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Abstract—Though graph representation learning (GRL) has
made significant progress, it is still a challenge to extract and
embed the rich topological structure and feature information in
an adequate way. Most existing methods focus on local structure
and fail to fully incorporate the global topological structure.
To this end, we propose a novel Structure-Preserving Graph
Representation Learning (SPGRL) method, to fully capture
the structure information of graphs. Specifically, to reduce
the uncertainty and misinformation of the original graph, we
construct a feature graph as a complementary view via k-
Nearest Neighbor method. The feature graph can be used to
contrast at node-level to capture the local relation. Besides, we
retain the global topological structure information by maximizing
the mutual information (MI) of the whole graph and feature
embeddings, which is theoretically reduced to exchanging the
feature embeddings of the feature and the original graphs to
reconstruct themselves. Extensive experiments show that our
method has quite superior performance on semi-supervised
node classification task and excellent robustness under noise
perturbation on graph structure or node features. The source
code is available at https://github.com/uestc-lese/SPGRL.

Index Terms—Mutual information, contrastive learning, semi-
supervised classification, graph convolutional network

I. INTRODUCTION

Ubiquitous graph or network data expressed in the form
of node connections and features raise a new challenge for
traditional machine learning techniques to discover knowledge
[1]. Graph convolutional network (GCN) has proved to be
a powerful tool to handle graph-structured data in a vari-
ety of domains, such as social network, chemistry, biology,
traffic prediction, text classification, and knowledge graph.
Most GCN-based methods learn a low-dimensional and dense
representation by reconstructing the feature or graph in the
autoencoder framework [2]. How to fully inherit the rich
information from topological structure and node attribute is
crucial to the success of GCN [3].

Basically, GCN processes graph by means of aggregating
features from neighborhood nodes. In essence, it performs
as low-pass filtering on feature vectors of nodes and graph
structure only provides a way to denoise the data [4]. Some
works have theoretically analyzed the weaknesses of GCN in
feature information fusion [5]. Unlike some other deep neural
networks, stacking multiple layers leads to over-smoothing,
which seriously degrades the feature discriminability and
deteriorates the performance of downstream tasks [6].

§ Ruiyi Fang and Liangjian Wen have equal contributions.
* Zhao Kang is the corresponding author.

In order to better fuse the feature information, graph atten-
tion network (GAT) [7] has been proposed, which can assign
an adaptive weight to each edge of the graph. Later, Wang et
al. [5] propose adaptive multi-channel GCN (AMGCN), which
better fuses the topological structure and feature information
through the attention mechanism. However, the attention-
based approach needs to calculate the weight of each edge,
which consumes much computation time and memory for large
graphs.

Recently, contrastive learning, as a burgeoning unsupervised
learning mechanism, has achieved superior performance in
various tasks [8]. It learns effective representations by con-
trasting positive samples against negative samples through the
design of pretext tasks including the design of data augmenta-
tion schemes and object functions. Some representative works
are GRACE [9], SLAPS [10], GCA [11]. These methods
mainly explore the local relation without preserving structural
information. Recently, maximizing mutual information (MI)
has been adopted to explore rich information from topological
structure and node features. Deep Graph InfoMax (DGI) [12]
maximizes the MI between the hidden representation and
a summary vector. However, its simple averaging readout
function damages the distinguish capability between nodes
and makes the global-level representation unreliable. These
methods largely rely on ”augmentation engineering”, which
requires extensive domain knowledge and even incurs negative
effects.

To get rid of above issue, some other methods use two
neural networks to learn from each other to boost performance.
For example, SCRL [13] performs representation consistency
constraint by constructing feature graph and topology graph
for cross-prediction, and effectively improves the feature infor-
mation fusion ability of GCN. Some other data augmentation
strategies, such as GEN [14] and PTDNet [15], have also
been developed. Graphical Mutual Information (GMI) [16]
instead tries to maximize the MI between the target node
and its neighbors at node-level, and the proximity topological
structure at the edge level. As shown in Fig.1, maximizing MI
at multiple levels does not really consider MI at the global
level. They mainly align embeddings between the same nodes
in different topological structures, rather than using the local-
global relationships.

