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Abstract

Large language models (LLMs) demonstrate
exceptional performance in numerous tasks but
still heavily rely on knowledge stored in their
parameters. Moreover, updating this knowl-
edge incurs high training costs. Retrieval-
augmented generation (RAG) methods address
this issue by integrating external knowledge.
The model can answer questions it couldn’t pre-
viously by retrieving knowledge relevant to the
query. This approach improves performance in
certain scenarios for specific tasks. However,
if irrelevant texts are retrieved, it may impair
model performance. In this paper, we propose
Retrieval Augmented Iterative Self-Feedback
(RA-ISF), a framework that iteratively de-
composes tasks and processes them in three
submodules to enhance the model’s problem-
solving capabilities. Experiments show that our
method outperforms existing benchmarks, per-
forming well on models like GPT3.5, Llama?2,
significantly enhancing factual reasoning capa-
bilities and reducing hallucinations.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al., 2023)
have demonstrated their excellent performance in
knowledge reasoning and outstanding capabilities
across various task domain (Bang et al., 2023;
Ouyang et al., 2022). However, the parameter-
ized knowledge stored within LLMs may be in-
complete and hard to incorporate up-to-date knowl-
edge (Dhingra et al., 2022; Huang et al., 2020). To
address this issue, retrieval-augmented generation
(RAG) approaches can leverage external knowl-
edge and documents, extract non-parameterized
knowledge, and incorporate it into the model’s
prompts, thereby embedding new knowledge into
the language model (Ram et al., 2023; Guu et al.,
2020). This approach demonstrates outstanding
performance in answering a variety of open-domain
questions.

However, current RAG frameworks have two
major challenges. First, retrieving irrelevant knowl-
edge texts will impair the LLMs’ ability to solve
tasks (Shi et al., 2023a; Mallen et al., 2023). Sec-
ond, the incorporation of LLM’s existing knowl-
edge and the retrieved knowledge may face diffi-
culty (Izacard et al., 2022b). Some methods have
conducted research based on these issues, includ-
ing considering the model’s problem-solving abili-
ties (Wang et al., 2023a) and whether the retrieved
passages are relevant to the question (Chen et al.,
2023; Asai et al., 2024; Yu et al., 2023). However,
current solutions still have drawbacks in answering
knowledge-intensive questions and different levels
of sub-questions. Therefore, how to fuse knowl-
edge and utilize knowledge for question answering
is very important in this process.

To overcome the above limitations, we introduce
Retrieval Augmented Iterative Self-Feedback (RA-
ISF), a framework addresses problems by itera-
tively processing questions. Specifically, unlike di-
rectly appending retrieved knowledge into prompts,
our approach employs three sub-modules for itera-
tive processing. These three sub-modules are the
Self-Knowledge Module, the Passage Relevance
Module, and the Question Decomposition Module.
We have also collected a series of data through
LLMs to evaluate whether a specific module pos-
sesses the corresponding capabilities. By training
a small language model or simply relying on in-
context learning, these modules can demonstrate
capabilities in self-knowledge, relevance judgment,
and question decomposition.

As shown in Figure 1, RA-ISF first uses a self-
knowledge module to determine whether the cur-
rent question could be answered on its own knowl-
edge. Then, when employing a retrieval strategy,
the passage relevance module will assess the rel-
evance of each retrieved paragraph to the prob-
lem. Relevant paragraphs will be integrated into
the prompt and used for prediction. When all para-



graphs are irrelevant to the question, the question
decomposition module will break down the ques-
tions into sub-questions and repeat the aforemen-
tioned steps for these sub-questions. Ultimately,
the model will synthesize the answers to the sub-
questions to respond to the original question.

Compared to previous RAG methods, our iter-
ative self-feedback approach more effectively un-
leashes the potential of the model and better in-
corporates external knowledge with the model’s
inherent knowledge. Simultaneously, RA-ISF can
address questions by decomposing them when the
model lacks an initial answer or retrieves irrele-
vant texts, combining these solutions to answer
the origin question, which is an effective problem-
solving strategy. Experiments on various LLMs
(e.g., GPT3.5 (OpenAl, 2023) and Llama-2 (Tou-
vron et al., 2023)) demonstrate that RA-ISF ex-
hibits superior performance in handling complex
questions compared to existing methods.

Our Contributions. Our main contributions are
summarized as follows.

e We introduce RA-ISF, an innovative retrieval-
augmented framework designed to tackle di-
verse challenges. This approach evaluates
the model’s ability to solve the corresponding
problem and its relevance to the retrieved con-
tent through an iterative method. This com-
prehensive evaluation is crucial for solving
complex problems.

o To the best of our knowledge, this is the first
time an iterative question decomposition ap-
proach has been used in a retrieval-augmented
framework, which mitigates the impact of ir-
relevant text interference.

e Our proposed framework significantly en-
hances knowledge retrieval performance
across different tasks, demonstrating the po-
tential and robustness of our framework.

