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ABSTRACT

Watermark has been widely deployed by industry to detect AI-generated images.
A recent watermarking framework called Stable Signature (proposed by Meta)
roots watermark into the parameters of a diffusion model’s decoder such that its
generated images are inherently watermarked. Stable Signature makes it possible
to watermark images generated by open-source diffusion models and was claimed
to be robust against removal attacks. In this work, we propose a new attack to
remove the watermark from a diffusion model by fine-tuning it. Our results show
that our attack can effectively remove the watermark from a diffusion model such
that its generated images are non-watermarked, while maintaining the visual qual-
ity of the generated images. Our results highlight that Stable Signature is not as
stable as previously thought.

1 INTRODUCTION

With the rapid development of generative AI (GenAI), it becomes increasingly more difficult to dis-
tinguish AI-generated and non-AI-generated images. The misuse of AI-generated images presents a
significant risk of spreading misinformation. Watermarking (Bi et al., 2007; Zhu et al., 2018; Zhang
et al., 2020; Tancik et al., 2020; Fernandez et al., 2023; Wen et al., 2023; Jiang et al., 2024) has
emerged as a crucial technology for detecting AI-generated images and been widely deployed by in-
dustry. For instance, OpenAI incorporates a watermark into images generated by DALL-E (Ramesh
et al., 2021); Stability AI deploys a watermarking technique in Stable Diffusion (Rombach, 2022);
and Google has introduced SynthID as a watermarking solution for images generated by Imagen (Sa-
haria et al., 2022). In watermark-based detection, a watermark is embedded in AI-generated images
before they are accessed by users. During detection, if the same watermark can be extracted from
an image, it is identified as AI-generated.

Image watermark can be categorized into three groups based on the timing when watermark is
embedded into AI-generated images: post-generation, pre-generation, and in-generation. Post-
generation watermark (Luo et al., 2020; Bi et al., 2007; Zhu et al., 2018; Zhang et al., 2020; Al-
Haj, 2007; Tancik et al., 2020; Jiang et al., 2024) embeds a watermark into an image after the
image has been generated, while pre-generation watermark (Wen et al., 2023) embeds a watermark
into the initial noisy latent vector of a diffusion model. However, these watermarking methods are
vulnerable when the diffusion models are open-source. In particular, an attacker can easily remove
the watermarking components from the open-source diffusion model to generate non-watermarked
images. In contrast, in-generation watermark (e.g., Stable Signature (Fernandez et al., 2023) and
WOUAF (Kim et al., 2024)) roots watermark directly into the parameters of a diffusion model’s
decoder. It enables the images generated by the diffusion model to be inherently watermarked
without introducing any external watermarking components. This method is particularly suited for
watermarking images generated by open-source diffusion models.

Watermark removal attacks aim to remove watermarks from watermarked images, and can be di-
vided into two types: per-image-based and model-targeted. Per-image-based attacks (Jiang et al.,
2023; An et al., 2024; Lukas et al., 2024; Zhao et al., 2023; Saberi et al., 2024) add a carefully
crafted perturbation to each watermarked image individually. These removal attacks need to pro-
cess watermarked images one by one, which is inefficient when removing watermarks from a large
volume of watermarked images. In contrast, model-targeted attacks directly modify a diffusion
model’s parameters to make its generated images non-watermarked. For instance, Fernandez et al.
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(a) Clean (b) Watermarked (c) MP (d) E-aware (e) E-agnostic

Figure 1: An example of image generated by (a) the clean Stable Diffusion 2.1, (b) Stable Diffu-
sion 2.1 watermarked by Stable Signature, (c) watermarked Stable Diffusion 2.1 fine-tuned by MP,
(d) watermarked Stable Diffusion 2.1 fine-tuned by our attack with access to the encoder, and (e)
watermarked Stable Diffusion 2.1 fine-tuned by our attack without access to the encoder. The same
denoised latent vector is used by all diffusion models’ decoders to generate the images. The water-
mark can only be detected in the image generated by (b). The image generated by (c) has significant
loss of details.

(2023) also proposed a model-targeted removal attack, called model purification (MP), to attack
Stable Signature. However, MP requires access to the diffusion model’s encoder, and the model
provider can easily defend against this by making the encoder closed-source, as it is not necessary
for image generation. Moreover, MP significantly deteriorates image quality (Fernandez et al., 2023;
Kim et al., 2024), based on which Stable Signature and WOUAF were claimed to be robust against
model-targeted removal attacks.

In this work, we propose a new model-targeted attack to remove in-generation watermark from
open-source diffusion models. Our attack fine-tunes a diffusion model’s decoder using a set of
non-watermarked images, which we call attacking dataset. Specifically, our attack consists of two
steps. In Step I, we propose different methods to estimate a denoised latent vector for each non-
watermarked image in the attacking dataset in two settings, i.e., with and without access to the
diffusion model’s encoder. The open-source diffusion model’s decoder takes a denoised latent vec-
tor as input and outputs a watermarked image that is visually similar to the corresponding non-
watermarked image. In Step II, we leverage the non-watermarked images in the attacking dataset
and their corresponding estimated denoised latent vectors to fine-tune the diffusion model’s decoder
to remove the watermark from it. Our key idea is to fine-tune the decoder such that its generated
images based on the denoised latent vectors are close to the corresponding non-watermarked images
in the attacking dataset.

