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Abstract

Behavioral cloning is a simple yet effective technique for learning sequential1

decision-making from demonstrations. Recently, it has gained prominence as2

the core of foundation models for the physical world, where achieving gener-3

alization requires countless demonstrations of a multitude of tasks. Typically,4

a human expert with full information on the task demonstrates a (nearly) opti-5

mal behavior. In this paper, we propose to hide some of the task’s information6

from the demonstrator. This “blindfolded” expert is compelled to employ non-7

trivial exploration to solve the task. We show that cloning the blindfolded expert8

generalizes better to unseen tasks than its fully-informed counterpart. We con-9

duct experiments of real-world robot peg insertion tasks with (limited) human10

demonstrations, alongside a videogame from the Procgen benchmark. Addition-11

ally, we support our findings with theoretical analysis, which confirms that the12

generalization error scales with
√
I/m, where I measures the amount of task13

information available to the demonstrator, and m is the number of demonstrated14

tasks. Both theory and practice indicate that cloning blindfolded experts gener-15

alizes better with fewer demonstrated tasks. Project page with videos and code:16

https://sites.google.com/view/blindfoldedexperts/home.17

1 Introduction18

Behavioral cloning (BC) is a simple yet effective method for training policies in sequential decision-19

making problems [32, 6]. In BC, an expert demonstrates how to perform a task, and the sequence of20

observation-action data is input to a supervised learning algorithm for training a policy.21

A key question in BC is generalization – how many demonstrations are required to train an effective22

policy. For single tasks, a well-investigated challenge is compounding errors – small mistakes in the23

trained policy may lead to visit states that the expert did not visit, further increasing the prediction24

errors [43]. However, recent results show that using appropriate neural-network architectures, BC can25

learn to solve complex tasks even with a modest number of demonstrations [6, 59], and these results26

are reinforced by recent theory [13]. For multiple tasks (or significant variations of a single task), on27

the other hand, BC still requires abundant data, and recent methods for mitigating data requirements28

include augmentations [26], simulation [52], and fine tuning foundation models trained on large scale29

demonstration data [30, 49, 21]. In this work, we hence focus on generalization to task variations.30

While various works study how to improve generalization via the BC algorithm [43], the policy31

representation [6], and the data diversity [23], one aspect that remains unexplored is the experts32

themselves. Many tasks can be solved in various ways – can some behaviors generalize better than33

others? Recently, in the context of zero-shot reinforcement learning, Zisselman et al. [61] showed34

that certain exploratory behaviors generalize better than goal-oriented, reward-maximizing behavior.35

Intuitively, since exploratory behavior is less goal-oriented, it is less dependent on any particular task36
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Figure 1: Illustration of the learning process. Note that the mask on observations only applies to the
blindfolded expert, while the observations in the logged trajectories are unmasked in both cases.

instance and therefore, more likely to generalize to novel tasks. In this work we ask – can a similar37

principle be useful also for imitation learning?38

Our main idea (depicted in Figure 1) is that by introducing a blindfold – an information bottleneck on39

the expert’s observation that makes it harder to identify the particular task, we can induce the expert40

to express a more exploratory and less task-dependent behavior, which we conjecture will generalize41

better. Importantly, our method does not change the observations used for training the policy but only42

the expert’s behavior, and is therefore compliant with any BC algorithm, and complementary to the43

methods for improving generalization mentioned above. Since the expert’s exploratory behavior is44

typically history dependent, our method makes use of policy architectures that can process a sequence45

of observations, such as recurrent neural networks or transformers [7, 53].46

Theoretically, we prove an upper bound on the generalization that scales with Egen +
√

I/m, where47

I measures the amount of task information available to the demonstrator, m is the number of48

demonstrated tasks, and Egen is a cost associated with the expert not taking optimal actions. For49

domains where the exploratory behavior can still solve the task, Egen is zero, and thus by lowering I50

using a “blindfold” we reduce the generalization error without paying any price. To our knowledge,51

this result is the first of its kind in relating non-trivial properties of the expert’s behavior to multi-task52

generalization of the resulting BC policy.53

Empirically, we demonstrate our approach on a simulated maze game from the Procgen suite [8] –54

a standard benchmark for task generalization, and on a real-robot peg insertion task, based on the55

FMB challenge [25], where the shapes of the peg and the hole define the task. For the Procgen56

maze, our blindfold hides the maze and reveals only the agent’s immediate surroundings to the expert.57

For the peg insertion domain, we let the expert teleoperate the robot by observing images from58

robot-mounted cameras, and mask out the hole shape from the image. In both domains, we find that59

the blindfold induces more exploratory behavior from the expert, which in turn yields significantly60

better generalization to different tasks.61

Our results pave the way to a new and principled approach for collecting demonstrations, both for62

specific problems, and also for more general foundation-model scale endeavors.63

2 Problem formulation64

Throughout the paper, we will focus on a multi-task imitation learning setup in which we aim to clone65

an expert’s behavior from demonstrations of a (small) selection of tasks with the goal to generalize the66

behavior to (many) unseen tasks. As we shall see both theoretically and empirically, the generalization67

is not only affected by the number of available demonstrations, but also by the information available68

to the expert when performing demonstrations. First, let us introduce the setting formally.69

2



Setting. We consider a set of tasks Θ := {θi}Mi=1 and a task distribution P0 ∈ ∆(Θ), where ∆(S)70

denotes the probability simplex over a set S. Each task θ ∈ Θ is defined through a Markov Decision71

Process (MDP [33]) Mθ := (X ,A, pθ, rθ, H), where X , A, H respectively denote the observation72

space, the action space, and the horizon of an episode, which we assume common across all the73

tasks in Θ.1 Instead, each task may have their own transition model pθ : X × A → ∆(X ) and74

reward function rθ : X ×A → [0, 1]. A history-based randomized policy is a sequence of functions75