2 Related Work

2.1 Retrieval Augmented Language Model

The retrieval-augmented language model (LM)
is enhanced by a non-parametric memory to facili-
tate external knowledge access and provide prove-
nance (Guu et al., 2020; Lewis et al., 2020; Shi
et al., 2023b). However, the improved task perfor-
mance of retrieval augmentation largely depends
on the relevance of the retrieved passage (Shi et al.,

2023a). Recently, some studies have begun to
explore when to use retrieval for diverse instruc-
tion. For instance, Asai et al. (2024) integrates
special feedback tokens into the language model
to the need for retrieval and confirm the output’s
relevance, support, or completeness. Chen et al.
(2023) investigates the impact of texts with dif-
ferent attributes and relevance on text generation
performance. Some works (Mallen et al., 2023)
explore the incorporation of the LLM’s inherent
knowledge with in-context documents. Wang et al.
(2023b) improves the performance in answering
self-knowledge questions by guiding the model to
acquire self-knowledge capabilities. Meanwhile,
other studies have concentrated on iterative re-
trieval augmentation (Trivedi et al., 2023; Shao
et al., 2023) and accelerating retrieval speed (Xu
et al., 2023).

In comparison, our method combines the
model’s retrieval and understanding capabilities
and reduces its susceptibility to irrelevant texts.
This is achieved through the task decomposition
paradigm. By iteratively processing these three sub-
modules with self-feedback, we develop a versatile
and robust retrieval-augmented framework.

2.2 Task Decomposition

Task decomposition is an effective method for
solving knowledge-intensive and other complex
tasks. It involves breaking down multi-turn ques-
tions into single-turn questions, answering each
sub-task separately, and then synthesizing these
answers to resolve the original task. Perez et al.
(2020) trains a question decomposition and task
aggregation model to split and collectively solve
the original problem. Yang et al. (2022) decom-
poses questions into a series of slot-filling tasks,
transforming natural language questions into SQL
queries, and implements natural language prompts
corresponding to SQL clauses through a rule-based
system. Least-to-most (Zhou et al., 2023) lever-
ages the in-context learning capabilities of large
language models, solving problems by providing
examples of question decomposition.

RA-ISF utilizes task decomposition to miti-
gate the impact of irrelevant prompt texts on the
model (Shi et al., 2023a), by iteratively answer-
ing sub-questions and integrating text relevance
with self-knowledge answering capabilities into
the framework. This enhances the performance in
solving the entire problem.
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Figure 1: Overview of RA-ISFE. It consists of three sub-modules: self-knowledge, passage relevance, and question

decomposition.

3 Methodology

Existing retrieval augmented methods still have
some shortcomings. For instance, the model may
struggle to solve problems based solely on its own
knowledge, and during retrieval, it might be in-
fluenced by irrelevant texts, leading to the gener-
ation of incorrect answers. Therefore, we intro-
duce an upgraded retrieval-augmented generation
framework — Retrieval Augmented Iterative Self-
Feedback (RA-ISF), which improves the quality
and accuracy of LLM responses through internal
knowledge comprehension, external knowledge re-
trieval, and problem decomposition.

3.1 Overview

As shown in Figure 1, RA-ISF involves three pre-
trained models: M0, Mirer and M gecom, €ach
responsible for internal knowledge assessment, ex-
ternal knowledge retrieval, and question decompo-
sition functions, respectively.

In general, we input a question ¢y, and obtain
its answer A through the RA-ISF framework. The
overall process is as follows: Firstly, input gy
into M0, to determine if it can be solved using
internal knowledge. If solvable, directly output the
answer. If not, use the retriever R to search for
relevant information for the question gycy. Com-
bine the retrieved text with the question and in-

put them into the model M,..; to assess their rel-
evance. If relevant, generate an answer based on
these related passages. If none of the retrieved
text is relevant, input ¢, into the question de-
composition model M geconm, to break it down into
multiple sub-questions qi, ..., ¢,. Next, input these
sub-questions back into the model My, (and
Mty Mgecom if needed) to obtain corresponding
sub-answers. Finally, integrate these sub-answers
to generate the ultimate answer.

3.2 RA-ISF Training

In this section, we will delve into the training
process of the models within RA-ISF, encompass-
ing both dataset collection and model learning.
Due to the similarity in the training procedures
for the three models, we will use the training of the
Mnow model as an illustrative example.

Data Collection. First, we need to construct a
dataset generated by LLMs. Specifically, based
on various training objectives, we collect corre-
sponding questions Q = {Q1, Q2, ..., @, } and in-
put them one by one into the LLM model M. By
providing the model with specific instructions to
perform the respective tasks, and utilizing few-shot
prompts and in-context learning, we enable model
M to generate answers A = { A1, Ag, ..., A, } cor-
responding to each question.



We have collected various types of supervised
training data, and through the previously described
process, combined them into the training data for
the model. Ultimately, this resulted in a trained
dataset D* = {Q, A}. For specific details on the
data collection process for each sub-model M 00,
Mrets, Mgecom please refer to Appendix A.

Model Learning. After collecting the training data
D*, we initialize M,; using a pre-trained lan-
guage model and train it on D* using a standard
conditional language modeling objective to maxi-
mize the effectiveness of classification. Here, we
use cross-entropy loss to represent this, denoted as:

jI\ElliIl _E(Q,A)ND* 10g PMsub (.A | Q) (1)

sub

The initial model can be any pre-trained language
model. Here, we initialize M ,; using the Llama
2-7B model (Touvron et al., 2023).