To better explore the global structure, we propose a novel
Structure-Preserving Graph Representation Learning (SPGRL)
method, which maximizes the MI between topology graph
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Fig. 1. An overview of DGI (left), GMI (middle) and SPGRL (right).
Different from them, SPGRL maximizes the MI between the graph and feature
embedding to explore the global structure information.

and feature embeddings. First, we construct a feature graph to
provide a complementary view, which allows the feature infor-
mation to propagate through the feature space, thus reinforcing
the feature information and alleviating the uncertainty or error
in the original graph.The original graph is often extracted from
complex interaction systems that inevitably involve uncertain,
redundant, wrong and missing connections [14]. Specifically,
we use k-Nearest Neighbor (kNN) method to build the feature
graph Â, which could preserve high-order proximity. Then, the
output embedding Zt from A and Zf from Â are obtained
through GCN. They are refined by local node-level relation
through contrastive loss. Finally, we maximize MI between
embeddings and topology graph, which is theoretically equiv-
alent to minimizing exchange reconstruction loss. Therefore,
we reconstruct original graph with the embedding of feature
graph and reconstruct feature graph with the embedding of
original graph.

Our main contributions are summarized as follows:
• We propose to preserve the global structure information

by maximizing the MI between topology graph and
feature embeddings. Theoretical analysis shows that this
can be achieved by exchange reconstruction.

• Our method explores the local node-level relation with the
aid of feature graph. Feature view preserves high-order
relations and helps eliminate the uncertainty or error in
the original graph.

• Comprehensive experiments on benchmarks show the
superior performance of our method compared to other
state-of-the-art methods in semi-supervised node classi-
fication task. Our method also outperforms other main-
stream methods even with very few labels and under noise
perturbation.

II. RELATED WORKS

A. Graph Representation Learning

Due to the success of deep learning, graph neural network
(GNN) approach has been developed. ChebNet [17] uses the
Chebyshev polynomial approximation to optimize a general

graph convolutional framework based on graph Laplacian.
GCN [3] further simplifies the convolution operation using a
localized first-order approximation. GAT [7] assigns different
attention weights to different nodes in the neighborhood to bet-
ter fuse node features. Demo-Net [18] builds a degree-specific
GNN for the representation of nodes and graphs. MixHop [19]
utilizes multiple powers of adjacency matrix to learn general
mixing of neighborhood information. However, these methods
only use a single topology graph for node aggregation. Some
methods propose to solve this problem for better fusing node
features by constructing feature graph. AMGCN [5] utilizes
attention mechanism to merge embeddings extracted from
topology graph and feature graph. However, these attention-
based approaches are often computation expensive.

B. Self-supervised Learning

Recently, there have been several works focusing on self-
supervised learning methods in the graph domain. M3S [20]
utilizes a multi-stage, self-supervised learning approach to im-
prove the generalization performance of GCN. GRACE [9] is a
graph contrastive representation learning framework that seeks
an optimal common representation. GCA [11] uses adaptive
graph structure augmentation to construct a contrastive view
and distinguishes the embeddings of the same node in two dif-
ferent views from the embedding of other nodes. SLAPS [10]
solves the problem of underutilization of information in unsu-
pervised learning by constructing a homogeneous node graph
at graph level and contrasting it. DGI [12] first proposes
the use of MI in the graph domain, which maximizes MI
between hidden representation and a summary vector from a
corrupted graph. But DGI’s simple averaging readout function
compromises global information. Unlike them, GMI [16] uses
a discriminator to directly measure the MI between the input
graph and output graph in terms of features and edges, not
directly using local-global relationships. Due to these design
flaws, they fail to take full advantage of the global graph
information. Furthermore, most contrastive learning methods
involve random destruction at nodes and edges. This could
introduce noise to the original graph data and reduce the
generalizability of the learned representations. Hence, there
is much room to improve information utilization at the node
level and graph level.