We empirically evaluate our attack on the open-source diffusion models, i.e., Stable Diffusion 2.1
which is watermarked by Stable Signature and Stable Diffusion 2-base which is watermarked by
WOUAF. Our results show that our attack can effectively remove the watermark from the diffusion
models such that their generated images are non-watermarked, while maintaining image quality.
Moreover, our attack substantially outperforms MP, the only existing model-targeted removal at-
tack (Fernandez et al., 2023), in the scenario in which it is applicable. As shown in Figure 1, our
attack can retain most information in the image after removing the watermark, while MP results in
a blurry image with significant loss of details. Our results suggest that Stable Signature is not as
robust as previously thought, and the design of a robust watermarking strategy for images generated
by open-source diffusion models remains an open challenge.

2 RELATED WORKS

2.1 LATENT DIFFUSION MODEL

Diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020; Kingma et al., 2021; Ho et al., 2022)
exhibit exceptional capability in generating images. A latent diffusion model (Rombach et al., 2022)
performs the diffusion process in the latent space, enhancing efficiency in both training of the diffu-
sion model and image generation. A latent diffusion model has four main components: an encoder
E to encode an image x into a latent vector E(x), diffusion process DP to add Gaussian noise to the
latent vector to obtain a noisy latent vector zT = DP (E(x)) where T denotes the number of steps
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Generation

Conditioning

Figure 2: The main components of a latent diffusion model.

in diffusion process, denoising layers DN to obtain a denoised latent vector z = DN(zT , c) where
c denotes the conditioning such as a text prompt or a depth map, and a decoder D to reconstruct an
image D(z) from z. The diffusion process is a predefined probabilistic process that iteratively adds
Gaussian noise to a latent vector, while the remaining three components are learnt using an image
dataset. During image generation, a noisy latent vector z′T is sampled from Gaussian distribution,
and the denoising layers DN and decoder D are used to generate an image D(DN(z′T , c)). The
main components of a latent diffusion model are shown in Figure 2.

2.2 IMAGE WATERMARK

Post-generation watermark: Post-generation watermarking methods (Bi et al., 2007; Al-Haj,
2007; Zhu et al., 2018; Tancik et al., 2020; Wang, 2021; Luo et al., 2020; Jing et al., 2021; Jiang
et al., 2024) embed watermarks into images after the image generation process. These methods typ-
ically consist of three main components: a watermark (represented as a bitstring), a watermarking
encoder for embedding the watermark into an image, and a watermarking decoder for extracting
the watermark from an image. These methods can be categorized into two groups based on how
the encoder and decoder are designed: learning-based and non-learning-based. Learning-based
methods (Zhu et al., 2018; Zhang et al., 2020; Tancik et al., 2020; Luo et al., 2020; Jiang et al.,
2024) leverage deep learning techniques, utilizing neural networks for both encoding and decod-
ing, while non-learning-based methods (Pereira & Pun, 2000; Al-Haj, 2007; Bi et al., 2007; Wang,
2021) rely on manually crafted encoding and decoding algorithms. In closed-source setting, where
the diffusion model is proprietary and users can only interact with it through API, learning-based
watermarking methods exhibit significant robustness against various attacks (An et al., 2024; Tancik
et al., 2020; Jiang et al., 2023). In open-source setting, however, such robustness is compromised.
An attacker can easily remove the watermarking components from the open-source diffusion model,
thus generating non-watermarked images without constraints.

Pre-generation watermark: Pre-generation watermarking methods (Wen et al., 2023) embed wa-
termark into images before the image generation process. In diffusion models, for instance, a wa-
termark can be incorporated into the noisy latent vector zT (Wen et al., 2023). Subsequently, the
image generated from this watermarked noisy latent vector contains the watermark. The watermark
retrieval process involves an inverse operation of DDIM sampling (Song & Ermon, 2020), which
reconstructs the noisy latent vector from the generated image. However, such pre-generation water-
mark is also vulnerable in open-source setting. An attacker can substitute the watermarked noisy la-
tent vector with a non-watermarked one, which is drawn from a Gaussian distribution. Consequently,
image generated from this non-watermarked noisy latent vector does not contain the watermark.

In-generation watermark: In-generation watermarking methods (Fernandez et al., 2023; Kim
et al., 2024) modify the parameters of the diffusion model’s decoder to ensure that all images gen-
erated by the model inherently contain a watermark. These methods seamlessly integrate the wa-
termarking process into image generation. For example, Stable Signature (Fernandez et al., 2023)
fine-tunes the diffusion model’s decoder using the HiDDeN (Zhu et al., 2018) watermarking decoder.
Once fine-tuned, each generated image embeds a predetermined watermark, which can be decoded
by the watermarking decoder, effectively embedding the watermark within the model’s parameters.
Similarly, WOUAF (Kim et al., 2024) employs a trained mapping network and weight modulation
technique to modify the diffusion model’s decoder, instead of fine-tuning. These approaches are
well-suited for open-source diffusion models, as they prevent attackers from easily removing the
watermark by simply discarding the watermarking components.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 WATERMARK REMOVAL ATTACKS

Per-image-based: Per-image-based removal attacks (Jiang et al., 2023; An et al., 2024; Lukas
et al., 2024; Zhao et al., 2023; Saberi et al., 2024) involve adding a carefully crafted perturbation
on each watermarked image to remove the watermark. Common image processing techniques, such
as JPEG compression and contrast adjustment, can introduce a perturbation for the watermarked
image to remove the watermark. Furthermore, more sophisticated per-image-based removal attacks
can be employed if the attacker has access to the watermarking decoder or detection API. For in-
stance, Jiang et al. (2023) proposed a white-box attack that assumes the attacker has access to the
watermarking decoder, and a black-box attack that strategically manipulates the watermarked image
based on detection API query results to remove the watermark. These per-image-based removal at-
tacks are applicable to all three groups of watermarks mentioned above as they do not require access
to the image generation process. However, they are inefficient when applied to a large volume of
images due to the individualized design of perturbations for each watermarked image.