π := {πh : Th → ∆(A)}H−1
h=0 where Th is the set of h-steps trajectories τh = (x0, a0, r0, . . . xh)76

and T = ∪H−1
h=0 Th. A policy π on the MDP Mθ induces a distribution Pπ

θ over trajectories with the77

following process. An initial observation is sampled x0 ∼ pθ(·). Then, for every step h ≥ 0, an78

action is sampled from the policy ah ∼ π(τh), the reward rh = rθ(x
h, ah) is collected, and the MDP79

emits the next observation xh+1 ∼ pθ(x
h, ah). The process goes on until the step H is reached.280

The Reinforcement Learning (RL [47]) objective for an MDP Mθ is the cumulative sum of rewards81

J(π) := EPπ
θ
[
∑H−1

h=0 rh], where the sequence (r0, . . . rH−1) is taken on expectation over trajectories82

τ ∼ Pπ
θ . An optimal policy for Mθ is denoted as π∗ ∈ argmaxJ(π). For some R ∈ N, we assume83

J(π∗) ≤ R, where typically R = 1 when rewards are sparse, as large as H when rewards are dense.84

Behavioral cloning. In the setting described above, we assume to have access to a dataset of expert85

demonstrations E = {θi ∼ P0, (τi1, . . . τin) ∼ PπE

θi
}mi=1 where τij = (x0

ij , a
0
ij , r

0
ij . . . x

H
ij , a

H
ij , r

H
ij )86

is a H-steps trajectory sampled independently from a policy πE in the MDP θi. Thus, the total87

number of trajectories is |E| = mn and the total number of transitions is mnH . With the available88

data, we aim to clone the expert’s behavior πE , a problem that is known as behavioral cloning [41].89

The idea is to train a policy π̂ to mimic the expert’s policy πE by minimizing a supervised learning90

loss on the demonstrations. While several choice of loss functions could be made [55], here we opt91

for the negative log likelihood as in [13]. The behavioral cloning problem is then92

π̂ ∈ argmin
π∈Π

L(π) :=
m∑
i=1

n∑
j=1

H−1∑
h=0

log

(
1

π(ahij |τhij)

)
(1)

where Π is a policy space of our choice and τhij are h-steps chunk of the trajectories τij in the dataset93

of demonstrations E, ahij is the action taken at step h in τij . While a sufficiently expressive policy94

space Π may allow for a cloned policy π̂ that closely approximates the expert’s on the training data95

L(π̂) ≈ 0, we typically aim for a policy π̂ that can mimic the expert’s behavior on unseen data as well.96

Differently from the common setting [41, 42, 56, 38, 36, 37, 13], here we are not only concerned with97

generalization across unseen observations in X , but also across unseen tasks in Θ. Before proceeding98

with the study of generalization in the next section, we introduce additional notation for later use.99

Additional notation. In our behavioral cloning problem (1), a single data point is given by the100

triplet (θi, τhij , a
h
ij), which we intend as realizations from the random variables (T,X,A) distributed101

as T ∼ P0 and (X,A) ∼ PπE

T respectively. We will turn to one or the other notation when convenient.102

For a random variable A taking values a1, a2, . . . with probabilities p(a1), p(a2), . . ., we denote its103

entropy H(A) = −
∑

i p(ai) log p(ai). For two random variables A,B, we denote their mutual104

information IA;B = H(A) − H(A|B) = H(B) − H(B|A), where H(A|B) is the conditional105

entropy. Finally, we will use the symbol ≲ to hide constant and lower order terms from inequalities.106

3 Generalization analysis107

In the previous section, we detailed how an expert’s policy can be “cloned” from data by solving the108

optimization problem (1). Obviously, fully cloning the expert’s behavior is a far fetched objective109

when limited demonstrations are available: When training data spans only a small portion of the110

observation space X and the set of tasks Θ, how can we extract information on what would the expert111

do in unseen observations and tasks? Nonetheless, we aim for our cloned policy π̂ to transfer at least112

part of the expert’s behavior beyond the demonstrated observations and tasks. In this section, we113

1Note that this does not hinder generality, as we can always take X = ∪θ∈ΘXθ when observation spaces
vary across tasks (ditto for the action space) and H = maxθ∈Θ Hθ when the episode horizons vary.

2Oftentimes, the episode horizon is an upper bound to the episode length, while secondary termination
conditions may end the episode early, as it will be the case in our experimental setting. For the ease of
presentation, we ignore early termination in our setup and consider episodes of length H .
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provide a formal study of the generalization guarantees of the cloned policy π̂, showing an original114

dependence with the information available to the expert when collecting demonstrations. To specify115

what do we mean by “information” in this setting, let us consider the graphical illustration below:116

Xobservation

Ttask

Z
representation

A action

IZ;T

expert's

information bottleneck

Figure 2: Graphical illustration of the expert’s behavior (not
the architecture of the cloned policy).

