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Abstract

Behavioral cloning is a simple yet effective technique for learning sequential
decision-making from demonstrations. Recently, it has gained prominence as
the core of foundation models for the physical world, where achieving gener-
alization requires countless demonstrations of a multitude of tasks. Typically,
a human expert with full information on the task demonstrates a (nearly) opti-
mal behavior. In this paper, we propose to hide some of the task’s information
from the demonstrator. This “blindfolded” expert is compelled to employ non-
trivial exploration to solve the task. We show that cloning the blindfolded expert
generalizes better to unseen tasks than its fully-informed counterpart. We con-
duct experiments of real-world robot peg insertion tasks with (limited) human
demonstrations, alongside a videogame from the Procgen benchmark. Addition-
ally, we support our findings with theoretical analysis, which confirms that the
generalization error scales with

√
I/m, where I measures the amount of task

information available to the demonstrator, and m is the number of demonstrated
tasks. Both theory and practice indicate that cloning blindfolded experts gener-
alizes better with fewer demonstrated tasks. Project page with videos and code:
https://sites.google.com/view/blindfoldedexperts/home.

1 Introduction

Behavioral cloning (BC) is a simple yet effective method for training policies in sequential decision-
making problems [32, 6]. In BC, an expert demonstrates how to perform a task, and the sequence of
observation-action data is input to a supervised learning algorithm for training a policy.

A key question in BC is generalization – how many demonstrations are required to train an effective
policy. For single tasks, a well-investigated challenge is compounding errors – small mistakes in the
trained policy may lead to visit states that the expert did not visit, further increasing the prediction
errors [43]. However, recent results show that using appropriate neural-network architectures, BC can
learn to solve complex tasks even with a modest number of demonstrations [6, 59], and these results
are reinforced by recent theory [13]. For multiple tasks (or significant variations of a single task), on
the other hand, BC still requires abundant data, and recent methods for mitigating data requirements
include augmentations [26], simulation [52], and fine tuning foundation models trained on large scale
demonstration data [30, 49, 21]. In this work, we hence focus on generalization to task variations.

While various works study how to improve generalization via the BC algorithm [43], the policy
representation [6], and the data diversity [23], one aspect that remains unexplored is the experts
themselves. Many tasks can be solved in various ways – can some behaviors generalize better than
others? Recently, in the context of zero-shot reinforcement learning, Zisselman et al. [61] showed
that certain exploratory behaviors generalize better than goal-oriented, reward-maximizing behavior.
Intuitively, since exploratory behavior is less goal-oriented, it is less dependent on any particular task
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Figure 1: Illustration of the learning process. Note that the mask on observations only applies to the
blindfolded expert, while the observations in the logged trajectories are unmasked in both cases.

instance and therefore, more likely to generalize to novel tasks. In this work we ask – can a similar
principle be useful also for imitation learning?

Our main idea (depicted in Figure 1) is that by introducing a blindfold – an information bottleneck on
the expert’s observation that makes it harder to identify the particular task, we can induce the expert
to express a more exploratory and less task-dependent behavior, which we conjecture will generalize
better. Importantly, our method does not change the observations used for training the policy but only
the expert’s behavior, and is therefore compliant with any BC algorithm, and complementary to the
methods for improving generalization mentioned above. Since the expert’s exploratory behavior is
typically history dependent, our method makes use of policy architectures that can process a sequence
of observations, such as recurrent neural networks or transformers [7, 53].

Theoretically, we prove an upper bound on the generalization that scales with Egen +
√

I/m, where
I measures the amount of task information available to the demonstrator, m is the number of
demonstrated tasks, and Egen is a cost associated with the expert not taking optimal actions. For
domains where the exploratory behavior can still solve the task, Egen is zero, and thus by lowering I
using a “blindfold” we reduce the generalization error without paying any price. To our knowledge,
this result is the first of its kind in relating non-trivial properties of the expert’s behavior to multi-task
generalization of the resulting BC policy.

Empirically, we demonstrate our approach on a simulated maze game from the Procgen suite [8] –
a standard benchmark for task generalization, and on a real-robot peg insertion task, based on the
FMB challenge [25], where the shapes of the peg and the hole define the task. For the Procgen
maze, our blindfold hides the maze and reveals only the agent’s immediate surroundings to the expert.
For the peg insertion domain, we let the expert teleoperate the robot by observing images from
robot-mounted cameras, and mask out the hole shape from the image. In both domains, we find that
the blindfold induces more exploratory behavior from the expert, which in turn yields significantly
better generalization to different tasks.

Our results pave the way to a new and principled approach for collecting demonstrations, both for
specific problems, and also for more general foundation-model scale endeavors.

2 Problem formulation

Throughout the paper, we will focus on a multi-task imitation learning setup in which we aim to clone
an expert’s behavior from demonstrations of a (small) selection of tasks with the goal to generalize the
behavior to (many) unseen tasks. As we shall see both theoretically and empirically, the generalization
is not only affected by the number of available demonstrations, but also by the information available
to the expert when performing demonstrations. First, let us introduce the setting formally.
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Setting. We consider a set of tasks Θ := {θi}Mi=1 and a task distribution P0 ∈ ∆(Θ), where ∆(S)
denotes the probability simplex over a set S. Each task θ ∈ Θ is defined through a Markov Decision
Process (MDP [33]) Mθ := (X ,A, pθ, rθ, H), where X , A, H respectively denote the observation
space, the action space, and the horizon of an episode, which we assume common across all the
tasks in Θ.2 Instead, each task may have their own transition model pθ : X × A → ∆(X ) and
reward function rθ : X ×A → [0, 1]. A history-based randomized policy is a sequence of functions
π := {πh : Th → ∆(A)}H−1

