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Abstract

Large language models (LLMs) demonstrate001
exceptional performance in numerous tasks but002
still heavily rely on knowledge stored in their003
parameters. Moreover, updating this knowl-004
edge incurs high training costs. Retrieval-005
augmented generation (RAG) methods address006
this issue by integrating external knowledge.007
The model can answer questions it couldn’t pre-008
viously by retrieving knowledge relevant to the009
query. This approach improves performance in010
certain scenarios for specific tasks. However,011
if irrelevant texts are retrieved, it may impair012
model performance. In this paper, we propose013
Retrieval Augmented Iterative Self-Feedback014
(RA-ISF), a framework that iteratively de-015
composes tasks and processes them in three016
submodules to enhance the model’s problem-017
solving capabilities. Experiments show that our018
method outperforms existing benchmarks, per-019
forming well on models like GPT3.5, Llama2,020
significantly enhancing factual reasoning capa-021
bilities and reducing hallucinations.022

1 Introduction023

Large language models (LLMs) (Brown et al.,024

2020; Chowdhery et al., 2023; Touvron et al., 2023)025

have demonstrated their excellent performance in026

knowledge reasoning and outstanding capabilities027

across various task domain (Bang et al., 2023;028

Ouyang et al., 2022). However, the parameter-029

ized knowledge stored within LLMs may be in-030

complete and hard to incorporate up-to-date knowl-031

edge (Dhingra et al., 2022; Huang et al., 2020). To032

address this issue, retrieval-augmented generation033

(RAG) approaches can leverage external knowl-034

edge and documents, extract non-parameterized035

knowledge, and incorporate it into the model’s036

prompts, thereby embedding new knowledge into037

the language model (Ram et al., 2023; Guu et al.,038

2020). This approach demonstrates outstanding039

performance in answering a variety of open-domain040

questions.041

However, current RAG frameworks have two 042

major challenges. First, retrieving irrelevant knowl- 043

edge texts will impair the LLMs’ ability to solve 044

tasks (Shi et al., 2023a; Mallen et al., 2023). Sec- 045

ond, the incorporation of LLM’s existing knowl- 046

edge and the retrieved knowledge may face diffi- 047

culty (Izacard et al., 2022b). Some methods have 048

conducted research based on these issues, includ- 049

ing considering the model’s problem-solving abili- 050

ties (Wang et al., 2023a) and whether the retrieved 051

passages are relevant to the question (Chen et al., 052

2023; Asai et al., 2024; Yu et al., 2023). However, 053

current solutions still have drawbacks in answering 054

knowledge-intensive questions and different levels 055

of sub-questions. Therefore, how to fuse knowl- 056

edge and utilize knowledge for question answering 057

is very important in this process. 058

To overcome the above limitations, we introduce 059

Retrieval Augmented Iterative Self-Feedback (RA- 060

ISF), a framework addresses problems by itera- 061

tively processing questions. Specifically, unlike di- 062

rectly appending retrieved knowledge into prompts, 063

our approach employs three sub-modules for itera- 064

tive processing. These three sub-modules are the 065

Self-Knowledge Module, the Passage Relevance 066

Module, and the Question Decomposition Module. 067

We have also collected a series of data through 068

LLMs to evaluate whether a specific module pos- 069

sesses the corresponding capabilities. By training 070

a small language model or simply relying on in- 071

context learning, these modules can demonstrate 072

capabilities in self-knowledge, relevance judgment, 073

and question decomposition. 074

As shown in Figure 1, RA-ISF first uses a self- 075

knowledge module to determine whether the cur- 076

rent question could be answered on its own knowl- 077

edge. Then, when employing a retrieval strategy, 078

the passage relevance module will assess the rel- 079

evance of each retrieved paragraph to the prob- 080

lem. Relevant paragraphs will be integrated into 081

the prompt and used for prediction. When all para- 082
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graphs are irrelevant to the question, the question083

