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Abstract

Radiology report summarization (RRS) is cru-
cial for patient care, requiring concise “Impres-
sions” from detailed “Findings.” This paper
introduces a novel prompting strategy to en-
hance RRS by first generating a layperson sum-
mary. This approach normalizes key observa-
tions and simplifies complex information using
non-expert communication techniques inspired
by doctor-patient interactions. Combined with
few-shot in-context learning, this method im-
proves the model’s ability to link general terms
to specific findings. We evaluate this approach
on the MIMIC-CXR, CheXpert, and MIMIC-
IIT datasets, benchmarking it against 7B/8B
parameter state-of-the-art open-source large
language models (LLMs) like Llama-3.1-8B-
Instruct. Our results demonstrate improve-
ments in summarization accuracy and accessi-
bility, particularly in out-of-domain tests, with
improvements as high as 5% for some metrics.

1 Introduction

Radiology reports summarization (RRS) is an inter-
esting task to explore natural language processing
(NLP) methods in the biomedical domain from a
computational perspective (Van Veen et al., 2023a).
RRS involves generating concise “Impressions”
from the detailed “Findings” and images in radiol-
ogy reports. These reports, critical for patient diag-
nosis, treatment planning, and maintaining compre-
hensive records, are written by radiologists based
on medical imaging techniques like X-rays, CT
scans, MRI scans, and ultrasounds. The “Find-
ings” section details objective observations from
the imaging, while the “Impressions” section pro-
vides the radiologist’s professional interpretation
and diagnostic conclusions.

In biomedical applications, the effectiveness of
large language models (LLMs) models largely de-
pends on their adaptation through domain- and task-
specific fine-tuning (Singhal et al., 2023). LLMs

have shown remarkable proficiency in natural lan-
guage understanding and generation, making them
adaptable to various tasks. However, fine-tuning
large models like GPT-3, with billions of parame-
ters, requires substantial computational resources
and high costs. To address these issues, researchers
have shifted towards more efficient techniques like
parameter-efficient fine-tuning (PEFT) and prompt-
ing (Van Veen et al., 2023a,b), leveraging existing
model capabilities while reducing computational
demands (Liu et al., 2022).

In contrast, prompting through in-context learn-
ing (ICL) (Brown et al., 2020; Dong et al., 2023)
provides a practical alternative to extensive fine-
tuning of LLMs. In ICL, relevant information
is embedded directly within prompts, allowing
LLMs to adapt to tasks with few-shot demonstra-
tions (Lampinen et al., 2022) quickly. By care-
fully crafting these prompts, researchers can guide
LLMs to generate accurate responses by provid-
ing clear context and examples. Techniques such
as Retrieval-Augmented Generation (Wang et al.,
2023b) can further improve this process. Prompt-
ing has also proven effective in converting com-
plex radiological data into clear and concise sum-
maries (Chen et al., 2023a). Moreover, Nori et al.
(2023) found that combining ICL with explana-
tions enhances the adaptation of general LLMs to
specialized tasks, such as medical question answer-
ing, by integrating intermediate reasoning steps and
thus improving problem-solving abilities (Zhang
et al., 2023). However, generating explanations for
summarization tasks is inherently more challeng-
ing compared to question-answering and traditional
text classification.

Moreover, LLMs trained on general text cor-
pora often lack the specific knowledge required for
specialized fields, limiting their performance (Yao
et al., 2023a; Holmes et al., 2023). Addressing this
deficiency typically involves extensive fine-tuning,
which is resource-intensive and costly. While ICL



can help by embedding relevant information within
prompts, this alone is not always sufficient (Brown
et al., 2020; Dong et al., 2023). Intuitively, non-
fine-tuned models are “non-experts” in the medical
domain, especially smaller open-source models.

However, in real-world settings (e.g., in actual
doctor-patient conversations), research indicates
that scientific or technical knowledge can be ef-
fectively transferred to non-experts through com-
munication techniques like reformulation and sim-
plification, which simplifies complex information
and uses straightforward language to enhance un-
derstanding (Gtilich, 2003). Hence, inspired by
effective doctor-patient communication methods,
this paper proposes a novel prompting strategy that
combines simplification techniques with ICL to
enhance the performance of non-expert LLMs in
specialized areas. This approach aims to improve
model performance without needing costly fine-
tuning (Nori et al., 2023; Zhang et al., 2023) by
simplifying complex information and incorporat-
ing it through prompts before an expert summary
is generated. The in-context examples have layper-
son/simplified language as part of them to help
guide the model for a new example. From another
perspective, we introduce a novel approach that
first generates a layperson (non-expert) summary
to normalize key observations. Radiologists often
have distinct reporting styles, leading to variations
in terminology and impacting the consistency of
medical documentation (Yan et al., 2023). Addi-
tionally, the vast number of illnesses increases the
variety of vocabulary encountered in reports. Nor-
malizing terms in the layperson summary can bet-
ter identify patterns between simplified summaries
and detailed expert impressions, making it easier
to link general terms to specific findings (Peter
et al., 2024). For example, normalizing “pneumo-
nia” and “bronchitis” to “infection of the lungs”
helps the model recognize important concepts in
the in-context examples, even if pneumonia is used
in the test instance while bronchitis is used in the
in-context examples. The LLM can then connect
them back to the findings (summary).

Overall, this paper has threefold contributions:

1. We introduce a novel prompting approach in-
spired by doctor-patient communication tech-
niques that generate a simplified (layperson)
summary before the expert summary. This
strategy, combines with a few-shot ICL with
the layperson summary, enhances RRS using
non-expert LLMs.

2. We evaluate LLM performance on three RRS
datasets: MIMIC-CXR (Johnson et al., 2019),
CheXpert (Irvin et al., 2019), and MIMIC-
III (Johnson et al., 2016), and one multimodal
medical question summarization (MMQS)
dataset (Ghosh et al., 2024). We also bench-
mark against open-source LLMs like Llama-
3.1-8B-Instruct (Al@Meta, 2024) for compre-
hensive comparison.