III. THE PROPOSED METHODOLOGY

The aim of our proposed method is to fully exploit potential
correlations between graph structure and node attributes. In
particular, not just capturing graph information from the orig-
inal graph, we also exploit the feature view via feature graph.
Ultimately we inherit rich representation information from
feature graph view and topology graph view by maximizing
global level MI.

A. Feature Extraction

We first outline the general setting of graph representation
learning. A graph can be represented as G = {A,X},
where A ∈ RN×N is the adjacency matrix of N nodes
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and X ∈ RN×d is the node feature matrix, i.e., each node
is described by a vector with d dimensions and belongs to
one out of M classes. Aij = 1 represents that there is
an edge between node i and j, otherwise Aij = 0. In our
study, we derive the feature graph Ĝ =

{
Â,X

}
, which shares

the same X with G, but has a different adjacency matrix.
Therefore, topology graph and feature graph refer to G and
Ĝ respectively.

To represent the structure of nodes in the feature space, we
build feature graph Ĝ via kNN. First, a similarity matrix S is
computed using the Cosine similarity, i.e., the similarity be-
tween node feature xi and node feature xj is Sij =

xi·xj

∥xi∥·∥xj∥ .
Then, for each node, we choose the top k nearest neighbors
and establish edges. In this way, we construct the structure of
the feature graph as Â.

To extract meaningful features from graph, we adopt GCN
as our backbone. With the input graph G, the (l + 1)-
th layer’s output H(l+1) can be represented as: H(l+1) =
ReLU(D− 1

2AD− 1
2H(l)W (l)). where ReLU is the Relu ac-

tivation function (ReLU(·) = max(0, ·)), D is the degree
matrix of A, W (l) is a layer-specific trainable weight matrix,
H(l) is the output matrix in the l-th layer and H(0) = X .
In our study, we use two GCNs to exploit the information in
topology and feature space. The output is denoted by Zt ={
zt1, z

t
2, · · · , ztN

}
and Zf =

{
zf1, z

f
2, · · · , zfN

}
, respectively.

B. Local Node-level Relation

Unlike previous graph contrastive learning models, SPGRL
uses feature graph as a complementary view to capture local
relation at the node-level. The feature graph characterizes
high-order relations, thus the feature view encodes high-order
structure information. Therefore, it provides complementary
information to the original graph, which just describes the first-
order relation and inevitably involves uncertainty or error. To
learn a consistent representation, we uncover the local pairwise
relations between nodes via a contrastive learning mechanism.
Concretely, we treat zti as a positive sample of zfj only when
i = j satisfies and zti are negative samples of zfj for i ̸= j, and
vice versa. Then the loss can be formulated as:

Lcr =−
N∑
i=1

log
exp(sim(zti , z

f
i ))

exp(sim(zti , z
f
i ))+

∑N
j=1,j̸=i exp(sim(zti , z

f
j ))

−
N∑
i=1

log
exp(sim(zfi , z

t
i ))

exp(sim(zfi , z
t
i ))+

∑N
j=1,j̸=i exp(sim(zfi , z

t
j ))

,

(1)

where sim(·, ·) is the Cosine function. Intuitively, the purpose
of Eq.(1) is to make the representations of nodes within local
neighborhood as close as possible and the representations of
nodes from different groups as distinct as possible.

C. Global Graph-level Relation

Node contrastive method is not an effective way to attain
global structural information in the topology graph. Exist-
ing approaches ignore the mutual corroboration effects of

structures and attributes. The embedding of feature graph is
expected to extract some relevant structure information from
topology graph to improve the accuracy of downstream tasks.
To this end, we propose to maximize the MI I(Zf ,A) between
Zf and whole topology graph A to preserve the structure
information in topology graph. In addition, we also improve
the embedding of topology graph Zt by maximizing I(Zt, Â)
between Zt and whole feature graph Â.