decomposition module will break down the ques-084

tions into sub-questions and repeat the aforemen-085

tioned steps for these sub-questions. Ultimately,086

the model will synthesize the answers to the sub-087

questions to respond to the original question.088

Compared to previous RAG methods, our iter-089

ative self-feedback approach more effectively un-090

leashes the potential of the model and better in-091

corporates external knowledge with the model’s092

inherent knowledge. Simultaneously, RA-ISF can093

address questions by decomposing them when the094

model lacks an initial answer or retrieves irrele-095

vant texts, combining these solutions to answer096

the origin question, which is an effective problem-097

solving strategy. Experiments on various LLMs098

(e.g., GPT3.5 (OpenAI, 2023) and Llama-2 (Tou-099

vron et al., 2023)) demonstrate that RA-ISF ex-100

hibits superior performance in handling complex101

questions compared to existing methods.102

Our Contributions. Our main contributions are103

summarized as follows.104

• We introduce RA-ISF, an innovative retrieval-105

augmented framework designed to tackle di-106

verse challenges. This approach evaluates107

the model’s ability to solve the corresponding108

problem and its relevance to the retrieved con-109

tent through an iterative method. This com-110

prehensive evaluation is crucial for solving111

complex problems.112

• To the best of our knowledge, this is the first113

time an iterative question decomposition ap-114

proach has been used in a retrieval-augmented115

framework, which mitigates the impact of ir-116

relevant text interference.117

• Our proposed framework significantly en-118

hances knowledge retrieval performance119

across different tasks, demonstrating the po-120

tential and robustness of our framework.121

2 Related Work122

2.1 Retrieval Augmented Language Model123

The retrieval-augmented language model (LM)124

is enhanced by a non-parametric memory to facili-125

tate external knowledge access and provide prove-126

nance (Guu et al., 2020; Lewis et al., 2020; Shi127

et al., 2023b). However, the improved task perfor-128

mance of retrieval augmentation largely depends129

on the relevance of the retrieved passage (Shi et al.,130

2023a). Recently, some studies have begun to 131

explore when to use retrieval for diverse instruc- 132

tion. For instance, Asai et al. (2024) integrates 133

special feedback tokens into the language model 134

to the need for retrieval and confirm the output’s 135

relevance, support, or completeness. Chen et al. 136

(2023) investigates the impact of texts with dif- 137

ferent attributes and relevance on text generation 138

performance. Some works (Mallen et al., 2023) 139

explore the incorporation of the LLM’s inherent 140

knowledge with in-context documents. Wang et al. 141

(2023b) improves the performance in answering 142

self-knowledge questions by guiding the model to 143

acquire self-knowledge capabilities. Meanwhile, 144

other studies have concentrated on iterative re- 145

trieval augmentation (Trivedi et al., 2023; Shao 146

et al., 2023) and accelerating retrieval speed (Xu 147

et al., 2023). 148

In comparison, our method combines the 149

model’s retrieval and understanding capabilities 150

and reduces its susceptibility to irrelevant texts. 151

This is achieved through the task decomposition 152

paradigm. By iteratively processing these three sub- 153

modules with self-feedback, we develop a versatile 154

and robust retrieval-augmented framework. 155

2.2 Task Decomposition 156

Task decomposition is an effective method for 157

solving knowledge-intensive and other complex 158

tasks. It involves breaking down multi-turn ques- 159

tions into single-turn questions, answering each 160

sub-task separately, and then synthesizing these 161

answers to resolve the original task. Perez et al. 162

(2020) trains a question decomposition and task 163

aggregation model to split and collectively solve 164

the original problem. Yang et al. (2022) decom- 165

poses questions into a series of slot-filling tasks, 166

transforming natural language questions into SQL 167

queries, and implements natural language prompts 168

corresponding to SQL clauses through a rule-based 169

system. Least-to-most (Zhou et al., 2023) lever- 170

ages the in-context learning capabilities of large 171

language models, solving problems by providing 172

examples of question decomposition. 173

RA-ISF utilizes task decomposition to miti- 174

gate the impact of irrelevant prompt texts on the 175

model (Shi et al., 2023a), by iteratively answer- 176

ing sub-questions and integrating text relevance 177

with self-knowledge answering capabilities into 178

the framework. This enhances the performance in 179

solving the entire problem. 180
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Figure 1: Overview of RA-ISF. It consists of three sub-modules: self-knowledge, passage relevance, and question
decomposition.

3 Methodology181

Existing retrieval augmented methods still have182

some shortcomings. For instance, the model may183

struggle to solve problems based solely on its own184

knowledge, and during retrieval, it might be in-185

fluenced by irrelevant texts, leading to the gener-186

ation of incorrect answers. Therefore, we intro-187

duce an upgraded retrieval-augmented generation188

framework – Retrieval Augmented Iterative Self-189

Feedback (RA-ISF), which improves the quality190

and accuracy of LLM responses through internal191

knowledge comprehension, external knowledge re-192

trieval, and problem decomposition.193

3.1 Overview194

As shown in Figure 1, RA-ISF involves three pre-195

trained models:Mknow,Mrel andMdecom, each196

responsible for internal knowledge assessment, ex-197

ternal knowledge retrieval, and question decompo-198

sition functions, respectively.199

In general, we input a question qnew and obtain200

its answer A through the RA-ISF framework. The201

overall process is as follows: Firstly, input qnew202

intoMknow to determine if it can be solved using203

internal knowledge. If solvable, directly output the204

answer. If not, use the retriever R to search for205

relevant information for the question qnew. Com-206

bine the retrieved text with the question and in-207

put them into the modelMrel to assess their rel- 208

evance. If relevant, generate an answer based on 209

these related passages. If none of the retrieved 210

text is relevant, input qnew into the question de- 211

composition modelMdecom to break it down into 212

multiple sub-questions q1, ..., qn. Next, input these 213

sub-questions back into the model Mknow (and 214

Mrel,Mdecom if needed) to obtain corresponding 215

sub-answers. Finally, integrate these sub-answers 216

to generate the ultimate answer. 217

3.2 RA-ISF Training 218

In this section, we will delve into the training 219

process of the models within RA-ISF, encompass- 220

ing both dataset collection and model learning. 221

Due to the similarity in the training procedures 222

for the three models, we will use the training of the 223

Mknow model as an illustrative example. 224

Data Collection. First, we need to construct a 225

dataset generated by LLMs. Specifically, based 226

on various training objectives, we collect corre- 227

sponding questions Q = {Q1, Q2, ..., Qn} and in- 228

put them one by one into the LLM modelM. By 229

providing the model with specific instructions to 230

perform the respective tasks, and utilizing few-shot 231

prompts and in-context learning, we enable model 232

M to generate answers A = {A1, A2, ..., An} cor- 233

responding to each question. 234
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We have collected various types of supervised235

