133

2. We evaluate LLM performance on three RRS 134

datasets: MIMIC-CXR (Johnson et al., 2019), 135

CheXpert (Irvin et al., 2019), and MIMIC- 136

III (Johnson et al., 2016), and one multimodal 137

medical question summarization (MMQS) 138

dataset (Ghosh et al., 2024). We also bench- 139

mark against open-source LLMs like Llama- 140

3.1-8B-Instruct (AI@Meta, 2024) for compre- 141

hensive comparison. 142

3. We conduct a comprehensive analysis to deter- 143

mine the optimal modality for ICL. We also 144

examine the required number of examples and 145

the impact of layperson summaries on impres- 146

sions and evaluate model performance on in- 147

puts of different lengths.1 148

2 Related Work 149

LLMs for Medicine. Recent advances in LLMs 150

have demonstrated that LLMs can be adapted 151

with minimal effort across various domains and 152

tasks. These expressive and interactive models 153

hold great promise due to their ability to learn 154

broadly useful representations from the exten- 155

sive knowledge encoded in medical corpora at 156

scale (Singhal et al., 2023). Fine-tuned general- 157

purpose models have proven effective in clinical 158

question-answering, protected health information 159

de-identification (Sarkar et al., 2024), and relation 160

extraction (Hernandez et al., 2023). Some LLMs, 161

such as BioGPT (Luo et al., 2022) and ClinicalT5 162

(Lu et al., 2022), have been trained from scratch 163

using clinical domain-specific notes, achieving 164

promising performance on several tasks. Addi- 165

tionally, in-context learning with general LLMs 166

like InstructGPT-3 (Ouyang et al., 2022), where 167

no weights are modified, has shown good perfor- 168

mance (Agrawal et al., 2022). They have also 169

demonstrated the ability to solve domain-specific 170

tasks through zero-shot or few-shot prompting and 171

have been applied to various medical tasks, such as 172

medical report summarization (Otmakhova et al., 173

2022) and medical named entity recognition (Hu 174

et al., 2023). But, this generally only works with 175

closed-source models such as GPT4. 176

Retrieval-Augmented LLMs. Retrieval augmen- 177

tation connects LLMs to external knowledge to 178

mitigate factual inaccuracies. By incorporating a 179

retrieval module, relevant passages are provided 180

as context, enhancing the language model’s predic- 181

tions with factual information like common sense 182
1See the appendix for complete analysis.
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FINDINGS (x): There is mild pulmonary edema with superimposed region of more confluent consolidation in the left
upper lung. There are possible small bilateral pleural effusions. Moderate cardiomegaly is again seen as well as tortuosity
of the descending thoracic aorta. No acute osseous abnormalities.

Layperson (r): There is some fluid in your lungs, which could be due to edema (swelling) or an infection. - The left
upper part of your lung has some extra fluid or congestion. -The exact cause of the fluid in your lungs is unclear.

IMPRESSION (y): "Mild pulmonary edema with superimposed left upper lung consolidation, potentially more
confluent edema versus superimposed infection."

 

Step 3 Prompt
Construction

LLMs

ieval

a) Retrieval K-shot Demonstrations

Layperson Summary
Training Corpus

Test/Dev Data

Modality Encoder K-shot Demonstrations

Expert SummaryLLMs

 Step 1 Generate
Layperson
Summary

 Step 2 Multimodal
Retrieval

Figure 1: Overview of the LaypersonPrompt Framework. First, we generate layperson summaries from the training
corpus using LLMs prompting. Then, for a test input, we use multimodal retrieval to find relevant examples. Finally,
we incorporate these layperson summaries into the prompt, applying patient-doctor communication techniques to
improve the model’s reasoning.