Model-targeted: Model-targeted removal attacks (Fernandez et al., 2023) are specifically designed
for removing in-generation watermark. Such attacks involve modifying the diffusion model’s pa-
rameters such that its generated images are non-watermarked. For instance, Fernandez et al. (2023)
proposed MP to attack their Stable Signature in-generation watermark. This method aims to purify
the diffusion model’s decoder using non-watermarked images. However, it encounters challenges in
effectively removing the watermark without significantly degrading image quality. Model-targeted
removal attacks show high efficiency in removing watermark from numerous watermarked images,
as it only requires a one-time modification of the diffusion model and images generated by the mod-
ified diffusion model are non-watermarked. These methods offer much higher efficiency compared
to per-image-based removal attacks when handling numerous watermarked images.

3 PROBLEM FORMULATION

3.1 WATERMARKED DIFFUSION MODEL DECODER Dw

We denote by Dc a clean diffusion model decoder without watermark. Dc is fine-tuned as a water-
marked diffusion model decoder Dw such that its generated images are inherently embedded with a
ground-truth watermark wg . Formally, any generated image Dw(DN(zT , c)) is embedded with wg ,
where zT is a noisy latent vector sampled from a Gaussian distribution, DN is the denoising layers,
and c is the conditioning. Dw is made open-source, allowing users to generate watermarked images.

3.2 THREAT MODEL

Attacker’s goals: Given a watermarked diffusion model decoder Dw, an attacker aims to fine-tune
it as a non-watermarked diffusion model decoder Dnw. Specifically, the attacker aims to achieve two
goals: 1) effectiveness goal, and 2) utility goal. The effectiveness goal means that images generated
by Dnw do not have the watermark wg embedded; while the utility goal means that the images
generated by Dnw maintain visual quality, compared to those generated by Dw.

Attacker’s knowledge: A watermarked latent diffusion model consists of an encoder E, diffusion
process DP , denoising layers DN , and a watermarked decoder Dw. The denoising layers DN and
decoder Dw are involved when generating images, i.e., Dw(DN(zT , c)) is a generated image, where
zT is a noisy latent vector sampled from Gaussian distribution and c is the conditioning. We assume
DN and Dw are open-source, and thus the attacker has access to them. Depending on whether E
and DP are open-source, we consider the following two scenarios:

• Encoder-aware (E-aware). In this scenario, the model provider also makes E and DP
open-source. Therefore, the attacker has access to them. For instance, Stable Diffusion
model makes its E and DP open-source.

• Encoder-agnostic (E-agnostic). In this scenario, E and DP are not open-source, e.g.,
because image generation only requires DN and Dw. Therefore, the attacker does not
have access to E and DP in this setting.
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Step I Step II

Update  based on loss function

Encoder-agnostic

Update  based on loss function

Discriminator

Encoder-aware

Text prompt

V

Generation

Figure 3: Overview of our attack. The solid arrows represent the direction of data flow and the
dashed arrows represent the direction of gradient flow.

Additionally, we assume the attacker has access to a set of non-watermarked images, which we
call attacking dataset. For instance, the attacker can simply use popular benchmark images (e.g.,
ImageNet) as the attacking dataset. The attacking dataset is used to remove watermark from the
watermarked diffusion model decoder Dw.

Attacker’s capability: We assume the attacker can modify the parameters of the open-sourced
watermarked latent diffusion model decoder Dw. The denoising layers DN , which are much larger
than the decoder, requires much more computational resources to modify. For instance, in Stable
Diffusion 2.1, the denoising layers have about 10 times more parameters than the decoder. There-
fore, we assume the attacker modifies the decoder.

4 OUR ATTACK

4.1 OVERVIEW

We propose a two-step method to fine-tune the decoder Dw to make the diffusion model’s generated
images non-watermarked using an attacking dataset of size n, as illustrated in Figure 3. In Step I, we
estimate the denoised latent vector zi for each non-watermarked image xi in the attacking dataset,
where i = 1, 2, . . . , n. In Step II, by utilizing these images and their estimated denoised latent
vectors, we fine-tune the decoder Dw to ensure that the reconstructed images closely match the non-
watermarked images when the inputs are the corresponding estimated denoised latent vectors. Our
intuition is that a watermarked decoder will transform a denoised latent vector zi to the watermarked
version of xi, denoted as xi

w. Therefore, through fine-tuning the decoder to reconstruct xi from the
input zi, the decoder is trained to map any given denoised latent vector to the non-watermarked
version of its corresponding image, effectively removing watermarks from images generated by the
diffusion model.