At each step, the expert takes as input117

an observation (X) that depends on118

the task they are going to demonstrate119

(T ) and processes it into an internal120

representation Z. The demonstrated121

action (A) is then conditioned on Z.122

Note that Z is recurrent and retains123

any information that is relevant to se-124

lect A, including the task information125

that may be available in the observation X . The mutual information IZ;T measures the task-related126

information that goes into Z and, consequently, how much the strategy to select A relies on it.127

We typically expect an expert with full information on the task – large IZ;T – to demonstrate an128

optimal policy specific to the task, without any exploratory actions. Instead, whenever there is an129

information bottleneck between the task information and the expert – small IZ;T – we expect them to130

take exploratory actions to first “understand” the task in order to solve it. We still call them experts as131

we assume their behavior to be optimal with the given information, a concept that has been formalized132

with Bayes-optimal policies [16]. We conjecture that the latter behavior may generalize better to new133

tasks, as the process of understanding the task is more general than just solving it. In the following,134

we provide a formal result based on this conjecture, in which we analyze the generalization gap of135

the cloned policy as a function of the information IZ;T available to the demonstrator.136

Analogously to previous works [e.g., 41, 13], we are interested in deriving an upper bound on the137

performance gap between an optimal policy for each task (π∗) and the cloned policy (π̂). Since we138

are considering a multi-task setting, we average the gap across the task distribution P0,3139

E
T∼P0

[J(π∗
T )− J(π̂)] = E

T∼P0

[
E
Pπ∗
T

[∑H−1

h=0
rh
]
− E

Pπ̂
T

[∑H−1

h=0
rh
]]

. (2)

Before stating the result, we introduce a few technical assumptions. First, we define the generalization140

error of a policy π as141

Egen(π) := E
T∼P0

E
XA∼Pπ∗

T

[1(π(X) ̸= A)] (3)

for a single point indicator loss. We make the following assumptions on the expert’s policy.142

Assumption 1. The expert’s policy πE is deterministic.143

Assumption 2. The generalization error of the expert’s policy is given by Egen(πE).144

Note that we allow the expert’s policy to depend on the history, for which assuming determinism is145

reasonable even when an information bottleneck is applied to the expert. Whereas it is standard in146

the literature to assume the expert is optimal, i.e., Egen(πE) = 0, in the presence of an information147

bottleneck we do not take for granted that the expert is optimal in all the tasks. Nonetheless, if the148

expert’s behavior is Bayes-optimal, non-trivial worst-case bounds on Egen(πE) hold [5], for which149

the generalization error only scales with log(H) under our assumptions. Moreover, in settings where150

the reward is sparse denoting task success, i.e., R = 1, the Bayes-optimal policy may still have151

Egen(πE) = 0 w.r.t. some optimal policy, albeit inefficient in the number of steps.152

Then, regarding the behavioral cloning problem (1), we make a pair of assumptions as follows.153

Assumption 3. The expert’s policy is realizable in the policy space Π, i.e., πE ∈ Π.154

Assumption 4. We have access to an optimization oracle that solves problem (1) with bounded error155

Eopt(π̂) :=
1

mnH

m∑
i=1

n∑
j=1

H−1∑
h=0

1(π̂(τhij) ̸= ahij).

In principle, one can fulfill Asm. 3 by cloning the demonstrations into a rich enough policy space156

Π. However, a more expressive policy space may lead to a harder optimization problem, especially157

when the policies are represented through large neural networks, for which (1) is non-convex.158

3Note that the optimal policy π∗ depends on the task T whereas π̂ is a single policy cloned from data.
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We now have all the ingredients to state our main result.159

Theorem 3.1. For a confidence δ ∈ (0, 1), it holds with probability at least 1− 2δ160

E
T∼P0

[J(π∗
T )− J(π̂)] ≲ RH

(
Egen(πE) + Eopt(π̂) +

√
IT ;Z |A| log(|A|/δ)

m
+

log(|Π|m/δ)

n

)
.

All of the derivations and the hidden constants can be found in Appendix A. Instead, here we unpack161

the bound and discuss the meaning of each term. First, the RH factor accounts for the cost of162

a “mistake” of the cloned policy, i.e., choosing an action different from π∗. The terms Egen(πE)163

and Eopt(π̂) depends on the quality of the expert’s policy and the solver for (1), hence they cannot164

be reduced with additional data. The last term, scaling with the number of trajectories in each165

demonstrated task n−1, comes from a typical behavioral cloning analysis of generalization within166

the training task [e.g., 13]. The more demonstrations we have from a task, the better we can clone167

the expert’s policy in that task. The third term, scaling with the number of demonstrated tasks m−1,168

controls the generalization across tasks and comes from the analysis of generalization induced by an169

information bottleneck [20], which is expressed by IZ;T . The most important finding of our result170

lies in this term: To improve generalization of the cloned policy, we can either increase the number171

of tasks m or apply an information bottleneck – a “blindfold” – to the demonstrator to reduce IZ;T172

without paying any meaningful price, as it is typically Egen(πE) = 0 for tasks with sparse rewards173

and Egen(πE) ≲ log(H) for dense rewards, while other terms remain the same.174

In the next sections, we provide an extensive empirical evaluation showing that this result is far from175

being a theoretical fluke, but translates to practical scenarios as well.176

Overcoming assumptions. The result presented in this section holds for deterministic expert’s177

policies (Asm. 1), finite action space (due to |A| dependency), and finite policy class (due to |Π|178

dependency). Deterministic expert’s policy and finite policy class can be easily overcome by extending179

the in-task generalization result to stochastic policies and infinite policy classes, as done in [13].180

Instead, the dependency on |A| comes from reducing the cloning problem to classification, in order181

to invoke information bottleneck generalization results [20]. In principle, extending the analysis to182

continuous action requires an analogous generalization bound for the regression problem [29].183

4 Experiments184

In this section, we report an experimental campaign to validate the results of previous sections and to185

demonstrate the importance of the expert’s behavior for multi-task BC generalization.186

To this end, we train, with the same BC algorithm, two policies on human demonstrations collected187

by either a traditional expert or a blindfolded expert. We refer to the resulting policies as πBC and188

πBC−BF respectively. We compare them in the success rate achieved on both the demonstrated tasks189

and unseen test tasks. We repeat the experiment twice, first in simulation on the Procgen maze (in190

Appendix B), then on a real robot peg insertion task (in Section 4.1). For both domains, we describe191

how the information bottleneck for the blindfolded expert is obtained in practice.192

4.1 Robotic peg insertion193

Full Obs Masked Obs Masked ObsFull Obs

Maze Peg Insertion 

Figure 3: Demonstration of actual experts’ observations.
Procgen maze (left-pair) and robotic peg insertion (right-
pair). We show the full observation of the Expert and the
masked observation of the BF-Expert.

