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ABSTRACT

Physics-informed neural networks (PINNs) are attracting significant attention for
solving partial differential equation (PDE) based inverse problems, including elec-
trical impedance tomography (EIT). EIT is non-linear and especially its inverse
problem is highly ill-posed. Therefore, successful training of PINN is extremely
sensitive to interplay between different loss terms and hyper-parameters, includ-
ing the learning rate. In this work, we propose a Bayesian approach through data-
driven energy-based model (EBM) as a prior, to improve the overall accuracy and
quality of tomographic reconstruction. In particular, the EBM is trained over the
possible solutions of the PDEs with different boundary conditions. By imparting
such prior onto physics-based training, PINN convergence is expedited by more
than ten times faster to the PDE’s solution. Evaluation outcome shows that our
proposed method is more robust for solving the EIT problem. Our code is avail-
able at: https://rooshenasgroup.github.io/eit_ebprior/.

1 INTRODUCTION

Physics-informed neural networks (PINNs) (Raissi et al., 2019) parameterize the solution of a partial
differential equation (PDE) using a neural network and trains the neural network to predict the solu-
tion’s scalar value for any given point inside the problem’s domain by minimizing the residual PDE
and associated boundary conditions (BCs). Various other factors such as gradient stiffness (Wang
et al., 2021) and complex parameter settings, lack of constraints and regularization (Krishnapriyan
et al., 2021), often cause major issues in training PINNs and makes them very sensitive to hyper-
parameters and regularization. For example, depending on the PDE, the interplay between BCs
residuals and PDEs residuals can result in invalid solutions that mostly satisfy one type of con-
straints over the others. In general, we believe that some of these problems are attributable to the
lack of joint representation in PINNs, as these models are assumed to implicitly learn that two points
in a close vicinity possibly have a similar solution. However, this representation is hard-coded in the
numerical methods as they update the solution value of each mesh point based on the neighboring
mesh points.

In this work, we augment PINNs with a joint representation via a Bayesian approach. We train a
data-driven prior over joint solutions of PDEs on the entire domain and boundary points. This prior
relates the predictions of PINNs via explicit joint representation and encourage learning a coherent
and valid solution. Priors have been studied extensively in statistical approach to solve inverse
problems (Kaipio et al., 2000; Ahmad et al., 2019; Abhishek et al., 2022; Strauss & Khan, 2015)
and also recently have been used in data-driven approaches as well (Ramzi et al., 2020). More
importantly, we focused on the non-linear and ill-posed electrical impedance tomography (EIT)
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inverse problem and experimentally show that using our data-driven Bayesian approach results in
accurate, fast, and more robust training algorithms. We have the following contributions:

• We present various experimental studies which circumvent instability in training PINNs for
the EIT problem.

• We introduce a data-driven prior in the form of an EBM for improving the training conver-
gence and accuracy of PINNs.

• We propose a robust training framework for the EIT semi-inverse problem.

2 AN INVERSE PROBLEM WITH APPLICATION TO ELECTRICAL IMPEDANCE
TOMOGRAPHY (EIT)

The inverse problem that we are interested in is inspired by applications in imaging paradigms
such as electrical impedance tomography (EIT) and geophysical imaging for ground water flow.
The EIT inverse problem reconstructs the unknown electrical conductivities σ of a body Ω ⊂ Rd

with d ∈ {2, 3} from measurements of finite electrical potential differences of neighboring surface
electrodes. The differential equation

−∇ · σ∇u = 0 in Ω (1)

governs the distribution of electric potential u in the body. Additionally, its accompanying BCs are
given as following:

σ

(
∂u

∂n

)
= g on ∂Ω Neumann BC,

u = f on ∂Ω Dirichlet BC
(2)

An EIT experiment involves applying an electrical current on the surface ∂Ω of the region Ω to be
imaged, which produces a current density σ ∂u

∂n |∂Ω = g (Neumann data) where n is a unit normal
vector w.r.t u associated with Ω at its boundary. The current also induces an electric potential u in the
body, whose surface value u|∂Ω = f can be measured. Thus by repeating several such experiments
in which surface current is given and the corresponding surface voltage (Dirichlet data) is measured,
we obtain the information on the Neumann-to-Dirichlet (NtD) operator which can be denoted by:

Λσ : g 7→ f. (3)

In the full EIT version, the problem is to reconstruct σ from just the surface current and voltage
measurements. The estimate of the unknown conductivity σ can be reconstructed from a set of EIT
experiments (Somersalo et al., 1992; Borcea, 2002; Hanke & Brühl, 2003). In a simplified version
that we attempt to solve here using our novel method, we will be interested in recovering σ from
the measurements of u in the interior of the medium. This problem formulation is a close to the
groundwater flow problem, wherein the source term on the right hand side of Eq. 1 is non-zero. It
should also be noted, that a similar formulation was studied in Bar & Sochen (2021).

In our training paradigm, we need to simulate u for the interior of the medium for any underlying σ.
We achieve that by first solving the forward problem by training neural network that can predict the
value of the function u(x) at any given point x ∈ Ω, for any given σ. Once we have access to this
pre-trained network that we will call u-Net, we will subsequently train another network to predict
the value of σ(x) for any x ∈ Ω from point-wise measurements of a function u(x) that satisfies
Eq. 1 and agrees with the Neumann and Dirichlet boundary data given from Eq. 3.