training data, and through the previously described236

process, combined them into the training data for237

the model. Ultimately, this resulted in a trained238

dataset D∗ = {Q,A}. For specific details on the239

data collection process for each sub-modelMknow,240

Mrel,Mdecom, please refer to Appendix A.241

Model Learning. After collecting the training data242

D∗, we initialize Msub using a pre-trained lan-243

guage model and train it on D∗ using a standard244

conditional language modeling objective to maxi-245

mize the effectiveness of classification. Here, we246

use cross-entropy loss to represent this, denoted as:247

min
Msub

−E(Q,A)∼D∗ logPMsub
(A | Q). (1)248

The initial model can be any pre-trained language249

model. Here, we initializeMsub using the Llama250

2-7B model (Touvron et al., 2023).251

3.3 RA-ISF Inference252

Algorithm 1: Problem Iterative Solving
Input: qnew,Mknow,Mrel,Mdecom,M,

R, C
Output: A

1 Function Problm-solving(qt,iter):
2 if iter>Dth then
3 A=Unknow
4 return A
5 ifMknow(qt)=know then
6 A ←M(qt)
7 return A
8 P = {p1, p2, . . . , pk} ← R(qt, C)
9 Prel = ∅

10 for i = 1 to k do
11 if Mrel(pi)=relevant then
12 Prel = Prel ∪ pi

13 if size(Prel) > 0 then
14 A ←M(qt,P)
15 return A
16 Qsub = {q1, ..., qn} ←Mdecom(qt)
17 for i = 1 to n do
18 ai=Problm-solving(qi, iter + 1)
19 Asub = ai ∪ Asub

20 A ←M(qt, Qsub,Asub)
21 return A
22 A ← Problm-solving(qnew, 0)

In this section, we provide a detailed explana- 253

tion of how the RA-ISF framework infers and 254

predicts answers for the question qnew. Algo- 255

rithm 1 presents the details of RA-ISF at inference. 256

Note that we use three pre-trained modelsMknow, 257

Mrel,Mdecom, the LLM for answering questions 258

M, the retrieverR, and the corpus C. Additionally, 259

we have the question qnew to be addressed. 260

Self-Knowledge Inference. The RA-ISF frame- 261

work utilizes theMknow model to infer whether 262

the question qnew can be addressed using the 263

model’s own knowledge. If so, the question is 264

input intoM to directly predict the answer A. The 265

formal expression is as follows: 266

A = argmax
ai

P (ai|qnew). (2) 267

IfM cannot use its own knowledge to solve the 268

question qnew, we move to the next step. 269

Passages Relevance Inference. When the model 270

cannot solve the question qnew using its internal 271

knowledge, we use the retrieverR to search for the 272

most suitable k passages P = {p1, p2, . . . , pk} in 273

the corpus C. Since the retriever may find passages 274

unrelated to the question, potentially leading to 275

erroneous answers, we need to filter the retrieved 276

passages. Here, we use “relevance” as the criteria, 277

evaluated by the modelMrel. 278

Suppose n(n = 0, 1, . . . , k) relevant passages 279

Prel are finally filtered. If n > 0, these n passages 280

are used as prompts, combined with qnew, and input 281

into the modelM to obtain the final answerA. The 282

formal expression is as follows: 283

A = argmax
ai

P (ai|qnew,Prel). (3) 284

If n = 0, which means all the retrieved passages 285

are irrelevant to the question, we proceed to the 286

next step. 287

Problem Decomposition. If qnew cannot be solved 288

using its own and external knowledge, we will de- 289

compose complex questions into a series of simpler 290

sub-problems for resolution. In this process, we 291

employ theMdecom model to decompose qnew into 292

multiple sub-problems Qsub = {q1, ..., qn}. Subse- 293

quently, we take each sub-problem reintroduce it 294

to theMknow model (determining the use ofMrel 295

andMdecom based on the specific condition), and 296

obtain corresponding sub-answers Asub. If a sub- 297

problem qk has been iteratively decomposed Dth 298

times, we consider that the model cannot find the 299
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answer to this problem, and the answer for ak is300

