
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STABLE SIGNATURE IS UNSTABLE: REMOVING IMAGE
WATERMARK FROM DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermark has been widely deployed by industry to detect AI-generated images.
A recent watermarking framework called Stable Signature (proposed by Meta)
roots watermark into the parameters of a diffusion model’s decoder such that its
generated images are inherently watermarked. Stable Signature makes it possible
to watermark images generated by open-source diffusion models and was claimed
to be robust against removal attacks. In this work, we propose a new attack to
remove the watermark from a diffusion model by fine-tuning it. Our results show
that our attack can effectively remove the watermark from a diffusion model such
that its generated images are non-watermarked, while maintaining the visual qual-
ity of the generated images. Our results highlight that Stable Signature is not as
stable as previously thought.

1 INTRODUCTION

With the rapid development of generative AI (GenAI), it becomes increasingly more difficult to dis-
tinguish AI-generated and non-AI-generated images. The misuse of AI-generated images presents a
significant risk of spreading misinformation. Watermarking (Bi et al., 2007; Zhu et al., 2018; Zhang
et al., 2020; Tancik et al., 2020; Fernandez et al., 2023; Wen et al., 2023; Jiang et al., 2024) has
emerged as a crucial technology for detecting AI-generated images and been widely deployed by in-
dustry. For instance, OpenAI incorporates a watermark into images generated by DALL-E (Ramesh
et al., 2021); Stability AI deploys a watermarking technique in Stable Diffusion (Rombach, 2022);
and Google has introduced SynthID as a watermarking solution for images generated by Imagen (Sa-
haria et al., 2022). In watermark-based detection, a watermark is embedded in AI-generated images
before they are accessed by users. During detection, if the same watermark can be extracted from
an image, it is identified as AI-generated.

Image watermark can be categorized into three groups based on the timing when watermark is
embedded into AI-generated images: post-generation, pre-generation, and in-generation. Post-
generation watermark (Luo et al., 2020; Bi et al., 2007; Zhu et al., 2018; Zhang et al., 2020; Al-
Haj, 2007; Tancik et al., 2020; Jiang et al., 2024) embeds a watermark into an image after the
image has been generated, while pre-generation watermark (Wen et al., 2023) embeds a watermark
into the initial noisy latent vector of a diffusion model. However, these watermarking methods are
vulnerable when the diffusion models are open-source. In particular, an attacker can easily remove
the watermarking components from the open-source diffusion model to generate non-watermarked
images. In contrast, in-generation watermark (e.g., Stable Signature (Fernandez et al., 2023) and
WOUAF (Kim et al., 2024)) roots watermark directly into the parameters of a diffusion model’s
decoder. It enables the images generated by the diffusion model to be inherently watermarked
without introducing any external watermarking components. This method is particularly suited for
watermarking images generated by open-source diffusion models.

Watermark removal attacks aim to remove watermarks from watermarked images, and can be di-
vided into two types: per-image-based and model-targeted. Per-image-based attacks (Jiang et al.,
2023; An et al., 2024; Lukas et al., 2024; Zhao et al., 2023; Saberi et al., 2024) add a carefully
crafted perturbation to each watermarked image individually. These removal attacks need to pro-
cess watermarked images one by one, which is inefficient when removing watermarks from a large
volume of watermarked images. In contrast, model-targeted attacks directly modify a diffusion
model’s parameters to make its generated images non-watermarked. For instance, Fernandez et al.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Clean (b) Watermarked (c) MP (d) E-aware (e) E-agnostic

Figure 1: An example of image generated by (a) the clean Stable Diffusion 2.1, (b) Stable Diffu-
sion 2.1 watermarked by Stable Signature, (c) watermarked Stable Diffusion 2.1 fine-tuned by MP,
(d) watermarked Stable Diffusion 2.1 fine-tuned by our attack with access to the encoder, and (e)
watermarked Stable Diffusion 2.1 fine-tuned by our attack without access to the encoder. The same
denoised latent vector is used by all diffusion models’ decoders to generate the images. The water-
mark can only be detected in the image generated by (b). The image generated by (c) has significant
loss of details.

(2023) also proposed a model-targeted removal attack, called model purification (MP), to attack
Stable Signature. However, MP requires access to the diffusion model’s encoder, and the model
provider can easily defend against this by making the encoder closed-source, as it is not necessary
for image generation. Moreover, MP significantly deteriorates image quality (Fernandez et al., 2023;
Kim et al., 2024), based on which Stable Signature and WOUAF were claimed to be robust against
model-targeted removal attacks.

In this work, we propose a new model-targeted attack to remove in-generation watermark from
open-source diffusion models. Our attack fine-tunes a diffusion model’s decoder using a set of
non-watermarked images, which we call attacking dataset. Specifically, our attack consists of two
steps. In Step I, we propose different methods to estimate a denoised latent vector for each non-
watermarked image in the attacking dataset in two settings, i.e., with and without access to the
diffusion model’s encoder. The open-source diffusion model’s decoder takes a denoised latent vec-
tor as input and outputs a watermarked image that is visually similar to the corresponding non-
watermarked image. In Step II, we leverage the non-watermarked images in the attacking dataset
and their corresponding estimated denoised latent vectors to fine-tune the diffusion model’s decoder
to remove the watermark from it. Our key idea is to fine-tune the decoder such that its generated
images based on the denoised latent vectors are close to the corresponding non-watermarked images
in the attacking dataset.