3. We conduct a comprehensive analysis to deter-
mine the optimal modality for ICL. We also
examine the required number of examples and
the impact of layperson summaries on impres-
sions and evaluate model performance on in-
puts of different lengths.!

2 Related Work

LLMs for Medicine. Recent advances in LLMs
have demonstrated that LLMs can be adapted
with minimal effort across various domains and
tasks. These expressive and interactive models
hold great promise due to their ability to learn
broadly useful representations from the exten-
sive knowledge encoded in medical corpora at
scale (Singhal et al., 2023). Fine-tuned general-
purpose models have proven effective in clinical
question-answering, protected health information
de-identification (Sarkar et al., 2024), and relation
extraction (Hernandez et al., 2023). Some LLM:s,
such as BioGPT (Luo et al., 2022) and ClinicalT5
(Lu et al., 2022), have been trained from scratch
using clinical domain-specific notes, achieving
promising performance on several tasks. Addi-
tionally, in-context learning with general LLMs
like InstructGPT-3 (Ouyang et al., 2022), where
no weights are modified, has shown good perfor-
mance (Agrawal et al., 2022). They have also
demonstrated the ability to solve domain-specific
tasks through zero-shot or few-shot prompting and
have been applied to various medical tasks, such as
medical report summarization (Otmakhova et al.,
2022) and medical named entity recognition (Hu
et al., 2023). But, this generally only works with
closed-source models such as GPT4.

Retrieval-Augmented LLMs. Retrieval augmen-
tation connects LLMs to external knowledge to
mitigate factual inaccuracies. By incorporating a
retrieval module, relevant passages are provided
as context, enhancing the language model’s predic-
tions with factual information like common sense

'See the appendix for complete analysis.
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Figure 1: Overview of the LaypersonPrompt Framework. First, we generate layperson summaries from the training
corpus using LLMs prompting. Then, for a test input, we use multimodal retrieval to find relevant examples. Finally,
we incorporate these layperson summaries into the prompt, applying patient-doctor communication techniques to

improve the model’s reasoning.

or real-time news (Ma et al., 2023). Recent stud-
ies indicate that retrieval-augmented methods can
enhance the reasoning ability of LLMs and make
their responses more credible and traceable (Shi
et al., 2024; Yao et al., 2023b; Nori et al., 2023; Ma
et al., 2023). For example, Shi et al. (2024) trains
a dense retrieval model to complement a frozen
language model. By using feedback from the LLM
as a training objective, the retrieval model is opti-
mized to provide better contextual inputs for the
LLM. Yao et al. (2023b) focuses on designing in-
teractions between the retriever and the reader, aim-
ing to trigger emergent abilities through carefully
crafted prompts or a sophisticated prompt pipeline.
Our approach combines retrieval-augmented meth-
ods with layperson summaries to enhance gen-
eral LLMs reasoning in radiology report summa-
rization, using patient-doctor communication tech-
niques for better understanding and accuracy.

Communication Techniques for Laypersons.
Non-experts, such as patients, have been shown to
perform well on expert tasks, like medical decision-
making and understanding complex topics when
information is simplified using effective commu-
nication techniques (Giilich, 2003; LeBlanc et al.,
2014; Allen et al., 2023; van Dulmen et al., 2007;
Neiman, 2017). This simplification can also im-
prove general LLM’s performance on specialized
tasks. Studies demonstrate that non-experts, with
supervision, can generate high-quality data for ma-
chine learning, producing expert-quality annota-
tions for tasks like identifying pathological patterns
in CT lung scans and malware run-time similar-
ity (O’Neil et al., 2017; VanHoudnos et al., 2017;
Snow et al., 2008). Recent research has shown that

LLMs can simplify complex medical documents,
such as radiology reports, making them more ac-
cessible to laypersons. For instance, ChatGPT has
been used to make radiology reports easier to un-
derstand, bridging the communication gap between
medical professionals and patients (Jeblick et al.,
2023; Lyu et al., 2023; Li et al., 2023). Inspired
by these findings, we explore whether presenting
expert-level information in simpler language can
improve the performance of general LLMs on tasks
that typically require specialized knowledge, such
as those involving medical data.

3 Methodology

In this section, we describe our prompting strat-
egy. Figure 1 shows a high-level overview of our
approach. Our strategy has three main compo-
nents: 1) layperson summarization of the train-
ing dataset used as in-context examples; 2) “multi-
modal demonstration retrieval,” which is how we
generate embeddings to find relevant in-context
examples; and 3) final expert summary prompt con-
struction, which is how we integrate the layperson
summaries and in-context examples to generate the
final expert summary. We describe each compo-
nent in the following subsections and how the three
components are integrated into a unified prompt.

Step 1: Layperson Summarization of the
Training Dataset. Layperson summarization in-
volves converting complex medical texts into more
straightforward language, enhancing accessibility
and understanding for individuals without med-
ical expertise (Cao et al., 2020). For instance,
rephrasing “pulmonary edema” as “fluid in the
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You are an medical expert, assemble a diverse team to collaboratively translate the
radiology report into patient-friendly language. Begin by identifying the participants,
then engage in a multi-round collaboration, encouraging critical feedback.

Task: Translate the following radiology report into patient-friendly plain language
that someone without medical training can easily understand.
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&rachiocephalic vein. 2. Mild pulmonary vascular congestion."
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: We should explain "pulmonary vascular congestion" as extra fluid in lung's vessels.
: And let's use bullet points for clarity and make sure language is easy to understand.
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Finish collaboration!

Layperson Translation
- The tube in your arm is correctly placed in a large vein near your heart.
- There is a small amount of extra fluid in the blood vessels of your lungs.

Figure 2: Step 1: Layperson summarization of the Train-
ing Dataset. An illustration of the layperson summary
prompt used to generate layperson summaries for train-
ing examples. Disease observations are highlighted in
different colors. The illustration shows a single exam-
ple, with Instruction and Response sections repeated
multiple times using few-shot in-context examples.

lungs” makes it more comprehensible. This ap-
proach not only helps to bridge the knowledge gap
for laypeople but also plays an important role in
helping models better understand and summarize
medical content. Intuitively, by generating simpli-
fied summaries as an intermediate step, models can
more effectively capture the semantic meaning of
the texts (Liu et al., 2024; Sulem et al., 2018; Paet-
zold and Specia, 2016; Shardlow and Nawaz, 2019).
In this context, we generate layperson summaries
as an intermediate step for all training examples to
enhance the generation of expert summaries.