Let’s take I(Zf ,A) as an example to show the
computation process. Mathematically, I(Zf ,A) =

Ep(Zf ,A)

[
log p(Zf ,A)

p(Zf )p(A)

]
. According to the relation

between entropy and MI, we can decompose I(Zf ,A)
as follows: I(Zf ,A) = H(A) − H(A|Zf ), where
H(A|Zf ) = −Ep(Zf ,A)

[
log p(A|Zf )

]
is the conditional

entropy, and H(A), the entropy of A, is irrelevant to Zf .
Hence, maximizing I(Zf ,A) is equivalent to maximizing
−H(A|Zf ). However, the computation of H(A|Zf ) is
intractable due to unknown of the condition distribution
p(A|Zf ).

We assume qϕ(A|Zf ) is a variational approximation to
p(A|Zf ). Since KL(p(A|Zf )||qϕ(A|Zf )) ≥ 0, we can de-
rive that: Ep(Zf ,A)

[
log p(A|Zf )

]
≥ Ep(Zf ,A)

[
log qϕ(A|Zf )

]
.

Hence, Ep(Zf ,A)

[
log qϕ(A|Zf )

]
is the lower bound of

Ep(Zf ,A)

[
log p(A|Zf )

]
. Specifically, qϕ(A|Zf ) can be re-

garded as the decoder function whose equation is as fol-
lows: qϕ(A|Zf ) =

∏N
i=1

∏N
j=1 qϕ

(
Aij | zfi , zfj

)
, where

the probability of an edge existing between two nodes is:
qϕ

(
Aij = 1 | zfi , zfj

)
= sigmoid

(
zf

T
i zfj

)
.

Above optimization objective of maximizing I(Zf ,A) is
equivalent to:

LA
re = Ep(Zf ,A)[log qϕ(A | Zf )]. (2)

Likewise, we can obtain a similar objective of maximizing
I(Zt, Â) as follows:

LÂ
re = Ep(Zt,Â)[log qϕ(Â | Z

t)]. (3)

To summarize, we propose the exchange-reconstruction
mechanism to maximize I(Zf ,A) and I(Zt, Â) between the
embeddings and graph structures. Then the global MI loss can
be formulated as:

Lre = LA
re + LÂ

re. (4)

D. Node Classification

Ideally, Zt and Zf should be close to each other. To preserve
the information from feature graph and topology graph, Zt and
Zf are concatenated as the consensus representation R [13].
Then we use R for semi-supervised classification, which is re-
alized through a linear transformation and a softmax function.
B and a are weights and bias of the linear layer, respectively.
Y′ is the prediction result and Y′

ij is the probability of node i
belonging to class j, Y′ = softmax(B ·R+a). Suppose there
are T nodes with labels in the training set. We adopt cross-
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entropy to measure the difference between prediction label Y′
ij

and ground truth label Yij, i.e.,

Lcl = −
T∑
i=1

M∑
j=1

Yij lnY
′
ij. (5)

Finally, by combining Lcl, Lre and Lcr, the overall loss
function of our SPGRL model can be represented as:

L = Lcl + αLre + βLcr, (6)

where α and β are trade-off hyper-parameters. The parameters
of the whole framework are updated via backpropagation. The
detailed description of our algorithm is provided in Algorithm
1.

Algorithm 1: The proposed algorithm SPGRL
Input: Node feature matrix X; original graph adjacency matrix A; node label

matrix Y; maximum number of iterations η
Compute the feature graph topological structure Â according to X by running
kNN algorithm.

for it = 1 to η do
Zt = GCN (A,X)
Zf = GCN ′(Â,X) // embeddings of two graphs
Zt and Zf interact with local node-level information.
qϕ(Â|Zt) = Decoder(Zt)
qϕ(A|Zf ) = Decoder′(Zf ) // reconstructing two graphs
qϕ(Â|Zt) constrained by Â, qϕ(A|Zf ) constrained by A
Calculate the overall loss with Eq.(6)
Update all parameters of framework according to the overall loss

end
Predict the labels of unlabeled nodes based on the trained framework.
Output: Classification result Y′
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Fig. 2. Averaged time cost per epoch of SPGRL, DGI and GMI for six
datasets. (*) indicates out-of-memory error and vertical axis is in log-scale.