set as “unknown”.301

Once we have the answers Asub = {a1, ..., an}302

for all sub-problems, we use all the sub-problems303

Qsub and their answers Asub as prompts for qnew.304

Then input them all into the modelM to predict the305

answer A for this question. The formal expression306

is as follows:307

A = argmax
ai

P (ai|qnew,Asub, Qsub). (4)308

4 Experimental Setup309

4.1 Datasets310

To comprehensively evaluate performance in311

datasets with different characteristics, we use the312

following five representative datasets for eval-313

uation: Natural Question (NQ) (Kwiatkowski314

et al., 2019), TriviaQA (Joshi et al., 2017), Strate-315

gyQA (Geva et al., 2021), HotpotQA (Yang et al.,316

2018), and 2WikiMQA (Ho et al., 2020).317

4.2 Models318

The models in our framework fall into two cat-319

egories: an LLM for prediction and three models320

that serve as intermediate steps to assess the prob-321

lem’s characteristics. For the LLM, we experiment322

with open-sourced Llama2 (Touvron et al., 2023) of323

various sizes, as well as the GPT-3.5 (text-davinci-324

003) (OpenAI, 2023) through the OpenAI API. As325

for the three sub-models, we employ Llama2-7b as326

their pre-trained model.327

4.3 Retriever and Corpus328

For fair evaluation, we use the same retriever329

for different approaches to search the same cor-330

pus. Specifically, we employ Contriever-MS-331

MARCO (Izacard et al., 2022a) as the retriever332

and use the corpus from Wikipedia as of Dec. 20,333

2018 (Karpukhin et al., 2020). These articles are334

segmented into non-overlapping fragments of 100335

words. To avoid contamination, we remove input336

prompts x from the corpus that is contained in the337

dataset. To prevent the dilution of useful infor-338

mation, we follow Ram et al. (2023) and set the339

retrieval length to l = 64.340

4.4 Baselines341

To conduct a holistic evaluation and comparison,342

we use the same datasets, with the same retriever343

and corpus to compare our method with the follow-344

ing baselines:345

Directly Prompting and Vanilla LM (Brown 346

et al., 2020) involves presenting questions directly 347

to the LLM, prompting it to generate corresponding 348

answers without any explanations. 349

Least-to-most (Zhou et al., 2023) guides the LLM 350

to break down the question and assist in solving the 351

original problem by answering sub-questions. 352

IRCoT (Trivedi et al., 2023) enhances each step 353

of the chain-of-thought generation process by in- 354

corporating knowledge retrieval steps during the 355

generation process. 356

RAG (Guu et al., 2020; Lewis et al., 2020) assists 357

in answering questions by retrieving information 358

from external documents. We append the retrieved 359

passage to the question in the experiment. 360

SKR (Wang et al., 2023a) trains a small model to 361

determine whether the LLM can answer a question 362

using its own knowledge, and decides whether to 363

perform retrieval for the given question. 364

REPLUG (Shi et al., 2023b) adapts the frame- 365

work to the corresponding downstream tasks by 366

fine-tuning the Retriever. This method enhances 367

retrieval effectiveness by improving the relevance 368

of the retrieved text. 369

Iter-RetGen (Shao et al., 2023) conducts retrieval 370

based on multiple iterations, relying on the content 371

retrieved in each round to aid in finding more text 372

information relevant to the question. 373

Self-RAG (Asai et al., 2024) provides a framework 374

by training a LLM to learn specific reflection to- 375

kens, thereby controlling the decision of whether 376

to retrieve during reasoning and examining the rel- 377

evance of the retrieved content. We compares our 378

method with the open-source Self-RAG13b. 379

4.5 Implementation Details 380

We randomly sampled 1000 input prompts from 381

each dataset and generated labels or answers (Rel- 382

evance, Self-Knowledge) for these prompts using 383

GPT-4. The labels or answers are then used to 384

fine-tune these three pre-trained models. For these 385

three models, we adopt a learning rate of 5e-4 dur- 386

ing training. Greedy decoding is consistently used 387

in the inference process across all experiments to 388

maintain deterministic generation outcomes. This 389

distillation process allows us to augment the pre- 390

trained model with feature analysis capabilities. 391

The default iteration threshold is set to 3. To evalu- 392

ate the effectiveness of the method, we use Exact 393
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Method Avg. NQ TriviaQA HotpotQA StrategyQA 2WikiMHQA

GPT3.5 Without Retrieval

Direct 41.8 29.2 67.3 22.1 65.2 23.6
Least-to-most 46.3 32.5 68.8 30.2 68.5 31.3

GPT3.5 With Retrieval

IRCoT 46.5 32.9 66.8 33.7 67.9 31.1
RAG 44.2 31.7 64.2 32.2 64.7 28.4
SKRknn 47.6 33.8 67.5 34.2 70.1 32.5
Iter-RetGen3 - - - 45.2* 72.3* 34.8*
RA-ISF(ours) 55.0 40.2 76.1 46.5 75.9 36.1

Llama-213b Without Retrieval

Vanilla LM 27.1 17.4 38.5 14.0 52.2 13.3
Least-to-most 32.9 22.8 45.2 15.8 60.5 20.1

Llama-213b With Retrieval

IRCoT 34.0 23.4 48.3 17.1 59.1 21.9
RAG 33.9 21.6 47.0 17.6 60.8 22.4
SKRknn 36.0 20.8 55.4 18.9 61.6 23.2
REPLUG 38.6 23.8 58.6 21.8 62.9 25.7
Self-RAG13B 44.1 28.4 69.3 25.4 67.2 30.2
RA-ISF(ours) 46.0 31.3 71.4 28.9 66.7 31.7

Table 1: Main experimental results. Bold number indicates the best performance among all methods in this model.
* indicates the results from the original paper.

Match as our standard metrics.394

5 Experiment Results395

5.1 Main results396

The main results are shown in Table 1. From the397

results, we have the following observations.398

Our proposed RA-ISF outperformed other399

methods on all five datasets on GPT3.5. On av-400

erage, the performance improvement of RA-ISF401

is +8.7 compared to the baseline without retrieval.402

Compared to the baseline with retrieval, RA-ISF403

surpasses all existing methods, achieving an aver-404

age performance improvement of +7.4 compared405

to the optimal method. In addition, compared to406

Iter-RetGen, which also uses iterative retrieval, RA-407

ISF shows an improvement of +2.0 on HotpotQA,408

StrategyQA, and 2WikiMHQA.409

RA-ISF is also effective on smaller-scale LLMs.410

We experimented with our approach on Llama213B,411

and the results showed that our method achieved412

SOTA on four out of five datasets, with an aver-413

age improvement of +1.9 compared to the best-414

performing Self-RAG13B. The performance of 415

Llama213B on multiple datasets reaches or even 416

surpasses GPT-3.5 + RAG, highlighting the assis- 417

tance of our method in problem-solving. 418

RA-ISF helps alleviate the hallucination prob- 419

lem associated with RAG. For instance, in Trivi- 420

aQA and StrategyQA datasets, Direct RAG leads to 421

a decrease in performance, possibly due to the nega- 422

tive impact of irrelevant retrieval content (Shi et al., 423

2023a). In our framework, three sub-modules help 424

the model to reduce hallucinations and enhance 425

knowledge representation. Compared to GPT-3.5 426

+ RAG, our GPT-3.5 + RA-ISF achieves a +11.2 427

performance improvement on StrategyQA. Similar 428

performance improvements are observed on Trivi- 429

aQA as well. 430

5.2 Ablation Studies 431

To assess the impact of different components of 432

RA-ISF, we set up three variants: 433

• No Self-Knowledge Module: This variant pro- 434

cesses questions directly through the Passage 435
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Method NQ
(EM)