h=0 where Th is the set of h-steps trajectories τh = (x0, a0, r0, . . . xh)

and T = ∪H−1
h=0 Th. A policy π on the MDP Mθ induces a distribution Pπ

θ over trajectories with the
following process. An initial observation is sampled x0 ∼ pθ(·). Then, for every step h ≥ 0, an
action is sampled from the policy ah ∼ π(τh), the reward rh = rθ(x

h, ah) is collected, and the MDP
emits the next observation xh+1 ∼ pθ(x

h, ah). The process goes on until the step H is reached.3
The Reinforcement Learning (RL [47]) objective for an MDP Mθ is the cumulative sum of rewards
J(π) := EPπ

θ
[
∑H−1

h=0 rh], where the sequence (r0, . . . rH−1) is taken on expectation over trajectories
τ ∼ Pπ

θ . An optimal policy for Mθ is denoted as π∗ ∈ argmaxJ(π). For some R ∈ N, we assume
J(π∗) ≤ R, where typically R = 1 when rewards are sparse, as large as H when rewards are dense.

Behavioral cloning. In the setting described above, we assume to have access to a dataset of expert
demonstrations E = {θi ∼ P0, (τi1, . . . τin) ∼ PπE

θi
}mi=1 where τij = (x0

ij , a
0
ij , r

0
ij . . . x

H
ij , a

H
ij , r

H
ij )

is a H-steps trajectory sampled independently from a policy πE in the MDP θi. Thus, the total
number of trajectories is |E| = mn and the total number of transitions is mnH . With the available
data, we aim to clone the expert’s behavior πE , a problem that is known as behavioral cloning [41].
The idea is to train a policy π̂ to mimic the expert’s policy πE by minimizing a supervised learning
loss on the demonstrations. While several choice of loss functions could be made [55], here we opt
for the negative log likelihood as in [13]. The behavioral cloning problem is then

π̂ ∈ argmin
π∈Π

L(π) :=
m∑
i=1

n∑
j=1

H−1∑
h=0

log

(
1

π(ahij |τhij)

)
(1)

where Π is a policy space of our choice and τhij are h-steps chunk of the trajectories τij in the dataset
of demonstrations E, ahij is the action taken at step h in τij . While a sufficiently expressive policy
space Π may allow for a cloned policy π̂ that closely approximates the expert’s on the training data
L(π̂) ≈ 0, we typically aim for a policy π̂ that can mimic the expert’s behavior on unseen data as well.
Differently from the common setting [41, 42, 56, 38, 36, 37, 13], here we are not only concerned with
generalization across unseen observations in X , but also across unseen tasks in Θ. Before proceeding
with the study of generalization in the next section, we introduce additional notation for later use.

Additional notation. In our behavioral cloning problem (1), a single data point is given by the
triplet (θi, τhij , a

h
ij), which we intend as realizations from the random variables (T,X,A) distributed

as T ∼ P0 and (X,A) ∼ PπE

T respectively. We will turn to one or the other notation when convenient.
For a random variable A taking values a1, a2, . . . with probabilities p(a1), p(a2), . . ., we denote its
entropy H(A) = −

∑
i p(ai) log p(ai). For two random variables A,B, we denote their mutual

information IA;B = H(A) − H(A|B) = H(B) − H(B|A), where H(A|B) is the conditional
entropy. Finally, we will use the symbol ≲ to hide constant and lower order terms from inequalities.

3 Generalization analysis

In the previous section, we detailed how an expert’s policy can be “cloned” from data by solving the
optimization problem (1). Obviously, fully cloning the expert’s behavior is a far fetched objective
when limited demonstrations are available: When training data spans only a small portion of the
observation space X and the set of tasks Θ, how can we extract information on what would the expert
do in unseen observations and tasks? Nonetheless, we aim for our cloned policy π̂ to transfer at least
part of the expert’s behavior beyond the demonstrated observations and tasks. In this section, we

2Note that this does not hinder generality, as we can always take X = ∪θ∈ΘXθ when observation spaces
vary across tasks (ditto for the action space) and H = maxθ∈Θ Hθ when the episode horizons vary.

3Oftentimes, the episode horizon is an upper bound to the episode length, while secondary termination
conditions may end the episode early, as it will be the case in our experimental setting. For the ease of
presentation, we ignore early termination in our setup and consider episodes of length H .
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provide a formal study of the generalization guarantees of the cloned policy π̂, showing an original
dependence with the information available to the expert when collecting demonstrations. To specify
what do we mean by “information” in this setting, let us consider the graphical illustration below:

Xobservation

Ttask

Z
representation

A action

IZ;T

expert's

information bottleneck

Figure 2: Graphical illustration of the expert’s behavior (not
the architecture of the cloned policy).

At each step, the expert takes as input
an observation (X) that depends on
the task they are going to demonstrate
(T ) and processes it into an internal
representation Z. The demonstrated
action (A) is then conditioned on Z.
Note that Z is recurrent and retains
any information that is relevant to se-
lect A, including the task information
that may be available in the observation X . The mutual information IZ;T measures the task-related
information that goes into Z and, consequently, how much the strategy to select A relies on it.