IV. EXPERIMENT

A. Setup

We use six commonly used datasets to evaluate the effec-
tiveness of our method [13]. The experiments are implemented
in the PyTorch platform using an Intel(R) Xeon(R) Gold 5218
CPU, and GeForce RTX 3090 24G GPU. Technically, two lay-
ers GCN is built and we train our model by utilizing the Adam
optimizer with learning rate ranging from 0.0001 to 0.0005. In
order to prevent over-fitting, we set the dropout rate to 0.5. In
addition, we set weight decay ∈ {1e− 4, · · · , 5e− 3} and k
∈ {2, · · · , 20} for kNN graph. For fairness, we follow Wang
et al. [5] and select 20, 40, 60 nodes per class for training
and 1000 nodes for testing. For example, there are 6 types of
nodes in Citeseer, therefore we train our model on training set
with 120/240/360 nodes, corresponding to label rate of 3.61%,

7.21%, 10.82%, respectively. Two popular metrics are applied
to quantitatively evaluate the semi-supervised node classifica-
tion: Accuracy (ACC) and F1-Score (F1). We repeatedly train
and test our model for five times with the same partition of
dataset and then report the average of ACC and F1.

We choose some representative methods to compare, includ-
ing DeepWalk [21], LINE [22], ChebNet [17], GCN [3],
kNN-GCN [5], GAT [7], Demo-Net [18], MixHop [19] and
AMGCN [5], DGI [12], GRACE [9], GMI [16], SCRL [13],
SLAPS [10] and GCA [11].

ACM

UAI2010

BlogCatalog Flickr

Citeseer PubMed

Fig. 3. The classification accuracy (%) of SPGRL and its variants on six
datasets.

B. Node Classification Results

The results of experiments are summarized in Table I,
where the best performance is highlighted in boldface. Some
results are directly taken from [5], [13]. We have the following
findings:

(1) It can be seen that our proposed method boosts the
performance of STOA methods across most evaluation metrics
on six datasets, which proves its effectiveness. Particularly,
compared with other optimal performance, SPGRL achieves
a maximum improvement of 4.90% for ACC and 3.84% for
F1 on UAI2010. This illustrates that our proposed model can
effectively fuse topological structure and feature.

(2) Our SPGRL achieves much better performances than
DGI and GMI on all of the metrics. This can be explained by
the fact that our method fully exploits the global structure via
the MI maximization between graph structure and embedding.

(3) In most cases, SPGRL produces better performance than
SCRL [13], SLAPS [10], and GCA [11], which were published
in 2021. This verifies the advantage of our approach.

(4) On some occasions, feature graph produces better result
than original graph. For example, on BlogCatalog, Flickr,
and UAI2010, kNN-GCN beats GCN. This confirms that
incorporating feature graph into our framework can avoid
uncertainty or error information in the original graph in many
cases.

To verify the efficiency of SPGRL, we report the averaged
training time per epoch when training SPGRL, DGI and GMI
in Fig.2. It can be seen that SPGRL always costs much less
time than others.
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TABLE I
NODE CLASSIFICATION RESULTS(%). L/C REFERS TO THE NUMBER OF LABELED NODES PER CLASS.

Dataset ACM BlogCatalog
L/C 20 40 60 20 40 60

Label Rate 1.98% 3.97% 5.95% 2.31% 4.62% 6.93%
Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk [21] 62.69 62.11 63.00 61.88 67.03 66.99 38.67 34.96 50.80 48.61 55.02 53.36
LINE [22] 41.28 40.12 45.83 45.79 50.41 49.92 58.75 57.75 61.12 60.72 64.53 63.81

ChebNet [17] 75.24 74.86 81.64 81.26 85.43 85.26 38.08 33.39 56.28 53.86 70.06 68.37
GCN [3] 87.80 87.82 89.06 89.00 90.54 90.49 69.84 68.73 71.28 70.71 72.66 71.80

kNN-GCN [5] 78.52 78.14 81.66 81.53 82.00 81.95 75.49 72.53 80.84 80.16 82.46 81.90
GAT [7] 87.36 87.44 88.60 88.55 90.40 90.39 64.08 63.38 67.40 66.39 69.95 69.08