TriviaQA
(EM)

HotpotQA
(EM)

Direct 29.2 67.3 22.1

RAG 31.7 64.2 32.2
Least-to-Most 32.5 68.8 30.2
RA-ISF 40.2 76.1 46.5

No SKM 37.9 72.3 40.1
No PRM 35.8 70.3 34.7
No QDM 34.6 71.5 34.9

Table 2: Ablation of different components on GPT3.5.
No SKM, No PRM, and No QDM stand for removing the
submodel of Self-Knowledge, Passage-Relevant, and
Question Decomposition.

Relevant Module without self-knowledge judg-436

ment.437

• No Passage-Relevant Module: After self-438

knowledge judgment, if the Self-Knowledge439

Module indicates the answer can not be ad-440

dressed using the model’s own knowledge, it441

directly decomposes the question without involv-442

ing the Passage-Relevant module.443

• No Question Decomposition Module: After as-444

sessing passage relevance through the Passage-445

Relevant module, if no relevant paragraphs are446

found, the answer is marked as "unknown," and447

the Question Decomposition Module does not448

iterate. This means the RA-ISF iteration count449

is set to 0.450

We conducted tests on NQ, TriviaQA, and Hot-451

potQA datasets, comparing the results with RAG,452

RA-ISF, and LTM methods. All experiments use453

GPT3.5 as the base model.454

All three submodules contribute to better455

problem-solving performance. Table 2 presents456

the ablation experiment results, indicating that re-457

moving any component of RA-ISF leads to a per-458

formance decline. This suggests the importance459

of each component in the framework. Compared460

to RAG, the No Self-Knowledge Module variant461

achieves better performance by decomposing un-462

related text, resulting in improved results. In con-463

trast to the Least-to-Most prompting method, No464

Self-Knowledge Module variant achieves higher465

accuracy by prompting the language model with466

retrieved paragraphs (+6.3 on Average). When467

comparing Least-to-Most with variant No Passage-468

Relevant Modules, the latter first assesses self-469

Figure 2: Question accuracy on the NQ dataset with the
growth of the iteration in question decomposition Dth.

knowledge and then iteratively decomposes infor- 470

mation. This variant outperforms the traditional 471

Least-to-Most paradigm. Therefore, the iterative 472

combination of these three components not only en- 473

hances the effectiveness of RAG but also addresses 474

certain issues (e.g., hallucinations) after retrieval 475

and mitigates negative impacts caused by irrelevant 476

retrieved paragraphs. 477

5.3 Iterations in Problem Decomposition 478

RA-ISF sets a threshold Dth to limit the itera- 479

tion times of problem decomposition. Here, we 480

experiment with different values of Dth on the NQ 481

dataset of GPT-3.5 and Llama27B,13B. Additionally, 482

we compare RAG and Direct Prompting with RA- 483

ISF on GPT-3.5. The accuracy of problem-solving 484

varies with changes in Dth as shown in Figure 2. 485

More iterations contribute to improved perfor- 486

mance. The results indicate that as the value of 487

Dth increases, the model’s accuracy in answering 488

questions improves. With the increase of Dth, the 489

performance gap between RA-ISF + GPT3.5 and 490

RAG + GPT3.5 gradually rises. More iterations 491

also help improve the performance of small-scale 492

LLMs in problem-solving. With the increase of 493

Dth, the performance of RA-ISF + Llama213B sur- 494

passes the performance of RAG and Direct Prompt- 495

ing on GPT3.5, and the performance on Llama27B 496

gradually approaches the accuracy of Direct on 497

GPT3.5. This indicates that the iterative decom- 498

position of problems contributes to enhancing the 499

model’s problem-solving ability. 500

Problem decomposition helps LLM to under- 501

stand. The goal of problem decomposition is to ad- 502
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dress situations where the model has on-parametric503

knowledge but struggles to answer due to inade-504

quate understanding of the question. When Dth is505

relatively small, decomposing the problem helps506

the model extend its problem-solving approach507

through reasoning and derive answers. When it-508

eration becomes larger, it indicates that after multi-509

ple rounds of knowledge retrieval and problem de-510

composition, no relevant passage or on-parametric511

knowledge has been found. This implies that the512

inability of the model to solve the problem is actu-513

ally due to a lack of knowledge rather than insuffi-514

cient understanding. At this point, further problem515

decomposition is less likely to be beneficial and516

may even introduce misleading factors, such as de-517

composing unrelated sub-problems to the original518

question, potentially reducing the accuracy of the519

answers.520

5.4 Small Sub-model Alternatives521

In this paper, we choose the Llama27B model as522

the pretrain model when training three sub-models.523

Since Llama2 is a 7B LM, we also want to explore524

the effectiveness of using a smaller model as an525

intermediate component. We select the T5780M526

model for training and compare it with Llama27B,527

while the base model is GPT3.5. The accuracy528

comparison is shown in Table 3.