Peg insertion is a standard prob-194

lem in robotic manipulation. Here,195

we consider the insertion task in196

the Functional Manipulation Bench-197

mark [FMB, 25], which focuses on198

inserting variously shaped pegs into199

tightly matching holes. Different from200

[25], however, we investigate general-201

ization: How training on a fixed set of202

shapes generalizes to inserting unseen203

shapes. We simplify less relevant technical aspects of the benchmark by fixing the peg to the robot204

gripper, and 3D-printing individual holes, so that discerning the target hole becomes trivial (see205

Figure 7-left). In addition, we added several new shapes to increase the benchmark’s variation.206
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Figure 4: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {2, 5}, with the remaining shapes withheld as test-set. Both for k = 2 (left) and
k = 5 (right), cloning blindfolded experts generalizes better than cloning standard experts.

Setup. The task comprises ten pegs of various shapes with corresponding slots. In our setting,207

the robot initiates with the peg already in its grip and needs to insert it into a single-slotted board208

anchored to the surface. Actions are input via a SpaceMouse controller and observations captured via209

two wrist cameras (further details in Appendix C).210

Data collection. We split the ten shapes into training and test shapes. When collecting demonstra-211

tions, only the training shapes are used, while the test shapes serve as a withheld subset for evaluation.212

We collect 400 trajectories from human demonstrations of each training shape, first with a standard213

Expert and then with a BF-Expert. Each trajectory begins at a random initial pose. When the full214

information from the wrist cameras is provided to the human experts, they easily succeed in inserting215

all training shapes. The blindfolded experts are human experts exposed to redacted observations216

from the wrist cameras, which occlude the articulation of the slot as they attempt to insert the peg217

(see Figure 3). We use SegmentAnything2 (SAM2) [39] modified to segment a live video stream and218

prompt it to mask out the shape of the target hole. In addition to the masked-out images from the219

wrist cameras, the initial robot pose varies with each insertion attempt, thus preventing the expert220

from memorizing or inferring the articulation of the target hole. Note, however, that the recorded221

trajectories collected by both the Expert and BF-Expert contain the full unmasked observation. The222

distinction is then the behavior of the two experts, with blindfolded experts taking exploratory actions223

to cope with masked-out images in an attempt to complete the task. The trajectories are collected224

on the training shapes only. Table 1 details the shapes and the average number of steps taken by the225

standard Expert and BF-Expert until successful peg insertion. Clearly, the trajectories demonstrated226

by the BF-Expert are longer, indicating more exploratory behavior, whereby the expert must rely on227

masked-out images until resolving the correct articulation for inserting the peg. In the next section,228

we show that the resulting exploratory behavior is useful for generalization.229

Policy architecture and training. Training was conducted for k ∈ {2, 3, 4, 5} peg shapes, with the230

remaining shapes serving as a withheld test set. We use the same (recurrent) network architecture for231

cloning both the expert πBC and the blindfolded expert πBF−BC . For more detailed specifications232

regarding our architecture, experimental setup, and hyperparameters, please refer to Appendix C.233

Results. Figure 4 shows the success rate for k = 2, 5 training shapes (results for k = 3, 4 are in234

Appendix C). The success rate is the average of 24 insertion attempts per peg shape by the robotic235

arm. The results demonstrate that cloning the BF-Expert with πBF−BC achieves better generalization236

compared with the standard Expert, cloned with πBC , across all peg shapes and over all test subsets.237

Importantly, the advantage of the proposed blindfolding approach is more significant when fewer238

shapes are used to train the model, i.e., when a larger portion of shapes are withheld during training.239

Interestingly, the figure shows that even for shapes encountered in training, the πBF−BC policy240

generalizes better than cloning the standard expert πBC . This is a result of the limited ability of241

expert demonstrations to account for all real-world variations, e.g., lighting and control-loop errors.242

In comparison, the πBF−BC is more robust to these kinds of errors, since it imitates blindfolded243

experts who cannot rely on visual cues, and must compensate in order to solve the task. Additionally,244

it is worth mentioning that certain shapes are more challenging than others. We observe that shapes245

with greater radial symmetry and convexity (such as the circle, triangle, hexagon) are simpler to learn246

than shapes with non-radial symmetry (such as the ellipse, rectangle) or non-convex shapes (such as247

the cut-out-rectangle), as they require a more specific orientation for insertion.248
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5 Related works249

Our work closely relates to imitation learning, information bottleneck, and robotic manipulation.250

Imitation learning theory. The imitation learning literature counts a plethora of contributions, for251

which we refer to recent surveys [19, 60]. Here we are concerned with the generalization of behavioral252

cloning – a dominant imitation learning technique. Previous works [41, 42, 56, 38, 36, 37, 50, 13]253

have studied the theoretical limits of behavior cloning and settled the generalization gap on the254

training task as J(π∗)− J(π̂) ≲ R log(|Π|/δ)/n [13]. These results are mostly limited to cloning a255

Markovian policy in a single MDP. Other works have considered more general settings, including256

cloning history-based policies [4] and imitation learning under partial observability [48]. However,257

the generalization of behavior cloning in a meta learning setup, which is popular in empirical258

works [11, 12], is understudied. The only generalization analysis that strikes close to this setting is,259

to the best of our knowledge, the one in [40]. Differently from ours, they assume online access to the260

set of tasks to further fine-tune the cloned policy and they do not study how the information available261

to the demonstrator affects generalization, which is our main theoretical contribution.262