3.3 RA-ISF Inference

Algorithm 1: Problem Iterative Solving
Illpllt: dnew> Mknow, Mrela Mdecom, M’
R,C
Output: A
1 Function Problm-solving(q;,iter):

2 if iter> Dy, then

3 A=Unknow

4 return A

5 if Mnow(qr)=know then
A M(qt)

7 return A

8 | P={p1,p2-..,pk} < R(@C)

9 Prei = 2

10 fori =1to k do

11 if M,.¢;(p;)=relevant then
12 L Prel = 7DTel U p;

13 if size(Pye;) > 0 then

14 A — M(q:,P)

15 return A

16 qub = {QL ey Qn} — Mdecom(Qt)
17 for i =1tondo

18 a;=Problm-solving(g;,iter + 1)
19 L -Asub =a; U Asub

20 A — M(Qt, qubu Asub)

21 return A

22 A < Problm-solving(gnew,0)

In this section, we provide a detailed explana-
tion of how the RA-ISF framework infers and
predicts answers for the question gpey. Algo-
rithm 1 presents the details of RA-ISF at inference.
Note that we use three pre-trained models M 00,
Mier, Mgecom, the LLM for answering questions
M, the retriever R, and the corpus C. Additionally,
we have the question ¢y, to be addressed.

Self-Knowledge Inference. The RA-ISF frame-
work utilizes the My, model to infer whether
the question g, can be addressed using the
model’s own knowledge. If so, the question is
input into M to directly predict the answer A. The
formal expression is as follows:

A = argmax P(a;|qnew)- 2)
aj
If M cannot use its own knowledge to solve the
question @y, We move to the next step.

Passages Relevance Inference. When the model
cannot solve the question gy, using its internal
knowledge, we use the retriever R to search for the
most suitable k passages P = {p1,p2,..., Pk} in
the corpus C. Since the retriever may find passages
unrelated to the question, potentially leading to
erroneous answers, we need to filter the retrieved
passages. Here, we use “relevance” as the criteria,
evaluated by the model M,.;.

Suppose n(n = 0,1, ..., k) relevant passages
P.e; are finally filtered. If n > 0, these n passages
are used as prompts, combined with ¢y, and input
into the model M to obtain the final answer A. The
formal expression is as follows:

A= arg max P(ai|Qnew, Prel)- (3)
ai
If n = 0, which means all the retrieved passages
are irrelevant to the question, we proceed to the
next step.

Problem Decomposition. If ¢,,.,, cannot be solved
using its own and external knowledge, we will de-
compose complex questions into a series of simpler
sub-problems for resolution. In this process, we
employ the M gecom model to decompose g,eq, into
multiple sub-problems Q. = {q1, ..., ¢n }- Subse-
quently, we take each sub-problem reintroduce it
to the M g0, model (determining the use of M.
and M gecom based on the specific condition), and
obtain corresponding sub-answers A,;. If a sub-
problem ¢, has been iteratively decomposed D,y
times, we consider that the model cannot find the



answer to this problem, and the answer for ay, is
set as “unknown”.

Once we have the answers Ag,, = {a1,...,an}
for all sub-problems, we use all the sub-problems
Qsup and their answers A, as prompts for ¢peqy.
Then input them all into the model M to predict the
answer A for this question. The formal expression
is as follows:

A= argmax P(ai|Qnewa Asub7 qub)- “4)

4 Experimental Setup
4.1 Datasets

To comprehensively evaluate performance in
datasets with different characteristics, we use the
following five representative datasets for eval-
uation: Natural Question (NQ) (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), Strate-
gyQA (Geva et al., 2021), HotpotQA (Yang et al.,
2018), and 2WikiMQA (Ho et al., 2020).

4.2 Models

The models in our framework fall into two cat-
egories: an LLM for prediction and three models
that serve as intermediate steps to assess the prob-
lem’s characteristics. For the LLM, we experiment
with open-sourced Llama?2 (Touvron et al., 2023) of
various sizes, as well as the GPT-3.5 (text-davinci-
003) (OpenAl, 2023) through the OpenAl API. As
for the three sub-models, we employ Llama2-7b as
their pre-trained model.

4.3 Retriever and Corpus

For fair evaluation, we use the same retriever
for different approaches to search the same cor-
pus. Specifically, we employ Contriever-MS-
MARCO (Izacard et al., 2022a) as the retriever
and use the corpus from Wikipedia as of Dec. 20,
2018 (Karpukhin et al., 2020). These articles are
segmented into non-overlapping fragments of 100
words. To avoid contamination, we remove input
prompts x from the corpus that is contained in the
dataset. To prevent the dilution of useful infor-
mation, we follow Ram et al. (2023) and set the
retrieval length to [ = 64.

4.4 Baselines

To conduct a holistic evaluation and comparison,
we use the same datasets, with the same retriever
and corpus to compare our method with the follow-
ing baselines:

Directly Prompting and Vanilla LM (Brown
et al., 2020) involves presenting questions directly
to the LLM, prompting it to generate corresponding
answers without any explanations.