To generate accurate layperson summaries, we
employ a multi-round, multi-persona collaboration
method inspired by the Task-Solving Agent frame-
work (Wang et al., 2024a). As shown in Figure 2,
we begin with a radiology report impression and
identify several expert roles, including a medical
doctor, nurse, radiologist, patient advocate and Al
assistant, to provide diverse insights. In the brain-
storming phase, these experts clarify medical ter-
minology and highlight key findings (e.g., “PICC,”
and “pulmonary vascular congestion”). Through
iterative collaboration, they refine the content to
ensure clarity and accuracy. Finally, the refined

Task Description

You are an expert chest radiologist. Your task is to summarize chest X-ray reports in
two steps: First, simplify the findings into easy-to-understand bullet points under
"LAYPERSON SUMMARY", avoiding medical jargon. Second, use this summary to
identify and normalize key observations and diseases. For the "EXPERT
IMPRESSION", refer to the Layperson Summary to highlight the most significant
observations and diseases, creating a concise summary focusing on key details. Y

,—{ ICL Demonstrations (k-shot) !
FINDINGS: "{similar finding i}"
LAYPERSON SUMMARY: "{similar layperson i}"
EXPERT IMPRESSION: "{similar impression i}"

xK

Test Input
Va p

FINDINGS: "Right PICC tip terminates in the mid/ lower SVC, unchanged. Heart size
is normal. Mediastinal and hilar contours are normal. Lungs are clear. Pulmonary
vasculature is normal. No pleural effusion, focal consolidation or pneumothorax is
present. There are no acute osseous abnormalities."

LAYPERSON SUMMARY:
LLMs
o I &
t tput
~ Test Outpu

LAYPERSON SUMMARY: "-There are no new or urgent problems with the heart or
lungs. - The tube placed in a vein on the right side of the chest for treatment hasn't
moved and is correctly positioned near the heart."

EXPERT IMPRESSION: "No acute cardiopulmonary abnormality. Right PICC tip is in
unchanged position, within the mid/lower SVC."

Figure 3: Step 3: Final Expert Summary Prompt Con-
struction. Example of LaypersonPrompt. This is the fi-
nal prompt after finding in-context examples to generate
the final expert summary (i.e., the Impression section).

draft is transformed into a concise, accessible sum-
mary that effectively communicates essential med-
ical details to patients. We then use this prompt
to generate layperson summaries and store these
summaries along with their corresponding Findings
and Impressions as training triples, which are used
as in-context examples. See Appendix A.3 for a
complete example of what the output looks like.

Step 2: Multimodal Demonstration Retrieval
Another essential part of our system is finding sim-
ilar examples in the training dataset for each test
example to use as in-context examples. In our ap-
proach, we focus on substantially improving the
performance of LLMs with a few well-chosen ex-
amples to generate more accurate and standardized
summaries. Selecting the right examples is a crit-
ical task in few-shot learning, as it greatly affects
the effectiveness of the LLMs. To ensure the selec-
tion of the most relevant examples, we follow the
multimodal retrieval procedure outlined by Wang
et al. (2023b), which is fine-tuned with radiology
reports and chest X-ray images. According to their
approach, we retrieve the top-k similar radiology
report based on different modalities, i.e., chest X-
ray images, text findings, and multi-modal data
(combining findings and images) from a medical
corpus using a pre-trained multi-modal encoder.
Then, we include the findings and impressions of
the top k of the most similar report as input in our
final prompt.

Formally, given an input instance z; consisting



of a text input w and image m, our goal is to re-
trieve the most similar examples {21, ..., Tar(z,) }»
where N (z;) represents the top k similar exam-
ples to x;. To achieve this, we employ a multi-
modal image-text retrieval model that uses sepa-
rate encoders for text and image modalities along-
side a multimodal encoder for integrating their
embeddings. Specifically, the image is processed
through a pre-trained Vision Transformer (ViT)
model (Dosovitskiy et al., 2021) to generate im-
age embeddings. Since some findings correspond
to multiple images, we average all image embed-
dings corresponding to the same findings. Next, we
adapt a pre-trained Transformer encoder-decoder
model, such as Clinical-T5 (Lehman and Johnson,
2023), to handle multimodal inputs. Specifically,
we pass the findings as input to the TS encoder and
initialize its hidden state with the averaged image
embeddings. The final FOS token from the T5 en-
coder is used as the multimodal embeddings. Note
that this model cannot be used as-is with the initial
pre-trained models. Instead, we train this model
where the TS encoder outputs are passed to the TS
decoder to generate the impressions. After training
the joint model, we remove the decoder, and only
the embeddings are used later.

Step 3: Expert Summary Prompt Construction
The final step in our pipeline involves prompting
an LLM to generate an expert summary, following
the generation of layperson summaries for all train-
ing examples and identifying relevant in-context
examples for development/test instances using mul-
timodal demonstration retrieval. The prompt com-
prises three main components: 1) Task Instruction;
2) In-context learning examples (ICL Demonstra-
tions); and 3) the test input instance. An example
is shown in Figure 3.

First, the Task Instruction specifies that the
model should create a layperson summary followed
by an expert impression. Detailed guidelines are
provided for generating both the layperson sum-
mary and the expert impression. It is important
to note that the layperson summary is generated
as part of this prompt for the input instance be-
fore generating the expert impression. The prompt
defined in Step 1 is only used for the training exam-
ples. Next, given the input instance’s Findings text
and radiology image, we use the same multi-modal
encoder and retrieval approach described in Step 2
to find relevant in-context examples from the train-
ing dataset. We generate a sequence of up to 32

in-context demonstrations. After identifying the
relevant training examples, we append each train-
ing instance’s Findings, layperson summary, and
Impression to generate the sequence of in-context
examples. Finally, we append the Findings section
of the text instance and the string “Layperson Sum-
mary:”. The model will first generate the layperson
summary followed by the final expert Impression.