2.1 USING PINNS FOR EIT

Following the construction of physics-informed neural networks (PINNs), we can parameterize both
σ and u using neural networks, called σ-Net and u-Net, respectively, and train them such that the
values of σ-Net and u-Net for any provided point in the interior or boundary of the medium respect
the PDE in Eq.1 or its boundary conditions1 – depending on the position of the point. The forward

1To the best of our knowledge only Bar & Sochen (2021) claim to train the EIT inverse problem using
PINNs by jointly training u-Net and σ-Net, but unfortunately, their implementation is not open-source and we
were unable to reproduce their results based on the details in the paper. See Appendix A.5 for more details.
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problem assumes that σ distribution is known everywhere inside the domain Ω. The u-Net takes
mesh points in Cartesian space (x, y) ∈ R2 as input and correspondingly learns to recover correct
potential values u at the points inside the domain Ω, given the voltages only at electrodes ue. To
train u-Net, we utilize Eq. 1 and, 2 to write them in a functional form as follows:

Ld
PDE = ∇ ·

(
σd ∇ud

)
∀d ∈ Ω (4)

Lb
BC =

[
σb

∂ub

∂nb

]
∀b ∈ ∂Ωb, Le

BC =
[
σe

∂ue

∂ne
− ge

]
∀e ∈ ∂Ωe. (5)

Here, Ld
PDE governs the potential u in forward and conductivity σ distributions in inverse problem

respectively. Lb
BC are the combined BCs where we enforce Neumann BC twice, once on all boundary

points ∂Ωb except electrodes and separately on electrodes ∂Ωe. Thus, σ-Net and u-Net represent
their respective distributions as parameterized functions σ(x, y) and u(x, y). We can then write a
common objective function which is used to train both problems as follows:

Lθ =
α

Ω

∑
d∈{Ω}

(Ld
PDE)

2 +
β

M

∑
m∈topM LPDE

|LPDE|+
γ

|∂Ωb|
∑

b∈∂Ωb

|Lb
BC|+

δ

|∂Ωe|
∑

e∈∂Ωe

Le
BC, (6)

where α, β, γ and δ control the contribution of each terms to the overall loss. The required deriva-
tives of u and σ w.r.t coordinates x and y are calculated via reverse mode differentiation provided by
autodiff frameworks such as PyTorch or Tensorflow. Following Bar & Sochen (2021), we penalize
violations in Ld

PDE twice using L2 and L∞ norm variants in order to provide a stronger approximate
solution. Finally, in order to train u-Net more efficiently, we enforce additional regularizers:

Lθu-Net = Lθ +
ϵ

|∂Ωe|
∑

e∈{∂Ωe}

|ue − fe|+ ζ ∥wu∥2 (7)

The second term of Eq. 7 enforces Dirichlet BC only on electrodes while the last term controls the
weights of u-Net using a weighed L2 regularization on θu with temperature ζ.

We train σ-Net (parameters are denoted as θσ) such that it learns the conductivity distribution over
all given mesh points to solve the semi-inverse problem. Similar to the forward problem training,
σ-Net incorporates the main PDE and the Nuemann BCs seen in Eq. 6 as a part of its training
objective in order learn the conductivity inside Ω. However, the problem is known to be illposed
and thus needs strong regularizers to improve the quality of reconstructions in conjunction with
Lθ. For instance, we regulate the norm of gradients ∇x,yσ inside Ω to promote sparse edges in
predictions, and we penalize any conductivity prediction of less the one (= conductivity of vacuum)
using Lh

hinge = max(0, 1− σh) ∀h ∈ {Ω ∪ ∂Ω}.

The combined σ-Net training objective assimilating the elliptical PDE, its BC, and all the aforemen-
tioned mentioned regularizers is given as follows:

Lθσ-Net = Lθ +
1

|∂Ω|
∑

b∈∂Ωb

|σb − σ∗
∂Ωb

|+ τ

|Ω|
∑
d∈Ω

|∇x,yσd|+
υ

|Ω ∪ ∂Ω|
∑

h∈{Ω∪∂Ω}

Lh
hinge + ζ ∥wσ∥2 , (8)

where σ∗
∂Ωb

is the known conductivity on the boundary points.

3 ENERGY BASED PRIORS

Ld
PDE from Eq. 6 can be interpreted as a residual of violation (of Eq. 1), noted as r for simplicity.

Assume r (residual of entire domain) follow a multi-variate Gaussian distribution with a zero mean
and diagonal covariance matrix. Therefore, maximizing the likelihood of p(r|σ; θσ) results in the
similar optimization as minimizing

∑
d∈Ω(Ld

PDE)
2 with respect to θσ (parameters of σ-Net). Now

we can define our Bayesian approach but assuming σ follows the prior distribution p(σ):

max
θσ

log p(r|σ) + log p(σ), (9)

where σ is parameterized by θσ via σ-Net. We interpret p(σ) as possible solutions to the PDE
defined by Eq. 1 for different boundary conditions. We then define the prior distribution using
energy-based models (EBMs) (LeCun et al., 2006): (p(σ) ∝ exp(−Eϕ(σ)). Several techniques
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have been proposed for training EBMs, including contrastive divergence (Hinton, 2002), noise-
contrastive estimation (Gutmann & Hyvärinen, 2010), score matching (Hyvärinen & Dayan, 2005),
and denoising score matching (Vincent, 2011). We found that denoising score matching (DSM) is
more stable, less compute intensive as it avoids expensive second order partial derivatives involved
in score matching, and ultimately generates more realistic σ solutions in our setting. DSM trains
the energy function such that its vector field (∇σm

log pϕ(σm)) matches the vector field of the
underlying distribution p(σm), which is approximated by perturbing the empirical data distribution
with Gaussian noise of different intensities. See Song & Ermon (2019), Song & Ermon (2020) for
more details.

We jointly estimate a noise conditional energy function Eϕ(σ, µi) for all noise-perturbed data dis-
tributions conditioned on various noise scales µi for i ∈ [1 . . . L], which are chosen such that
µ1 > µ2 > · · · > µL. In our work, we chose L = 20 linearly spaced noise scales: µi ∈ [2, 0.01].
Essentially, the training objective is to minimize the following:

L(ϕ;µi) =
1

L

L∑
i=1

λ(µi)

[
1

2
Ep(σ) Ez∼N (0,I)

∥∥∥∥∇σEϕ(σ̂, µi)−
z

µi

∥∥∥∥2
2

]
, (10)

where λ(µi) > 0 is a coefficient function chosen as λ(µ) = µ2 and finally, σ̂ = σ + µiz is the
noise perturbed version of conductivity distribution σ̂ ∼ N (σ, µ2

i I). In order to use Eϕ as a prior,
in contrast to the standard DSM training that trains a score network (S(.) = −∇zE), we directly
train the energy network. See Appendix A.3 for the details on training Eϕ and also for generated
samples from Eϕ and their closest training data points (Fig. 6).