Least-to-most (Zhou et al., 2023) guides the LLM
to break down the question and assist in solving the
original problem by answering sub-questions.

IRCoT (Trivedi et al., 2023) enhances each step
of the chain-of-thought generation process by in-
corporating knowledge retrieval steps during the
generation process.

RAG (Guu et al., 2020; Lewis et al., 2020) assists
in answering questions by retrieving information
from external documents. We append the retrieved
passage to the question in the experiment.

SKR (Wang et al., 2023a) trains a small model to
determine whether the LLM can answer a question
using its own knowledge, and decides whether to
perform retrieval for the given question.

REPLUG (Shi et al., 2023b) adapts the frame-
work to the corresponding downstream tasks by
fine-tuning the Retriever. This method enhances
retrieval effectiveness by improving the relevance
of the retrieved text.

Iter-RetGen (Shao et al., 2023) conducts retrieval
based on multiple iterations, relying on the content
retrieved in each round to aid in finding more text
information relevant to the question.

Self-RAG (Asai et al., 2024) provides a framework
by training a LLM to learn specific reflection to-
kens, thereby controlling the decision of whether
to retrieve during reasoning and examining the rel-
evance of the retrieved content. We compares our
method with the open-source Self-RAG13y,.

4.5 Implementation Details

We randomly sampled 1000 input prompts from
each dataset and generated labels or answers (Rel-
evance, Self-Knowledge) for these prompts using
GPT-4. The labels or answers are then used to
fine-tune these three pre-trained models. For these
three models, we adopt a learning rate of Se-4 dur-
ing training. Greedy decoding is consistently used
in the inference process across all experiments to
maintain deterministic generation outcomes. This
distillation process allows us to augment the pre-
trained model with feature analysis capabilities.
The default iteration threshold is set to 3. To evalu-
ate the effectiveness of the method, we use Exact



Method Avg. NQ TriviaQA HotpotQA StrategyQA 2WikiMHQA
GPT3.5 Without Retrieval
Direct 41.8 29.2 67.3 22.1 65.2 23.6
Least-to-most 46.3 32.5 68.8 30.2 68.5 31.3
GPT3.5 With Retrieval
IRCoT 46.5 329 66.8 33.7 67.9 31.1
RAG 442 31.7 64.2 322 64.7 28.4
SKRyun 47.6 33.8 67.5 34.2 70.1 32.5
Iter-RetGenj - - - 45.2% 72.3% 34.8%
RA-ISF(ours) 55.0 40.2 76.1 46.5 75.9 36.1
Llama-2;3, Without Retrieval
Vanilla LM 27.1 17.4 38.5 14.0 52.2 13.3
Least-to-most 32.9 22.8 45.2 15.8 60.5 20.1
Llama-273, With Retrieval
IRCoT 34.0 23.4 48.3 17.1 59.1 21.9
RAG 33.9 21.6 47.0 17.6 60.8 22.4
SKRnn 36.0 20.8 55.4 18.9 61.6 23.2
REPLUG 38.6 23.8 58.6 21.8 62.9 25.7
Self-RAG 3 44.1 28.4 69.3 25.4 67.2 30.2
RA-ISF(ours) 46.0 31.3 714 28.9 66.7 31.7

Table 1: Main experimental results. Bold number indicates the best performance among all methods in this model.

* indicates the results from the original paper.

Match as our standard metrics.

5 Experiment Results

5.1 Main results

The main results are shown in Table 1. From the
results, we have the following observations.

Our proposed RA-ISF outperformed other
methods on all five datasets on GPT3.5. On av-
erage, the performance improvement of RA-ISF
is +8.7 compared to the baseline without retrieval.
Compared to the baseline with retrieval, RA-ISF
surpasses all existing methods, achieving an aver-
age performance improvement of +7.4 compared
to the optimal method. In addition, compared to
Iter-RetGen, which also uses iterative retrieval, RA-
ISF shows an improvement of +2.0 on HotpotQA,
StrategyQA, and 2WikiMHQA.

RA-ISF is also effective on smaller-scale LLMs.
We experimented with our approach on Llama23p,
and the results showed that our method achieved
SOTA on four out of five datasets, with an aver-
age improvement of +1.9 compared to the best-

performing Self-RAGj3g. The performance of
Llama23g on multiple datasets reaches or even
surpasses GPT-3.5 + RAG, highlighting the assis-
tance of our method in problem-solving.

RA-ISF helps alleviate the hallucination prob-
lem associated with RAG. For instance, in Trivi-
aQA and StrategyQA datasets, Direct RAG leads to
a decrease in performance, possibly due to the nega-
tive impact of irrelevant retrieval content (Shi et al.,
2023a). In our framework, three sub-modules help
the model to reduce hallucinations and enhance
knowledge representation. Compared to GPT-3.5
+ RAG, our GPT-3.5 + RA-ISF achieves a +11.2
performance improvement on StrategyQA. Similar
performance improvements are observed on Trivi-
aQA as well.