Why does generating a layperson summary be-
fore the expert impression work? Models can pro-
duce general information (e.g., “Infection of the
lungs” for “pneumonia”) in the layperson summary,
which helps to standardize the content in the Find-
ings before creating the Impression. This means
different illnesses can be simplified to the same
concept (e.g., “bronchitis” can also be simplified
to “Infection of the lungs™). The idea is that the
model can find common patterns in these general
(layperson) expressions that correlate with the ex-
pert Impression, as long as the Findings have sim-
ilar content. After generating the layperson sum-
mary, the model only needs to connect the general
terms in the summary to the specific details in the
Findings, similar to coreference resolution. With-
out the layperson summary, the model must directly
find patterns in the more varied Findings section,
making the task more complex.

4 Experimental Results

This section covers the datasets, evaluation metrics,
overall results, and error analysis.

Datasets and baseline models. In this study, we
evaluate our prompting method on three radiology
reports summarization datasets. The MIMIC-III
summarization dataset, as introduced by (John-
son et al., 2016; Chen et al., 2023b), contains
11 anatomy-modality pairs (i.e., 11 body parts
and imaging modalities such as head-MRI and
abdomen-CT). The dataset consists of train, val-
idation, and test splits of 59,320, 7,413, and
6,531 findings-impression pairs, respectively. The
MIMIC-III dataset only contains radiology re-
ports without the original images. In contrast,
the MIMIC-CXR summarization dataset (Johnson
et al., 2019) is a multimodal summarization dataset
containing findings and impressions from chest
X-ray studies and corresponding chest X-ray im-
ages. It comprises 125,417 training samples, 991
validation samples, and 1624 test samples. Addi-
tionally, we incorporate an out-of-institution multi-
modal test set of 1000 samples from the Stanford



Model BLEU4 ROUGEL BERTScore Fl-cheXbert F1-RadGraph Average
Llama-3.1-8B-Instruct 6.24 22.63 46.53 67.21 19.88 32.50
Zero-Shot OpenChat-3.5-0106-gemma 6.30 22.14 43.48 66.53 17.06 31.10
Ministral-8B-Instruct-2410 5.22 21.79 42.55 67.94 18.22 31.14
Llama-3.1-8B-Instruct 8.39 31.32 50.94 68.66 28.93 37.65
Few-Shot OpenChat-3.5-0106-gemma 10.67 29.51 49.02 63.27 27.15 35.92
Ministral-8B-Instruct-2410 10.81 28.60 51.50 68.16 24.86 36.79
Llama-3.1-8B-Instruct 11.85 30.24 52.77 68.16 27.42 38.09
Few-Shot + Layperson OpenChat-3.5-0106-gemma 11.02 30.29 51.99 65.22 26.49 37.00
Ministral-8B-Instruct-2410 11.34 30.19 52.88 68.95 27.33 38.14

Table 1: Overall performance on the MIMIC CXR in-domain test dataset. We bold all results from our framework
that outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

BLEU4 ROUGEL BERTScore Fl-cheXbert F1-RadGraph Average

Llama-3.1-8B-Instruct 2.39 23.38 48.10 71.94 9.08 30.98

Zero-Shot OpenChat-3.5-0106-gemma 3.70 25.07 47.54 63.35 8.47 29.63
Ministral-8B-Instruct-2410 4.62 27.04 47.21 70.51 10.05 31.89

Llama-3.1-8B-Instruct 427 26.94 48.52 73.13 9.63 32.50

Few-Shot OpenChat-3.5-0106-gemma 3.81 22.61 45.61 62.43 8.94 28.68
Ministral-8B-Instruct-2410 6.01 28.83 51.03 71.79 11.69 33.87

Llama-3.1-8B-Instruct 7.44 29.62 54.40 74.41 11.14 35.40

Few-Shot + Layperson OpenChat-3.5-0106-gemma 5.32 26.31 49.39 65.41 10.02 31.29
Ministral-8B-Instruct-2410 7.84 30.11 52.57 73.95 11.71 35.24

Table 2: Overall performance across the four prompts on the Stanford Hospital (out-of-domain) test set. The
in-context examples for this dataset are from the MIMIC-CXR dataset. We bold all results from our framework that
outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

hospital(CheXpert) (Irvin et al., 2019) to assess
the out-of-domain generalization of models trained
on MIMIC-CXR. Finally, in Appendix A.2, we
also evaluate on the Multimodal Medical Ques-
tion Summarization dataset (a non-radiology re-
port dataset), showing our method can generalize
beyond radiology images. We use Llama-3.1-8B-
Instruct (AI@Meta, 2024), Ministral-8B-Instruct-
2410 (Jiang et al., 2023), and OpenChat-3.5-0106-
gemma (Wang et al., 2023a) in our experiments to
compare model performance.

Evaluation Metrics. Performance is evaluated us-
ing the following metrics: BLEU4 (Papineni et al.,
2002), ROUGE-L (Lin, 2004), Bertscore (Zhang
etal., 2020), F1CheXbert (Delbrouck et al., 2022b),
and F1RadGraph (Delbrouck et al., 2022a). In-
tuitively, BLEU4 measures the precision, while
ROUGE-L assesses the recall of the n-gram over-
lap between the generated radiology reports and
the original summaries. BERTScore calculates the
semantic similarity between tokens of the refer-
ence summary and the hypothesis, where the hy-
pothesis refers to the model-generated summary.
F1CheXbert uses CheXbert (Smit et al., 2020), a
Transformer-based model, to evaluate the clinical
accuracy of generated summaries by comparing

identified chest X-ray abnormalities in the gen-
erated reports to those in the reference reports.
F1RadGraph, an F1-score style metric, leverages
the RadGraph (Jain et al., 2021) annotation scheme
to evaluate the consistency and completeness of the
generated reports by comparing them to reference
reports based on observation and anatomy entities.