We typically expect an expert with full information on the task – large IZ;T – to demonstrate an
optimal policy specific to the task, without any exploratory actions. Instead, whenever there is an
information bottleneck between the task information and the expert – small IZ;T – we expect them to
take exploratory actions to first “understand” the task in order to solve it. We still call them experts as
we assume their behavior to be optimal with the given information, a concept that has been formalized
with Bayes-optimal policies [16]. We conjecture that the latter behavior may generalize better to new
tasks, as the process of understanding the task is more general than just solving it. In the following,
we provide a formal result based on this conjecture, in which we analyze the generalization gap of
the cloned policy as a function of the information IZ;T available to the demonstrator.

Analogously to previous works [e.g., 41, 13], we are interested in deriving an upper bound on the
performance gap between an optimal policy for each task (π∗) and the cloned policy (π̂). Since we
are considering a multi-task setting, we average the gap across the task distribution P0,4

E
T∼P0

[J(π∗
T )− J(π̂)] = E

T∼P0

[
E
Pπ∗
T

[∑H−1

h=0
rh
]
− E

Pπ̂
T

[∑H−1

h=0
rh
]]

. (2)

Before stating the result, we introduce a few technical assumptions. First, we define the generalization
error of a policy π as

Egen(π) := E
T∼P0

E
XA∼Pπ∗

T

[1(π(X) ̸= A)] (3)

for a single point indicator loss. We make the following assumptions on the expert’s policy.
Assumption 1. The expert’s policy πE is deterministic.
Assumption 2. The generalization error of the expert’s policy is given by Egen(πE).

Note that we allow the expert’s policy to depend on the history, for which assuming determinism is
reasonable even when an information bottleneck is applied to the expert. Whereas it is standard in
the literature to assume the expert is optimal, i.e., Egen(πE) = 0, in the presence of an information
bottleneck we do not take for granted that the expert is optimal in all the tasks. Nonetheless, if the
expert’s behavior is Bayes-optimal, non-trivial worst-case bounds on Egen(πE) hold [5], for which
the generalization error only scales with log(H) under our assumptions. Moreover, in settings where
the reward is sparse denoting task success, i.e., R = 1, the Bayes-optimal policy may still have
Egen(πE) = 0 w.r.t. some optimal policy, albeit inefficient in the number of steps.

Then, regarding the behavioral cloning problem (1), we make a pair of assumptions as follows.
Assumption 3. The expert’s policy is realizable in the policy space Π, i.e., πE ∈ Π.
Assumption 4. We have access to an optimization oracle that solves problem (1) with bounded error

Eopt(π̂) :=
1

mnH

m∑
i=1

n∑
j=1

H−1∑
h=0

1(π̂(τhij) ̸= ahij).

In principle, one can fulfill Asm. 3 by cloning the demonstrations into a rich enough policy space
Π. However, a more expressive policy space may lead to a harder optimization problem, especially
when the policies are represented through large neural networks, for which (1) is non-convex.

4Note that the optimal policy π∗ depends on the task T whereas π̂ is a single policy cloned from data.
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We now have all the ingredients to state our main result.
Theorem 3.1. For a confidence δ ∈ (0, 1), it holds with probability at least 1− 2δ

E
T∼P0

[J(π∗
T )− J(π̂)] ≲ RH

(
Egen(πE) + Eopt(π̂) +

√
IT ;Z |A| log(|A|/δ)

m
+

log(|Π|m/δ)

n

)
.

All of the derivations and the hidden constants can be found in Appendix A. Instead, here we unpack
the bound and discuss the meaning of each term. First, the RH factor accounts for the cost of
a “mistake” of the cloned policy, i.e., choosing an action different from π∗. The terms Egen(πE)
and Eopt(π̂) depends on the quality of the expert’s policy and the solver for (1), hence they cannot
be reduced with additional data. The last term, scaling with the number of trajectories in each
demonstrated task n−1, comes from a typical behavioral cloning analysis of generalization within
the training task [e.g., 13]. The more demonstrations we have from a task, the better we can clone
the expert’s policy in that task. The third term, scaling with the number of demonstrated tasks m−1,
controls the generalization across tasks and comes from the analysis of generalization induced by an
information bottleneck [20], which is expressed by IZ;T . The most important finding of our result
lies in this term: To improve generalization of the cloned policy, we can either increase the number
of tasks m or apply an information bottleneck – a “blindfold” – to the demonstrator to reduce IZ;T

without paying any meaningful price, as it is typically Egen(πE) = 0 for tasks with sparse rewards
and Egen(πE) ≲ log(H) for dense rewards, while other terms remain the same.

In the next sections, we provide an extensive empirical evaluation showing that this result is far from
being a theoretical fluke, but translates to practical scenarios as well.

Overcoming assumptions. The result presented in this section holds for deterministic expert’s
policies (Asm. 1), finite action space (due to |A| dependency), and finite policy class (due to |Π|
dependency). Deterministic expert’s policy and finite policy class can be easily overcome by extending
the in-task generalization result to stochastic policies and infinite policy classes, as done in [13].
Instead, the dependency on |A| comes from reducing the cloning problem to classification, in order
to invoke information bottleneck generalization results [20]. In principle, extending the analysis to
continuous action requires an analogous generalization bound for the regression problem [29].

4 Experiments

In this section, we report an experimental campaign to validate the results of previous sections and to
demonstrate the importance of the expert’s behavior for multi-task BC generalization.

To this end, we train, with the same BC algorithm, two policies on human demonstrations collected
by either a traditional expert or a blindfolded expert. We refer to the resulting policies as πBC and
πBC−BF respectively. We compare them in the success rate achieved on both the demonstrated tasks
and unseen test tasks. We repeat the experiment twice, first in simulation on the Procgen maze (in
Appendix B), then on a real robot peg insertion task (in Section 4.1). For both domains, we describe
how the information bottleneck for the blindfolded expert is obtained in practice.