5.2 Ablation Studies
To assess the impact of different components of

RA-ISF, we set up three variants:

e No Self-Knowledge Module: This variant pro-
cesses questions directly through the Passage



NQ TriviaQA HotpotQA

Method (EM) (EM) (EM)
Direct 29.2 67.3 22.1
RAG 31.7 64.2 322
Least-to-Most  32.5 68.8 30.2
RA-ISF 40.2 76.1 46.5
No SKM 37.9 72.3 40.1
No PRM 35.8 70.3 34.7
No ODM 34.6 71.5 34.9

Table 2: Ablation of different components on GPT3.5.
No SKM, No PRM, and No QDM stand for removing the
submodel of Self-Knowledge, Passage-Relevant, and
Question Decomposition.

Relevant Module without self-knowledge judg-
ment.

e No Passage-Relevant Module: After self-
knowledge judgment, if the Self-Knowledge
Module indicates the answer can not be ad-
dressed using the model’s own knowledge, it
directly decomposes the question without involv-
ing the Passage-Relevant module.

e No Question Decomposition Module: After as-
sessing passage relevance through the Passage-
Relevant module, if no relevant paragraphs are
found, the answer is marked as "unknown," and
the Question Decomposition Module does not
iterate. This means the RA-ISF iteration count
isset to 0.

We conducted tests on NQ, TriviaQA, and Hot-
potQA datasets, comparing the results with RAG,
RA-ISF, and LTM methods. All experiments use
GPT3.5 as the base model.

All three submodules contribute to better
problem-solving performance. Table 2 presents
the ablation experiment results, indicating that re-
moving any component of RA-ISF leads to a per-
formance decline. This suggests the importance
of each component in the framework. Compared
to RAG, the No Self-Knowledge Module variant
achieves better performance by decomposing un-
related text, resulting in improved results. In con-
trast to the Least-to-Most prompting method, No
Self-Knowledge Module variant achieves higher
accuracy by prompting the language model with
retrieved paragraphs (+6.3 on Average). When
comparing Least-to-Most with variant No Passage-
Relevant Modules, the latter first assesses self-

45

Accuracy
w
&

w
=3
L

~@- RA-ISF--GPT3.5
RA-ISF--Llama2-13b

~fe- RA-ISF--Llama2-7b
RAG--GPT3.5

254

=~ Direct--GPT3.5

20 T T T T T T
0 2 4 6 8 10
Iterations in problem decomposition Dy,

Figure 2: Question accuracy on the NQ dataset with the
growth of the iteration in question decomposition Dyj,.

knowledge and then iteratively decomposes infor-
mation. This variant outperforms the traditional
Least-to-Most paradigm. Therefore, the iterative
combination of these three components not only en-
hances the effectiveness of RAG but also addresses
certain issues (e.g., hallucinations) after retrieval
and mitigates negative impacts caused by irrelevant
retrieved paragraphs.

5.3 Iterations in Problem Decomposition

RA-ISF sets a threshold Dy, to limit the itera-
tion times of problem decomposition. Here, we
experiment with different values of Dy, on the NQ
dataset of GPT-3.5 and Llama27g 135. Additionally,
we compare RAG and Direct Prompting with RA-
ISF on GPT-3.5. The accuracy of problem-solving
varies with changes in Dy, as shown in Figure 2.

More iterations contribute to improved perfor-
mance. The results indicate that as the value of
Dy, increases, the model’s accuracy in answering
questions improves. With the increase of Dy, the
performance gap between RA-ISF + GPT3.5 and
RAG + GPT3.5 gradually rises. More iterations
also help improve the performance of small-scale
LLMs in problem-solving. With the increase of
Dyy,, the performance of RA-ISF + Llama23p sur-
passes the performance of RAG and Direct Prompt-
ing on GPT3.5, and the performance on Llama2p
gradually approaches the accuracy of Direct on
GPT3.5. This indicates that the iterative decom-
position of problems contributes to enhancing the
model’s problem-solving ability.

Problem decomposition helps LLM to under-
stand. The goal of problem decomposition is to ad-



dress situations where the model has on-parametric
knowledge but struggles to answer due to inade-
quate understanding of the question. When Dy, is
relatively small, decomposing the problem helps
the model extend its problem-solving approach
through reasoning and derive answers. When it-
eration becomes larger, it indicates that after multi-
ple rounds of knowledge retrieval and problem de-
composition, no relevant passage or on-parametric
knowledge has been found. This implies that the
inability of the model to solve the problem is actu-
ally due to a lack of knowledge rather than insuffi-
cient understanding. At this point, further problem
decomposition is less likely to be beneficial and
may even introduce misleading factors, such as de-
composing unrelated sub-problems to the original
question, potentially reducing the accuracy of the
answers.

5.4 Small Sub-model Alternatives

In this paper, we choose the Llama2;5 model as
the pretrain model when training three sub-models.
Since Llama2 is a 7B LM, we also want to explore
the effectiveness of using a smaller model as an
intermediate component. We select the T5750m
model for training and compare it with Llama27g,
while the base model is GPT3.5. The accuracy
comparison is shown in Table 3.

NQ TriviaQA HotpotQA StrategyQA 2WikiMHQA

Llama2;z 402  76.1 46.5 75.9 36.1
TSwsom  39.6 748 45.8 74.7 353

Table 3: Evaluation for different sizes of sub-model
language models in various datasets.