Imitation learning in robotics. Imitation learning has been fundamental to various robotic263

domains, including autonomous driving [32], locomotion [31], flight [1], and manipulation [12]. A264

recent survey on manipulation, our case of interest here, is provided in [2]. Several works showed265

that imitation is useful for learning complex visuo-motor policies for robotic manipulation, where266

key ideas include predicting a sequence of future actions, and using a diffusion generative model267

to learn a distribution over the action sequence [6, 59, 14]. However, it is known that imitation268

learning requires a large number of demonstrations in order to generalize to variations in the task.269

Previously studied mitigations include 3-dimensional priors in the representation [58], automatic270

data augmentation [26, 15, 57], interactive data collection [18], and using simulations [52]. Another271

approach is leveraging large-scale data, either by collecting diverse task variations [23], or by fine272

tuning robotics foundations models [30, 49, 21]. Differently from the approaches above, we postulate273

that the way a demonstrator performs a task affects generalization, showing that by blindfolding274

the demonstrator we obtain an exploratory behavior, which induces better generalization when275

cloned. The generalization of exploratory behavior has been demonstrated in zero-shot reinforcement276

learning [61]. In comparison, we apply this idea to imitation learning, which requires a different277

approach, and also develop a theoretical explanation for the improved generalization. The idea that278

exploration at test time helps generalization has also been explored in the sim-to-real context in [54].279

Information bottleneck. When learning a X → Y relationship between random variables, the280

information bottleneck [51] prescribes to “squeeze” X into a representation that only retains informa-281

tion to predict Y . This principle is believed to be a factor beyond the generalization capabilities of282

deep learning [45] and formal generalization bounds through the information bottleneck have been283

derived [46, 29, 20]. In imitation learning, the information bottleneck has been used to analyze gener-284

alization in [3]. However, they consider generalization on the training task only and the information285

bottleneck is applied to the representation of the cloned policy. Our work advocates for applying an286

information bottleneck to the demonstrator to improve generalization of the cloned policy.287

6 Conclusion288

We showed that cloning the behavior of blindfolded experts leads to better generalization to unseen289

tasks. We supported this with theoretical analysis and conducted empirical tests that, for the first290

time, explored the concept of blindfolding experts in the context of a real-world robotic task, as well291

as a maze videogame. We observed that in both peg insertion and maze-solving tasks, blindfolding292

the experts encouraged them to enact a more exploratory behavior, cloned to produce policies that293

better generalize. Importantly, our approach achieves better generalization while accommodating any294

imitation learning algorithm.295

Finally, we point out a limitation of the proposed approach: each domain may require a different kind296

of blindfold (e.g., concealing the field of view in the maze videogame, or masking out the shape of the297

hole in the peg insertion task). Too little obstruction does not elicit exploration, while redacting too298

aggressively would impede any informative exploratory behavior (may resort to near random walk).299

An interesting question is how to find the optimal balance, which we reserve for future research.300
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A Proofs468

Here we provide the derivations for the generalization bound in Section 3. The proof requires a469

non-trivial combination of previous results in provable imitation learning, mostly from [13], and the470

generalization guarantees of information bottleneck [20]. These results are reported in Lemma A.3471

and A.4. Before going through the proofs, we state the main theorem again for convenience.472

Theorem A.1 (Theorem 3.1). For a confidence δ ∈ (0, 1), it holds with probability at least 1− 2δ473

E
T∼P0

[J(π∗)− J(π̂)]

≲ RH

(
Egen(πE) + Eopt(π̂) + C(E, πE , π̂)

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

)
where474

• R is an upper bound to the cumulative reward of any policy in any task θ ∈ Θ (Section 2);475

• Egen(πE) is the generalization error of the expert’s policy (Asm. 2);476

• Eopt(π̂) is a bound to the optimization error of solving (1) (Asm. 4);477

• C(E, πE , π̂) is a constant that depends on the training data E, the expert’s policy πE , the478

cloned policy π̂, and other absolute constants as detailed in Lemma A.4.479

Proof. We derive the result as follows480

E
T∼P0

[J(π∗)− J(π̂)]

≤ RH E
T∼P0

E
τ∼Pπ∗

T

[π∗(ah|xh) ̸= π̂(ah|xh)] (4)

≤ RHEgen(π̂) (5)

≤ RH

(
Egen(πE) + E

T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]

)
(6)

≲ RH

(
Egen(πE) + Eopt(π̂) +

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

)
(7)

where (4) and (5) are straightforward from the definitions of the performance J(π) and the general-481

ization error Egen(π) (see Section 2 and (3) respectively), (6) follows from Assumption 2, and (7)482

holds with probability at least 1− δ through Lemma A.2.483

We provide below the lemmas we need to prove the result above.484

Lemma A.2. For a confidence δ ∈ (0, 1), it holds with probability at least 1− δ485

E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)] ≲

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n

where IT ;Z is the mutual information between the task T and the internal representation of the486

demonstrator Z.487

Proof. We derive the result as follows488

E
T∼P0

E
XA∼PπE

T

[1(π̂(X), A)]

≤ E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]− 1

mnH

m∑
i=1

n∑
j=1

H−1∑
h=0

1(π̂(τhij) ̸= ahij) + Eopt(π̂) (8)

≤ E
T∼P0

E
XA∼PπE

T

[1(π̂(X) ̸= A)]− 1

m

m∑
i=1

E
XA∼PπE

θi

[1(π̂(X) ̸= A)] +
8 log(|Π|m/δ)

n
+ Eopt(π̂)

(9)

12



≲

√
IT ;Z |A| log(|A|/δ)

m
+

8 log(|Π|m/δ)

n
+ Eopt(π̂) (10)

where (8) is a trivial consequence of Assumption 4 on the optimization error for solving (1), (9) holds489

with probability at least 1− δ through Lemma A.3 and a union bound on the m training tasks, and490

(10) holds with probability 1− 2δ from Lemma A.4 by omitting constant and lower order terms and491

applying a union bound.492

Lemma A.3 (Sample complexity of behavioral cloning [13]). For a confidence δ ∈ (0, 1), an MDP493

θ, and a deterministic expert’s policy πE , it holds with probability at least 1− δ494

E
XA∼PπE

θ

[1(π̂(X) ̸= A)] ≤ 8 log(|Π|/δ)
n

.