Demo-Net [18] 84.48 84.16 85.70 84.83 86.55 84.05 54.19 52.79 63.47 63.09 76.81 76.73
MixHop [19] 81.08 81.40 82.34 81.13 83.09 82.24 65.46 64.89 71.66 70.84 77.44 76.38

DGI [12] 90.48 90.40 90.97 90.88 90.94 90.79 64.59 63.58 65.09 64.15 65.90 65.00
GRACE [9] 89.04 89.00 89.46 89.36 91.08 91.03 76.56 75.56 76.66 75.88 77.66 77.08
AMGCN [5] 90.40 90.43 90.76 90.66 91.42 91.36 81.89 81.36 84.94 84.32 87.30 86.94

GMI [16] 90.22 90.00 90.68 90.64 91.48 91.45 66.46 39.2 68.01 40.42 72.59 43.24
SCRL [13] 91.82 91.79 92.06 92.04 92.82 92.80 90.22 89.89 90.26 89.90 91.58 90.76

SLAPS [10] 65.32 60.00 55.46 47.73 60.13 52.56 87.80 87.34 88.50 87.57 89.50 89.22
GCA [11] 88.39 8879 91.95 90.99 91.75 90.79 80.51 81.28 84.89 84.04 86.34 86.19
SPGRL 93.30 93.27 93.50 93.48 94.00 93.98 90.70 90.12 92.10 91.34 92.30 92.13
Dataset Flickr UAI2010

L/C 20 40 60 20 40 60
Label Rate 2.38% 4.75% 7.13% 12.39% 24.78% 37.17%

Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
DeepWalk [21] 24.33 21.33 28.79 26.90 30.10 27.28 42.02 32.92 51.26 46.01 54.37 44.43

LINE [22] 33.25 31.19 37.67 37.12 38.54 37.77 43.47 37.01 45.37 39.62 51.05 43.76
ChebNet [17] 23.26 21.27 35.10 33.53 41.70 40.17 50.02 33.65 58.18 38.80 59.82 40.60

GCN [3] 41.42 39.95 45.48 43.27 47.96 46.58 49.88 32.86 51.80 33.80 54.40 32.14
kNN-GCN [5] 69.28 70.33 75.08 75.40 77.94 77.97 66.06 52.43 68.74 54.45 71.64 54.78

GAT [7] 38.52 37.00 38.44 36.94 38.96 37.35 56.92 39.61 63.74 45.08 68.44 48.97
Demo-Net [18] 34.89 33.53 46.57 45.23 57.30 56.49 23.45 16.82 30.29 26.36 34.11 29.03
MixHop [19] 39.56 40.13 55.19 56.25 64.96 65.73 61.56 49.19 65.05 53.86 67.66 56.31

DGI [12] 34.95 33.1 34.98 33.07 35.51 34.37 33.26 11.86 32.55 9.29 32.44 9.37
GRACE [9] 49.42 48.18 53.64 52.61 55.67 54.61 65.54 48.38 66.67 49.50 68.68 51.51
AMGCN [5] 75.26 74.63 80.06 79.36 82.10 81.81 70.10 55.61 73.14 64.88 74.40 65.99

GMI [16] 49.17 28.43 52.74 30.94 53.78 31.50 60.69 46.75 63.14 49.10 64.73 44.36
SCRL [13] 79.52 78.89 84.23 84.03 84.54 84.51 72.90 57.80 74.58 67.40 74.90 67.54

SLAPS [10] 72.20 72.48 79.00 78.90 76.20 76.50 46.82 41.60 34.62 25.28 62.51 51.81
GCA [11] 63.44 63.26 63.90 64.60 64.43 64.64 72.55 56.97 73.27 54.55 73.60 56.00
SPGRL 82.20 81.24 86.20 85.93 87.10 85.97 76.30 61.49 78.20 68.73 79.80 71.38
Dataset Citeseer PubMed