Overall Results. Table 1 show the performance
of Zero-Shot prompting, Few-Shot prompting, and
our Few-Shot + Layperson prompting strategies for
the radiology reports summarization task on the
MIMIC-CXR dataset. The Few-Shot + Layperson
method mimics doctor-patient communication by
creating a simplified summary for laypeople before
generating the expert summary. We find that incor-
porating the layperson intermediary step yields con-
sistent improvements over the standard Few-Shot
approach: for example, Llama-3.1-8B-Instruct’s
BLEU4 score rises from 8.39 to 11.85, OpenChat-
3.5-0106-gemma’s ROUGE-L and F1-cheXbert
scores increase from 29.51 and 63.27 to 30.29 and
65.22 respectively, and Ministral-8B-Instruct-2410
exhibits enhancements with its BERTScore improv-
ing from 51.50 to 52.88 and F1-cheXbert from
68.16 to 68.95. Overall, the averaged performance
across all models and metrics indicates that the



BLEU4 ROUGEL BERTScore

F1-cheXbert F1-RadGraph Average

Llama-3.1-8B-Instruct 6.79 21.84 44.00 52.82 19.30 28.95
Zero-Shot OpenChat-3.5-0106-gemma 6.65 20.83 44.50 51.46 16.64 28.02
Ministral-8B-Instruct-2410 8.39 23.47 46.94 53.79 18.83 30.28
Llama-3.1-8B-Instruct 7.23 23.45 46.84 49.82 22.20 29.91
Few-Shot OpenChat-3.5-0106-gemma 10.24 22.59 45.27 51.13 19.82 29.81
Ministral-8B-Instruct-2410 8.72 24.14 47.03 53.81 19.28 30.60
Llama-3.1-8B-Instruct 13.58 25.23 49.63 55.53 22.64 33.32
Few-Shot + Layperson OpenChat-3.5-0106-gemma 11.93 23.62 47.50 52.73 21.33 31.42
Ministral-8B-Instruct-2410 8.27 23.49 46.63 69.01 19.57 33.39

Table 3: Overall performance across the four prompts on MIMIC III. We bold all results from our framework that
outperform the few-shot and zero-shot baselines for the respective model (e.g., Llama vs. Llama).

BLEU4 ROUGEL BERTScore

F1-cheXbert F1-RadGraph Average

Oriaing FEW-Shot 12.81 37.55 54.71 67.67 3495 41538
8MAL pew-Shot + Layperson  13.91 37.60 56.76 67.46 3537 4222
Magi | Few-Shot 0.60 6.67 16.35 28.00 6.60  11.64
Few-Shot + Layperson 5.38 25.05 45.63 45.70 20.60 28.47

Table 4: Overall performance across masked and original findings with the Llama-3.1-8B-Instruct model. Results are
for MIMIC-CXR. Bolded results highlight our framework’s improvements over the traditional few-shot approach.

Few-Shot + Layperson strategy outperforms the
conventional Few-Shot approach, highlighting the
benefit of integrating layperson communication in
enhancing the clarity and effectiveness of radiology
report summarization.

On the Stanford Hospital test set in Table 2, the
Few-Shot + Layperson prompting yields a respec-
tive increase in performance across multiple met-
rics. Ministral-8B-Instruct-2410 achieved the high-
est BLEU4 (7.84) and ROUGEL (30.11), while
Llama-3.1-8B-Instruct led in BERTScore (54.40)
and Fl-cheXbert (74.41). OpenChat-3.5-0106-
gemma also showed substantial improvements in
ROUGEL (26.31 vs. 25.07) and BERTScore (49.39
vs. 45.61) compared to its Few-Shot performance.
Moreover, the average scores computed across all
metrics consistently increased under the Few-Shot
+ Layperson setting for every model. These results
highlight the effectiveness of using layperson sum-
maries to enhance model performance in summa-
rizing radiology reports on out-of-domain dataset.

The results of the comparison on the MIMIC-IIT
dataset are detailed in Table 3. Our model demon-
strates robust performance, indicating its capabil-
ity to generalize across varied medical datasets.
Specifically, Llama-3.1-8B-Instruct saw increases
in BLEU4 (13.58 vs. 7.23) and F1-RadGraph
(25.23 vs. 23.45) when comparing the Few-Shot
+ Layperson method to the standard Few-Shot ap-
proach. In summary, across all three datasets, it
is evident that the Few-Shot + Layperson method
shows noticeable improvements, especially on the

out-of-domain test set, with the overall average
consistently outperforming other methods. In-
corporating an intermediate layperson summary,
which mimics patient—doctor communication, in-
troduces a step for “easy-to-hard” reasoning. This
approach enhances the model’s accuracy and its
ability to generalize across different datasets in
medical imaging and report summarization.

Error Analysis and Discussion. We conducted an
error analysis of the Llama-3.1-8B-Instruct model
on the MIMIC-CXR valid dataset to compare two
prompting strategies: the Few-Shot method and our
Few-Shot + Layperson approach. The core idea
behind this experiment is to determine whether
guiding the model with simpler, more accessible
language helps it handle complex or unfamiliar
medical terminology more effectively. Our intu-
ition is based on the observation that when a model
encounters highly specialized or unknown terms,
it may misinterpret the context or even refuse to
process the request. We aim to steer the model’s
attention towards the underlying clinical context by
embedding layperson explanations in the prompt
rather than getting caught up in obscure jargon.
This mirrors how humans often simplify complex
information to enhance understanding.