4.1 Robotic peg insertion

Full Obs Masked Obs Masked ObsFull Obs

Maze Peg Insertion 

Figure 3: Demonstration of actual experts’ observations.
Procgen maze (left-pair) and robotic peg insertion (right-
pair). We show the full observation of the Expert and the
masked observation of the BF-Expert.

Peg insertion is a standard prob-
lem in robotic manipulation. Here,
we consider the insertion task in
the Functional Manipulation Bench-
mark [FMB, 25], which focuses on
inserting variously shaped pegs into
tightly matching holes. Different from
[25], however, we investigate general-
ization: How training on a fixed set of
shapes generalizes to inserting unseen
shapes. We simplify less relevant technical aspects of the benchmark by fixing the peg to the robot
gripper, and 3D-printing individual holes, so that discerning the target hole becomes trivial (see
Figure 7-left). In addition, we added several new shapes to increase the benchmark’s variation.
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Figure 4: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {2, 5}, with the remaining shapes withheld as test-set. Both for k = 2 (left) and
k = 5 (right), cloning blindfolded experts generalizes better than cloning standard experts.

Setup. The task comprises ten pegs of various shapes with corresponding slots. In our setting,
the robot initiates with the peg already in its grip and needs to insert it into a single-slotted board
anchored to the surface. Actions are input via a SpaceMouse controller and observations captured via
two wrist cameras (further details in Appendix C).

Data collection. We split the ten shapes into training and test shapes. When collecting demonstra-
tions, only the training shapes are used, while the test shapes serve as a withheld subset for evaluation.
We collect 400 trajectories from human demonstrations of each training shape, first with a standard
Expert and then with a BF-Expert. Each trajectory begins at a random initial pose. When the full
information from the wrist cameras is provided to the human experts, they easily succeed in inserting
all training shapes. The blindfolded experts are human experts exposed to redacted observations
from the wrist cameras, which occlude the articulation of the slot as they attempt to insert the peg
(see Figure 3). We use SegmentAnything2 (SAM2) [39] modified to segment a live video stream and
prompt it to mask out the shape of the target hole. In addition to the masked-out images from the
wrist cameras, the initial robot pose varies with each insertion attempt, thus preventing the expert
from memorizing or inferring the articulation of the target hole. Note, however, that the recorded
trajectories collected by both the Expert and BF-Expert contain the full unmasked observation. The
distinction is then the behavior of the two experts, with blindfolded experts taking exploratory actions
to cope with masked-out images in an attempt to complete the task. The trajectories are collected
on the training shapes only. Table 1 details the shapes and the average number of steps taken by the
standard Expert and BF-Expert until successful peg insertion. Clearly, the trajectories demonstrated
by the BF-Expert are longer, indicating more exploratory behavior, whereby the expert must rely on
masked-out images until resolving the correct articulation for inserting the peg. In the next section,
we show that the resulting exploratory behavior is useful for generalization.

Policy architecture and training. Training was conducted for k ∈ {2, 3, 4, 5} peg shapes, with the
remaining shapes serving as a withheld test set. We use the same (recurrent) network architecture for
cloning both the expert πBC and the blindfolded expert πBF−BC . For more detailed specifications
regarding our architecture, experimental setup, and hyperparameters, please refer to Appendix C.

Results. Figure 4 shows the success rate for k = 2, 5 training shapes (results for k = 3, 4 are in
Appendix C). The success rate is the average of 24 insertion attempts per peg shape by the robotic
arm. The results demonstrate that cloning the BF-Expert with πBF−BC achieves better generalization
compared with the standard Expert, cloned with πBC , across all peg shapes and over all test subsets.
Importantly, the advantage of the proposed blindfolding approach is more significant when fewer
shapes are used to train the model, i.e., when a larger portion of shapes are withheld during training.
Interestingly, the figure shows that even for shapes encountered in training, the πBF−BC policy
generalizes better than cloning the standard expert πBC . This is a result of the limited ability of
expert demonstrations to account for all real-world variations, e.g., lighting and control-loop errors.
In comparison, the πBF−BC is more robust to these kinds of errors, since it imitates blindfolded
experts who cannot rely on visual cues, and must compensate in order to solve the task. Additionally,
it is worth mentioning that certain shapes are more challenging than others. We observe that shapes
with greater radial symmetry and convexity (such as the circle, triangle, hexagon) are simpler to learn
than shapes with non-radial symmetry (such as the ellipse, rectangle) or non-convex shapes (such as
the cut-out-rectangle), as they require a more specific orientation for insertion.
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5 Related works

Our work closely relates to imitation learning, information bottleneck, and robotic manipulation.

Imitation learning theory. The imitation learning literature counts a plethora of contributions, for
which we refer to recent surveys [19, 60]. Here we are concerned with the generalization of behavioral
cloning – a dominant imitation learning technique. Previous works [41, 42, 56, 38, 36, 37, 50, 13]
have studied the theoretical limits of behavior cloning and settled the generalization gap on the
training task as J(π∗)− J(π̂) ≲ R log(|Π|/δ)/n [13]. These results are mostly limited to cloning a
Markovian policy in a single MDP. Other works have considered more general settings, including
cloning history-based policies [4] and imitation learning under partial observability [48]. However,
the generalization of behavior cloning in a meta learning setup, which is popular in empirical
works [11, 12], is understudied. The only generalization analysis that strikes close to this setting is,
to the best of our knowledge, the one in [40]. Differently from ours, they assume online access to the
set of tasks to further fine-tune the cloned policy and they do not study how the information available
to the demonstrator affects generalization, which is our main theoretical contribution.