NQ TriviaQA HotpotQA StrategyQA 2WikiMHQA

Llama27B 40.2 76.1 46.5 75.9 36.1
T5780M 39.6 74.8 45.8 74.7 35.3

Table 3: Evaluation for different sizes of sub-model
language models in various datasets.

529
Training RA-ISF with a small model also530

yields excellent performance. When the RA-ISF531

method is trained on the small T5780M model, the532

accuracy of answering questions using this model533

is only slightly lower by one to two percentage534

points compared to Llama27B. This indicates that535

when training the three sub-models of RA-ISF, if536

there are constraints or cost limitations, using a537

small model like T5780M as the pre-trained model538

can still demonstrate excellent performance.539

5.5 Human and Model Assessments540

We conduct both manual and automated assess-541

ments to evaluate the reliability of RA-ISF. Specifi-542

cally, we randomly select 40 questions from each543

dataset and invite 50 human annotators to assess544

the precision of the generated responses compared545

Mknow Mrel Mdecom

Human - 93.5 89.5
GPT4.0 97.0 95.0 87.0

Table 4: Human and GPT4 evaluation on the three mod-
els in RA-ISF.

to GPT-4. For Mknow, if the model’s judgment 546

on whether the question can be answered using its 547

own knowledge is consistent with GPT-4, it is con- 548

sidered precise. ForMrel, given a question qnew 549

and relevant paragraphs Prel, if the model’s judg- 550

ment aligns with whether the paragraphs are indeed 551

related to the question, the judgment ofMrel is con- 552

sidered correct. ForMdecom, if both the LLM and 553

annotators believe that each sub-question remains 554

semantically consistent with the original question, 555

the decomposition is considered effective. 556

The sub-modules results demonstrate high re- 557

liability. The results are shown in Table 4, indi- 558

cating that both human annotators and the large 559

model consistently agree on the effectiveness of 560

these three models, with accuracy rates exceeding 561

85%. Specifically,Mknow achieves an impressive 562

accuracy of 97%, suggesting a high cognitive abil- 563

ity of the trained model in recognizing its own 564

knowledge. Meanwhile, the accuracy ofMdecom 565

is slightly lower, as the task of question decom- 566

position falls within the realm of generative tasks, 567

where there may be multiple feasible decompo- 568

sition solutions. Overall, the three sub-modules 569

exhibit high reliability in their respective tasks. 570

6 Conclusions 571

In this paper, we introduce RA-ISF, a frame- 572

work designed to enhance retrieval augmentation 573

effects and improve performance in open-domain 574

question answering. This approach effectively 575

mitigates the hallucination issues that are com- 576

monly seen in traditional retrieval augmentation 577

and question-answering tasks. Experimental re- 578

sults demonstrate RA-ISF’s superior performance 579

across various benchmarks, and ablation studies 580

validate the effectiveness of sub-modules. Future 581

research directions include further alleviating hal- 582

lucination issues and improving the efficiency of 583

the framework. 584
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Limitation585

RA-ISF innovatively introduces a three-stage it-586

erative problem-solving strategy. However, it’s im-587

portant to recognize its limitations and drawbacks.588

Firstly, iterative problem-solving can lead to an589

excessive branching of issues. In particular cases,590

this approach might become inefficient if it con-591

tinuously explores a problem and its sub-problems592

without finding solutions or relevant passages. Sec-593

ondly, different formulations of a problem may594

affect the effectiveness of the problem decomposi-595

tion module, leading to small differences between596

the number of iterations and the outcome.597

Moreover, our method mainly relies on open-598

domain question-answering datasets. It has not599

been tested in specific fields such as mathematics600

reasoning, symbolic reasoning, or specialized areas601

like medicine and law. Future research could ex-602

plore how it performs with these datasets. We also603

plan to investigate ways to use retrieval augmen-604

tation techniques more effectively and to simplify605

their complexity.606

Ethics Statement607

Our approach employs the corpus of Wikipedia608

and utilizes open-source datasets for training and609

evaluating the model. All data are openly acces-610

sible. We leverage APIs for GPT-3.5 and open-611

source code and weights for Llama. Due to the612

hallucination issue of large language models, some613

of the generated content may contain factual errors614

and reasoning errors. RA-ISF offers a potential so-615

lution based on retrieval augmentation to mitigate616

the hallucination problem. Our work strictly ad-617

heres to the license and policies of released LLMs618

and publicly available datasets.619
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Eleventh International Conference on Learning Rep-799
resentations.800