or real-time news (Ma et al., 2023). Recent stud-183

ies indicate that retrieval-augmented methods can184

enhance the reasoning ability of LLMs and make185

their responses more credible and traceable (Shi186

et al., 2024; Yao et al., 2023b; Nori et al., 2023; Ma187

et al., 2023). For example, Shi et al. (2024) trains188

a dense retrieval model to complement a frozen189

language model. By using feedback from the LLM190

as a training objective, the retrieval model is opti-191

mized to provide better contextual inputs for the192

LLM. Yao et al. (2023b) focuses on designing in-193

teractions between the retriever and the reader, aim-194

ing to trigger emergent abilities through carefully195

crafted prompts or a sophisticated prompt pipeline.196

Our approach combines retrieval-augmented meth-197

ods with layperson summaries to enhance gen-198

eral LLMs reasoning in radiology report summa-199

rization, using patient-doctor communication tech-200

niques for better understanding and accuracy.201

Communication Techniques for Laypersons.202

Non-experts, such as patients, have been shown to203

perform well on expert tasks, like medical decision-204

making and understanding complex topics when205

information is simplified using effective commu-206

nication techniques (Gülich, 2003; LeBlanc et al.,207

2014; Allen et al., 2023; van Dulmen et al., 2007;208

Neiman, 2017). This simplification can also im-209

prove general LLM’s performance on specialized210

tasks. Studies demonstrate that non-experts, with211

supervision, can generate high-quality data for ma-212

chine learning, producing expert-quality annota-213

tions for tasks like identifying pathological patterns214

in CT lung scans and malware run-time similar-215

ity (O’Neil et al., 2017; VanHoudnos et al., 2017;216

Snow et al., 2008). Recent research has shown that217

LLMs can simplify complex medical documents, 218

such as radiology reports, making them more ac- 219

cessible to laypersons. For instance, ChatGPT has 220

been used to make radiology reports easier to un- 221

derstand, bridging the communication gap between 222

medical professionals and patients (Jeblick et al., 223

2023; Lyu et al., 2023; Li et al., 2023). Inspired 224

by these findings, we explore whether presenting 225

expert-level information in simpler language can 226

improve the performance of general LLMs on tasks 227

that typically require specialized knowledge, such 228

as those involving medical data. 229

3 Methodology 230

In this section, we describe our prompting strat- 231

egy. Figure 1 shows a high-level overview of our 232

approach. Our strategy has three main compo- 233

nents: 1) layperson summarization of the train- 234

ing dataset used as in-context examples; 2) “multi- 235

modal demonstration retrieval,” which is how we 236

generate embeddings to find relevant in-context 237

examples; and 3) final expert summary prompt con- 238

struction, which is how we integrate the layperson 239

summaries and in-context examples to generate the 240

final expert summary. We describe each compo- 241

nent in the following subsections and how the three 242

components are integrated into a unified prompt. 243

Step 1: Layperson Summarization of the 244

Training Dataset. Layperson summarization in- 245

volves converting complex medical texts into more 246

straightforward language, enhancing accessibility 247

and understanding for individuals without med- 248

ical expertise (Cao et al., 2020). For instance, 249

rephrasing “pulmonary edema” as “fluid in the 250
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Task Input

Persona Identification

You are an medical expert, assemble a diverse team to collaboratively translate the
radiology report into patient-friendly language. Begin by identifying the participants,
then engage in a multi-round collaboration, encouraging critical feedback.

Task: Translate the following radiology report into patient-friendly plain language
that someone without medical training can easily understand.

Radiology Report: "1. Left PICC tip appears to terminate in the distal left
brachiocephalic vein. 2. Mild pulmonary vascular congestion."

Participants:  AI Assistant (you)              Medical Doctor          Nurse           
Radiologist           Patient Advocate       

Start collaboration!

Finish collaboration!

Layperson Translation

: The PICC is correctly placed in a vein in chest. mild fluid buildup in the lung vessels.
: We also need to simplify terms "PICC" that is a tube inserted into the arm near heart.
: We should explain "pulmonary vascular congestion" as extra fluid in lung's vessels.
: And let's use bullet points for clarity and make sure language is easy to understand.

Brainstorming

Multi-Persona Iterative Collaboration

: Agreed, the translation reflects the findings accurately.
: This is medically accurate and covers all important aspects.
: The explanations are clear and patient-friendly.
: It's easy to understand and uses bullet points as requested

: Taking into account everyone's input and my expertise, here's the translation:
[Initial Layperson Summary Draft]

Feedback

- The tube in your arm is correctly placed in a large vein near your heart.
- There is a small amount of extra fluid in the blood vessels of your lungs.

Figure 2: Step 1: Layperson summarization of the Train-
ing Dataset. An illustration of the layperson summary
prompt used to generate layperson summaries for train-
ing examples. Disease observations are highlighted in
different colors. The illustration shows a single exam-
ple, with Instruction and Response sections repeated
multiple times using few-shot in-context examples.

lungs” makes it more comprehensible. This ap-251

proach not only helps to bridge the knowledge gap252

for laypeople but also plays an important role in253

helping models better understand and summarize254

medical content. Intuitively, by generating simpli-255

fied summaries as an intermediate step, models can256

more effectively capture the semantic meaning of257

the texts (Liu et al., 2024; Sulem et al., 2018; Paet-258

zold and Specia, 2016; Shardlow and Nawaz, 2019).259

In this context, we generate layperson summaries260

as an intermediate step for all training examples to261

enhance the generation of expert summaries.262

To generate accurate layperson summaries, we263

employ a multi-round, multi-persona collaboration264

method inspired by the Task-Solving Agent frame-265

work (Wang et al., 2024a). As shown in Figure 2,266

we begin with a radiology report impression and267

identify several expert roles, including a medical268

doctor, nurse, radiologist, patient advocate and AI269

assistant, to provide diverse insights. In the brain-270

storming phase, these experts clarify medical ter-271

minology and highlight key findings (e.g., “PICC,”272

and “pulmonary vascular congestion”). Through273

iterative collaboration, they refine the content to274

ensure clarity and accuracy. Finally, the refined275

You are an expert chest radiologist. Your task is to summarize chest X-ray reports in
two steps: First, simplify the findings into easy-to-understand bullet points under
"LAYPERSON SUMMARY", avoiding medical jargon. Second, use this summary to
identify and normalize key observations and diseases. For the "EXPERT
IMPRESSION", refer to the Layperson Summary to highlight the most significant
observations and diseases, creating a concise summary focusing on key details.

ICL Demonstrations (k-shot)
FINDINGS: "{similar finding i}"
LAYPERSON SUMMARY: "{similar layperson i}"
EXPERT IMPRESSION: "{similar impression i}"

Test Input

Task Description

FINDINGS: "Right PICC tip terminates in the mid/ lower SVC, unchanged. Heart size
is normal. Mediastinal and hilar contours are normal. Lungs are clear. Pulmonary
vasculature is normal. No pleural effusion, focal consolidation or pneumothorax is
present. There are no acute osseous abnormalities."
LAYPERSON SUMMARY:

x K

Test Output
LLMs

LAYPERSON SUMMARY: "-There are no new or urgent problems with the heart or
lungs. - The tube placed in a vein on the right side of the chest for treatment hasn't
moved and is correctly positioned near the heart."
EXPERT IMPRESSION: "No acute cardiopulmonary abnormality. Right PICC tip is in
unchanged position, within the mid/lower SVC."