Imitation learning in robotics. Imitation learning has been fundamental to various robotic
domains, including autonomous driving [32], locomotion [31], flight [1], and manipulation [12]. A
recent survey on manipulation, our case of interest here, is provided in [2]. Several works showed
that imitation is useful for learning complex visuo-motor policies for robotic manipulation, where
key ideas include predicting a sequence of future actions, and using a diffusion generative model
to learn a distribution over the action sequence [6, 59, 14]. However, it is known that imitation
learning requires a large number of demonstrations in order to generalize to variations in the task.
Previously studied mitigations include 3-dimensional priors in the representation [58], automatic
data augmentation [26, 15, 57], interactive data collection [18], and using simulations [52]. Another
approach is leveraging large-scale data, either by collecting diverse task variations [23], or by fine
tuning robotics foundations models [30, 49, 21]. Differently from the approaches above, we postulate
that the way a demonstrator performs a task affects generalization, showing that by blindfolding
the demonstrator we obtain an exploratory behavior, which induces better generalization when
cloned. The generalization of exploratory behavior has been demonstrated in zero-shot reinforcement
learning [61]. In comparison, we apply this idea to imitation learning, which requires a different
approach, and also develop a theoretical explanation for the improved generalization. The idea that
exploration at test time helps generalization has also been explored in the sim-to-real context in [54].

Information bottleneck. When learning a X → Y relationship between random variables, the
information bottleneck [51] prescribes to “squeeze” X into a representation that only retains informa-
tion to predict Y . This principle is believed to be a factor beyond the generalization capabilities of
deep learning [45] and formal generalization bounds through the information bottleneck have been
derived [46, 29, 20]. In imitation learning, the information bottleneck has been used to analyze gener-
alization in [3]. However, they consider generalization on the training task only and the information
bottleneck is applied to the representation of the cloned policy. Our work advocates for applying an
information bottleneck to the demonstrator to improve generalization of the cloned policy.

6 Conclusion

We showed that cloning the behavior of blindfolded experts leads to better generalization to unseen
tasks. We supported this with theoretical analysis and conducted empirical tests that, for the first
time, explored the concept of blindfolding experts in the context of a real-world robotic task, as well
as a maze videogame. We observed that in both peg insertion and maze-solving tasks, blindfolding
the experts encouraged them to enact a more exploratory behavior, cloned to produce policies that
better generalize. Importantly, our approach achieves better generalization while accommodating any
imitation learning algorithm.

Finally, we point out a limitation of the proposed approach: each domain may require a different kind
of blindfold (e.g., concealing the field of view in the maze videogame, or masking out the shape of the
hole in the peg insertion task). Too little obstruction does not elicit exploration, while redacting too
aggressively would impede any informative exploratory behavior (may resort to near random walk).
An interesting question is how to find the optimal balance, which we reserve for future research.
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A Proofs

Here we provide the derivations for the generalization bound in Section 3. The proof requires a
non-trivial combination of previous results in provable imitation learning, mostly from [13], and the
generalization guarantees of information bottleneck [20]. These results are reported in Lemma A.3
and A.4. Before going through the proofs, we state the main theorem again for convenience.
Theorem A.1 (Theorem 3.1). For a confidence δ ∈ (0, 1), it holds with probability at least 1− 2δ

E
T∼P0

[J(π∗
T )− J(π̂)]

≲ RH

(
Egen(πE) + Eopt(π̂) + C(E, πE , π̂)

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

)
where

• R is an upper bound to the cumulative reward of any policy in any task θ ∈ Θ (Section 2);

• Egen(πE) is the generalization error of the expert’s policy (Asm. 2);

• Eopt(π̂) is a bound to the optimization error of solving (1) (Asm. 4);

• C(E, πE , π̂) is a constant that depends on the training data E, the expert’s policy πE , the
cloned policy π̂, and other absolute constants as detailed in Lemma A.4.

Proof. We derive the result as follows

E
T∼P0

[J(π∗
T )− J(π̂)]

≤ RH E
T∼P0

E
τ∼Pπ∗

T

[1(π∗
T (a

h|xh) ̸= π̂(ah|xh))] (4)

≤ RHEgen(π̂) (5)

≤ RH

(
Egen(πE) + E

T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]

)
(6)

≲ RH

(
Egen(πE) + Eopt(π̂) +

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

)
(7)

where (4) and (5) are straightforward from the definitions of the performance J(π) and the general-
ization error Egen(π) (see Section 2 and (3) respectively), (6) follows from Assumption 2, and (7)
holds with probability at least 1− δ through Lemma A.2.

We provide below the lemmas we need to prove the result above.
Lemma A.2. For a confidence δ ∈ (0, 1), it holds with probability at least 1− δ

E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)] ≲

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

where IT ;Z is the mutual information between the task T and the internal representation of the
demonstrator Z.

Proof. We derive the result as follows

E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]

≤ E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]− 1

mnH

m∑
i=1

n∑
j=1

H−1∑
h=0

1(π̂(τhij) ̸= ahij) + Eopt(π̂) (8)

≤ E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]− 1

m

m∑
i=1

E
XA∼PπE

θi

[1(π̂(X) ̸= A)] +
8 log(|Π|m/δ)

n
+ Eopt(π̂)

(9)
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≲

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n
+ Eopt(π̂) (10)

where (8) is a trivial consequence of Assumption 4 on the optimization error for solving (1), (9) holds
with probability at least 1− δ through Lemma A.3 and a union bound on the m training tasks, and
(10) holds with probability 1− 2δ from Lemma A.4 by omitting constant and lower order terms and
applying a union bound.