Upon successful training of the Eϕ using Eq. 10, the energy function E∗
ϕ(σ, µL) will assign low

energy values to σ that are more likely to present in the real world (valid solution of Eq. 1) and high
energy value to unlikely assignments (invalid assignments that violates Eq. 1 greatly).

Now we can rewrite the final training objective of σ-Net (using Eq. 8) as follows:

Lθσ-Net = Lθ +
1

|∂Ω|
∑

b∈∂Ωb

|σb − σ∗
∂Ωb

|+ τ

|Ω|
∑
d∈Ω

|∇x,yσd|

+
υ

|Ω ∪ ∂Ω|
∑

h∈Ω∪∂Ω

Lh
hinge + ζ ∥wσ∥2 − κE∗

ϕ(σ, µL)
(11)

where κ is the weight of the prior in the overall loss.

4 EXPERIMENTS

Our EIT data simulation setup primarily consists of phantom generation and forward solution construction
via finite element solver. Initially, we construct various discretized solutions of σ on a 2D mesh-grid of size
128 × 128 to obtain phantoms Ω1...Z . In particular, we randomly choose the anomaly location, radius, shape
deformity, quantity and their conductivity on a circular mesh. The target σ values are chosen randomly be-
tween ∈ [3, 15] for either 1, 2 or 3 anomalies per mesh with restrictions on their locations, so as to not let the
anomalies touch each other and the boundary. We also assume a uniform background conductivity of σ = 1
(simulating vacuum) on locations devoid of any anomaly and σ = 0 outside the circle mesh. Upon selection
of phantom configuration followed by discretization, we smooth our solutions following Evans (2010) using
a Gaussian low-pass filter of size 200 and standard deviation 3 to obtain smoother solutions. We then gen-
erate 6512 such smoothed phantoms for EB prior training and 1628 for testing. Majority of these datasets
contain circular anomalies with varying radii and a few thousand examples with minor shape deformity (el-
lipsoids). Furthermore, we standardize both train, test sets to [0, 1] interval by dividing all samples using the
maximum conductivity σ value obtained from training set. We additionally generate a few hand-crafted phan-
toms to train the u-Net and σ-Net for forward and inverse problems, seen in the first row of Fig. 2. These
configurations are specifically designed to be more challenging by setting higher shape deformity, larger vari-
ance in σ values for each anomaly, and placing them in challenging locations inside the mesh. This is to
purposefully make the physics-based training and inference more challenging to ensure extreme robustness.
Note that there are no phantoms in the EBM training set which resemble these hand-crafted samples. With
regards to our forward problem simulation setup, we assume that Neumann condition is imposed on the entire
boundary where the function g in Eq. 2 is given as a trigonometric pattern (Siltanen et al., 2000) as follows:
g = 1√

2π
cos (ηω + ψ), n ∈ Z, where ω is the angle along dΩ, and η and ψ are the current frequency and

phase, respectively. We use one current pattern where n = 1 and ψ = 0 for all our experiments. Thus, to
obtain the forward solution, we use finite element method (FEM) solvers by utilizing discretized hand-crafted
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phantoms profile (σ value, anomaly location) and current g as input. We then solve for u everywhere and obtain
the solver based solution on circular mesh.

4.1 EXPEDITED SEMI-INVERSE PROBLEM EVALUATION

We now present results of our proposed framework. As discussed in prior sections, at each step of σ-Net training
procedure, the current prediction σ̂ is fed to the trained EB prior E∗

ϕ(σ̂, µL) to obtain a scalar energy value.
This energy value provides useful supervision to σ-Net and essentially expedites the convergence of PINNs.
This phenomenon can be viewed in Fig. 1. Here, each sub-figure represents the learning curve of σ-Net with the
choice of metric as mean squared error (MSE), separately trained to recover conductivity of various phantoms
with and without the inclusion of EB prior. Although the model is trained for 3000 epochs, for brevity, we
only showcase the first 500 epochs of the curve due to more interesting properties here. Evidently, the PINNs
with EB prior converge much faster within the first few 100 epochs than the training without prior. In case of
phantom 4, the convergence is more than ten times faster while also aiding the PINN to avoid getting stuck in a
local minima. Corresponding to these learning curves, we present Fig. 2 showing the quality of reconstruction
for each phantom.
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Figure 1: PDE solution convergence and accuracy analysis via σ MSE for various phantoms.
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Figure 2: Comparison of ground truth σ and predictions from PINN with EB prior.

4.2 COMPARISON WITH BASELINES

We now compare the performance of our framework with baselines Bar&Sochen Bar & Sochen (2021), Deep
Galerkin Methods (DGM) Sirignano & Spiliopoulos (2018) by using the hand-crafted phantoms. In order to
introduce these works, there are a few differences that set our works apart. Firstly, both Bar & Sochen (2021),
Sirignano & Spiliopoulos (2018) utilized high resolution mesh which naturally enable PINNs to learn the
problem more efficiently due to availability of large input data points to solve the PDE and BC. Additionally,
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Bar & Sochen (2021) utilizes a large number of randomly selected boundary voltages to enforce the Dirichlet
BC in Eq. 2 during forward solution learning. In contrast, we train our u-Net and σ-Net in a much more
challenging settings while using a low-resolution mesh and only 16 boundary voltages during the forward
problem training. The driving point here is that, one can view Dirichlet BC as a L1 regression loss over given
boundary voltages. When more boundary points and their corresponding voltages are revealed for learning
u, the more stronger this supervision signal, which enables learning the forward map and anomaly location
more accurately. However from practical EIT system standpoint, it is unrealistic to collect such close proximity
fine-grained information over many boundary points. Apart from these difference, we treat Bar & Sochen
(2021) and Sirignano & Spiliopoulos (2018) as special cases of our work. Our work primarily differs in the
incorporation of the energy scalar from EBM and the new hinge loss term in Eq. 8 to improve the performance.
Given the high non-linearity and ill-posed nature of the EIT problem, even a slight change in one parameter
can lead to highly varying solutions. Hence, we tune our loss penalties differently to obtain higher quality
reconstructions. We show a list of common parameters among the considered baselines. We now present the

Table 1: List of common hyperparameters among various baselines

Method Hyper-parameters
α β M γ δ ϵ ζ τ ν κ

DGM 1 0 0 1 1 1 0 0 0 0
Bar&Sochen 0.01 0.01 40 1 1 1 1e-8 0.01 0 0

Ours 0.05 0.05 40 1 0.1 100 1e-6 0.01 10 0.0001

Table 2: Evaluation of our method, DGM (Sirignano & Spiliopoulos, 2018), and Bar & Sochen
(2021) with and without proposed EB Priors.