Proof. This result can be obtained through a combination of results in [13]. First, for a policy π̂495

obtained by minimizing the negative log likelihood of the data, as in (1), from Proposition 2.1 [13]496

we have with probability at least 1− δ that497

D2
H(Pπ̂

θ ,PπE

θ ) ≤ 2 log(|Π|/δ)
n

where D2
H(P,Q) =

∫ (√
dP −

√
dQ
)2

is the squared Hellinger distance between the probability498

measures P and Q. Then, through Lemma F.3 [13] we have499

E
XA∼PπE

θ

[1(π̂(X) ̸= A)] ≤ 4D2
H(Pπ̂

θ ,PπE

θ )

which concludes the proof.500

Lemma A.4 (Information bottleneck generalization gap [20]). For a dataset E = {θi ∼ P0}mi=1 of501

m tasks and a single-point convex loss ℓ(π̂(X), A), let us define the generalization gap across the502

prior P0 as503

Γ(E) := E
T∼P0

E
XA∼PπE

T

[ℓ(π̂(X), A)]− 1

m

m∑
i=1

E
XA∼PπE

θi

[ℓ(π̂(X), A)].

For a confidence δ ∈ (0, 1), Γ(E) is upper bounded with probability at least 1− δ by504

β

√
IT ;Z|A log 2 + αγ log 2 +H(Z|T,A) + log(2|A|/δ)

m
+

f(π̂)
√

2γ|A| log(2|A|/δ)
m3/4

+
γg(π̂)

m1/2

where αγ , β, γ are constant values, f(π̂) = maxi∈[m] EXA∼PπE

θi

[ℓ(π̂(X), A)] is the maximum505

training loss, g(π̂) = supXA ℓ(π̂(X), A) is the maximum generalization loss, and H(Z|T,A) is the506

entropy of the demonstrator internal representation given TA.507

Proof. This result is based on Theorem 1 in [20], in which the notation adapted to our setting of508

interest. All of the derivations can be found in [20]. A more coarse version of the bound is given as509

∆(E) ≤
(
β
√
αγ log 2 +H(Z|T,A) + f(π̂)

√
2γ + γg(π̂)

)√
IT ;Z|A|A| log(2|A|/δ)

m

where the first factor can be incorporated into a constant C(E, πE , π̂). We note that the term510

H(Z|T,A) = 0 whenever the demonstrator internal representation is deterministic, which is a fair511

assumption in our setting. Further, the maximum training error f(π̂) is close to zero and upper512

bounded by the optimization error Eopt(π̂). The value of g(π̂) is upper bounded by 1 for the indicator513

loss ℓ(π̂(X), A) = 1(π̂(X) ̸= A). Finally, we note that IT ;Z ≥ IT ;Z|A. With these considerations,514

by omitting all of the constants, we have515

∆(E) ≲

√
IT ;Z |A| log(|A|/δ)

m

as it is reported elsewhere in the paper.516
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Table 1: Average number of steps ± std in the trajectories demonstrated by a standard Expert and a
BF-Expert. The latter takes more steps due to the information bottleneck, which forces exploration.

Mode Maze

Expert 61.2± 1.4 69.4± 3.3 64.8± 2.1 96.6± 4.9 68.8± 2.2 28.6± 1.2
BF-Expert 74.3± 5.9 165.6± 42.9 163.6± 43.6 148.6± 33.1 194.4± 55.0 51.6± 1.8

B Procgen maze517

Procgen [8] is a popular benchmark for measuring sample efficiency and generalization [35, 34, 9,518

22, 61]. It consists of 16 different environments in which new levels are randomly generated on every519

episode, forcing agents to handle changing layouts and textures. Here we focus on the maze “easy”520

environment, in which each level is a 2D maze that the agent navigates to find a piece of cheese. The521

levels are procedurally generated, forcing the agent to handle various maze layouts and backgrounds.522

This task is one of the most challenging tasks for generalization in the Procgen suite, and until the523

results of [61] has seen only minor improvements over random walk. We test how training on a set of524

demonstrated maze tasks generalizes to unseen layouts for the different experts.525

Setup. For training, we consider 100 different levels, with various layouts and goal locations. There526

are 4 discrete actions, move up, down, left, and right in the maze. The observations are 64 × 64527

RGB images of the current state as a top-down view of the maze.528

Data collection. We collect a total of 2000 demonstrated trajectories from 100 different training529

levels (20 trajectories per level). The environment allows for at most 500 input steps, ensuring that530

all the trajectories collected by the experts are successful. The behavior of the standard expert (who531

sees the entire maze) follows the shortest path to the goal. Thus, we skip the human demonstration532

stage and instead collect data with a Proximal Policy Optimization (PPO)[44] agent trained on the533

considered 100 levels until convergence to the shortest path behavior [27]. For the blindfolded expert534

(BF-BC), however, we collect actual human demonstrations. The blindfolded experts are humans535

playing the game with partial observation of the maze, such that only the immediate proximity of the536

agent is visible and the rest of the maze is concealed (see Figure 3, left). As a result, human experts537

cannot directly see the goal location, and exploration of the maze is needed. Note that while the538

observations are masked to the expert, the stored data contains the original (unmasked) observations539

for the cloning algorithm. The trajectories are tuples of observation, action, reward, and done flag540