Figure 3: Step 3: Final Expert Summary Prompt Con-
struction. Example of LaypersonPrompt. This is the fi-
nal prompt after finding in-context examples to generate
the final expert summary (i.e., the Impression section).

draft is transformed into a concise, accessible sum- 276

mary that effectively communicates essential med- 277

ical details to patients. We then use this prompt 278

to generate layperson summaries and store these 279

summaries along with their corresponding Findings 280

and Impressions as training triples, which are used 281

as in-context examples. See Appendix A.3 for a 282

complete example of what the output looks like. 283

Step 2: Multimodal Demonstration Retrieval 284

Another essential part of our system is finding sim- 285

ilar examples in the training dataset for each test 286

example to use as in-context examples. In our ap- 287

proach, we focus on substantially improving the 288

performance of LLMs with a few well-chosen ex- 289

amples to generate more accurate and standardized 290

summaries. Selecting the right examples is a crit- 291

ical task in few-shot learning, as it greatly affects 292

the effectiveness of the LLMs. To ensure the selec- 293

tion of the most relevant examples, we follow the 294

multimodal retrieval procedure outlined by Wang 295

et al. (2023b), which is fine-tuned with radiology 296

reports and chest X-ray images. According to their 297

approach, we retrieve the top-k similar radiology 298

report based on different modalities, i.e., chest X- 299

ray images, text findings, and multi-modal data 300

(combining findings and images) from a medical 301

corpus using a pre-trained multi-modal encoder. 302

Then, we include the findings and impressions of 303

the top k of the most similar report as input in our 304

final prompt. 305

Formally, given an input instance xi consisting 306
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of a text input w and image m, our goal is to re-307

trieve the most similar examples {x1, . . . , xN (xi)},308

where N (xi) represents the top k similar exam-309

ples to xi. To achieve this, we employ a multi-310

modal image-text retrieval model that uses sepa-311

rate encoders for text and image modalities along-312

side a multimodal encoder for integrating their313

embeddings. Specifically, the image is processed314

through a pre-trained Vision Transformer (ViT)315

model (Dosovitskiy et al., 2021) to generate im-316

age embeddings. Since some findings correspond317

to multiple images, we average all image embed-318

dings corresponding to the same findings. Next, we319

adapt a pre-trained Transformer encoder-decoder320

model, such as Clinical-T5 (Lehman and Johnson,321

2023), to handle multimodal inputs. Specifically,322

we pass the findings as input to the T5 encoder and323

initialize its hidden state with the averaged image324

embeddings. The final EOS token from the T5 en-325

coder is used as the multimodal embeddings. Note326

that this model cannot be used as-is with the initial327

pre-trained models. Instead, we train this model328

where the T5 encoder outputs are passed to the T5329

decoder to generate the impressions. After training330

the joint model, we remove the decoder, and only331

the embeddings are used later.332

Step 3: Expert Summary Prompt Construction333

The final step in our pipeline involves prompting334

an LLM to generate an expert summary, following335

the generation of layperson summaries for all train-336

ing examples and identifying relevant in-context337

examples for development/test instances using mul-338

timodal demonstration retrieval. The prompt com-339

prises three main components: 1) Task Instruction;340

2) In-context learning examples (ICL Demonstra-341

tions); and 3) the test input instance. An example342

is shown in Figure 3.343

First, the Task Instruction specifies that the344

model should create a layperson summary followed345

by an expert impression. Detailed guidelines are346

provided for generating both the layperson sum-347

mary and the expert impression. It is important348

to note that the layperson summary is generated349

as part of this prompt for the input instance be-350

fore generating the expert impression. The prompt351

defined in Step 1 is only used for the training exam-352

ples. Next, given the input instance’s Findings text353

and radiology image, we use the same multi-modal354

encoder and retrieval approach described in Step 2355

to find relevant in-context examples from the train-356

ing dataset. We generate a sequence of up to 32357

in-context demonstrations. After identifying the 358

relevant training examples, we append each train- 359

ing instance’s Findings, layperson summary, and 360

Impression to generate the sequence of in-context 361

examples. Finally, we append the Findings section 362

of the text instance and the string “Layperson Sum- 363

mary:”. The model will first generate the layperson 364

summary followed by the final expert Impression. 365

Why does generating a layperson summary be- 366

fore the expert impression work? Models can pro- 367

duce general information (e.g., “Infection of the 368

lungs” for “pneumonia”) in the layperson summary, 369

which helps to standardize the content in the Find- 370

ings before creating the Impression. This means 371

different illnesses can be simplified to the same 372

concept (e.g., “bronchitis” can also be simplified 373

to “Infection of the lungs”). The idea is that the 374

model can find common patterns in these general 375

(layperson) expressions that correlate with the ex- 376

pert Impression, as long as the Findings have sim- 377

ilar content. After generating the layperson sum- 378

mary, the model only needs to connect the general 379

terms in the summary to the specific details in the 380

Findings, similar to coreference resolution. With- 381

out the layperson summary, the model must directly 382

find patterns in the more varied Findings section, 383

making the task more complex. 384

4 Experimental Results 385

This section covers the datasets, evaluation metrics, 386

overall results, and error analysis. 387

Datasets and baseline models. In this study, we 388

evaluate our prompting method on three radiology 389

reports summarization datasets. The MIMIC-III 390

summarization dataset, as introduced by (John- 391

son et al., 2016; Chen et al., 2023b), contains 392

11 anatomy-modality pairs (i.e., 11 body parts 393

and imaging modalities such as head-MRI and 394

abdomen-CT). The dataset consists of train, val- 395

idation, and test splits of 59,320, 7,413, and 396

6,531 findings-impression pairs, respectively. The 397

MIMIC-III dataset only contains radiology re- 398

ports without the original images. In contrast, 399

the MIMIC-CXR summarization dataset (Johnson 400

et al., 2019) is a multimodal summarization dataset 401

containing findings and impressions from chest 402

X-ray studies and corresponding chest X-ray im- 403

ages. It comprises 125,417 training samples, 991 404

validation samples, and 1624 test samples. Addi- 405

tionally, we incorporate an out-of-institution multi- 406

modal test set of 1000 samples from the Stanford 407
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Model BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph Average

Zero-Shot
Llama-3.1-8B-Instruct 6.24 22.63 46.53 67.21 19.88 32.50
OpenChat-3.5-0106-gemma 6.30 22.14 43.48 66.53 17.06 31.10
Ministral-8B-Instruct-2410 5.22 21.79 42.55 67.94 18.22 31.14