L/C 20 40 60 20 40 60
Label Rate 3.61% 7.21% 10.82% 0.30% 0.61% 0.91%

Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
DeepWalk [21] 43.47 38.09 45.15 43.18 48.86 48.01 - - - - - -

LINE [22] 32.71 31.75 33.32 32.42 35.39 34.37 - - - - - -
ChebNet [17] 69.80 65.92 71.64 68.31 73.26 70.31 74.20 73.51 76.00 74.92 76.51 75.83

GCN [3] 70.30 67.50 73.10 69.70 74.48 71.24 79.00 78.45 79.98 79.17 80.06 79.65
kNN-GCN [5] 61.35 58.86 61.54 59.33 62.38 60.07 71.62 71.92 74.02 74.09 74.66 75.18

GAT [7] 72.50 68.14 73.04 69.58 74.76 71.60 - - - - - -
Demo-Net [18] 69.50 67.84 70.44 66.97 71.86 68.22 - - - - - -
MixHop [19] 71.40 66.96 71.48 67.40 72.16 69.31 - - - - - -

DGI [12] 71.24 67.05 71.26 67.75 73.92 70.26 - - - - - -
GRACE [9] 71.70 68.14 72.38 68.74 74.20 70.73 79.50 79.33 80.32 79.64 80.24 80.33
AMGCN [5] 73.10 68.42 74.70 69.81 75.56 70.92 76.18 76.86 77.14 77.04 77.74 77.09

GMI [16] 71.24 67.1 73.1 68.57 73.96 70.25 - - - - - -
SCRL [13] 73.62 69.78 75.08 70.68 75.96 72.84 79.62 78.88 80.74 80.24 81.03 80.55

SLAPS [10] 70.50 67.23 72.10 69.15 73.00 69.80 71.70 72.29 71.60 71.56 70.60 71.16
GCA [11] 71.39 68.46 72.96 68.02 73.92 69.10 82.00 81.50 82.59 82.43 82.03 81.75
SPGRL 75.90 70.98 77.40 73.75 78.30 73.98 77.60 76.98 81.20 81.01 82.10 81.94

TABLE II
CLASSIFICATION ACCURACY WITH LOW LABEL RATES.

Datasets Citeseer PubMed
L/C 3 6 12 18 2 3 7

Label Rate 0.5% 1% 2% 3% 0.03% 0.05% 0.10%
ChebNet [17] 19.7 59.3 62.1 66.8 55.9 62.5 69.5

GCN [3] 33.4 46.5 62.6 66.9 61.8 68.8 71.9
GAT [7] 45.7 64.7 69.0 69.3 65.7 69.9 72.4
DGI [12] 60.7 66.9 68.1 69.8 60.2 68.4 70.7
M3S [20] 56.1 62.1 66.4 70.3 59.2 64.4 70.5

GRACE [9] 55.4 59.3 63.4 67.8 64.4 67.5 72.3
AMGCN [5] 60.2 65.7 68.5 70.2 60.5 62.4 70.8
SCRL [13] 62.4 67.3 69.8 73.3 67.9 71.9 73.4
GCA [11] 62.6 63.4 62.7 60.8 70.1 73.2 75.8

SPGRL 64.3 68.4 71.7 74.7 70.2 73.4 76.7

C. Ablation Study

To validate the effectiveness of different components in our
model, we compare SPGRL with its three variants on all
datasets.

• SPGRL1: SPGRL without Lcr and Lre to show the
impact of local and global structure.

• SPGRL2: SPGRL without Lre to show the effect of
global structure preserving.

• SPGRL3: SPGRL with traditional reconstruction, i.e.,
qϕ(A|Zt) and qϕ(Â|Zf ), to demonstrate the benefit of
exchange-reconstruction.

According to Fig.3, we can draw the following conclusions:
(1) The results of SPGRL are consistently better than all
variants, indicating the rationality of our model. (2) Both local
and global structure information are crucial to representation
learning. (3) Exchange reconstruction is beneficial by remov-
ing some redundant information.