4.2 STEP I: ESTIMATE THE DENOISED LATENT VECTOR z

To estimate the denoised latent vector zi for the non-watermarked image xi, we propose different
methods in different scenarios.

E-aware: In this scenario, an attacker has access to the encoder E, diffusion process DP , de-
noising layers DN , and watermarked decoder Dw. Based on the pipeline of the diffusion model,
the denoised latent vector zi can be represented as zi = DN(DP (E(xi)), ci). However, since we
don’t have access to the ground-truth conditioning ci to reconstruct zi, we cannot directly compute
zi even though we have access to E, DP , and DN . We observe that the denoising layers DN are
trained to denoise the noisy latent vector zT such that DN(zT , c) is close to E(x). Therefore, the
attacker can utilize the encoder to encode the non-watermarked image xi into the latent space to get
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an estimation of the denoised latent vector zi, denoted by ẑi, as follows:

ẑi = E(xi),∀i. (1)

E-agnostic: In this scenario, an attacker only has access to the denoising layers DN and water-
marked decoder Dw. The most straightforward way to estimate the denoised latent vector zi is
to train a new encoder based on DN and Dw and use the method in E-aware scenario. However,
training an encoder from scratch for a latent diffusion model to achieve good encoding performance
requires a large number of data and computational resources, which is very time-consuming and
infeasible for an attacker with limited resources. Recall that our goal is to estimate the denoised
latent vector zi which will be mapped to the watermarked image xi

w by the watermarked decoder
Dw. Formally, we can formulate an equation as follows:

Dw(z
i) = xi

w,∀i. (2)

This equation is difficult to solve since there are two variables in it, the denoised latent vector
zi and watermarked image xi

w. To reduce the number of variables, we use the known xi as an
approximation of xi

w since the watermarked version of an image should be highly perceptually
close to the non-watermarked version. Therefore, to get an estimation of zi, we can reformulate the
equation as follows:

Dw(ẑ
i) = xi,∀i. (3)

We can easily get an estimation of zi for Equation 3 if Dw is invertible, i.e., ẑi = D−1
w (xi),∀i.

However, since the diffusion model’s decoder is a complicated neural network and it is usually
infeasible to get its inverse function, solving the Equation 3 directly is challenging. To address the
challenge, we can treat ẑi as a trainable variable and reformulate Equation 3 into an optimization
problem as follows:

min
ẑi

lp(Dw(ẑ
i), xi),∀i, (4)

where lp(·, ·) denotes the perceptual loss between two images to ensure the visual similarity. How-
ever, it is still challenging to make Dw(ẑ

i) closely resemble the non-watermarked image xi since
ẑi is randomly initialized and Dw(ẑ

i) is completely different from xi at the early stage of the opti-
mization process.

Therefore, we propose a two-stage optimization method to solve the optimization problem described
in Equation 4. At the first stage, for each ẑi, we randomly initialize it using a standard Gaussian
distribution. Then we employ gradient descent to find an initial point ẑiinit for ẑi that minimizes the
mean square error between Dw(ẑ

i
init) and xi. This stage ensures that Dw(ẑ

i
init) roughly resembles

xi, though with a significant loss of detailed information. At the second stage, we initialize ẑi

with the initial point ẑiinit obtained from the first stage. Then we set lp(·, ·) to be the Watson-VGG
perceptual loss (Czolbe et al., 2020) and use gradient descent to further optimize ẑi, enabling it to
capture the detailed information of the non-watermarked image xi. The detailed method to estimate
the denoised latent vector zi in E-agnostic scenario is shown in Algorithm 1 in Appendix.

4.3 STEP II: FINE-TUNE THE DECODER Dw

Given a set of estimated denoised latent vectors ẑi and non-watermarked images xi, our goal is to
modify the parameters of the watermarked decoder Dw to make the diffusion model’s generated
images non-watermarked. The main idea is to modify the decoder’s parameters to enable it to map
the denoised latent vector zi, which is originally mapped to the watermarked image xi

w, to the
non-watermarked image xi. To achieve this, we use the estimated denoised latent vectors ẑi and
non-watermarked images xi to fine-tune the decoder, ensuring that the reconstructed images closely
resemble the non-watermarked images at the pixel level to effectively remove the watermark signal
from each pixel. Formally, we can formulate the optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2. (5)
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However, since the mean square error measures the average difference between the non-watermarked
and reconstructed images, it tends to penalize large errors more severely than small ones, leading to
a smoothing effect where the reconstructed images may lose lots of detailed information. To solve
this challenge, a perceptual loss that measures the distance of the high-level features produced by
a pre-trained neural network between two images is employed to ensure the visual quality of the
reconstructed images. Formally, we can reformulate the optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑
i=1

lp(Dw(ẑ
i), xi), (6)

where λ denotes the weight for the perceptual loss. To solve the optimization problem, we employ
gradient descent to optimize the parameters of Dw to minimize the objective function in Equation 6.
During the optimization, we adopt a convolution neural network introduced by Zhu et al. (2018) as
a discriminator to perform adversarial training. The discriminator is trained to distinguish Dw(ẑ

i)
from xi and the decoder Dw is trained to fool the discriminator. Formally, we reformulate the
optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑
i=1

lp(Dw(ẑ
i), xi)