Few-Shot
Llama-3.1-8B-Instruct 8.39 31.32 50.94 68.66 28.93 37.65
OpenChat-3.5-0106-gemma 10.67 29.51 49.02 63.27 27.15 35.92
Ministral-8B-Instruct-2410 10.81 28.60 51.50 68.16 24.86 36.79

Few-Shot + Layperson
Llama-3.1-8B-Instruct 11.85 30.24 52.77 68.16 27.42 38.09
OpenChat-3.5-0106-gemma 11.02 30.29 51.99 65.22 26.49 37.00
Ministral-8B-Instruct-2410 11.34 30.19 52.88 68.95 27.33 38.14

Table 1: Overall performance on the MIMIC CXR in-domain test dataset. We bold all results from our framework
that outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph Average

Zero-Shot
Llama-3.1-8B-Instruct 2.39 23.38 48.10 71.94 9.08 30.98
OpenChat-3.5-0106-gemma 3.70 25.07 47.54 63.35 8.47 29.63
Ministral-8B-Instruct-2410 4.62 27.04 47.21 70.51 10.05 31.89

Few-Shot
Llama-3.1-8B-Instruct 4.27 26.94 48.52 73.13 9.63 32.50
OpenChat-3.5-0106-gemma 3.81 22.61 45.61 62.43 8.94 28.68
Ministral-8B-Instruct-2410 6.01 28.83 51.03 71.79 11.69 33.87

Few-Shot + Layperson
Llama-3.1-8B-Instruct 7.44 29.62 54.40 74.41 11.14 35.40
OpenChat-3.5-0106-gemma 5.32 26.31 49.39 65.41 10.02 31.29
Ministral-8B-Instruct-2410 7.84 30.11 52.57 73.95 11.71 35.24

Table 2: Overall performance across the four prompts on the Stanford Hospital (out-of-domain) test set. The
in-context examples for this dataset are from the MIMIC-CXR dataset. We bold all results from our framework that
outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

hospital(CheXpert) (Irvin et al., 2019) to assess408

the out-of-domain generalization of models trained409

on MIMIC-CXR. Finally, in Appendix A.2, we410

also evaluate on the Multimodal Medical Ques-411

tion Summarization dataset (a non-radiology re-412

port dataset), showing our method can generalize413

beyond radiology images. We use Llama-3.1-8B-414

Instruct (AI@Meta, 2024), Ministral-8B-Instruct-415

2410 (Jiang et al., 2023), and OpenChat-3.5-0106-416

gemma (Wang et al., 2023a) in our experiments to417

compare model performance.418

Evaluation Metrics. Performance is evaluated us-419

ing the following metrics: BLEU4 (Papineni et al.,420

2002), ROUGE-L (Lin, 2004), Bertscore (Zhang421

et al., 2020), F1CheXbert (Delbrouck et al., 2022b),422

and F1RadGraph (Delbrouck et al., 2022a). In-423

tuitively, BLEU4 measures the precision, while424

ROUGE-L assesses the recall of the n-gram over-425

lap between the generated radiology reports and426

the original summaries. BERTScore calculates the427

semantic similarity between tokens of the refer-428

ence summary and the hypothesis, where the hy-429

pothesis refers to the model-generated summary.430

F1CheXbert uses CheXbert (Smit et al., 2020), a431

Transformer-based model, to evaluate the clinical432

accuracy of generated summaries by comparing433

identified chest X-ray abnormalities in the gen- 434

erated reports to those in the reference reports. 435

F1RadGraph, an F1-score style metric, leverages 436

the RadGraph (Jain et al., 2021) annotation scheme 437

to evaluate the consistency and completeness of the 438

generated reports by comparing them to reference 439

reports based on observation and anatomy entities. 440

Overall Results. Table 1 show the performance 441

of Zero-Shot prompting, Few-Shot prompting, and 442

our Few-Shot + Layperson prompting strategies for 443

the radiology reports summarization task on the 444

MIMIC-CXR dataset. The Few-Shot + Layperson 445

method mimics doctor-patient communication by 446

creating a simplified summary for laypeople before 447

generating the expert summary. We find that incor- 448

porating the layperson intermediary step yields con- 449

sistent improvements over the standard Few-Shot 450

approach: for example, Llama-3.1-8B-Instruct’s 451

BLEU4 score rises from 8.39 to 11.85, OpenChat- 452

3.5-0106-gemma’s ROUGE-L and F1-cheXbert 453

scores increase from 29.51 and 63.27 to 30.29 and 454

65.22 respectively, and Ministral-8B-Instruct-2410 455

exhibits enhancements with its BERTScore improv- 456

ing from 51.50 to 52.88 and F1-cheXbert from 457

68.16 to 68.95. Overall, the averaged performance 458

across all models and metrics indicates that the 459
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BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph Average

Zero-Shot
Llama-3.1-8B-Instruct 6.79 21.84 44.00 52.82 19.30 28.95
OpenChat-3.5-0106-gemma 6.65 20.83 44.50 51.46 16.64 28.02
Ministral-8B-Instruct-2410 8.39 23.47 46.94 53.79 18.83 30.28

Few-Shot
Llama-3.1-8B-Instruct 7.23 23.45 46.84 49.82 22.20 29.91
OpenChat-3.5-0106-gemma 10.24 22.59 45.27 51.13 19.82 29.81
Ministral-8B-Instruct-2410 8.72 24.14 47.03 53.81 19.28 30.60

Few-Shot + Layperson
Llama-3.1-8B-Instruct 13.58 25.23 49.63 55.53 22.64 33.32
OpenChat-3.5-0106-gemma 11.93 23.62 47.50 52.73 21.33 31.42
Ministral-8B-Instruct-2410 8.27 23.49 46.63 69.01 19.57 33.39

Table 3: Overall performance across the four prompts on MIMIC III. We bold all results from our framework that
outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph Average

Original
Few-Shot 12.81 37.55 54.71 67.67 34.95 41.538
Few-Shot + Layperson 13.91 37.60 56.76 67.46 35.37 42.22

Mask
Few-Shot 0.60 6.67 16.35 28.00 6.60 11.64
Few-Shot + Layperson 5.38 25.05 45.63 45.70 20.60 28.47

Table 4: Overall performance across masked and original findings with the Llama-3.1-8B-Instruct model. Results are
for MIMIC-CXR. Bolded results highlight our framework’s improvements over the traditional few-shot approach.