D. Few Labeled Classification

To further investigate the capability of SPGRL in dealing
with scarce supervision data, we conduct experiments when
the number of labeled examples is extremely small. Taking
Citeseer and PubMed for example, we select a small set of
labeled examples for model training [23]. Specifically, for
Citeseer, we select 3, 6, 12, 18 nodes per class, corresponding
to label rates: 0.5%, 1%, 2%, and 3%; for PubMed, we select
2, 3, 7 nodes per class, corresponding to three label rates:
0.03%, 0.05% and 0.10%. To make a fair comparison, we
report mean classification accuracy of 10 runs.

From Table II, we can observe that SPGRL outperforms all
STOA approaches. For example, SPGRL improves AMGCN,
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SCRL, GCA by 5.87%, 1.91%, and 4.40% on average. Par-
ticularly, the accuracy of GCN, ChebNet, and GAT decline
severely when the label rate is very low, especially on 0.5%
Citeseer, due to insufficient propagation of label information.
By contrast, self-supervised/contrastive approaches are obvi-
ously much better because they additionally exploit supervi-
sory signals. Though GCA outperforms SPGRL in most cases
of Pubmed dataset in Table I, its performance is worse than
our method at low label rate. Thus, fully exploring structure
information could alleviate the reliance of label to some extent.

E. Experiments with Noise Perturbation

Many recent studies have found that GCN is vulnerable to
noise perturbation on node features or graph structure.Hence,
it is necessary to evaluate the robustness of our method. We
perturb node features by injecting independent Gaussian noise.
Consequently, our built feature graph is also corrupted. Note
that it is computationally expensive to perturb structure and it
behaves similarly to feature perturbation to some extent [24].
Therefore, there is no need to corrupt original graph structure
A in our setting. Specifically, we add Gaussian noise to input
features: X ← X + N (0, σ2), where σ is the variance of
Gaussian noise. We compare to a few closely relevant methods,
including GFNN [25], which employs low-pass filtering to
remove noise.

Table III shows results with σ = 1 on ACM dataset. We also
test with σ ∈ {0.01,0.02,...,2.0} in Fig.4. The results show that
SPGRL still performs the best in most scenarios. Its robustness
could be explained by the fact that we extract more relevant
information from the original graph by maximizing the MI
between it and the embeddings, which alleviates the negative
influence of noise perturbation.

Fig. 4. Accuracy of SPGRL under different σ on ACM dataset (L/C=20).

TABLE III
NODE CLASSIFICATION WITH GAUSSIAN NOISE PERTURBATION (σ = 1.0).

Dataset Metrics L/C SPGRL SCRL [13] GFNN [25] GCN [3] kNN-GCN [5]

ACM ACC
20 73.2 62.8 52.6 47.2 49.5
40 78.1 75.2 50.1 52.1 57.4
60 86.6 80.6 56.4 57.2 58.8

BlogCatalog ACC
20 80.3 75.0 62.4 55.1 56.1
40 86.2 77.9 47.3 57.7 63.2
60 89.3 78.3 53.4 57.1 61.4

UAI2010 ACC
20 72.8 69.4 32.8 49.9 52.0
40 73.3 73.3 32.2 53.0 55.0
60 76.8 76.9 29.5 57.5 58.9

Flickr ACC
20 65.3 54.2 21.3 27.5 35.5
40 65.6 61.9 20.3 31.3 29.4
60 74.1 73.5 24.3 34.4 32.3

Citeseer ACC
20 45.3 51.3 36.1 34.4 36.6
40 59.8 59.7 40.9 43.4 41.6
60 66.2 63.2 46.0 45.7 47.8

V. CONCLUSION

In this paper, we propose a framework to preserve the local-
global structure information during graph embedding. This

is mainly realized by maximizing MI between topological
structure and feature representation, which is further converted
to exchange reconstruction according to our theoretical deriva-
tion. Comprehensive experiments verify the effectiveness, ef-
ficiency, and robustness of our approach in different scenarios.
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