A Details of Data Collection801

A.1 Data Collection ofMknow802

First, we use a QA dataset D for training, which803

includes questions qi and their corresponding cor-804

rect answers ai, represented as {qi, ai}|D|
i=1 . Ini-805

tially, we extract the questions qi to query the LLM806

M. Through few-shot prompts and in-context807

learning, we enable modelM to generate answers808

for each question. In this scenario, the answers809

generated by the model rely entirely on internal810

knowledge.811

We compare the model-generated answer ag812

with the correct answers ai, and then categorize the813

questions qi into two groups. If ag is the same as ai,814

then these questions fall into Qknow, the category815

of problems that the model can solve on its own.816

Otherwise, these questions belong to Qunknow, the817

category of problems that the model cannot solve818

on its own. The specific expression is as follows:819

qi ∈

{
Qknow if ai = ag

Qunknow if ai ̸= ag
(5)820

We collect various types of supervised training821

data and combine them to form the model’s train-822

ing data, ultimately resulting in the trained dataset823

D∗ = {Qknow,Qunknow}.The Qknow class com-824

prises questions that the model M inherently825

knows, while theQunknow class includes questions826

that the model is not aware of and requires external827

knowledge to obtain answers.828

A.2 Data Collection ofMrel829

For a given Q, we input it into the retriever830

R, retrieving k relevant paragraphs for each ques-831

tion P ={P1, P2, ..., Pk}. Subsequently, for832

each paragraph Pi(i = 1, 2, ..., k), we traverse833

them one by one, querying the LLM model834

M about the relevance of the retrieved para-835

graph Pi to question Q, and recording the model836

M’s answer A = {A1, A2, ..., Ak} where A =837

relevant/irrelevant for each paragraph.838

We collect various types of supervised training839

data and combine them to form the model’s train-840

ing data, ultimately resulting in the trained dataset841

D∗ = {Q+ P,A}.842

A.3 Data Collection ofMdecom 843

For a given Q, we input it into the large model 844

M, instructing it to decompose each question. For 845

a given question Q, the model breaks it down into 846

k sub-questions, where the value of k depends on 847

the specific question. Finally, we document the 848

sub-questions decomposed by the model for the 849

question, denoted as Qsub = {q1, q2, ..., qk}. 850

We collect various types of supervised training 851

data and combine them to form the model’s train- 852

ing data, ultimately resulting in the trained dataset 853

D∗ = {Q,Qsub}. 854

B Details of Datasets 855

Natural Question (NQ) (Kwiatkowski et al., 856

2019) is a question-answering dataset containing 857

307,373 training examples, 7,830 development ex- 858

amples, and 7,842 test examples. Each example 859

is comprised of a google.com query and a corre- 860

sponding Wikipedia page. 861

TriviaQA (Joshi et al., 2017) is a realistic text- 862

based question-answering dataset that includes 863

950K question-answer pairs from 662K documents 864

collected from Wikipedia and the web. For Triv- 865

iaQA, given questions often have multiple valid 866

answers, some of which are unsuitable for training 867

targets, such as emoticons or spelling variations. 868

Following Lewis et al. (2020), for TriviaQA, if a 869

candidate answer does not appear in the top 1000 870

documents retrieved by the query, we filter it out. 871

StrategyQA (Geva et al., 2021) is a question- 872

answering benchmark where the required reasoning 873

steps are implicit in the question, and should be in- 874

ferred using a strategy. It includes 2,780 examples, 875

each consisting of a strategy question, its decom- 876

position, and evidence paragraphs. Questions in 877

StrategyQA are short, topic-diverse, and cover a 878

wide range of strategies. 879

HotpotQA (Yang et al., 2018) is a multi-hop 880

datasets from Wikipedia. The questions are di- 881

verse and not constrained to any pre-existing knowl- 882

edge bases or knowledge schemas. HotpotQA is 883

a question-answering dataset collected on the En- 884

glish Wikipedia, containing about 113K crowd- 885

sourced questions that are constructed to require the 886

introduction paragraphs of two Wikipedia articles 887

to answer. Each question in the dataset comes with 888

two gold paragraphs, as well as a list of sentences 889

in these paragraphs that crowd workers identify as 890

supporting facts necessary to answer the question. 891

2WikiMQA (Ho et al., 2020) utilizes both struc- 892
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tured and unstructured data. In this dataset, evi-893

dence information is introduced, which includes894

reasoning paths for multi-hop questions. The ev-895

idence information serves two purposes: (i) pro-896

viding a comprehensive explanation for predictions897

and (ii) evaluating the reasoning skills of a model.898

We carefully designed a pipeline and a set of tem-899

plates during the generation of question-answer900

pairs to ensure the quality of multi-hop steps and901

questions.

(a) NQ

(b) TriviaQA

Figure 3: Explore the trend of question accuracy on
the NQ and TriviaQA dataset with the growth of the
iteration in question decomposition k, and conduct ex-
periments on different models.

902

C Additional experiment:Analysis on the903

Number of Retrieved Passages904

When the model is unable to solve a problem905

based solely on its own knowledge, we need to906

use a retriever to search for k passages. In this907

regard, we need to investigate the values of k. Here, 908

we experimented with NQ and TriviaQA datasets 909

on models including GPT-3.5, Llama27B,13B, with 910

values of k set to 1, 3, 5, 7, 9. The accuracy of the 911

questions varies with the changes in k, as shown in 912

Figure 3. 913

Increasing the number of retrieved passages 914

helps improve the accuracy of problem-solving. 915

In general, as k increases, the accuracy of the 916

model in answering questions continues to improve. 917

This is because increasing the number of retrieved 918

paragraphs helps the model find more auxiliary 919

knowledge, enhancing the likelihood of identify- 920

ing relevant articles to the question and thereby 921

improving the accuracy of question answering. 922

Further observation reveals that there is a no- 923

ticeable improvement in accuracy as k increases 924

from 1 to 5; however, the improvement becomes 925

less apparent when k increases from 5 to 9. This 926

is because, with the increase in the number of re- 927

trieved paragraphs, the model seems to have access 928

to more paragraphs to assist in answering questions. 929

However, in reality, the previously retrieved articles 930

might have been sufficient for the model to identify 931

the correct answers. Continuing to increase the 932

number of retrievals could result in finding irrel- 933

evant articles, which would eventually be filtered 934

out by Mrel. Therefore, the contribution to the 935

accuracy of the question is limited. 936

D Examples 937
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StrategyQA
Question: Did Snoop Dogg refuse to make music with rival gang members?
Answer: ["false"]