Phantom Metric DGM DGM
w/ EB Prior Bar&Sochen Bar&Sochen

w/ EB Prior Our Method Our Method
w/ EB Prior

Ω1

MSE ↓ 3.26 ± 0.028 0.13 ± 0.002 2.57 ± 0.041 0.16 ± 0.026 0.13 ± 0.001 0.03 ± 0.001
PSNR ↑ 8.84 ± 0.038 22.77 ± 0.079 9.89 ± 0.068 22.02 ± 0.645 22.79 ± 0.034 29.94 ± 0.146
MDE ↓ 2.29 ± 0.024 0.36 ± 0.003 1.84 ± 0.028 0.23 ± 0.002 0.35 ± 0.002 0.12 ± 0.014

Ω2

MSE ↓ 6.19 ± 0.021 0.3 ± 0.004 5.18 ± 0.039 0.2 ± 0.015 0.4 ± 0.002 0.06 ± 0.001
PSNR ↑ 10.15 ± 0.014 23.3 ± 0.054 10.92 ± 0.033 25.00 ± 0.325 22.04 ± 0.023 30.58 ± 0.079
MDE ↓ 2.85 ± 0.015 0.39 ± 0.003 2.2 ± 0.023 0.25 ± 0.002 0.43 ± 0.003 0.1 ± 0.009

Ω3

MSE ↓ 1.56 ± 0.032 0.03 ± 0.001 1.37 ± 0.017 0.11 ± 0.013 0.04 ± 0.001 0.01 ± 0.0001
PSNR ↑ 12.05 ± 0.089 29.03 ± 0.193 12.62 ± 0.056 23.45 ± 0.47 28.2 ± 0.061 35.46 ± 0.088
MDE ↓ 1.38 ± 0.033 0.25 ± 0.002 1.09 ± 0.021 0.2 ± 0.002 0.25 ± 0.002 0.11 ± 0.009

Ω4

MSE ↓ 2.00 ± 0.013 0.08 ± 0.002 1.64 ± 0.019 0.2 ± 0.036 0.07 ± 0.001 0.01 ± 0.0001
PSNR ↑ 15.04 ± 0.028 29.07 ± 0.099 15.92 ± 0.052 25.23 ± 0.779 29.68 ± 0.034 38.45 ± 0.052
MDE ↓ 1.47 ± 0.013 0.26 ± 0.004 1.1 ± 0.02 0.19 ± 0.001 0.25 ± 0.003 0.12 ± 0.011

Ω5

MSE ↓ 7.39 ± 0.046 1.38 ± 1.25 6.68 ± 0.018 0.5 ± 0.084 0.57 ± 0.003 0.22 ± 0.004
PSNR ↑ 14.83 ± 0.027 24.03 ± 1.99 15.27 ± 0.012 26.67 ± 0.694 25.95 ± 0.025 30.17 ± 0.082
MDE ↓ 2.97 ± 0.012 0.73 ± 0.439 2.47 ± 0.017 0.28 ± 0.004 0.44 ± 0.002 0.08 ± 0.016

semi-inverse problem evaluation results for considered baselines in Table 2 for all five phantoms. We primarily
use three metrics namely, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and mean difference
error (MDE) to evaluate the quality of reconstruction of σ solution while learning the objective Eq. 8. Note
that MDE is computed as the difference in means of σ over all (x, y) ∈ Ω and dΩ. We then utilize the hyper-
parameters shown in Table 1 to train σ-Net for our framework, while the neural network presented in Bar &
Sochen (2021) is used on both Bar & Sochen (2021) and Sirignano & Spiliopoulos (2018) baselines. All these
models are trained separately on all five phantoms while using the same settings, once without the EB prior and
once under the presence of EB prior. These experiments are repeated for 10 runs and the averaged metrics along
with their standard deviation error is presented. The main observation from Table 2 is, that by incorporating
the EB prior in PINN training enables lower error rates and higher quality reconstructions for the semi-inverse
problem. Additionally, we can also see that the EB prior can be easily plugged into any PINN-based framework
and vastly improve the underlying training, showcasing our methods strong generalizability.

4.3 LEARNING RATE CONVERGENCE

We aim to show through this study that the learning rate vastly affects PINN’s solution accuracy and this
inherent instability can be easily alleviated by introducing EB priors, even while using large learning rates.
For this study, we keep all the parameters of our proposed method shown in Table 1 fixed and vary only the
learning rate during σ-Net training with Eq. 8. We choose 0.0001, 0.001, 0.01 and 0.1 learning rates to study
their effects on the semi-inverse PINN training with and without the EB prior. Note that, we still decay all these
chosen learning rates using exponential decay with rate 0.9 over every 200 epochs. The results of learning rate
studies are presented in Fig. 3. As seen in this figure, the true σ value for the ellipsoid anomalies is 5 while the
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Figure 3: Training robustness of our proposed work with EBM prior for various learning rates on
Phantom 1.

smaller circular anomaly in the bottom-middle has σ = 2. We can evidently see that the PINN without EB prior
fails to converge to an accurate solution with regards to row three. More importantly, the maximum σ values
for row one and two’s color-bars indicate the failure to reach an accurate conductivity prediction. Clearly, the
PINN without EB prior never matches the solution accurately, under all learning rates. More adversely, the
PINN produces a trivial solutions while using a learning rate that is either too low or too high. On the other
hand, PINNs augmented with EB prior always produce accurate solutions of slightly varying degree of MSE
as seen in row two, three of Fig. 3. More importantly, the training session with extremely large learning rate
LR = 0.1 still manages to produce a reconstruction although the accuracy might be lower. This proves the
robustness of our framework and instigates clear evidence that PINN training is being improved by a very large
margin while incorporating EB priors. Other advantages such as, burden of choosing the optimal learning rate
is also alleviated.