Lemma A.3 (Sample complexity of behavioral cloning [13]). For a confidence δ ∈ (0, 1), an MDP
θ, and a deterministic expert’s policy πE , it holds with probability at least 1− δ

E
XA∼PπE

θ

[1(π̂(X) ̸= A)] ≤ 8 log(|Π|/δ)
n

.

Proof. This result can be obtained through a combination of results in [13]. First, for a policy π̂
obtained by minimizing the negative log likelihood of the data, as in (1), from Proposition 2.1 [13]
we have with probability at least 1− δ that

D2
H(Pπ̂

θ ,PπE

θ ) ≤ 2 log(|Π|/δ)
n

where D2
H(P,Q) =

∫ (√
dP −

√
dQ
)2

is the squared Hellinger distance between the probability
measures P and Q. Then, through Lemma F.3 [13] we have

E
XA∼PπE

θ

[1(π̂(X) ̸= A)] ≤ 4D2
H(Pπ̂

θ ,PπE

θ )

which concludes the proof.

Lemma A.4 (Information bottleneck generalization gap [20]). For a dataset E = {θi ∼ P0}mi=1 of
m tasks and a single-point convex loss ℓ(π̂(X), A), let us define the generalization gap across the
prior P0 as

Γ(E) := E
T∼P0

E
XA∼PπE

T

[ℓ(π̂(X), A)]− 1

m

m∑
i=1

E
XA∼PπE

θi

[ℓ(π̂(X), A)].

For a confidence δ ∈ (0, 1), Γ(E) is upper bounded with probability at least 1− δ by

β

√
IT ;Z|A log 2 + αγ log 2 +H(Z|T,A) + log(2|A|/δ)

m
+

f(π̂)
√

2γ|A| log(2|A|/δ)
m3/4

+
γg(π̂)

m1/2

where αγ , β, γ are constant values, f(π̂) = maxi∈[m] EXA∼PπE

θi

[ℓ(π̂(X), A)] is the maximum

training loss, g(π̂) = supXA ℓ(π̂(X), A) is the maximum generalization loss, and H(Z|T,A) is the
entropy of the demonstrator internal representation given TA.

Proof. This result is based on Theorem 1 in [20], in which the notation adapted to our setting of
interest. All of the derivations can be found in [20]. A more coarse version of the bound is given as

∆(E) ≤
(
β
√
αγ log 2 +H(Z|T,A) + f(π̂)

√
2γ + γg(π̂)

)√
IT ;Z|A|A| log(2|A|/δ)

m

where the first factor can be incorporated into a constant C(E, πE , π̂). We note that the term
H(Z|T,A) = 0 whenever the demonstrator internal representation is deterministic, which is a fair
assumption in our setting. Further, the maximum training error f(π̂) is close to zero and upper
bounded by the optimization error Eopt(π̂). The value of g(π̂) is upper bounded by 1 for the indicator
loss ℓ(π̂(X), A) = 1(π̂(X) ̸= A). Finally, we note that IT ;Z ≥ IT ;Z|A. With these considerations,
by omitting all of the constants, we have

∆(E) ≲

√
IT ;Z |A| log(|A|/δ)

m

as it is reported elsewhere in the paper.
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Table 1: Average number of steps ± std in the trajectories demonstrated by a standard Expert and a
BF-Expert. The latter takes more steps due to the information bottleneck, which forces exploration.

Mode Maze

Expert 61.2± 1.4 69.4± 3.3 64.8± 2.1 96.6± 4.9 68.8± 2.2 28.6± 1.2
BF-Expert 74.3± 5.9 165.6± 42.9 163.6± 43.6 148.6± 33.1 194.4± 55.0 51.6± 1.8

B Procgen maze

Procgen [8] is a popular benchmark for measuring sample efficiency and generalization [35, 34, 9,
22, 61]. It consists of 16 different environments in which new levels are randomly generated on every
episode, forcing agents to handle changing layouts and textures. Here we focus on the maze “easy”
environment, in which each level is a 2D maze that the agent navigates to find a piece of cheese. The
levels are procedurally generated, forcing the agent to handle various maze layouts and backgrounds.
This task is one of the most challenging tasks for generalization in the Procgen suite, and until the
results of [61] has seen only minor improvements over random walk. We test how training on a set of
demonstrated maze tasks generalizes to unseen layouts for the different experts.

Setup. For training, we consider 100 different levels, with various layouts and goal locations. There
are 4 discrete actions, move up, down, left, and right in the maze. The observations are 64 × 64
RGB images of the current state as a top-down view of the maze.

Data collection. We collect a total of 2000 demonstrated trajectories from 100 different training
levels (20 trajectories per level). The environment allows for at most 500 input steps, ensuring that
all the trajectories collected by the experts are successful. The behavior of the standard expert (who
sees the entire maze) follows the shortest path to the goal. Thus, we skip the human demonstration
stage and instead collect data with a Proximal Policy Optimization (PPO)[44] agent trained on the
considered 100 levels until convergence to the shortest path behavior [27]. For the blindfolded expert
(BF-BC), however, we collect actual human demonstrations. The blindfolded experts are humans
playing the game with partial observation of the maze, such that only the immediate proximity of the
agent is visible and the rest of the maze is concealed (see Figure 3, left). As a result, human experts
cannot directly see the goal location, and exploration of the maze is needed. Note that while the
observations are masked to the expert, the stored data contains the original (unmasked) observations
for the cloning algorithm. The trajectories are tuples of observation, action, reward, and done flag
(ot, at, rt, done). Table 1 details the average number of steps taken by the PPO-Expert (Expert) and
the blindfolded expert (BF-Expert) across the 100 demonstrated levels. Trajectories taken by the
PPO-Expert are shorter on average than the BF-Expert, supporting the assumption that the BF-Experts
exhibit a more exploratory behavior, whereas the PPO-Expert takes the shortest path to the goal.