Training RA-ISF with a small model also
yields excellent performance. When the RA-ISF
method is trained on the small T57gpp model, the
accuracy of answering questions using this model
is only slightly lower by one to two percentage
points compared to Llama2;g. This indicates that
when training the three sub-models of RA-ISF, if
there are constraints or cost limitations, using a
small model like T57goMm as the pre-trained model
can still demonstrate excellent performance.

5.5 Human and Model Assessments

We conduct both manual and automated assess-
ments to evaluate the reliability of RA-ISF. Specifi-
cally, we randomly select 40 questions from each
dataset and invite 50 human annotators to assess
the precision of the generated responses compared

Mk’now Mrel Mdecom
Human - 93.5 89.5
GPT4.0 97.0 95.0 87.0

Table 4: Human and GPT4 evaluation on the three mod-
els in RA-ISF.

to GPT-4. For My, if the model’s judgment
on whether the question can be answered using its
own knowledge is consistent with GPT-4, it is con-
sidered precise. For M., given a question gy
and relevant paragraphs P,.;, if the model’s judg-
ment aligns with whether the paragraphs are indeed
related to the question, the judgment of M,.; is con-
sidered correct. For M gecom, if both the LLM and
annotators believe that each sub-question remains
semantically consistent with the original question,
the decomposition is considered effective.

The sub-modules results demonstrate high re-
liability. The results are shown in Table 4, indi-
cating that both human annotators and the large
model consistently agree on the effectiveness of
these three models, with accuracy rates exceeding
85%. Specifically, M, achieves an impressive
accuracy of 97%, suggesting a high cognitive abil-
ity of the trained model in recognizing its own
knowledge. Meanwhile, the accuracy of M gecom
is slightly lower, as the task of question decom-
position falls within the realm of generative tasks,
where there may be multiple feasible decompo-
sition solutions. Overall, the three sub-modules
exhibit high reliability in their respective tasks.

6 Conclusions

In this paper, we introduce RA-ISF, a frame-
work designed to enhance retrieval augmentation
effects and improve performance in open-domain
question answering. This approach effectively
mitigates the hallucination issues that are com-
monly seen in traditional retrieval augmentation
and question-answering tasks. Experimental re-
sults demonstrate RA-ISF’s superior performance
across various benchmarks, and ablation studies
validate the effectiveness of sub-modules. Future
research directions include further alleviating hal-
lucination issues and improving the efficiency of
the framework.



Limitation

RA-ISF innovatively introduces a three-stage it-
erative problem-solving strategy. However, it’s im-
portant to recognize its limitations and drawbacks.
Firstly, iterative problem-solving can lead to an
excessive branching of issues. In particular cases,
this approach might become inefficient if it con-
tinuously explores a problem and its sub-problems
without finding solutions or relevant passages. Sec-
ondly, different formulations of a problem may
affect the effectiveness of the problem decomposi-
tion module, leading to small differences between
the number of iterations and the outcome.

Moreover, our method mainly relies on open-
domain question-answering datasets. It has not
been tested in specific fields such as mathematics
reasoning, symbolic reasoning, or specialized areas
like medicine and law. Future research could ex-
plore how it performs with these datasets. We also
plan to investigate ways to use retrieval augmen-
tation techniques more effectively and to simplify
their complexity.

Ethics Statement

Our approach employs the corpus of Wikipedia
and utilizes open-source datasets for training and
evaluating the model. All data are openly acces-
sible. We leverage APIs for GPT-3.5 and open-
source code and weights for Llama. Due to the
hallucination issue of large language models, some
of the generated content may contain factual errors
and reasoning errors. RA-ISF offers a potential so-
lution based on retrieval augmentation to mitigate
the hallucination problem. Our work strictly ad-
heres to the license and policies of released LLMs
and publicly available datasets.
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A Details of Data Collection

A.1 Data Collection of M.,

First, we use a QA dataset D for training, which
includes questions g; and their corresponding cor-
rect answers a;, represented as {g;, ai}gl . Ini-
tially, we extract the questions ¢; to query the LLM
M. Through few-shot prompts and in-context
learning, we enable model M to generate answers
for each question. In this scenario, the answers
generated by the model rely entirely on internal
knowledge.

We compare the model-generated answer a,
with the correct answers a;, and then categorize the
questions g; into two groups. If a4 is the same as a;,
then these questions fall into Qp,0., the category
of problems that the model can solve on its own.
Otherwise, these questions belong to Q. know, the
category of problems that the model cannot solve
on its own. The specific expression is as follows:

Qie{

We collect various types of supervised training
data and combine them to form the model’s train-
ing data, ultimately resulting in the trained dataset
D = {Qk’nowa Qunknow}-The kanow class com-
prises questions that the model M inherently
knows, while the Q.,,xnow class includes questions
that the model is not aware of and requires external
knowledge to obtain answers.

ifai = Qg
if a; # ag

kanow (5)

Qunknow

A.2 Data Collection of M,..;

For a given Q, we input it into the retriever
‘R, retrieving k relevant paragraphs for each ques-
tion P ={P, Ps,...,P;}. Subsequently, for
each paragraph P;(i = 1,2,...,k), we traverse
them one by one, querying the LLM model
M about the relevance of the retrieved para-
graph P; to question O, and recording the model
M’s answer A = {A1, Ao, ..., Ax} where A =
relevant /irrelevant for each paragraph.