In our experiment, we simulated real-world chal-
lenges by replacing key medical terms with ran-
dom, nonsensical “gibberish” entities. Specifically,
we used MedSpacy (Eyre et al., 2022) to identify
medical entities. These were then replaced with
random strings, e.g., “pleural effusions” can be re-



placed with “abcdefg.” This method tests whether
layperson instructions can guide the model to gen-
erate clear and concise summaries, even when con-
fronted with entirely unfamiliar terminology. We
hypothesized that, combined with the other context
in the findings, the additional layperson summary
would encourage the model to normalize difficult
terms into simpler, plain language, improving its
overall performance. We report the results of this
study in Table 4. The section titled “Mask” shows
the results of applying the baseline (Llama-3.1-8B-
Instruct + Few-shot prompting) and our method
(Llama-3.1-8B-Instruct + Few-shot + Layperson)
on the modified examples, where entities in the
initial findings have been replaced with gibberish.
We also report the original results on the unmodi-
fied data for reference. Our results show that the
Few-Shot + Layperson approach consistently out-
performs the standard Few-Shot method. When
modifying words, the few-shot method performs
poorly compared to the original data (37.55 vs.
6.67 ROUGE-L). However, our method can more
robustly adapt to the modified vocabulary (37.60 vs.
25.05 ROUGE-L). This is particularly evident in
the masked setting, where key medical terms are re-
placed with gibberish. In these cases, the Few-Shot
model’s performance drops substantially, highlight-
ing its struggle to handle unfamiliar terminology
without additional guidance.

When encountering such unknown or nonsensi-
cal terms, the standard Few-Shot model often fails
to generate a meaningful summary and instead re-
quests clarification. For example, it usually simply
state, “I can’t fulfill that request.” We provide an
example below:

Masked Radiology Finding:

“There are moderate bilateral entityl with over-
lying entity2 and possible consolidation. en-
tity3 prominence of entity4 suggests mild en-
tity5.”

Ground Truth Impression:

“Bilateral pleural effusions, cardiomegaly, mild

edema indicating fluid overload.”

Layperson Summary:

“Moderate fluid around both lungs with slight

lung changes and mild inflammation. Some un-

derlying issue with the lung tissue that’s not

clearly visible.

Few-Shot: “I can’t fulfill that request.”

Few-Shot + Layperson:

“Bilateral lung consolidation with mild pul-
\rnonary edema and cardiomegaly.” )

Notably, when encountering an unknown term,

the Few-Shot model often rephrases details, result-
ing in longer summaries that sometimes repeat find-
ings or even include hallucinated information. In
contrast, our Layperson approach actively guides
the model to simplify complex information. As
shown in the following example, the Few-Shot
model failed to capture the key observation and
even fabricated a term like “xenosign,” our Few-
Shot + Layperson model successfully generated
the summary “No acute cardiopulmonary process.
Normal heart size,” which closely aligns with the
ground truth. An example of this is found below:

Masked Radiology Finding:

“Frontal and lateral views of the entityl. The
entity2 are clear of focal consolidation or
entity3. Opacities at the cardiophrenic angles
bilaterally are thought to represent prominent
entity4.”

Ground Truth Impression:

“No acute cardiopulmonary process.”
Layperson Summary:

“The chest X-rays show clear lungs without any
solid masses. Small opacities at the lung edges
likely represent normal fat or muscle. Overall,
the heart and chest structures appear normal.”

Few-Shot:
“Clear  lungs  without  consolidation.
A subtle finding, termed “xenosign”, is

noted at the left lung base. Bilateral opacities

are likely due to fat.”

Few-Shot + Layperson:

“No acute cardiopulmonary process. Normal
Qemt size.” Yy,

5 Conclusion

This paper introduces a novel prompting approach
inspired by doctor-patient communication tech-
niques. By first generating a simplified (layper-
son) summary before creating the expert summary
and combining this with few-shot in-context learn-
ing, we aim to improve the summarization of ra-
diology reports using general LLMs. Evaluations
across three datasets (MIMIC-CXR, CheXpert, and
MIMIC-III) show that this method improves per-
formance, especially in out-of-domain tests.

However, this approach faces challenges due to
the 7B model’s computational demands and context
token limitations, especially with complex medical
reports. Future work will optimize token usage and
explore larger models with expanded context. By
applying effective doctor-patient communication
principles, our method aims to improve non-expert
LLM performance in specialized fields without ex-
tensive fine-tuning.



6 Limitation

While our approach shows improvements in radi-
ology report summarization (RRS), several limi-
tations must be considered. First, the evaluation
metrics used, such as ROUGE-L, do not always
correlate well with human evaluations, necessitat-
ing cautious interpretation of the results (Wang
et al., 2024b). Our study primarily relies on these
automated metrics, which can overlook important
nuances that human experts might catch. The ab-
sence of comprehensive human evaluations further
limits the assessment of practical effectiveness. In-
corporating detailed evaluations by human experts
is crucial for accurately measuring model perfor-
mance in real-world clinical settings in future re-
search, as human assessments provide insights into
the clinical relevance and accuracy of summaries
that automated metrics may miss.

Additionally, the use of 7B parameter open-
source models may not be optimal. More pow-
erful closed models, like GPT-4 (Achiam et al.,
2023) and Gemini (Team et al., 2023), often per-
form better in summarization tasks. Including re-
sults from these advanced models could provide a
more comprehensive comparison and potentially
challenge the necessity of the intermediate layper-
son summary step. Furthermore, the computational
demands and context token limitations of the 7B
model present significant challenges, particularly
with longer and more complex medical reports.
This restricts the model’s ability to process exten-
sive and detailed information effectively. Differ-
ences in the quality and consistency of radiology
reports from different datasets can also affect per-
formance due to inconsistencies in terminology and
reporting styles. Moreover, the current interaction
between humans and non-expert LLMs can be im-
proved. Incorporating communication techniques
similar to doctor-patient interactions will enhance
the human-Al experience by making complex infor-
mation more accessible and understandable. This
improvement aims to make LLMs more practical
and effective for expert-level tasks in various areas,
bridging the gap between specialized knowledge
and everyday understanding.

7 Ethics Statement

In this work, we have introduced our Layperson
Summary Prompting strategy, inspired by doctor-
patient communication techniques. This approach
aims to simplify complex medical findings into

layperson summary first, then uses this simplified
information to generate accurate expert summaries.
However, it is important to address the ethical im-
plications of using LLMs in this context. LLMs
used for radiology report summarization can pro-
duce errors or biased outputs if the training data is
of low quality or representative. These models also
can be wrong, and such biases can lead to unfair
outcomes and exacerbate health disparities. There-
fore, radiologists should use Al-generated sum-
maries as supportive tools, retaining control over
clinical decisions. Al should be seen as an informa-
tion resource to reduce time and cognitive effort,
aiding in information retrieval and summarization,
rather than as an interpretative agent providing clin-
ical decisions or treatment recommendations.