4.4 SENSITIVITY ANALYSIS VIA RANDOM PARAMETER SEARCH

As discussed in these earlier sections, PINNs are extremely sensitive to the balance of interplay among different
hyperparameters. The training procedure essentially becomes an optimization problem where one has to tune
the right settings in order to converge to a highly accurate solution or obtain a failed trivial solution. The
problem of choosing parameters is even more challenging in EIT as it is highly non-linear and ill-posed. We
thus study the effect of changing the strength of various loss weighting penalties mentioned in Table 1 while
simultaneously observing the sensitivity of the EB prior trained with various data quantities. As a preliminary,
we first bifurcate the 6512 training samples into a smaller training, validation sets (20% set aside for cross-
validation). After splitting, we separately train five EB priors (labeled as 100% data priors) on the whole
training set. In addition, we train another five EB priors (labeled as 1% data priors) separately, by randomly
selecting only 1% of the data that was used for training the 100% data priors. Note that the model architecture
and all hyper-parameters are fixed for consistency, while only the batch sizes are different; 64 and 16 for 100%
and 1% data priors respectively (see more training details and synthetic generated samples in Appendix A.4).

The final step is to evaluate all the trained EBMs and perform sensitivity analysis of PINN training. For this,
we restrict the search space to α, β, γ and δ parameters in Eq. 6 as they are the main terms influencing the
solution quality of the EIT inverse problem. We randomly choose a single number from each of the search
configuration set and start training the PINN: α ∈ [0.01, 0.05, 0.1, 0.5, 1], β ∈ [0.01, 0.05, 0.1, 0.5, 1], γ ∈
[0.01, 0.1, 0.5, 1.0, 2.0] and finally δ ∈ [0.001, 0.01, 0.1, 0.5, 1.0, 2.0]. We use Phantoms 1 and 5 to conduct
100 random search runs for PINN with each of the ten EBMs as priors, and 500 runs for PINN without EB
prior. We then average the results of every training category (w/o prior, 1% and 100% prior) and display them
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in Fig. 4. Here, the y-axis in Fig. 4a indicates that a large number of random runs were successful to solve
Phantom 1 and reach a set upper bound of 0.3 MSE and 3000 epochs. Fig. 4b also corresponds to Phantom 1,
however we set a strict MSE threshold of 0.3 and check for number of experiments that reach this threshold by
the end of all 3000 epochs. Similar observations can be said about Figs. 4c and 4d which are studies related
to Phantom 5. In conclusion, we have substantial evidence that the PINN with EB prior always has higher
success rates in producing highly accurate σ reconstructions. More importantly, the PINN with the EB prior
converges much faster towards near-zero MSEs regardless of quantity of the EBM training sample sizes. Thus,
showcasing the strong robustness of our proposed framework.
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Figure 4: Sensitivity analysis of σ-Net while randomly searching the optimal weights in Eq. 6.

4.5 SEMI-INVERSE WITH NOISY DATA

In the final set of experiments, we test the robustness of our framework while learning from noisy data. Initially,
we add uniform noise of various standard deviation levels such as 0.1, 0.25, 0.5, to corrupt the 16 boundary
measurements. The u-Net learns the forward problem under these noisy settings and approximates a noisy-
forward map (see Appendix A.2 for evaluation of u-Net under noisy settings). While moving to the semi-inverse
problem, we use data originating from the noisy u-Net predictions and check σ-Net’s ability to withstand
measurement noise. These results can be seen in Table 3. The performance degradation is visible when noise
std increases, more noticeable in some phantoms that others. Despite these noisy conditions, incorporating the
EB prior during σ-Net training greatly improves the predictions and robustness.

Table 3: Performance evaluation of σ-Net using noisy measurements

Noise Metric Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5
w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior

0
MSE ↓ 0.13 0.03 0.4 0.06 0.04 0.01 0.07 0.01 0.57 0.22
PSNR ↑ 22.79 29.94 22.04 30.58 28.20 35.46 29.68 38.45 25.95 30.17
MDE ↓ 0.35 0.12 0.43 0.1 0.25 0.11 0.25 0.12 0.44 0.08

0.1
MSE ↓ 0.094 0.03 3.38 1.64 0.02 0.03 2.84 0.01 0.49 0.11
PSNR ↑ 24.25 29.91 12.77 15.91 31.50 29.72 13.53 36.78 26.67 33.09
MDE ↓ 0.29 0.16 1.09 0.52 0.21 0.21 0.02 0.17 0.42 0.23

0.25
MSE ↓ 0.17 0.02 0.58 0.08 0.03 0.03 0.09 0.03 0.67 0.31
PSNR ↑ 21.55 31.20 20.40 29.10 28.95 29.29 28.46 33.86 25.24 28.56
MDE ↓ 0.37 0.23 0.50 0.29 0.24 0.16 0.26 0.17 0.49 0.37

0.5
MSE ↓ 0.13 0.06 0.37 0.13 0.61 0.57 0.09 0.02 5.22 4.39
PSNR ↑ 22.96 26.05 22.42 26.84 16.15 16.41 28.69 35.43 16.35 17.09
MDE ↓ 0.34 0.13 0.42 0.13 0.14 0.22 0.25 0.17 0.90 0.34

5 RELATED WORK

Inverse problems for elliptic PDEs are ill-posed and highly nonlinear, which makes it imperative to include
regularization methods for obtaining a reasonable reconstruction Jin et al. (2012); Jin & Maass (2012). Many
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approaches exit for solving the EIT inverse problem with rigorous theoretical justifications. For e.g., variational
methods for least-square fitting (Jin et al. (2012); Jin & Maass (2012); Ahmad et al. (2019)), the factorization
method (Kirsch & Grinberg (2008)), the d-bar method (Mueller et al., 2002; Isaacson et al., 2004; Knudsen
et al., 2009), the monotonicity shape estimate Harrach & Ullrich (2013), the level set method Liu et al. (2017;
2018) and series inversion methods Arridge et al. (2012); Abhishek et al. (2020) to name a few. Besides,
regularized Newton type methods such as Haber (2005); Lechleiter & Rieder (2008) are also popular. For the
groundwater flow model, some important references can be found in Frühauf et al. (2005); Russell & Wheeler;
Oliver et al. (2008).