+ µ
1

n

n∑
i=1

log(1− disc(Dw(ẑ
i))),

(7)

where disc denotes the discriminator and µ denotes the weight for the adversarial loss. The detailed
method to fine-tune the decoder Dw is shown in Algorithm 2 in Appendix.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets: We employ public non-AI-generated images as our attacking datasets. Specifically,
we utilize three datasets: ImageNet (Russakovsky et al., 2015), MS-COCO (Lin et al., 2014), and
Conceptual Captions (Sharma et al., 2018). From each dataset, we randomly select 4,000 images
as an attacking dataset to fine-tune the watermarked decoder. The images in the attacking datasets
are resized to 256 × 256. For testing, we evaluate the effectiveness and utility goals using images
generated by an open-source watermarked diffusion model and its versions fine-tuned by watermark
removal attacks. These images are produced using text prompts from the Stable Diffusion Prompts
dataset created by MagicPrompt (Santana, 2023). Specifically, we randomly sample 1,000 text
prompts from the dataset to generate 1,000 images for testing.

Detecting watermark in an image: In our experiments, we consider double-tail detector (Jiang
et al., 2023), which is a more robust version of watermark-based detector, as introduced in detail in
Appendix A.1.

Diffusion model and watermarking decoder: We evaluate two recent watermarking meth-
ods designed for open-source diffusion models: Stable Signature (Fernandez et al., 2023) and
WOUAF (Kim et al., 2024). For Stable Signature, we use the open-source Stable Diffusion 2.1
model and its watermarked version produced by Stable Signature. For WOUAF, we use the open-
source Stable Diffusion 2-base model and its watermarked version produced by WOUAF’s mapping
network (Kim et al., 2024). Further details on both methods are provided in Appendix A.2. For the
watermarking decoder Wd, we use the respective open-source decoders provided by Stable Signature
and WOUAF. Unless otherwise mentioned, we adopt Stable Signature as the default watermarking
method.

Different variants to estimate the denoised latent vector z: In our experiments, we compare our
two-stage optimization method (denoted by 2S) with the variants shown in Appendix A.3 to estimate
the denoised latent vector z.

Per-image-based removal attacks: In our experiments, we compare our attack with five commonly
used per-image-based removal attacks, including the state-of-the-art one proposed by Jiang et al.
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Figure 4: Effectiveness and utility of MP and our attack on Stable Signature with the three attacking
datasets.

(2023). The details of the per-image-based removal attacks we use are shown in Appendix A.4. It
should be emphasized that all of these per-image-based attacks require to craft a perturbation for
each watermarked image individually to remove watermark.

Model-targeted removal attack: For model-targeted attacks, we compare our attack with MP, the
only existing model-targeted attack, introduced in Stable Signature (Fernandez et al., 2023). Note
that this method requires the access to the diffusion model’s encoder and is only applicable in the
E-aware scenario, which is introduced in detail in Appendix A.5.

Evaluation metrics: To evaluate whether our attack achieves the effectiveness goal, we utilize two
metrics: evasion rate and bitwise accuracy. Additionally, to evaluate whether our attack achieves
the utility goal, we use two commonly used metrics for the generation quality of generative models,
i.e., Fréchet Inception Distance (FID) and LPIPS (Zhang et al., 2018). The details of the evaluation
metrics are shown in Appendix A.6.

Parameter settings: In our experiments, 2S is employed as the default method to estimate the
denoised latent vector z in the E-agnostic scenario. Given that the watermark length in our experi-
ments is 48, τ is set to be 0.77 to ensure that the false positive rate of the double-tail detector does
not exceed 10−4. The detailed parameter settings for our experiments are shown in Appendix A.7.

5.2 EXPERIMENTAL RESULTS

Our attack achieves both the effectiveness and utility goals: Figures 4 and 5 show the evasion
rate, bitwise accuracy, FID, and LPIPS for MP and our attack across the three attacking datasets
on Stable Signature and WOUAF, respectively. First, we observe that our attack effectively evades
watermark-based detection in both E-aware and E-agnostic scenarios. For Stable Signature, the
evasion rate exceeds 94%, with a bitwise accuracy below 66%, while maintaining an FID lower
than 14.79 and an LPIPS under 0.066. Similarly, for WOUAF, the evasion rate reaches 100%, with
a bitwise accuracy below 57%, while maintaining an FID below 18.1 and an LPIPS under 0.077.
Notably, in the E-aware scenario, our attack produces images with lower FID and LPIPS than the wa-
termarked images produced by WOUAF without attack. This improvement occurs because WOUAF
compromises the original image quality when embedding the watermark. Our attack recovers these
images from the degradation, thereby enhancing their quality.

Second, we observe that our attack outperforms MP in both scenarios. In the E-aware scenario, our
attack achieves a higher evasion rate and lower bitwise accuracy, while consistently maintaining a
significantly lower FID and LPIPS across all three attacking datasets. In the E-agnostic scenario,
our attack still achieves a comparable or higher evasion rate and comparable bitwise accuracy, while
continuing to maintain a much lower FID and LPIPS in all datasets. It is important to note that MP
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Figure 5: Effectiveness and utility of MP and our attack on WOUAF with the three attacking
datasets.

Table 1: Utility and processing time of per-image-based attacks and our attack.