(ot, at, rt, done). Table 1 details the average number of steps taken by the PPO-Expert (Expert) and541

the blindfolded expert (BF-Expert) across the 100 demonstrated levels. Trajectories taken by the542

PPO-Expert are shorter on average than the BF-Expert, supporting the assumption that the BF-Experts543

exhibit a more exploratory behavior, whereas the PPO-Expert takes the shortest path to the goal.544

Policy architecture and training. Training is conducted from scratch on the demonstrated545

trajectories by minimizing the negative log likelihood 1. We use the architecture from [27] for both546

the Expert (πBC) and BF-Expert (πBF−BC) – a ResNet [17] to encode the observations, which are547

then processed by two fully-connected layers. To capture the exploratory behavior, we add a single548

GRU [7] before the Softmax policy layer (further details can be found in Appendix B).549

Results. In Figure 5, we compare the game score over the training epochs achieved by policy cloning550

of the standard Expert (πBC) and the BF-Expert (πBC−BF ). As we can see from Figure 5-left, the551

performance of the two policies is similar on the training levels, approaching the maximum task score552

of 10. However, as evident from Figure 5-right, while the πBC−BF gracefully improves the test553

score, the πBC policy overfits to the train-set and its test score degrades with further training. This554

is a testament to the inherent generalization capabilities granted by the BF-Expert w.r.t. a standard555

Expert. Note that πBC−BF peaks at the 40 epoch mark (where early stopping can be applied).556

Our training protocol entails 2, 000 trajectories for both the standard and BF experts. Since the557

trajectories resulting from the standard expert (who follows the shortest path) are shorter than those558

of the blindfolded expert (who explores the maze), we also train an additional policy πBC−ext that559

has access to double the amount of trajectories–to match the total number of steps produced by the560

blindfolded experts. Figure 5 shows that even with an equal number of total steps from both experts,561

πBC−ext overfits.562
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Figure 5: Game score as a function of training epochs in the Procgen maze. Training levels (left) and
unseen test levels (right). The mean and standard deviation are computed over 10 seeds.

B.1 Hyperparameters and constants563

For a fair comparison, we conduct a separate hyperparameter search for both πBC and πBF−BC . We564

perform a hyperparameter search for the batch size b ∈ {128, 256, 512, 1024}, for the learning rate565

lr ∈ {1e−3, 1e−4, 1e−5, 5e−3, 5e−4, 5e−5} and for hidden size h ∈ {128, 256, 512, 1024}. We also566

evaluate the performance with and without using a learning decay schedule. Our networks are trained567

using the Adam optimizer. The best hyperparameters are chosen based on the lowest training loss and568

the highest training success rate. We evaluate performance over an average of 10 different random569

training seeds. Figure 6 and Table 2 show the loss function and the chosen hyperparameters. Note570

that in most cases, the best hyperparameters for πBC and πBF−BC turned out to be fairly similar.
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Figure 6: Loss as a function of training epochs for the Procgen maze. Mean (color line) and std
(shaded region) are computed across 10 seeds.

Table 2: List of hyperparameters used in the Procgen Maze experiment.
Hyperparameter πBC πBC−ext πBF−BC

batch size 256 256 256
hidden size 1024 1024 1024
learning rate 0.0001 0.0001 0.0001

learning rate schedule? No No No

571

B.2 Number of steps vs. number of trajectories572

As described in Table 1, the blindfolded expert takes more steps on average to complete each trajectory.573

When comparing the different approaches, we match the number of trajectories, which leads to a574

greater total number of environment steps for the blindfolded expert. Table 3 shows the total number575

of steps available for training the different BC policies, alongside their performance. We also compare576

our results to a standard BC approach with twice the number of trajectories (from the same 100577
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Figure 7: The robotic arm configured for peg insertion (left). Close-up view of various peg shapes
and their boards (right).

seeds) to match the number of environment steps produced by the blindfolded expert. In addition, we578

compare our results to the results reported by [27], who train a BC policy on the Procgen maze with579

a dataset of 1M environment steps taken from a trained PPO expert, on 200 training seeds4.580

Table 3: Performance comparison on the Procgen maze experiment. Our results are reported at epoch
40 (early stopping) when training performance plateaus. The mean and std are computed over 10
seeds. Top performer in bold.

Parameter 1M Expert Dataset in [27] πBC πBC−ext πBF−BC

# of trajectories 15385 2000 4608 2000
# of total env steps 1000000 57166 115290 103238
# of seeds 200 100 100 100
Test performance 4.46± 0.16 3.35± 0.29 3.65± 0.3 6.37± 0.47

We can see in Table 3 that πBF−BC achieves better performance than all other contending policies.581

When compared to the results reported in [27], we can see that our results are better despite signifi-582

cantly less training data (an order of magnitude fewer trajectories) and half the number of training583

seeds.584

C Peg insertion extended results585

This section describes in detail the setting, hyperparameters, and constants used for the peg insertion586

task, as well as provides extended evaluation results.587

C.1 Experimental setup588

The robot setup is shown in Figure 7 in full, alongside a few examples of peg shapes. We use a589

Franka Emika Panda robot arm and teleoperate the robot using a SpaceMouse. For operating the590

robot and the SpaceMouse, we use the SERL open-sourced package [24] with the same settings591

as the authors. The actions are input as SpaceMouse commands: 6-DoF end-effector move and592

twist (location and Euler angles) at 10Hz, tracked by a low-level impedance controller running at593