Few-Shot + Layperson strategy outperforms the460

conventional Few-Shot approach, highlighting the461

benefit of integrating layperson communication in462

enhancing the clarity and effectiveness of radiology463

report summarization.464

On the Stanford Hospital test set in Table 2, the465

Few-Shot + Layperson prompting yields a respec-466

tive increase in performance across multiple met-467

rics. Ministral-8B-Instruct-2410 achieved the high-468

est BLEU4 (7.84) and ROUGEL (30.11), while469

Llama-3.1-8B-Instruct led in BERTScore (54.40)470

and F1-cheXbert (74.41). OpenChat-3.5-0106-471

gemma also showed substantial improvements in472

ROUGEL (26.31 vs. 25.07) and BERTScore (49.39473

vs. 45.61) compared to its Few-Shot performance.474

Moreover, the average scores computed across all475

metrics consistently increased under the Few-Shot476

+ Layperson setting for every model. These results477

highlight the effectiveness of using layperson sum-478

maries to enhance model performance in summa-479

rizing radiology reports on out-of-domain dataset.480

The results of the comparison on the MIMIC-III481

dataset are detailed in Table 3. Our model demon-482

strates robust performance, indicating its capabil-483

ity to generalize across varied medical datasets.484

Specifically, Llama-3.1-8B-Instruct saw increases485

in BLEU4 (13.58 vs. 7.23) and F1-RadGraph486

(25.23 vs. 23.45) when comparing the Few-Shot487

+ Layperson method to the standard Few-Shot ap-488

proach. In summary, across all three datasets, it489

is evident that the Few-Shot + Layperson method490

shows noticeable improvements, especially on the491

out-of-domain test set, with the overall average 492

consistently outperforming other methods. In- 493

corporating an intermediate layperson summary, 494

which mimics patient–doctor communication, in- 495

troduces a step for “easy-to-hard” reasoning. This 496

approach enhances the model’s accuracy and its 497

ability to generalize across different datasets in 498

medical imaging and report summarization. 499

Error Analysis and Discussion. We conducted an 500

error analysis of the Llama-3.1-8B-Instruct model 501

on the MIMIC-CXR valid dataset to compare two 502

prompting strategies: the Few-Shot method and our 503

Few-Shot + Layperson approach. The core idea 504

behind this experiment is to determine whether 505

guiding the model with simpler, more accessible 506

language helps it handle complex or unfamiliar 507

medical terminology more effectively. Our intu- 508

ition is based on the observation that when a model 509

encounters highly specialized or unknown terms, 510

it may misinterpret the context or even refuse to 511

process the request. We aim to steer the model’s 512

attention towards the underlying clinical context by 513

embedding layperson explanations in the prompt 514

rather than getting caught up in obscure jargon. 515

This mirrors how humans often simplify complex 516

information to enhance understanding. 517

In our experiment, we simulated real-world chal- 518

lenges by replacing key medical terms with ran- 519

dom, nonsensical “gibberish” entities. Specifically, 520

we used MedSpacy (Eyre et al., 2022) to identify 521

medical entities. These were then replaced with 522

random strings, e.g., “pleural effusions” can be re- 523
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placed with “abcdefg.” This method tests whether524

layperson instructions can guide the model to gen-525

erate clear and concise summaries, even when con-526

fronted with entirely unfamiliar terminology. We527

hypothesized that, combined with the other context528

in the findings, the additional layperson summary529

would encourage the model to normalize difficult530

terms into simpler, plain language, improving its531

overall performance. We report the results of this532

study in Table 4. The section titled “Mask” shows533

the results of applying the baseline (Llama-3.1-8B-534

Instruct + Few-shot prompting) and our method535

(Llama-3.1-8B-Instruct + Few-shot + Layperson)536

on the modified examples, where entities in the537

initial findings have been replaced with gibberish.538

We also report the original results on the unmodi-539

fied data for reference. Our results show that the540

Few-Shot + Layperson approach consistently out-541

performs the standard Few-Shot method. When542

modifying words, the few-shot method performs543

poorly compared to the original data (37.55 vs.544

6.67 ROUGE-L). However, our method can more545

robustly adapt to the modified vocabulary (37.60 vs.546

25.05 ROUGE-L). This is particularly evident in547

the masked setting, where key medical terms are re-548

placed with gibberish. In these cases, the Few-Shot549

model’s performance drops substantially, highlight-550

ing its struggle to handle unfamiliar terminology551

without additional guidance.552

When encountering such unknown or nonsensi-553

cal terms, the standard Few-Shot model often fails554

to generate a meaningful summary and instead re-555

quests clarification. For example, it usually simply556

state, “I can’t fulfill that request.” We provide an557

example below:558

Radiology Report Summarization
Masked Radiology Finding:
“There are moderate bilateral entity1 with over-
lying entity2 and possible consolidation. en-
tity3 prominence of entity4 suggests mild en-
tity5.”
Ground Truth Impression:
“Bilateral pleural effusions, cardiomegaly, mild
edema indicating fluid overload.”
Layperson Summary:
“Moderate fluid around both lungs with slight
lung changes and mild inflammation. Some un-
derlying issue with the lung tissue that’s not
clearly visible. ”
Few-Shot: “I can’t fulfill that request.”
Few-Shot + Layperson:
“Bilateral lung consolidation with mild pul-
monary edema and cardiomegaly.”