Driven by the need to quantify uncertainties, many works proposed to solve such inverse problems in a para-
metric Bayesian setting (Kaipio et al. (2000; 2004); Strauss & Khan (2015); Ahmad et al. (2019); Strauss et al.
(2015)). However, the error in these methods rely on discretization schemes hence, alternative non-parametric
Bayesian inversion mesh-independent methods have been proposed. Following Stuart (2010), a Bayesian level
set method was proposed for reconstruction of piecewise smooth conductivity in Dunlop & Stuart (2016), for
reconstruction of piecewise continuous permeability in ground water flow model in Iglesias et al. (2014) and for
reconstruction of conductivity in certain Sobolev spaces in Abraham & Nickl (2019). Recall that in a Bayesian
setting, the posterior p(θ|σ) ∝ p(θ)p(σ|θ) depends on the space of conductivities σ and a prior. The prior
p(θ), in addition to encapsulating our subjective belief about the functional space; also introduces regulariza-
tion in the problem. Great strides have been made in using efficient MCMC sampling methods which increased
computational efficiency of such Bayesian inversion methods (Cotter et al., 2013).

With the rise of machine learning methods, many solutions for solving the EIT with neural networks were
proposed. In a supervised setting, Hamilton & Hauptmann (2018); Fan & Ying (2020); Hamilton et al. (2019);
Agnelli et al. (2020) primarily use convolutional neural network (CNN) architectures to predict the conduc-
tivity σ based on boundary measurements. Deviating to other inverse problems, Ulyanov et al. (2018); Lucas
et al. (2018) describe the use of various generative models in this context. Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020) and variants are a great example. Patel & Oberai (2020); Patel et al. (2020;
2022); Molin (2022) solve various image and physics-inspired inverse problems by training sampling algo-
rithms that jointly learn measurements y and latent vectors z with generator (G) as a prior. This allows for
generation of new samples given the posterior, G and unseen y. In contrast, Marinescu et al. (2020) use pre-
trained generators as priors for maximum a-posteriori (MAP) inference over a given z, known corruption model
f and recover a corrupted input image x such that G(z∗) = argmaxz p(z)p(x|f ◦G(z)), where G(z∗) is the
clean image. Lastly, Adler & Öktem (2018; 2019) trained conditional-WGANs in supervised setting (pair-wise
data and y) and sample a posterior given conditional G, z, and unseen y. Their second approach allows for
trainable point-wise inference networks similar to our work, but these rely on supervised data. In comparison,
our work learns both EBMs and PINNs in an unsupervised manner directly in data space, resulting in a more
direct and faster inference.

Instead of using implicit GAN priors via latent spaces, score and energy models are more direct due to stronger
a-priori beliefs. In this work, we share a connection with score matching (SM) Hyvärinen & Dayan (2005)
through DSM. Many score-based works solved linear inverse problems utilizing DSM (Ramzi et al. (2020);
Song et al. (2021); Kawar et al. (2021); Chung & Ye (2022)). For MRI/CT reconstruction, Ramzi et al. (2020)
score-prior with posterior sampling using annealed HMC; Song et al. (2021); Chung & Ye (2022) score-prior
with posterior sampling using reverse-time stochastic differential equations; Kawar et al. (2021) score-prior
with posterior sampling using LD and singular value decomposition (SVD); Kadkhodaie & Simoncelli (2021)
generalize DSM and plug-and-play priors (Venkatakrishnan et al., 2013) and sample with an implicit CNN
denoising prior. While, Zach et al. (2022) use EB priors trained with contrastive divergence and solve linear
inverse problems by sampling with proximal gradient descent. Clearly, the similarities between our work and
aforementioned are purely prior design choices; (1) DSM is used for training the prior; (2) all our works use
discretized inverse map solutions (MRI/CT images or EIT σ-phantoms in our case) as input data; (3) there is
no dependency on measurement data (labels) during prior training. The important difference is that we solve
non-linear, ill-posed physics-based inverse problem of EIT using DSM priors without sampling the posterior.

6 CONCLUSION

Physics-informed neural networks are an important category of data-driven PDE solvers. However, PINNs are
not stable and robust for more complicated problems. In this work, we look at the EIT problem and show that
we can improve the stability and robustness of PINNs training (w.r.t noisy measurement and hyper-parameter
selection) via a Bayesian approach. We describe a data-driven prior using energy-based methods, which can
easily be used with the other loss terms and robustly train PINNs. In the EIT setting, our experimental results
also show that PINNs converge faster and also to a more accurate solution when trained with prior. In our future
work, we will study using priors for potential in order to the improve the training of PINN for full EIT inverse
problem and other PDE problems.
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A APPENDIX

The model architectures and training implementation details for u-Net, σ-Net and EBM are shared here.

A.1 SEMI-INVERSE IMPLEMENTATION DETAILS

The common loss weighting penalties used by both the u-Net, σ-Net models are: α = 0.05, β = 0.05,
M = 40, δ = 0.1 and ζ = 1e−6. The Nuemann loss penalty γ = 0.1 and Dirichlet loss penalty ϵ = 100
are specific to the forward problem only. While, γ = 1, τ = 0.01, ν = 10 and lastly κ = 0.0001 are
specific inverse problem. Additionally, both models use the same multi-layer perceptron (MLP) architecture
with residual connections (Wang et al., 2021) and consist of 4 hidden layers with tanh activation and 64
neurons each. A single output neuron with no activation aids in predicting the solutions for given mesh points.
We train both these models with a batch size of 1000 using ADAM (Kingma & Ba, 2014) optimizer for 3000
epochs with an initial learning rate of 0.005 and decay it exponentially with a rate of 0.9 over intervals of every
200 epochs. We primarily use NVIDIA Titan RTX GPU for all our training purposes and the training time for
forward and semi-inverse problems separately take around takes ∼ 8 minutes for 3000 epochs.