Additionally, integrating Al into clinical practice
raises significant ethical considerations regarding
patient privacy, data security, and informed con-
sent. Using large volumes of sensitive patient data
for training Al models necessitates stringent mea-
sures to protect patient rights and ensure data con-
fidentiality. Ethical principles such as fairness, ac-
countability, and transparency should guide the de-
ployment of Al technologies in healthcare. These
principles help ensure that Al systems are used
responsibly and that the benefits of Al are dis-
tributed equitably among all stakeholders. Fur-
thermore, potential risks associated with Al im-
plementation include perpetuating existing biases,
privacy breaches, and the misuse of Al-generated
data, necessitating careful consideration and proac-
tive management (Yildirim et al., 2024).
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A Appendix

A.1 Baseline and Implementation Details

For our baseline approach, we adopt a prefixed
zero-shot prompting strategy (Duan et al., 2019;
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Zhao and Schiitze, 2021), which prepended a brief
instruction to the beginning of a standard null
prompt. We use the instruction, “You are an expert
chest radiologist. Your task is to summarize the
radiology report findings into an impression with
minimal text”. This instruction provides the model
with a fundamental context for the RRS task. Im-
mediately following the instruction, we append the
specific findings from the report and then prompt
the model with “IMPRESSION:” to initiate the
generation process. Additionally, we investigate
the effectiveness of few-shot ICL prompts with up
to 32 similar examples, using the same template
as our Few-Shot prompting method, which is not
incorporating the intermediate reasoning step (i.e.,
without the layperson summary).

We conduct experiments with three open-source
LLMs: Llama-3.1-8B-Instruct (Al@Meta, 2024),
Ministral-8B-Instruct-2410 (Jiang et al., 2023), and
OpenChat-3.5-0106-gemma (Wang et al., 2023a).
All experiments were conducted using two Nvidia
A6000 GPUs. For the few-shot model, the aver-
age running time is around 2 hours. In contrast,
the Few-Shot + Layperson models have an aver-
age running time of around 8 hours. Processing
the MIMIC data with 24 examples takes approxi-
mately 36 hours. In our work, all these models have
been implemented using the Hugging Face frame-
work (Wolf et al., 2019). Specifically, the Llama-
3.1-8B-Instruct, OpenChat-3.5-0106-gemma, and
Ministral-8B-Instruct-2410 are reported to perform
strongly in common sense reasoning and problem-
solving ability (Zhu et al., 2023). OpenChat-3.5-
0106-gemma is built on the highest-performing
Gemma model with conditioned reinforcement
learning fine-tuning. To select the best parame-
ters in our study, we employed ROUGE-L and
F1RadGraph metrics on the validation set. These
metrics help determine the most effective param-
eter settings for the model. The ROUGE-L met-
ric focuses on the longest common subsequence
and is particularly suitable for evaluating the qual-
ity of text summaries. On the other hand, the
F1RadGraph is specifically designed to assess the
accuracy of extracting and summarizing key infor-
mation from radiology reports by analyzing entity
similarities.

For optimizing our model’s hyper-parameters,
we employed a random search strategy on valid
dataset. This involved experimenting with various
settings: the number of prepended similar exam-
ples was varied across a set 2, 8, 12, 16, 24, 32,
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and these examples were matched using different
modality embeddings (text, image, or multimodal),
all while employing the same template. We find
that for the Llama-3.1-8B-Instruct, the best per-
formance is achieved with 32 examples for both
Few-Shot and Few-Shot + Layperson prompting
methods. Additionally, we experimented with tem-
perature settings ranging from 0.1 to 0.9, top p
values set between 0.1 and 0.6, and top k values
of 10, 20, and 30. Through this exploratory pro-
cess, we identified the most effective settings as a
temperature of 0.2, a top p value of 0.5, and a top
k setting of 20. We adopt the same hyperparam-
eters for all experiments. These settings yielded
the best results in our evaluations. It’s significant
to note the impact of the “temperature” parameter
on the diversity of the model’s outputs. Higher
temperature values add more variation, introduc-
ing a greater level of randomness into the content
generated. This aspect is especially valuable for
adjusting the output to meet specific requirements
for creativity or diversity.

To ensure compatibility with the model’s capabil-
ities, we restricted the length of the prompt (which
includes the instruction, input, and output instance)
to 7800 tokens. This limit was set to prevent ex-
ceeding the model’s maximum sequence length of
8,192 tokens for Llama-3.1-8B-Instruct, Ministral-
8B-Instruct-2410, and OpenChat-3.5-0106-gemma.
In cases where prompts exceeded this length, they
were truncated from the beginning, ensuring that
essential information and current findings were pre-
served. Moreover, we constrained the generated
output to a maximum of 256 tokens to strike a
balance between providing detailed content and ad-
hering to the model’s constraints. This approach
was key in optimizing the effectiveness of sum-
marization within the operational limits of the 7B
models. Table 5 shows the prompt lengths for dif-
ferent numbers of examples used in our study. For
the MIMIC-III dataset, using 32 examples exceeds
the 7800 token limit, so we opted to use only 16
examples.