559

Notably, when encountering an unknown term,560

the Few-Shot model often rephrases details, result- 561

ing in longer summaries that sometimes repeat find- 562

ings or even include hallucinated information. In 563

contrast, our Layperson approach actively guides 564

the model to simplify complex information. As 565

shown in the following example, the Few-Shot 566

model failed to capture the key observation and 567

even fabricated a term like “xenosign,” our Few- 568

Shot + Layperson model successfully generated 569

the summary “No acute cardiopulmonary process. 570

Normal heart size,” which closely aligns with the 571

ground truth. An example of this is found below: 572

Radiology Report Summarization
Masked Radiology Finding:
“Frontal and lateral views of the entity1. The
entity2 are clear of focal consolidation or
entity3. Opacities at the cardiophrenic angles
bilaterally are thought to represent prominent
entity4.”
Ground Truth Impression:
“No acute cardiopulmonary process.”
Layperson Summary:
“The chest X-rays show clear lungs without any
solid masses. Small opacities at the lung edges
likely represent normal fat or muscle. Overall,
the heart and chest structures appear normal.”
Few-Shot:
“Clear lungs without consolidation.
A subtle finding, termed “xenosign”, is

noted at the left lung base. Bilateral opacities
are likely due to fat.”
Few-Shot + Layperson:
“No acute cardiopulmonary process. Normal
heart size.”

573

5 Conclusion 574

This paper introduces a novel prompting approach 575

inspired by doctor-patient communication tech- 576

niques. By first generating a simplified (layper- 577

son) summary before creating the expert summary 578

and combining this with few-shot in-context learn- 579

ing, we aim to improve the summarization of ra- 580

diology reports using general LLMs. Evaluations 581

across three datasets (MIMIC-CXR, CheXpert, and 582

MIMIC-III) show that this method improves per- 583

formance, especially in out-of-domain tests. 584

However, this approach faces challenges due to 585

the 7B model’s computational demands and context 586

token limitations, especially with complex medical 587

reports. Future work will optimize token usage and 588

explore larger models with expanded context. By 589

applying effective doctor-patient communication 590

principles, our method aims to improve non-expert 591

LLM performance in specialized fields without ex- 592

tensive fine-tuning. 593
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6 Limitation594

While our approach shows improvements in radi-595

ology report summarization (RRS), several limi-596

tations must be considered. First, the evaluation597

metrics used, such as ROUGE-L, do not always598

correlate well with human evaluations, necessitat-599

ing cautious interpretation of the results (Wang600

et al., 2024b). Our study primarily relies on these601

automated metrics, which can overlook important602

nuances that human experts might catch. The ab-603

sence of comprehensive human evaluations further604

limits the assessment of practical effectiveness. In-605

corporating detailed evaluations by human experts606

is crucial for accurately measuring model perfor-607

mance in real-world clinical settings in future re-608

search, as human assessments provide insights into609

the clinical relevance and accuracy of summaries610

that automated metrics may miss.611

Additionally, the use of 7B parameter open-612

source models may not be optimal. More pow-613

erful closed models, like GPT-4 (Achiam et al.,614

2023) and Gemini (Team et al., 2023), often per-615

form better in summarization tasks. Including re-616

sults from these advanced models could provide a617

more comprehensive comparison and potentially618

challenge the necessity of the intermediate layper-619

son summary step. Furthermore, the computational620

demands and context token limitations of the 7B621

model present significant challenges, particularly622

with longer and more complex medical reports.623

This restricts the model’s ability to process exten-624

sive and detailed information effectively. Differ-625

ences in the quality and consistency of radiology626

reports from different datasets can also affect per-627

formance due to inconsistencies in terminology and628

reporting styles. Moreover, the current interaction629

between humans and non-expert LLMs can be im-630

proved. Incorporating communication techniques631

similar to doctor-patient interactions will enhance632

the human-AI experience by making complex infor-633

mation more accessible and understandable. This634

improvement aims to make LLMs more practical635

and effective for expert-level tasks in various areas,636

bridging the gap between specialized knowledge637

and everyday understanding.638

7 Ethics Statement639

In this work, we have introduced our Layperson640

Summary Prompting strategy, inspired by doctor-641

patient communication techniques. This approach642

aims to simplify complex medical findings into643

layperson summary first, then uses this simplified 644

information to generate accurate expert summaries. 645

However, it is important to address the ethical im- 646

plications of using LLMs in this context. LLMs 647

used for radiology report summarization can pro- 648

duce errors or biased outputs if the training data is 649

of low quality or representative. These models also 650

can be wrong, and such biases can lead to unfair 651

outcomes and exacerbate health disparities. There- 652

fore, radiologists should use AI-generated sum- 653

maries as supportive tools, retaining control over 654

clinical decisions. AI should be seen as an informa- 655

tion resource to reduce time and cognitive effort, 656

aiding in information retrieval and summarization, 657

rather than as an interpretative agent providing clin- 658

ical decisions or treatment recommendations. 659

Additionally, integrating AI into clinical practice 660

raises significant ethical considerations regarding 661

patient privacy, data security, and informed con- 662

sent. Using large volumes of sensitive patient data 663

for training AI models necessitates stringent mea- 664

sures to protect patient rights and ensure data con- 665

fidentiality. Ethical principles such as fairness, ac- 666

countability, and transparency should guide the de- 667

ployment of AI technologies in healthcare. These 668

principles help ensure that AI systems are used 669

responsibly and that the benefits of AI are dis- 670

tributed equitably among all stakeholders. Fur- 671

thermore, potential risks associated with AI im- 672

plementation include perpetuating existing biases, 673

privacy breaches, and the misuse of AI-generated 674

data, necessitating careful consideration and proac- 675

tive management (Yildirim et al., 2024). 676
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Zhao and Schütze, 2021), which prepended a brief1150