A.2 FORWARD PROBLEM IMPLEMENTATION AND RESULTS

Table 4 shows the evaluation results of u-Net for the forward problem on the considered phantoms. We study
the quality of forward problem solutions from u-Net while adding random uniform noise to the 16 electrode
measurements of various levels. As seen in these experiments, the quality degradation is obvious due to increas-
ing levels of noise. To counter this effect, we tune the penalty weights α, β, γ, δ on individual loss terms in Eq.
7 for increasing noise levels to improve the quality of reconstructions. The weights on Dirichlet BC ϵ = 100,
L2 model parameter regularization ζ = 1e − 6 are fixed for all experiments and phantoms. Additionally, we
use the same parameter set for all phantoms while only tuning them for a given noise level, which showcases
the robustness of our method.

Table 4: Performance evaluation of u-Net for solving Forward problem with various noise levels

Noise Std Metric Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5

0
Parameters: α = 0.05, β = 0.05, γ = 0.1, δ = 0.1

MSE ↓ 0.00046 0.00091 0.00027 0.00058 0.00036
PSNR ↑ 39.41 33.40 46.90 47.02 40.51

0.1
Parameters: α = 0.1, β = 0.1, γ = 0.1, δ = 0.1

MSE ↓ 0.0090 0.070 0.02076 0.0208 0.026
PSNR ↑ 26.51 14.55 28.13 31.48 21.91

0.25
Parameters: α = 0.05, β = 0.05, γ = 1, δ = 0.1

MSE ↓ 0.0426 0.1665 2.667 1.722 0.039
PSNR ↑ 16.70 13.854 7.04 12.30 20.22

0.5
Parameters: α = 0.1, β = 0.05, γ = 1, δ = 0.1

MSE ↓ 1.041 2.25 10.59 2.46 4.70
PSNR ↑ 5.89 0.52 1.05 3.01 0.587

A.3 EB PRIOR IMPLEMENTATION AND EVALUATION

Implementation We train our EB prior on σ solutions (as described in Section 4) by perturbing them with
Gaussian noise of 20 noise scales µi ∈ [2, 0.01] in order to learn by DSM training. We visualized some of
the training samples in Fig. 7 and the compared the nearest samples in EBM training data and inference set of
PINN in Fig. 5. We then create a deep convolutional neural network with multiple residual He et al. (2015)
connections inspired by the architectures in Song & Ermon (2019) and Song & Ermon (2020). In particular,
our model consists of a single 3 × 3 convolution layer followed by series of 16 convolutional residual and
residual-downsampling blocks in the form of an encoder block of typical convolution encoders. Each of these
blocks consist of convolutional and Group normalization Wu & He (2018) layers with a group size 32. We then
learn the input features by gradually down-sampling them to smaller resolutions. Upon feature map reduction
at the end of the last convolution layer, we introduce a single hidden dense layer of 256 units to jointly learn the
compressed σ features along with the noise scales, followed by a final dense layer which outputs scalar energy
values. We use ELU non-linearity for all our EBM layers except the last energy layer which has no activation.
We then train this EBM model to denoise the noise perturbed σ solutions via the objective seen in Eq. 10 for
2000 epochs, with a batch size of 64, using ADAM optimizer with a fixed learning rate of 0.0001. The training
time takes around 15 hours while using a NVIDIA Titan RTX GPU.
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Figure 5: Comparison of ground truth σ and nearest data in EBM training set

Evaluation After the EBM E∗
ϕ(σ, µ) is trained, we can generate samples by using annealed Langevin dy-

namics (LD) Song & Ermon (2019) sampling. We start from a fixed prior distribution such as uniform noise
and initially run LD for 100 steps with a step size of sn1 , using first µ1 noise scale and draw samples from
Eϕ(., µ1) by adding Gaussian noise. Next we draw samples fromEϕ(., µ2) by reducing the step size and refine
the samples. We continue running LD until all the noise scales are used to sample and we finally arrive at the
final step size snL = aµ2

i /µ
2
L, where a = 0.0002 in our inference run. During the final step of last noise

scale µL, we perform 1 step of gradient descent instead of LD to obtain an better denoised version of the σ
generations. In Fig. 6, we display some of these curated σ solutions along with their nearest neighbors in the
training set which are obtained by calculating the L2 distance between all training set examples.
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Figure 6: Comparison of training set samples to nearest generated σ using annealed Langevin dy-
namics.

A.4 ENERGY-BASED PRIOR SENSITIVITY ANALYSIS

In this section, we provide some additional details to understand EB prior sensitivity to the quantity of train-
ing data. For fairness in comparison w.r.t original experiments, we fix the EBM architecture and all training
hyperparameters which were originally used for the main results mentioned in Appendix A.3, except for the
batch size so as to cater for small training sample sizes and better generalization. We additionally employ early
stopping with a patience of 100 epochs by monitoring the validation loss in order to avoid problems such as
over-fitting and memorization of data. After training with DSM on all the EBMs, we sample from the best and
worst energy models trained on the 1% subset data using annealed Langevin dynamics and generate synthetic
data shown in Figs. 8 and 9 respectively.

The ground truth training set samples are provided in Fig. 7 for visual comparison. As seen in these figures,
despite being trained on such small sample sizes, the EBMs are capable of understanding salient features such
as anomaly shape, anomaly conductivity σ values. Moreover, these models even display the ability to infer
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Figure 7: Ground truth data from training set

essential rules for our mathematical model such as, anomalies should not touch each or the circular boundaries.
In case of the best 1% data EBM in Fig. 8, it even shows capabilities to generate unseen modes which contains
more than one, two or three anomalies modes in training set and of different shapes and conductivities.

A.5 FULL-INVERSE EIT

We share some implementation details and evaluations of a much harder and highly ill-posed inverse problem
of EIT. By problem definition, given a set of boundary voltages at Ne electrode locations and its corresponding
current g, the goal is to recover the target σ and u inside Ω jointly while all the networks are initiated from
scratch. We train all PINN models jointly.