We collect various types of supervised training
data and combine them to form the model’s train-
ing data, ultimately resulting in the trained dataset

D*={Q+P,A}.
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A.3 Data Collection of M ;..om

For a given Q, we input it into the large model
M, instructing it to decompose each question. For
a given question Q, the model breaks it down into
k sub-questions, where the value of k& depends on
the specific question. Finally, we document the
sub-questions decomposed by the model for the
question, denoted as Qg = {q1, 92, -, G }-

We collect various types of supervised training
data and combine them to form the model’s train-
ing data, ultimately resulting in the trained dataset

D* = {Qa qub}-
B Details of Datasets

Natural Question (NQ) (Kwiatkowski et al.,
2019) is a question-answering dataset containing
307,373 training examples, 7,830 development ex-
amples, and 7,842 test examples. Each example
is comprised of a google.com query and a corre-
sponding Wikipedia page.

TriviaQA (Joshi et al., 2017) is a realistic text-
based question-answering dataset that includes
950K question-answer pairs from 662K documents
collected from Wikipedia and the web. For Triv-
iaQA, given questions often have multiple valid
answers, some of which are unsuitable for training
targets, such as emoticons or spelling variations.
Following Lewis et al. (2020), for TriviaQA, if a
candidate answer does not appear in the top 1000
documents retrieved by the query, we filter it out.

StrategyQA (Geva et al., 2021) is a question-
answering benchmark where the required reasoning
steps are implicit in the question, and should be in-
ferred using a strategy. It includes 2,780 examples,
each consisting of a strategy question, its decom-
position, and evidence paragraphs. Questions in
StrategyQA are short, topic-diverse, and cover a
wide range of strategies.

HotpotQA (Yang et al., 2018) is a multi-hop
datasets from Wikipedia. The questions are di-
verse and not constrained to any pre-existing knowl-
edge bases or knowledge schemas. HotpotQA is
a question-answering dataset collected on the En-
glish Wikipedia, containing about 113K crowd-
sourced questions that are constructed to require the
introduction paragraphs of two Wikipedia articles
to answer. Each question in the dataset comes with
two gold paragraphs, as well as a list of sentences
in these paragraphs that crowd workers identify as
supporting facts necessary to answer the question.

2WikiMQA (Ho et al., 2020) utilizes both struc-



tured and unstructured data. In this dataset, evi-
dence information is introduced, which includes
reasoning paths for multi-hop questions. The ev-
idence information serves two purposes: (i) pro-
viding a comprehensive explanation for predictions
and (ii) evaluating the reasoning skills of a model.
We carefully designed a pipeline and a set of tem-
plates during the generation of question-answer
pairs to ensure the quality of multi-hop steps and
questions.
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Figure 3: Explore the trend of question accuracy on
the NQ and TriviaQA dataset with the growth of the
iteration in question decomposition &, and conduct ex-
periments on different models.

C Additional experiment: Analysis on the
Number of Retrieved Passages

When the model is unable to solve a problem
based solely on its own knowledge, we need to
use a retriever to search for k passages. In this
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regard, we need to investigate the values of k. Here,
we experimented with NQ and TriviaQA datasets
on models including GPT-3.5, Llama2;p 135, with
values of k setto 1, 3, 5,7, 9. The accuracy of the
questions varies with the changes in k, as shown in
Figure 3.

Increasing the number of retrieved passages
helps improve the accuracy of problem-solving.
In general, as k increases, the accuracy of the
model in answering questions continues to improve.
This is because increasing the number of retrieved
paragraphs helps the model find more auxiliary
knowledge, enhancing the likelihood of identify-
ing relevant articles to the question and thereby
improving the accuracy of question answering.

Further observation reveals that there is a no-
ticeable improvement in accuracy as k increases
from 1 to 5; however, the improvement becomes
less apparent when k increases from 5 to 9. This
is because, with the increase in the number of re-
trieved paragraphs, the model seems to have access
to more paragraphs to assist in answering questions.
However, in reality, the previously retrieved articles
might have been sufficient for the model to identify
the correct answers. Continuing to increase the
number of retrievals could result in finding irrel-
evant articles, which would eventually be filtered
out by M,.;. Therefore, the contribution to the
accuracy of the question is limited.