instruction to the beginning of a standard null1151

prompt. We use the instruction, “You are an expert1152

chest radiologist. Your task is to summarize the1153

radiology report findings into an impression with1154

minimal text”. This instruction provides the model1155

with a fundamental context for the RRS task. Im-1156

mediately following the instruction, we append the1157

specific findings from the report and then prompt1158

the model with “IMPRESSION:” to initiate the1159

generation process. Additionally, we investigate1160

the effectiveness of few-shot ICL prompts with up1161

to 32 similar examples, using the same template1162

as our Few-Shot prompting method, which is not1163

incorporating the intermediate reasoning step (i.e.,1164

without the layperson summary).1165

We conduct experiments with three open-source1166

LLMs: Llama-3.1-8B-Instruct (AI@Meta, 2024),1167

Ministral-8B-Instruct-2410 (Jiang et al., 2023), and1168

OpenChat-3.5-0106-gemma (Wang et al., 2023a).1169

All experiments were conducted using two Nvidia1170

A6000 GPUs. For the few-shot model, the aver-1171

age running time is around 2 hours. In contrast,1172

the Few-Shot + Layperson models have an aver-1173

age running time of around 8 hours. Processing1174

the MIMIC data with 24 examples takes approxi-1175

mately 36 hours. In our work, all these models have1176

been implemented using the Hugging Face frame-1177

work (Wolf et al., 2019). Specifically, the Llama-1178

3.1-8B-Instruct, OpenChat-3.5-0106-gemma, and1179

Ministral-8B-Instruct-2410 are reported to perform1180

strongly in common sense reasoning and problem-1181

solving ability (Zhu et al., 2023). OpenChat-3.5-1182

0106-gemma is built on the highest-performing1183

Gemma model with conditioned reinforcement1184

learning fine-tuning. To select the best parame-1185

ters in our study, we employed ROUGE-L and1186

F1RadGraph metrics on the validation set. These1187

metrics help determine the most effective param-1188

eter settings for the model. The ROUGE-L met-1189

ric focuses on the longest common subsequence1190

and is particularly suitable for evaluating the qual-1191

ity of text summaries. On the other hand, the1192

F1RadGraph is specifically designed to assess the1193

accuracy of extracting and summarizing key infor-1194

mation from radiology reports by analyzing entity1195

similarities.1196

For optimizing our model’s hyper-parameters,1197

we employed a random search strategy on valid1198

dataset. This involved experimenting with various1199

settings: the number of prepended similar exam-1200

ples was varied across a set 2, 8, 12, 16, 24, 32,1201

and these examples were matched using different 1202

modality embeddings (text, image, or multimodal), 1203

all while employing the same template. We find 1204

that for the Llama-3.1-8B-Instruct, the best per- 1205

formance is achieved with 32 examples for both 1206

Few-Shot and Few-Shot + Layperson prompting 1207

methods. Additionally, we experimented with tem- 1208

perature settings ranging from 0.1 to 0.9, top p 1209

values set between 0.1 and 0.6, and top k values 1210

of 10, 20, and 30. Through this exploratory pro- 1211

cess, we identified the most effective settings as a 1212

temperature of 0.2, a top p value of 0.5, and a top 1213

k setting of 20. We adopt the same hyperparam- 1214

eters for all experiments. These settings yielded 1215

the best results in our evaluations. It’s significant 1216

to note the impact of the “temperature” parameter 1217

on the diversity of the model’s outputs. Higher 1218

temperature values add more variation, introduc- 1219

ing a greater level of randomness into the content 1220

generated. This aspect is especially valuable for 1221

adjusting the output to meet specific requirements 1222

for creativity or diversity. 1223

To ensure compatibility with the model’s capabil- 1224

ities, we restricted the length of the prompt (which 1225

includes the instruction, input, and output instance) 1226

to 7800 tokens. This limit was set to prevent ex- 1227

ceeding the model’s maximum sequence length of 1228

8,192 tokens for Llama-3.1-8B-Instruct, Ministral- 1229

8B-Instruct-2410, and OpenChat-3.5-0106-gemma. 1230

In cases where prompts exceeded this length, they 1231

were truncated from the beginning, ensuring that 1232

essential information and current findings were pre- 1233

served. Moreover, we constrained the generated 1234

output to a maximum of 256 tokens to strike a 1235

balance between providing detailed content and ad- 1236

hering to the model’s constraints. This approach 1237

was key in optimizing the effectiveness of sum- 1238

marization within the operational limits of the 7B 1239

models. Table 5 shows the prompt lengths for dif- 1240

ferent numbers of examples used in our study. For 1241

the MIMIC-III dataset, using 32 examples exceeds 1242

the 7800 token limit, so we opted to use only 16 1243

examples. 1244

A.2 Multimodal Medical Question 1245

Summarization Results 1246

Furthermore, we assess an additional dataset, 1247

the Multimodal Medical Question Summariza- 1248

tion (MMQS) Dataset, introduced by Ghosh et al. 1249

(2024). This dataset contains 3,015 multimodal 1250

medical queries, each accompanied by visual cues 1251

and expert-annotated gold summaries that refer- 1252
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2 8 12 16 24 32

MIMIC-CXR
Few-Shot 643 1285 1713 2141 2994 3850

Few-Shot + Layperson 889 1826 2452 3084 4333 5587

MIMIC-III
Few-Shot 1035 2500 3474 4451 6405 8359

Few-Shot + Layperson 1340 3277 4565 5856 8442 11025

Table 5: Average Token of Prompts.