A.2 Multimodal Medical Question
Summarization Results

Furthermore, we assess an additional dataset,
the Multimodal Medical Question Summariza-
tion (MMQS) Dataset, introduced by Ghosh et al.
(2024). This dataset contains 3,015 multimodal
medical queries, each accompanied by visual cues
and expert-annotated gold summaries that refer-



2 8 12 16 24 32
Few-Shot 643 1285 1713 2141 2994 3850
MIMIC-CXR Few-Shot + Layperson 889 1826 2452 3084 4333 5587
MIMIC-III Few-Shot 1035 2500 3474 4451 6405 8359
Few-Shot + Layperson 1340 3277 4565 5856 8442 11025
Table 5: Average Token of Prompts.
BLEU4 ROUGEL BERTScore Average
Llama-3.1-8B-Instruct 3.26 16.87 32.86 17.66
Zero-Shot OpenChat-3.5-0106-gemma 5.28 17.46 31.15 17.96
Ministral-8B-Instruct-2410 5.82 23.36 40.55 23.24
Llama-3.1-8B-Instruct 7.29 38.38 55.69 33.79
Few-Shot OpenChat-3.5-0106-gemma 19.86 43.03 59.47 40.79
Ministral-8B-Instruct-2410 13.88 35.68 53.86 34.47
Llama-3.1-8B-Instruct 16.71 39.77 58.75 38.41
Few-Shot + Layperson  OpenChat-3.5-0106-gemma 17.08 42.90 59.33 39.77
Ministral-8B-Instruct-2410 14.96 38.23 55.54 36.24

Table 6: Performance of models on Multimodal Medical Question Summarization (MMQS) Dataset.

ence various body parts (e.g., skin, eyes, ears). As
shown in Table 6, we observe similar trends across
the models. Notably, the Few-Shot + Layperson ap-
proach also works effectively for simple healthcare
summarization in this context.

Across all settings, Ministral-8B-Instruct-2410
achieves the highest performance in the zero-shot
setting with an average score of 23.24, outper-
forming both Llama-3.1-8B-Instruct (17.66) and
OpenChat-3.5-0106-gemma (17.96). This suggests
that Ministral is better suited for out-of-the-box
summarization without additional context. How-
ever, absolute performance remains low across all
zero-shot models, indicating the difficulty of the
task without demonstrations.

In the few-shot setting, OpenChat-3.5-0106-
gemma achieves the best overall performance with
an average score of 40.79, outperforming Ministral
(34.47) and Llama-3.1 (33.79). This improvement
highlights the effectiveness of in-context learning,
particularly for models with strong generalization
capabilities. Notably, OpenChat-3.5 exhibits a sub-
stantial boost in BLEU4 (19.86) and ROUGEL
(43.03), suggesting its ability to generate more lex-
ically and structurally faithful summaries.

Introducing layperson-focused prompting fur-
ther enhances performance. Llama-3.1-8B-Instruct
shows the most significant improvement, in-
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creasing its average score from 33.79 to 38.41,
with BLEU4 improving from 7.29 to 16.71 and
BERTScore reaching 58.75, its highest across all
settings. Chat-3.5-0106-1268-gemma still main-
tains the highest overall performance (39.77 aver-
age score), but the gap between models narrows
with the layperson prompt. The results suggest
that simplifying language to align with non-expert
understanding benefits model output fluency and
coherence.

Overall, these findings indicate that few-shot
prompting substantially improves model perfor-
mance, with Chat-3.5-0106-1268-gemma being the
most effective model in this setting. Moreover,
the few-shot + layperson approach provides further
gains, demonstrating its utility for medical question
summarization tasks where clarity and accessibility
are crucial.



A.3 Layperson Summary Prompting

Task Instruction

When faced with a task, begin by identifying the participants who will contribute to solving the task. Then, initiate a multi-round collaboration
process until a final solution is reached. The participants will provide critical comments and detailed suggestions whenever necessary to
ensure the translation is accurate and easily understandable.

Here is a example:

Example Task: Translate the following radiology report into plain language that someone without medical training can easily understand.
Radiology Report:

 Left PICC tip appears to terminate in the distal left brachiocephalic vein.

* Mild pulmonary vascular congestion.

* Interval improvement in aeration of the lung bases with residual streaky opacity likely reflective of atelectasis.

* Interval resolution of the left pleural effusion.
Participants: Al Assistant (you); Medical Doctor; Patient Advocate; Radiologist; Nurse; Respiratory Therapist

Start collaboration!

Radiologist: The PICC line is correctly placed in a large vein in the chest. There’s mild fluid buildup in the lung vessels. The lower parts of
the lungs are improving but still show some areas not fully expanded. The fluid around the left lung has resolved.
Medical Doctor: Yes, let’s break it down point by point to ensure accuracy.

Respiratory Therapist: We should explain "atelectasis” as areas of the lung not fully inflated and "pulmonary vascular congestion" as extra
fluid in the lung’s blood vessels.

Nurse: We also need to simplify terms like "PICC," and "brachiocephalic vein". Clarify that the "PICC line" is a tube inserted into the arm
that reaches a large vein near the heart.

Respiratory Therapist: Also, explain "pulmonary vascular congestion" and "pleural effusion" in simple terms related to lung function.
Patient Advocate: And let’s use bullet points for clarity and make sure the language is easy to understand.
Al Assistant (you): Understood. Taking into account everyone’s input and my expertise, here’s the translation:

¢ The tube in your arm is correctly placed in a large vein near your heart.
e There’s a small amount of extra fluid in the blood vessels of your lungs.
* The lower parts of your lungs are getting better, but some small areas aren’t fully expanded yet.
* The fluid that was around your left lung has cleared up.
Medical Doctor: This is medically accurate and covers all important aspects.
Radiologist: Agreed, the translation reflects the findings accurately.
Nurse: The explanations are clear and patient-friendly.
Respiratory Therapist: Good job explaining lung-related terms in simple language.
Patient Advocate: It’s easy to understand and uses bullet points as requested.
Finish collaboration!
Final answer:
* The tube in your arm is correctly placed in a large vein near your heart.
e There’s a small amount of extra fluid in the blood vessels of your lungs.
» The lower parts of your lungs are getting better, but some small areas aren’t fully expanded yet.

* The fluid that was around your left lung has cleared up.

Now, identify the participants and collaboratively solve the following task step by step. After Finish collaboration!, remember to conclude
your final solution in this exact format: ''Final answer: [Your solution here]"

Task: Translate the following radiology report into patient-friendly plain language that someone without medical training can easily
understand.

Radiology Report: "{radiology_report}"
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