1KHz. The observations are obtained as RGB-only images from two Intel RealSense D405 cameras,594

mounted on the robot end-effector, which simultaneously capture images5. To avoid background595

distractions in image observations, we place each shaped board inside a black bin. In addition to the596

6-DoF pose of the robot end-effector, the framework also includes the force, torque, and velocity597

information provided by the Franka Panda robot.598

4For 1M expert dataset, we report the results from [27] who evaluated over 5 seeds.
5Following the conclusions of FMB [25], we omit the depth data, as they showed it has a marginal benefit.
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Figure 8 shows a close-up view of all peg shapes (10 shapes in total) and their corresponding boards,599

where the training shapes are in the top row and the test shapes are in the bottom row. Each peg600

insertion attempt starts from 10cm above the hole (Z axis) and a random reset position within a 0.5cm601

box in the XY plane, centered above the hole position. In this experiment, initial rotations about the602

X and Y axes are fixed (0 degrees), while the Z angle starts from a random rotation ranging from −60603

to 60 degrees. Two Realsense cameras are mounted on the robot’s wrist. For the blindfolded expert604

experiment, we mask out the hole to hide its orientation from the experts, such that they cannot infer605

the orientation of the peg and must explore the domain in order to insert the peg.606

Figure 8: Close-up view of all peg insertion tasks. Top row: Training pegs. Bottom row: Test pegs.

C.2 Architecture607

We use a weight-shared frozen ResNet-10 encoder [17] pretrained on the ImageNet dataset [10] for608

encoding the incoming images from both wrist cameras. The resulting embeddings are concatenated609

with the MLP-embedding of the proprioceptive information before entering a single GRU [7] that610

outputs a Gaussian policy. The use of a memory-based architecture is crucial to fully capture the611

non-Markovian exploratory behavior of the blindfolded expert [28].612

C.3 Hyperparameters and constants613

As described in section 4.1, the same architecture is used for learning both πBC and πBF−BC .614

Specifically, we use ResNet-10 [17] encoder pretrained on the ImageNet dataset [10], and a GRU615

of 1024, which we found to produce the best performance for both policies πBC and πBF−BC616

independently. Throughout our experiments, we train our networks using the Adam optimizer. The617

hyperparameters of the networks are the learning rate, learning rate decay, and the batch size. To618

ensure that the best performance of each approach is achieved, we perform a separate hyperparameter619

search for each policy, trained on each subset of shapes. The best hyperparameters are listed in Table620

4. The network outputs a 6-dimensional vector for the mean and a 6-dimensional vector for the621

diagonal covariance matrix of a Gaussian policy (for 6-DoF action space). We train our networks622

using the log-likelihood loss. In all our evaluations, the action is chosen as the maximum likelihood623

of the distribution.624

Table 4: List of hyperparameters used in the peg insertion experiment. The learning rate (lr) schedule
indicates the iteration number for multiplying the lr by 0.5.

Hyperparameter πBC πBF−BC

batch size 1024 1024
hidden size 1024 1024

initial lr 0.0003 0.0003
lr schedule lr ×0.5 at {10, 100, 150, 200}K lr ×0.5 at {50, 100, 150, 200}K

C.4 Results for different combinations of training shapes625

Figure 9 shows the success rate for k = 3, 4 training shapes (and the rest serve as a test set, out of a626

total of 10 peg shapes). The results on the varying amounts of training shapes, further support that627

cloning blindfolded experts generalizes better than the standard BC approach.628
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Figure 9: Success rate of robotic peg insertion for 10 peg shapes (horizontal axis). We train on a
subset of shapes k = {3, 4}, with the remaining shapes withheld as test-set. Both for k = 3 (left) and
k = 4 (right), cloning blindfolded experts generalizes better than cloning standard experts.

D Data collection629

Peg insertion. For both πBC and πBF−BC , we use 400 trajectories for each of the training630

shapes. We, the authors, collected the data by operating the robot manually using a Spacemouse631

control. Recall that the blindfolded expert observes a masked-out view of the board (through the robot632

wrist cameras) such that the orientation of the peg is not directly visible and must be inferred through633

exploration. However, recorded observations in favor of cloning the blindfolded policy πBF−BC634

are unmasked, i.e., only the human expert is blindfolded. In addition, we rescale the images from635

480× 480 to 128× 128 for both πBC and πBF−BC to facilitate computations.636

Procgen maze. Data collection varies between πBC and πBF−BC :637

Expert data for behavioral cloning (BC) policy was taken from the dataset provided by [27], which638

trains a Proximal Policy Optimization (PPO) expert for 25M steps on 200 training seeds. This expert639

dataset contains 1M transitions for each of the Procgen environments. We use a subset of 100 seeds640

from the maze environment of this dataset. Then, we sample a subset of 20 successful trajectories641

from each seed (level) for a total of 2000 trajectories. This produces a balanced dataset for a fair642

comparison with the blindfolded experts (who recorded 20 successful trajectories for each of the 100643

seeds).644

Blindfolded expert data–To train our blindfolded expert (BF-BC), we collected 2000 human demon-645

strations on those same 100 levels. We conducted crowd-sourced data collection for the maze646

videogame task by recruiting 20 volunteers who played the game (with masked observations), and647

their game trajectories were recorded to serve towards the imitation learning of the blindfolded648

experts policy πBF−BC . The participants moved the mouse using the keyboard’s arrow keys and649

relied on the Procgen “interactive” GUI for maze observations in full resolution (512× 512) that are650

modified to reveal only the mouse’s immediate surroundings (a diameter of 1
8 of the width of the651

maze) with the rest of the maze masked out. Note that the state observations that are provided to the652

cloning networks are a lower resolution of 64× 64 of the unmasked observations. All participants653

will be compensated with vouchers for their efforts, and the experiment setup will be made available654

upon publication.655
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