Iteration 1
Mknow

Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Did Snoop Dogg refuse to make music with rival gang members?
Output: No
Mrel

(Use retriever to find 5 passages...)
Instruction: I will provide you with five additional pieces of knowledge based on the search for this question. Please
assess whether these five paragraphs are relevant to the question and sufficient to answer it. If they are, please tell me
what the relevant paragraphs are; if not, please answer "No."
[1] Calvin Cordozar Broadus Jr. ; born October 20, 1971), known professionally as Snoop Dogg (previously Snoop
Doggy Dogg and briefly Snoop Lion)...
[2] Broadus’ debut studio album, Doggystyle (1993), produced by Dr. Dre, was released by Death Row Records and
debuted at number one on the Billboard 200...
[3] In 1993, Broadus was charged with first-degree murder for the shooting of a member of a rival gang who was
actually killed by Snoop’s bodyguard.Broadus was...
[4] While recording Doggystyle in August 1993, Broadus was arrested and charged with first-degree murder in
connection with the shooting death of Philip Woldermariam...
[5] In 2002, he released the album Paid tha Cost to Be da Bo, on Priority/Capitol/EMI, selling over 1,310,000 copies.
The album featured the hit singles...
Output: No.
Mdecom

Instruction: Please break down this question into several sub-questions and list them.
Output:
1. What is the name of the gang that Snoop Dogg is part of?
2. Which gang is the rival of the gang Snoop Dogg is associated with?
3. In Snoop Dogg’s song "California Vacation," which rapper did he collaborate with?
4. Did Snoop Dogg refuse to make music with members of rival gangs?

Iteration 2
Use sub-models to answer these sub-questions...
Sub-answer:
1. Answer: American rapper Snoop Dogg is a member of the Crips gang.
2. Answer: The Crips are enemies of their rival gang, The Bloods.
3. Answer: Snoop Dogg collaborates with Xzibit and The Game on the song "California Vacation."
4. Answer: No, Snoop Dogg did not refuse to make music with rival gang members
Instruction: Base on the sub-question answer, give the answer to the origin question.
Final answer: No, Snoop Dogg did not refuse to make music with rival gang members, as evidenced by his collaboration
with The Game on the song "California Vacation."

Table 5: An example from the StrategyQA dataset.
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NQ
Question: When was the immigration reform and control act passed?
Answer: ["November 6, 1986" ]

Iteration 1
Mknow

Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is:When was the immigration reform and control act passed?
Output: Yes.
Instruction: Give the answer to the question.
Final answer: The Immigration Reform and Control Act (IRCA) was passed on November 6, 1986.

Table 6: An example from the NQ dataset.

TriviaQA
Question: From which country did Angola achieve independence in 1975?
Answer: ["Portogało","Republic of Portugal"]

Iteration 1
Mknow

Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: From which country did Angola achieve independence in 1975?
Output: Yes.
Instruction: Give the answer to the question.
Final answer: Angola achieved independence from Portugal in 1975.

Table 7: An example from the TriviaQA dataset.

HotpotQA
Question: Which private research university is located in Chestnut Hill, Massachusetts Boston College or Stanford
University?
Answer: ["Boston College"]

Iteration 1
Mknow

Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Which private research university is located in Chestnut Hill, Massachusetts Boston College or
Stanford University?
Output: Yes.
Instruction: Give the answer to the question.
Final answer: Boston College is the private research university located in Chestnut Hill, Massachusetts.

Table 8: An example from the HotpotQA.
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2WikiMultihopQA
Question: Who is the mother of the director of film Polish-Russian War (Film)?
Answer: [“Magorzata Braunek”]

Iteration 1
Mknow

Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Who is the mother of the director of film Polish-Russian War (Film)?
Output: No
Mrel

(Use retriever to find 5 passages...)
Instruction: I will provide you with five additional pieces of knowledge based on the search for this question. Please
assess whether these five paragraphs are relevant to the question and sufficient to answer it. If they are, please tell me
what the relevant paragraphs are; if not, please answer “No.”
[1] Polish-Russian War (Wojna polsko-ruska) is a 2009 Polish film directed by Xawery Żuławski based on the novel
Polish-Russian War under the white-red flag by Dorota Masłowska...
[2] Xawery Żuławski (born 22 December 1971 in Warsaw) is a Polish film director. In 1995 he graduated National
Film School in Łódź. He is the son of actress Małgorzata Braunek and director Andrzej Żuławski...
[3] After an argument in a bar owned by “Left” (Michał Czernecki) "Strong" meets a “Gothgirl” Angelica (Maria
Strzelecka) at night, an aspiring poet dressed in black, also a virgin and pessimist, for whom “suicide is a piece of
cake”...
[4] “Strong” follows Magda. He turns up at the town festival, where she takes part in a miss competition. He cannot
reach her, but instead he meets...
[5] Production The film was shot between May 6 and 18 June 2008 in locations of Warsaw, Wejherowo, Sopot and
Gdynia outskirts. The film premiered on...
Output:Relevant paragraphs:
[2] Xawery Żuławski is the director of the film "Polish-Russian War (Wojna polsko-ruska)" and is the son of actress
Małgorzata Braunek and director Andrzej Żuławski.
Instruction: Using the knowledge from the relevant paragraphs, give the answer to the question.
Final answer: The mother of the director of the film “Polish-Russian War (Wojna polsko-ruska)” is actress Małgorzata
Braunek.

Table 9: An example from the 2WikiMultihopQA dataset.
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