Utility Time
Method FID ↓ LPIPS ↓ PSNR ↑ Fine-tuning (min) ↓ Removal (s/img) ↓
JPEG 31.79 0.283 27.28 - 0.036

Brightness 112.84 0.688 5.25 - 0.005
Contrast 88.25 0.557 10.03 - 0.002

GN 132.92 1.145 12.99 - 0.017
WEvade-W-II 8.66 0.051 29.56 - 651.034

E-aware 8.48 0.047 29.51 14.197 -
E-agnostic 14.15 0.061 28.76 8777.885 -

assumes the attacker has access to the encoder, whereas our attack in the E-agnostic scenario does
not. Figure 8 and 9 in Appendix provide image examples comparing our attack with the clean and
watermarked images by Stable Signature and WOUAF. We observe that the images produced by
our non-watermarked decoder are nearly indistinguishable from those generated by the clean and
watermarked decoders.

Comparing with per-image-based removal attacks: Table 1 shows the utility and the processing
time of our attack compared with five per-image-based removal attacks when achieving similar eva-
sion rate and bitwise accuracy. Figure 10 in Appendix shows the generated (or perturbed) images
by different attacks. We also show the Peak signal-to-noise ratio (PSNR), a common metric for as-
sessing per-image-based attacks’ utility. The processing time is divided into decoder fine-tuning and
watermark removal phases. Note that our attack’s fine-tuning time, measured on a single NVIDIA
A6000 GPU, can be significantly reduced using multiple GPUs. For instance, with four NVIDIA
A6000 GPUs, fine-tuning in the E-agnostic scenario takes about 2K minutes.

First, our attack’s utility surpasses most per-image-based removal attacks. Second, the removal
time is 0 once the decoder is fine-tuned, making our method highly efficient for large numbers of
generated images. For instance, our attack outperforms WEvade-W-II when processing more than
one image in the E-aware scenario and 809 images in the E-agnostic scenario. Note that WEvade-
W-II requires the access to the watermarking decoder Wd to perform a white-box attack, and it
represents the upper bound of the utility that can be achieved by a removal attack. Our attack
achieves similar utility to WEvade-W-II when compared to clean, non-watermarked images, as we
optimize the decoder’s output to be closer to the non-watermarked image. It is difficult for human’s
eyes to notice their differences, as shown in Figure 10 in Appendix.

Different variants to estimate z: Figure 6 shows the FID and examples of reconstructed images by
different methods to estimate the denoised latent vector z for non-watermarked images. The FID is
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Figure 6: Image reconstruction performance for different variants to estimate z on ImageNet. NW
denotes the non-watermarked image.

0 0.001 0.01 0.1 1 5 10
λ

0.80

0.85

0.90

0.95

1.00

E
va

si
on

R
at

e

E-aware

E-agnostic

0 0.001 0.01 0.1 1 5 10
λ

0.50

0.55

0.60

0.65

0.70

B
it

w
is

e
A

cc
u

ra
cy

E-aware

E-agnostic

0 0.001 0.01 0.1 1 5 10
λ

5

10

15

20

25

F
ID

E-aware

E-agnostic

0 0.0001 0.001 0.01 0.1 0.5 1
µ

0.80

0.85

0.90

0.95

1.00

E
va

si
on

R
at

e

E-aware

E-agnostic

(a) Evasion rate

0 0.0001 0.001 0.01 0.1 0.5 1
µ

0.50

0.55

0.60

0.65

0.70

B
it

w
is

e
A

cc
u

ra
cy

E-aware

E-agnostic

(b) Bitwise accuracy

0 0.0001 0.001 0.01 0.1 0.5 1
µ

5

10

15

20

25

F
ID

E-aware

E-agnostic

(c) FID

Figure 7: Effectiveness and utility of our attack with different λ (first row) and µ (second row) values
on ImageNet.

calculated between 100 randomly selected ImageNet images and their reconstructed versions. The
2S method produces images more similar to the originals and achieves a much lower FID than other
methods. The examples also show that z from our method retains more detail and achieves higher
visual similarity to original images.

Different λ: The first row of Figure 7 shows the evasion rate, bitwise accuracy, and FID for different
λ values in our attack. We observe that increasing λ reduces the effectiveness of the attack because
the loss function emphasizes perceptual loss over mean square error, hindering watermark removal.
Initially, utility improves with larger λ as the weight on perceptual loss increases. However, further
increases in λ lead to worse utility since focusing more on perceptual loss causes the reconstructed
image to deviate pixel-wise from the non-watermarked image.

Different µ: The second row of Figure 7 shows the evasion rate, bitwise accuracy, and FID for
different µ values in our attack. In the E-aware scenario, effectiveness remains constant initially and
then decreases, while utility does not change as µ increases. This occurs because small µ values
already make the reconstructed image similar to the non-watermarked one, so further increases in
µ do not provide additional benefits. Larger µ values also reduce the mean square error’s ability
to remove watermarks, decreasing effectiveness. In the E-agnostic scenario, both effectiveness and
utility initially remain unchanged but later improve with larger µ, as the initial reconstructed image is
significantly different from the non-watermarked one, and larger µ values make them more similar.