Policy architecture and training. Training is conducted from scratch on the demonstrated
trajectories by minimizing the negative log likelihood 1. We use the architecture from [27] for both
the Expert (πBC) and BF-Expert (πBF−BC) – a ResNet [17] to encode the observations, which are
then processed by two fully-connected layers. To capture the exploratory behavior, we add a single
GRU [7] before the Softmax policy layer (further details can be found in Appendix B).

Results. In Figure 5, we compare the game score over the training epochs achieved by policy cloning
of the standard Expert (πBC) and the BF-Expert (πBC−BF ). As we can see from Figure 5-left, the
performance of the two policies is similar on the training levels, approaching the maximum task score
of 10. However, as evident from Figure 5-right, while the πBC−BF gracefully improves the test
score, the πBC policy overfits to the train-set and its test score degrades with further training. This
is a testament to the inherent generalization capabilities granted by the BF-Expert w.r.t. a standard
Expert. Note that πBC−BF peaks at the 40 epoch mark (where early stopping can be applied).

Our training protocol entails 2, 000 trajectories for both the standard and BF experts. Since the
trajectories resulting from the standard expert (who follows the shortest path) are shorter than those
of the blindfolded expert (who explores the maze), we also train an additional policy πBC−ext that
has access to double the amount of trajectories–to match the total number of steps produced by the
blindfolded experts. Figure 5 shows that even with an equal number of total steps from both experts,
πBC−ext overfits.
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Figure 5: Game score as a function of training epochs in the Procgen maze. Training levels (left) and
unseen test levels (right). The mean and standard deviation are computed over 10 seeds.

B.1 Hyperparameters and constants

For a fair comparison, we conduct a separate hyperparameter search for both πBC and πBF−BC . We
perform a hyperparameter search for the batch size b ∈ {128, 256, 512, 1024}, for the learning rate
lr ∈ {1e−3, 1e−4, 1e−5, 5e−3, 5e−4, 5e−5} and for hidden size h ∈ {128, 256, 512, 1024}. We also
evaluate the performance with and without using a learning decay schedule. Our networks are trained
using the Adam optimizer. The best hyperparameters are chosen based on the lowest training loss and
the highest training success rate. We evaluate performance over an average of 10 different random
training seeds. Figure 6 and Table 2 show the loss function and the chosen hyperparameters. Note
that in most cases, the best hyperparameters for πBC and πBF−BC turned out to be fairly similar.
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Figure 6: Loss as a function of training epochs for the Procgen maze. Mean (color line) and std
(shaded region) are computed across 10 seeds.

Table 2: List of hyperparameters used in the Procgen Maze experiment.
Hyperparameter πBC πBC−ext πBF−BC

batch size 256 256 256
hidden size 1024 1024 1024
learning rate 0.0001 0.0001 0.0001

learning rate schedule? No No No

B.2 Number of steps vs. number of trajectories

As described in Table 1, the blindfolded expert takes more steps on average to complete each trajectory.
When comparing the different approaches, we match the number of trajectories, which leads to a
greater total number of environment steps for the blindfolded expert. Table 3 shows the total number
of steps available for training the different BC policies, alongside their performance. We also compare
our results to a standard BC approach with twice the number of trajectories (from the same 100
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Figure 7: The robotic arm configured for peg insertion (left). Close-up view of various peg shapes
and their boards (right).

seeds) to match the number of environment steps produced by the blindfolded expert. In addition, we
compare our results to the results reported by [27], who train a BC policy on the Procgen maze with
a dataset of 1M environment steps taken from a trained PPO expert, on 200 training seeds5.

Table 3: Performance comparison on the Procgen maze experiment. Our results are reported at epoch
40 (early stopping) when training performance plateaus. The mean and std are computed over 10
seeds. Top performer in bold.

Parameter 1M Expert Dataset in [27] πBC πBC−ext πBF−BC

# of trajectories 15385 2000 4608 2000
# of total env steps 1000000 57166 115290 103238
# of seeds 200 100 100 100
Test performance 4.46± 0.16 3.35± 0.29 3.65± 0.3 6.37± 0.47

We can see in Table 3 that πBF−BC achieves better performance than all other contending policies.
When compared to the results reported in [27], we can see that our results are better despite signifi-
cantly less training data (an order of magnitude fewer trajectories) and half the number of training
seeds.

C Peg insertion extended results

This section describes in detail the setting, hyperparameters, and constants used for the peg insertion
task, as well as provides extended evaluation results.

C.1 Experimental setup

The robot setup is shown in Figure 7 in full, alongside a few examples of peg shapes. We use a
Franka Emika Panda robot arm and teleoperate the robot using a SpaceMouse. For operating the
robot and the SpaceMouse, we use the SERL open-sourced package [24] with the same settings
as the authors. The actions are input as SpaceMouse commands: 6-DoF end-effector move and
twist (location and Euler angles) at 10Hz, tracked by a low-level impedance controller running at
1KHz. The observations are obtained as RGB-only images from two Intel RealSense D405 cameras,
mounted on the robot end-effector, which simultaneously capture images6. To avoid background
distractions in image observations, we place each shaped board inside a black bin. In addition to the
6-DoF pose of the robot end-effector, the framework also includes the force, torque, and velocity
information provided by the Franka Panda robot.