D Examples



StrategyQA

Question: Did Snoop Dogg refuse to make music with rival gang members?
Answer: ["false"]

Iteration 1
Mknow
Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Did Snoop Dogg refuse to make music with rival gang members?
Output: No
Mrel
(Use retriever to find 5 passages...)
Instruction: I will provide you with five additional pieces of knowledge based on the search for this question. Please
assess whether these five paragraphs are relevant to the question and sufficient to answer it. If they are, please tell me
what the relevant paragraphs are; if not, please answer "No."
[1] Calvin Cordozar Broadus Jr. ; born October 20, 1971), known professionally as Snoop Dogg (previously Snoop
Doggy Dogg and briefly Snoop Lion)...
[2] Broadus’ debut studio album, Doggystyle (1993), produced by Dr. Dre, was released by Death Row Records and
debuted at number one on the Billboard 200...
[3] In 1993, Broadus was charged with first-degree murder for the shooting of a member of a rival gang who was
actually killed by Snoop’s bodyguard.Broadus was...
[4] While recording Doggystyle in August 1993, Broadus was arrested and charged with first-degree murder in
connection with the shooting death of Philip Woldermariam...
[5] In 2002, he released the album Paid tha Cost to Be da Bo, on Priority/Capitol/EMI, selling over 1,310,000 copies.
The album featured the hit singles...
Output: No.
Mdecom
Instruction: Please break down this question into several sub-questions and list them.
Output:
1. What is the name of the gang that Snoop Dogg is part of?
2. Which gang is the rival of the gang Snoop Dogg is associated with?
3. In Snoop Dogg’s song "California Vacation," which rapper did he collaborate with?
4. Did Snoop Dogg refuse to make music with members of rival gangs?

Iteration 2
Use sub-models to answer these sub-questions...
Sub-answer:
1. Answer: American rapper Snoop Dogg is a member of the Crips gang.
2. Answer: The Crips are enemies of their rival gang, The Bloods.
3. Answer: Snoop Dogg collaborates with Xzibit and The Game on the song "California Vacation."
4. Answer: No, Snoop Dogg did not refuse to make music with rival gang members
Instruction: Base on the sub-question answer, give the answer to the origin question.
Final answer: No, Snoop Dogg did not refuse to make music with rival gang members, as evidenced by his collaboration
with The Game on the song "California Vacation."

Table 5: An example from the StrategyQA dataset.
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NQ
Question: When was the immigration reform and control act passed?
Answer: ["November 6, 1986" |

Iteration 1
Mknow
Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is:When was the immigration reform and control act passed?
Output: Yes.
Instruction: Give the answer to the question.
Final answer: The Immigration Reform and Control Act (IRCA) was passed on November 6, 1986.

Table 6: An example from the NQ dataset.

TriviaQA

Question: From which country did Angola achieve independence in 1975?
Answer: ["Portogato”,"Republic of Portugal"]

Iteration 1
Mk:now
Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: From which country did Angola achieve independence in 1975?
QOutput: Yes.
Instruction: Give the answer to the question.
Final answer: Angola achieved independence from Portugal in 1975.

Table 7: An example from the TriviaQA dataset.

HotpotQA
Question: Which private research university is located in Chestnut Hill, Massachusetts Boston College or Stanford
University?
Answer: ["Boston College"]

Iteration 1
Mk:now
Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Which private research university is located in Chestnut Hill, Massachusetts Boston College or
Stanford University?
Output: Yes.
Instruction: Give the answer to the question.
Final answer: Boston College is the private research university located in Chestnut Hill, Massachusetts.

Table 8: An example from the HotpotQA.

14



2WikiMultihopQA

Question: Who is the mother of the director of film Polish-Russian War (Film)?
Answer: [“Magorzata Braunek’]

Iteration 1
Mknow
Instruction: Can you use your own knowledge base to solve this problem? Answer yes if you know, no if you need
additional knowledge base to solve it.
The problem is: Who is the mother of the director of film Polish-Russian War (Film)?
Output: No
Mrel
(Use retriever to find 5 passages...)
Instruction: I will provide you with five additional pieces of knowledge based on the search for this question. Please
assess whether these five paragraphs are relevant to the question and sufficient to answer it. If they are, please tell me
what the relevant paragraphs are; if not, please answer “No.”
[1] Polish-Russian War (Wojna polsko-ruska) is a 2009 Polish film directed by Xawery Zutawski based on the novel
Polish-Russian War under the white-red flag by Dorota Mastowska...
[2] Xawery Zutawski (born 22 December 1971 in Warsaw) is a Polish film director. In 1995 he graduated National
Film School in £.6dz. He is the son of actress Malgorzata Braunek and director Andrzej Zutawski...
[3] After an argument in a bar owned by “Left” (Michal Czernecki) "Strong" meets a “Gothgirl” Angelica (Maria
Strzelecka) at night, an aspiring poet dressed in black, also a virgin and pessimist, for whom “suicide is a piece of
cake”...
[4] “Strong” follows Magda. He turns up at the town festival, where she takes part in a miss competition. He cannot
reach her, but instead he meets...
[5] Production The film was shot between May 6 and 18 June 2008 in locations of Warsaw, Wejherowo, Sopot and
Gdynia outskirts. The film premiered on...
Output:Relevant paragraphs:
[2] Xawery Zutawski is the director of the film "Polish-Russian War (Wojna polsko-ruska)" and is the son of actress
Matgorzata Braunek and director Andrzej Zutawski.
Instruction: Using the knowledge from the relevant paragraphs, give the answer to the question.
Final answer: The mother of the director of the film “Polish-Russian War (Wojna polsko-ruska)” is actress Malgorzata
Braunek.

Table 9: An example from the 2WikiMultihopQA dataset.
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