6 CONCLUSION AND FUTURE WORK

In this work, we find that image watermark for open-source diffusion model is not robust as previ-
ously thought. Given a watermarked diffusion model, an attacker can remove the watermark from
it by strategically fine-tuning its decoder. Our results show that our attack achieves both the ef-
fectiveness and utility goals in removing watermark from diffusion models in both E-aware and
E-agnostic scenarios, and outperforms the existing model-targeted attack which is only applicable
to E-aware scenario. Interesting future work is to design a more robust image watermarking method
for open-source diffusion models.
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Algorithm 1 Estimate the denoised latent vector z

Input: Non-watermarked images {xi}ni=1, watermarked decoder Dw, number of iteration for the
first stage n iter1, number of iteration for the second stage n iter2, learning rate α, perceptual
loss function lp

Output: Estimated denoised latent vectors {ẑi}ni=1
1: Q← ∅
2: for i = 1 to n do
3: ẑi ∼ N (0, 1)
4: for j = 1 to n iter1 do
5: g ← ∇ẑi∥Dw(ẑ

i)− xi∥2
6: ẑi ← ẑi − α · g
7: for j = 1 to n iter2 do
8: g ← ∇ẑi lp(Dw(ẑ

i), xi)
9: ẑi ← ẑi − α · g

10: Q← Q ∪ {ẑi}
11: return Q

Algorithm 2 Fine-tune the decoder Dw

Input: Non-watermarked images {xi}ni=1, estimated denoised latent vectors {ẑi}ni=1, watermarked
decoder Dw, number of epoch n epoch, decoder learning rate α, discriminator learning rate β,
perceptual loss function lp, discriminator disc, weight for perceptual loss λ, weight for adver-
sarial loss µ

Output: Non-watermarked decoder Dnw

1: Dnw ← Dw

2: for i = 1 to n epoch do
3: gdisc ← −∇disc

1
n

∑n
i=1[log(1− disc(Dnw(ẑ

i))) + log(disc(xi))]
4: disc← disc− β · gdisc
5: g ← ∇Dnw

1
n

∑n
i=1 ∥Dnw(ẑ

i) − xi∥2 + λ 1
n

∑n
i=1 lp(Dnw(ẑ

i), xi) + µ 1
n

∑n
i=1 log(1 −

disc(Dnw(ẑ
i)))

6: Dnw ← Dnw − α · g
7: return Dnw

A DETAILS OF EVALUATION

A.1 DETAILS OF DETECTING WATERMARK IN AN IMAGE

A watermarking decoder Wd is used to detect whether wg is in an image x. Specifically, Wd is used
to decode a watermark, represented as Wd(x), from the image x. The bitwise accuracy BA(w1, w2)
between two watermarks w1 and w2 is the proportion of bits that are identical in w1 and w2. x
is detected as watermarked with wg if the bitwise accuracy BA(Wd(x), wg) exceeds a detection
threshold τ or falls below 1 − τ , i.e., BA(Wd(x), wg) > τ or BA(Wd(x), wg) < 1 − τ . Such
detector is known as double-tail detector (Jiang et al., 2023), which is more robust than single-tail
detector that detects the image x as watermarked if the bitwise accuracy BA(Wd(x), wg) exceeds
τ . Therefore, we use double-tail detector in this work.

A.2 DETAILS OF THE WATERMARKED DIFFUSION MODELS

For the watermarked version of Stable Diffusion 2.1 obtained through Stable Signature, the wa-
termarked decoder Dw is fine-tuned from the clean decoder Dc of Stable Diffusion 2.1 using the
MS-COCO dataset. The images generated by this watermarked model are embedded with a 48-bit
ground-truth watermark wg . For the watermarked Stable Diffusion 2-base produced by WOUAF,
the watermarked decoder Dw is generated through WOUAF’s mapping network and weight mod-
ulation (Karras et al., 2020; Yu et al., 2020). The mapping network converts the watermark into a
latent embedding, and WOUAF applies weight modulation to the clean decoder Dc, transforming
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Figure 8: Image generated by the clean Stable Diffusion 2.1 (first row), Stable Diffusion 2.1 water-
marked by Stable Signature (second row), watermarked Stable Diffusion 2.1 fine-tuned by our attack
in E-aware scenario (third row), and watermarked Stable Diffusion 2.1 fine-tuned by our attack in
E-agnostic scenario (fourth row). The same denoised latent vector is used by all diffusion models’
decoders to generate the images in the same column. The watermark can only be detected in the
images generated by Stable Diffusion 2.1 watermarked by Stable Signature (second row).

it into the watermarked decoder Dw. The images generated by this watermarked model contain a
32-bit ground-truth watermark wg .

A.3 OTHER VARIANTS TO ESTIMATE THE DENOISED LATENT VECTOR z

In our experiments, we compared our 2S method with the following variants. All of these methods
initialize ẑ with a standard Gaussian distribution and treat it as a trainable variable.

• One-stage mean square error (1S-M) This method optimizes ẑ to minimize the mean
square error between the reconstructed image Dw(ẑ) and the non-watermarked image x.

• One-stage perceptual loss (1S-P) This method optimizes ẑ to minimize the perceptual
loss calculated by the Watson-VGG model between Dw(ẑ) and x.

• One-stage mixed loss (1S-Mix) This method optimizes ẑ to minimize the mixed loss con-
sisting of mean square error and perceptual loss calculated by the Watson-VGG model
between Dw(ẑ) and x. The weights for different loss functions are set to be 1.