5For 1M expert dataset, we report the results from [27] who evaluated over 5 seeds.
6Following the conclusions of FMB [25], we omit the depth data, as they showed it has a marginal benefit.
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Figure 8 shows a close-up view of all peg shapes (10 shapes in total) and their corresponding boards,
where the training shapes are in the top row and the test shapes are in the bottom row. Each peg
insertion attempt starts from 10cm above the hole (Z axis) and a random reset position within a 0.5cm
box in the XY plane, centered above the hole position. In this experiment, initial rotations about the
X and Y axes are fixed (0 degrees), while the Z angle starts from a random rotation ranging from −60
to 60 degrees. Two Realsense cameras are mounted on the robot’s wrist. For the blindfolded expert
experiment, we mask out the hole to hide its orientation from the experts, such that they cannot infer
the orientation of the peg and must explore the domain in order to insert the peg.

Figure 8: Close-up view of all peg insertion tasks. Top row: Training pegs. Bottom row: Test pegs.

C.2 Architecture

We use a weight-shared frozen ResNet-10 encoder [17] pretrained on the ImageNet dataset [10] for
encoding the incoming images from both wrist cameras. The resulting embeddings are concatenated
with the MLP-embedding of the proprioceptive information before entering a single GRU [7] that
outputs a Gaussian policy. The use of a memory-based architecture is crucial to fully capture the
non-Markovian exploratory behavior of the blindfolded expert [28].

C.3 Hyperparameters and constants

As described in section 4.1, the same architecture is used for learning both πBC and πBF−BC .
Specifically, we use ResNet-10 [17] encoder pretrained on the ImageNet dataset [10], and a GRU
of 1024, which we found to produce the best performance for both policies πBC and πBF−BC

independently. Throughout our experiments, we train our networks using the Adam optimizer. The
hyperparameters of the networks are the learning rate, learning rate decay, and the batch size. To
ensure that the best performance of each approach is achieved, we perform a separate hyperparameter
search for each policy, trained on each subset of shapes. The best hyperparameters are listed in Table
4. The network outputs a 6-dimensional vector for the mean and a 6-dimensional vector for the
diagonal covariance matrix of a Gaussian policy (for 6-DoF action space). We train our networks
using the log-likelihood loss. In all our evaluations, the action is chosen as the maximum likelihood
of the distribution.

Table 4: List of hyperparameters used in the peg insertion experiment. The learning rate (lr) schedule
indicates the iteration number for multiplying the lr by 0.5.

Hyperparameter πBC πBF−BC

batch size 1024 1024
hidden size 1024 1024

initial lr 0.0003 0.0003
lr schedule lr ×0.5 at {10, 100, 150, 200}K lr ×0.5 at {50, 100, 150, 200}K

C.4 Results for different combinations of training shapes

Figure 9 shows the success rate for k = 3, 4 training shapes (and the rest serve as a test set, out of a
total of 10 peg shapes). The results on the varying amounts of training shapes, further support that
cloning blindfolded experts generalizes better than the standard BC approach.
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Figure 9: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {3, 4}, with the remaining shapes withheld as test-set. Both for k = 3 (left) and
k = 4 (right), cloning blindfolded experts generalizes better than cloning standard experts.

D Data collection

Peg insertion. For both πBC and πBF−BC , we use 400 trajectories for each of the training
shapes. We, the authors, collected the data by operating the robot manually using a Spacemouse
control. Recall that the blindfolded expert observes a masked-out view of the board (through the robot
wrist cameras) such that the orientation of the peg is not directly visible and must be inferred through
exploration. However, recorded observations in favor of cloning the blindfolded policy πBF−BC

are unmasked, i.e., only the human expert is blindfolded. In addition, we rescale the images from
480× 480 to 128× 128 for both πBC and πBF−BC to facilitate computations.

Procgen maze. Data collection varies between πBC and πBF−BC :
Expert data for behavioral cloning (BC) policy was taken from the dataset provided by [27], which
trains a Proximal Policy Optimization (PPO) expert for 25M steps on 200 training seeds. This expert
dataset contains 1M transitions for each of the Procgen environments. We use a subset of 100 seeds
from the maze environment of this dataset. Then, we sample a subset of 20 successful trajectories
from each seed (level) for a total of 2000 trajectories. This produces a balanced dataset for a fair
comparison with the blindfolded experts (who recorded 20 successful trajectories for each of the 100
seeds).

Blindfolded expert data–To train our blindfolded expert (BF-BC), we collected 2000 human demon-
strations on those same 100 levels. We conducted crowd-sourced data collection for the maze
videogame task by recruiting 20 volunteers who played the game (with masked observations), and
their game trajectories were recorded to serve towards the imitation learning of the blindfolded
experts policy πBF−BC . The participants moved the mouse using the keyboard’s arrow keys and
relied on the Procgen “interactive” GUI for maze observations in full resolution (512× 512) that are
modified to reveal only the mouse’s immediate surroundings (a diameter of 1

8 of the width of the
maze) with the rest of the maze masked out. Note that the state observations that are provided to the
cloning networks are a lower resolution of 64× 64 of the unmasked observations. All participants
will be compensated with vouchers for their efforts, and the experiment setup will be made available
upon publication.
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