BLEU4 ROUGEL BERTScore Average

Zero-Shot
Llama-3.1-8B-Instruct 3.26 16.87 32.86 17.66
OpenChat-3.5-0106-gemma 5.28 17.46 31.15 17.96
Ministral-8B-Instruct-2410 5.82 23.36 40.55 23.24

Few-Shot
Llama-3.1-8B-Instruct 7.29 38.38 55.69 33.79
OpenChat-3.5-0106-gemma 19.86 43.03 59.47 40.79
Ministral-8B-Instruct-2410 13.88 35.68 53.86 34.47

Few-Shot + Layperson
Llama-3.1-8B-Instruct 16.71 39.77 58.75 38.41
OpenChat-3.5-0106-gemma 17.08 42.90 59.33 39.77
Ministral-8B-Instruct-2410 14.96 38.23 55.54 36.24

Table 6: Performance of models on Multimodal Medical Question Summarization (MMQS) Dataset.

ence various body parts (e.g., skin, eyes, ears). As1253

shown in Table 6, we observe similar trends across1254

the models. Notably, the Few-Shot + Layperson ap-1255

proach also works effectively for simple healthcare1256

summarization in this context.1257

Across all settings, Ministral-8B-Instruct-24101258

achieves the highest performance in the zero-shot1259

setting with an average score of 23.24, outper-1260

forming both Llama-3.1-8B-Instruct (17.66) and1261

OpenChat-3.5-0106-gemma (17.96). This suggests1262

that Ministral is better suited for out-of-the-box1263

summarization without additional context. How-1264

ever, absolute performance remains low across all1265

zero-shot models, indicating the difficulty of the1266

task without demonstrations.1267

In the few-shot setting, OpenChat-3.5-0106-1268

gemma achieves the best overall performance with1269

an average score of 40.79, outperforming Ministral1270

(34.47) and Llama-3.1 (33.79). This improvement1271

highlights the effectiveness of in-context learning,1272

particularly for models with strong generalization1273

capabilities. Notably, OpenChat-3.5 exhibits a sub-1274

stantial boost in BLEU4 (19.86) and ROUGEL1275

(43.03), suggesting its ability to generate more lex-1276

ically and structurally faithful summaries.1277

Introducing layperson-focused prompting fur-1278

ther enhances performance. Llama-3.1-8B-Instruct1279

shows the most significant improvement, in-1280

creasing its average score from 33.79 to 38.41, 1281

with BLEU4 improving from 7.29 to 16.71 and 1282

BERTScore reaching 58.75, its highest across all 1283

settings. Chat-3.5-0106-1268-gemma still main- 1284

tains the highest overall performance (39.77 aver- 1285

age score), but the gap between models narrows 1286

with the layperson prompt. The results suggest 1287

that simplifying language to align with non-expert 1288

understanding benefits model output fluency and 1289

coherence. 1290

Overall, these findings indicate that few-shot 1291

prompting substantially improves model perfor- 1292

mance, with Chat-3.5-0106-1268-gemma being the 1293

most effective model in this setting. Moreover, 1294

the few-shot + layperson approach provides further 1295

gains, demonstrating its utility for medical question 1296

summarization tasks where clarity and accessibility 1297

are crucial. 1298
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A.3 Layperson Summary Prompting1299

Task Instruction

When faced with a task, begin by identifying the participants who will contribute to solving the task. Then, initiate a multi-round collaboration
process until a final solution is reached. The participants will provide critical comments and detailed suggestions whenever necessary to
ensure the translation is accurate and easily understandable.
Here is a example:
Example Task: Translate the following radiology report into plain language that someone without medical training can easily understand.

Radiology Report:

• Left PICC tip appears to terminate in the distal left brachiocephalic vein.

• Mild pulmonary vascular congestion.

• Interval improvement in aeration of the lung bases with residual streaky opacity likely reflective of atelectasis.

• Interval resolution of the left pleural effusion.

Participants: AI Assistant (you); Medical Doctor; Patient Advocate; Radiologist; Nurse; Respiratory Therapist

Start collaboration!
Radiologist: The PICC line is correctly placed in a large vein in the chest. There’s mild fluid buildup in the lung vessels. The lower parts of
the lungs are improving but still show some areas not fully expanded. The fluid around the left lung has resolved.
Medical Doctor: Yes, let’s break it down point by point to ensure accuracy.
Respiratory Therapist: We should explain "atelectasis" as areas of the lung not fully inflated and "pulmonary vascular congestion" as extra
fluid in the lung’s blood vessels.
Nurse: We also need to simplify terms like "PICC," and "brachiocephalic vein". Clarify that the "PICC line" is a tube inserted into the arm
that reaches a large vein near the heart.
Respiratory Therapist: Also, explain "pulmonary vascular congestion" and "pleural effusion" in simple terms related to lung function.
Patient Advocate: And let’s use bullet points for clarity and make sure the language is easy to understand.
AI Assistant (you): Understood. Taking into account everyone’s input and my expertise, here’s the translation:

• The tube in your arm is correctly placed in a large vein near your heart.

• There’s a small amount of extra fluid in the blood vessels of your lungs.

• The lower parts of your lungs are getting better, but some small areas aren’t fully expanded yet.

• The fluid that was around your left lung has cleared up.

Medical Doctor: This is medically accurate and covers all important aspects.
Radiologist: Agreed, the translation reflects the findings accurately.
Nurse: The explanations are clear and patient-friendly.
Respiratory Therapist: Good job explaining lung-related terms in simple language.
Patient Advocate: It’s easy to understand and uses bullet points as requested.

Finish collaboration!

Final answer:

• The tube in your arm is correctly placed in a large vein near your heart.

• There’s a small amount of extra fluid in the blood vessels of your lungs.

• The lower parts of your lungs are getting better, but some small areas aren’t fully expanded yet.

• The fluid that was around your left lung has cleared up.

—
Now, identify the participants and collaboratively solve the following task step by step. After Finish collaboration!, remember to conclude
your final solution in this exact format: "Final answer: [Your solution here]"

Task: Translate the following radiology report into patient-friendly plain language that someone without medical training can easily
understand.

Radiology Report: "{radiology_report}"
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