A.4 DETAILS OF PER-IMAGE-BASED REMOVAL ATTACKS

• JPEG It is a commonly used image compression technique that can significantly decrease
the size of image files while preserving high image quality. The quality of images processed
by JPEG is governed by a quality factor. Using a smaller quality factor to post-process
watermarked images can make the detection of watermarks within the image more difficult.
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Figure 9: Image generated by the clean Stable Diffusion 2-base (first row), Stable Diffusion 2-base
watermarked by WOUAF (second row), watermarked Stable Diffusion 2-base fine-tuned by our
attack in E-aware scenario (third row), and watermarked Stable Diffusion 2-base fine-tuned by our
attack in E-agnostic scenario (fourth row). The same denoised latent vector is used by all diffusion
models’ decoders to generate the images in the same column. The watermark can only be detected
in the images generated by Stable Diffusion 2-base watermarked by WOUAF (second row).

• Brightness This method modifies the brightness of an image by initially converting the
image to a color space that includes a brightness-related channel. It then isolates this chan-
nel, adjusts its intensity by multiplying it with a specified factor, and finally converts the
image back to its original color space. This method may disrupt the watermark patterns in
watermarked images to evade watermark detection.

• Contrast This method alters the contrast of an image by modifying its pixel values. Specif-
ically, for each pixel, it subtracts 127 from the pixel’s value, multiplies the result by a factor
k, and then adds 127 to the outcome. The factor k determines the level of contrast enhance-
ment or reduction, with values greater than 1 increasing contrast and values between 0 and
1 decreasing it.

• Gaussian noise (GN) This method adds a noise that follows a Gaussian distribution with
a zero mean and a standard deviation of σ to the watermarked image. It simulates the
noise effects commonly encountered in the real world. A larger σ value makes it more
challenging to detect watermarks, simultaneously compromising image quality.

• WEvade-W-II (Jiang et al., 2023) This method employs projected gradient descent (PGD)
to optimize a perturbation applied to the watermarked image such that the decoded water-
mark from the perturbed image by the model provider’s watermarking decoder closely
matches a randomly generated watermark, with each bit uniformly sampled from {0, 1}.
We assume that the attacker has access to the watermarking decoder for this method.
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(a) Clean (b) Watermarked (c) JPEG (d) Brightness (e) Contrast

(f) GN (g) WEvade-W-II (h) E-aware (i) E-agnostic

Figure 10: An example of generated image (a) with clean decoder, (b) with watermarked decoder, (c)
with watermarked decoder attacked by JPEG, (d) with watermarked decoder attacked by Brightness,
(e) with watermarked decoder attacked by Contrast, (f) with watermarked decoder attacked by GN,
(g) with watermarked decoder attacked by WEvade-W-II, (h) with non-watermarked decoder fine-
tune by our attack in E-aware scenario, (i) with non-watermarked decoder fine-tune by our attack in
E-agnostic scenario. The watermark can only be detected in (b).

A.5 DETAILS OF MP

MP involves fine-tuning the diffusion model’s encoder and decoder with the encoder’s parameters
fixed to reconstruct non-watermarked images using mean square error as the reconstruction loss.
Following the configuration by Fernandez et al. (2023), we employ AdamW and a learning rate of
0.0005 with a linear warm-up period of 20 iterations followed by a half-cycle cosine decay to fine-
tune the decoder with a batch size of 4 to achieve similar bitwise accuracy on the attacking dataset
as our attack in the E-aware scenario.

A.6 DETAILS OF EVALUATION METRICS

The evasion rate refers to the proportion of generated images (or perturbed images, in the case of
per-image-based removal attacks) that are detected as watermarked by the watermark-based detector.
Bitwise accuracy measures the proportion of bits in the watermark decoded from a generated (or
perturbed) image that match the ground-truth watermark wg . For the FID score, we calculate it on
the test set by comparing the generated (or perturbed) images to the original images produced by
the clean Stable Diffusion 2.1 model using the same random seed. Similarly, LPIPS is computed by
comparing the generated (or perturbed) images to the original images generated by the clean Stable
Diffusion 2.1, also using the same random seed. Both bitwise accuracy and LPIPS are averaged
across 1,000 images in the test set.

A.7 DETAILS OF PARAMETER SETTINGS

In the E-aware scenario, we use the Watson-VGG (Czolbe et al., 2020) model to measure the percep-
tual loss in Step II. However, in Step I of our attack, we use the Watson-VGG model to measure the
perceptual loss in the E-agnostic scenario. To avoid potential local minima issues that could emerge
from using the same perceptual loss model, we use VGG-16 (Falbel, 2024) to measure the percep-
tual loss in E-agnostic scenario in Step II. For the discriminator disc, we employ the discriminator
in HiDDeN (Zhu et al., 2018).

To estimate the denoised latent vector z in the E-agnostic scenario, we execute 500 epochs for each
stage of 2S. In each stage, the Adam optimizer, with a learning rate of 0.1, is used to optimize ẑ. For
other variants to estimate z, we execute 1,000 epochs–equivalent to the total epoch count in 2S–and
maintain consistent optimizer settings.
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For decoder fine-tuning, we execute 1 epoch in the E-aware scenario and 2 epochs in the E-agnostic
scenario. We set the parameters λ = 1 and µ = 0.1. Additionally, the AdamW optimizer is used,
with a base learning rate of 0.0005 with a linear warm-up period of 20 iterations followed by a
half-cycle cosine decay. The batch size is set to be 4. For optimizing the discriminator, the Adam
optimizer is used with a learning rate of 0.001.
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