LU =
1

K

K∑
k=1

Lθuk -Net (12)

Lθσ-Net = Lθ +
1

|∂Ω|
∑

b∈∂Ωb

|σb − σ∗
∂Ωb

|+ τ

|Ω|
∑
d∈Ω

|∇x,yσd|

+
υ

|Ω ∪ ∂Ω|
∑

h∈Ω∪∂Ω

Lh
hinge + ζ ∥wσ∥2 − κE∗

ϕ(σ, µL),
(13)

As seen in Eq. 12 and Eq. 13, we use K = 8 which correspond to multiple current patterns g from Eq. 2 in
our joint training scheme. Here, each current pattern is learnt a separate u-Net like model and one σ-Net model
learns the conductivity distribution inside Ω. Essentially, we obtain K loss values from K current patterns
which are then averaged and used to update every u-Net and σ-Net model simultaneously. We present some
of the phantoms along with their σ-Net reconstructions used in evaluation of this joint training strategy in Fig.
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Figure 8: Uncurated synthetic samples generated from the best EBM trained on 1% of the training
set.

10. As seen in this figure, we are able to recover σ accurately for simple anomalies like row one. However,
when the phantom configuration becomes complex, the joint training fails. We reserve this for our future work
in scope of improving this method further.

A.6 FINITE ELEMENT METHOD BASELINE

We provide an additional baseline which is based on Finite Element Method (FEM) reconstructions. More
particularly, we utilize Levenberg-Marquard (LM) (Horesh et al., 2007) which is an iterative second order
gradient-based optimization algorithm and compare its performance against both our proposed semi-inverse
and full-inverse EIT setups. The problem formulation according to LM is shown below:

Lσ = argmin
σ

||F(σ)−BVσ||2 + ν||w|| (14)

Here in Eq. 14, F(σ) is a forward operator that maps the conductivity σ distribution into the data space,BVσ are
the given boundary measurements at designated electrode locations. And lastly, w is a regularization operator
with temperature ν which allows for inclusion of any prior information and generally encourages goodness of
data fitting properties through the data residual. We then use an iterative approach to compute the gradient g
and Hessian H to optimize the final objective function ∇ as follows:

∇γ = H g where;

H = JT J + λtI + ν∇2w

g = JT ||F(σ)−BVσ||2 − ν∇w
(15)

The term J in Eq. 15 refers to the Jacobian matrix which is computed by ∂BVσ/∂σ, I is the identity matrix
and λt is a hyper-parameter to control the strength of Hessian. The LM method explicitly employs second
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Figure 9: Uncurated synthetic samples generated from the worst EBM trained on 1% of the training
set.

order derivatives inside the objective while using only the measurements on the electrodes to reconstruct the
images. Hence, it is fair when LM is compared against our full-inverse EIT PINN as both methods use similar
data to compute the final solution. We provide Fig. 10 and Table 5 in order to showcase the performance of
our proposed approach. As seen here, our method outperforms LM on all metrics and achieves higher accuracy
while pinpointing the location of anomaly. Lastly, although it is unfair to compare LM to semi-EIT as the semi-
EIT problem has access to the data from the internal domain, we provide results on the phantoms displayed in
Fig. 2 for the sake of completeness. The corresponding results are shown in Table 6 and Fig. 12.

Table 5: Comparison of Full-EIT augmented with EB Prior and Levenberg-Marquard FEM recon-
structions from phantoms seen in Fig. 10.

Phantom Metric Levenberg-Marquard Full-EIT
with EB Prior

MSE ↓ 1.63 1.30
Ω1 PSNR ↑ 16.04 16.90

MDE ↓ 0.10 0.022
MSE ↓ 0.36 0.11

Ω2 PSNR ↑ 18.46 23.53
MDE ↓ 0.31 0.20
MSE ↓ 1.01 0.12

Ω3 PSNR ↑ 14.02 23.26
MDE ↓ 0.26 0.22

A.7 COMPUTATION COST AND MEMORY USAGE ANALYSIS

We now present the last set of results by comparing the computation cost of PINN training with and without
inclusion of the EB prior. The histograms in Figs. 13 show the computation time (in seconds) using various
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Figure 10: Unsupervised Full Inverse EIT evaluation on some considered phantoms.
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Figure 11: Comparison of ground truth phantoms used for Full-EIT in Fig. 10 and predictions from
FEM-based iterative gradient Levenberg-Marquardt.

Nvidia GPUs along with the peak memory consumption (in MB) for 500 runs of PINN without prior and 500
runs of PINN with EB prior. It is straightforward to infer that the PINN without an EB prior is faster in com-
putation time and uses less memory however, the numbers for our proposed framework are quite comparable.
One on an average, the compute for PINN with EB priors is slightly less than twice that of normal PINN. Given
the massive performance and stability guarantees, the meagre increase in time and compute cost is admissible.
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Figure 12: Comparison of ground truth phantoms used for Semi-EIT in Fig. 2 and predictions from
FEM-based iterative gradient Levenberg-Marquardt.

Table 6: Comparison of Semi-EIT augmented with EB Prior and Levenberg-Marquard FEM recon-
structions from phantoms seen in Fig. 2.

Phantom Metric Levenberg-Marquard Semi EIT
with EB Prior

MSE ↓ 1.59 0.03 ± 0.001
Ω1 PSNR ↑ 12.07 29.94 ± 0.146

MDE ↓ 0.07 0.12 ± 0.014
MSE ↓ 1.63 0.06 ± 0.001

Ω2 PSNR ↑ 16.04 30.58 ± 0.079
MDE ↓ 0.10 0.1 ± 0.009
MSE ↓ 0.39 0.01 ± 0.0001

Ω3 PSNR ↑ 18.18 35.46 ± 0.088
MDE ↓ 0.001 0.11 ± 0.009
MSE ↓ 0.99 0.01 ± 0.0001

Ω4 PSNR ↑ 18.14 38.45 ± 0.052
MDE ↓ 0.02 0.12 ± 0.011
MSE ↓ 6.66 0.22 ± 0.004

Ω5 PSNR ↑ 15.39 30.17 ± 0.082
MDE ↓ 0.40 0.08 ± 0.016
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Figure 13: Histogram analysis of computation cost and memory usage for our proposed EB prior
with PINN framework on 1000 random runs.
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