We empirically evaluate our attack on the open-source diffusion models, i.e., Stable Diffusion 2.1
which is watermarked by Stable Signature and Stable Diffusion 2-base which is watermarked by
WOUAF. Our results show that our attack can effectively remove the watermark from the diffusion
models such that their generated images are non-watermarked, while maintaining image quality.
Moreover, our attack substantially outperforms MP, the only existing model-targeted removal at-
tack (Fernandez et al., 2023), in the scenario in which it is applicable. As shown in Figure 1, our
attack can retain most information in the image after removing the watermark, while MP results in
a blurry image with significant loss of details. Our results suggest that Stable Signature is not as
robust as previously thought, and the design of a robust watermarking strategy for images generated
by open-source diffusion models remains an open challenge.

2 RELATED WORKS

2.1 LATENT DIFFUSION MODEL

Diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020; Kingma et al., 2021; Ho et al., 2022)
exhibit exceptional capability in generating images. A latent diffusion model (Rombach et al., 2022)
performs the diffusion process in the latent space, enhancing efficiency in both training of the diffu-
sion model and image generation. A latent diffusion model has four main components: an encoder
E to encode an image x into a latent vector E(x), diffusion process DP to add Gaussian noise to the
latent vector to obtain a noisy latent vector zT = DP (E(x)) where T denotes the number of steps

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Generation

Conditioning

Figure 2: The main components of a latent diffusion model.

in diffusion process, denoising layers DN to obtain a denoised latent vector z = DN(zT , c) where
c denotes the conditioning such as a text prompt or a depth map, and a decoder D to reconstruct an
image D(z) from z. The diffusion process is a predefined probabilistic process that iteratively adds
Gaussian noise to a latent vector, while the remaining three components are learnt using an image
dataset. During image generation, a noisy latent vector z′T is sampled from Gaussian distribution,
and the denoising layers DN and decoder D are used to generate an image D(DN(z′T , c)). The
main components of a latent diffusion model are shown in Figure 2.

2.2 IMAGE WATERMARK

Post-generation watermark: Post-generation watermarking methods (Bi et al., 2007; Al-Haj,
2007; Zhu et al., 2018; Tancik et al., 2020; Wang, 2021; Luo et al., 2020; Jing et al., 2021; Jiang
et al., 2024) embed watermarks into images after the image generation process. These methods typ-
ically consist of three main components: a watermark (represented as a bitstring), a watermarking
encoder for embedding the watermark into an image, and a watermarking decoder for extracting
the watermark from an image. These methods can be categorized into two groups based on how
the encoder and decoder are designed: learning-based and non-learning-based. Learning-based
methods (Zhu et al., 2018; Zhang et al., 2020; Tancik et al., 2020; Luo et al., 2020; Jiang et al.,
2024) leverage deep learning techniques, utilizing neural networks for both encoding and decod-
ing, while non-learning-based methods (Pereira & Pun, 2000; Al-Haj, 2007; Bi et al., 2007; Wang,
2021) rely on manually crafted encoding and decoding algorithms. In closed-source setting, where
the diffusion model is proprietary and users can only interact with it through API, learning-based
watermarking methods exhibit significant robustness against various attacks (An et al., 2024; Tancik
et al., 2020; Jiang et al., 2023). In open-source setting, however, such robustness is compromised.
An attacker can easily remove the watermarking components from the open-source diffusion model,
thus generating non-watermarked images without constraints.

Pre-generation watermark: Pre-generation watermarking methods (Wen et al., 2023) embed wa-
termark into images before the image generation process. In diffusion models, for instance, a wa-
termark can be incorporated into the noisy latent vector zT (Wen et al., 2023). Subsequently, the
image generated from this watermarked noisy latent vector contains the watermark. The watermark
retrieval process involves an inverse operation of DDIM sampling (Song & Ermon, 2020), which
reconstructs the noisy latent vector from the generated image. However, such pre-generation water-
mark is also vulnerable in open-source setting. An attacker can substitute the watermarked noisy la-
tent vector with a non-watermarked one, which is drawn from a Gaussian distribution. Consequently,
image generated from this non-watermarked noisy latent vector does not contain the watermark.

In-generation watermark: In-generation watermarking methods (Fernandez et al., 2023; Kim
et al., 2024) modify the parameters of the diffusion model’s decoder to ensure that all images gen-
erated by the model inherently contain a watermark. These methods seamlessly integrate the wa-
termarking process into image generation. For example, Stable Signature (Fernandez et al., 2023)
fine-tunes the diffusion model’s decoder using the HiDDeN (Zhu et al., 2018) watermarking decoder.
Once fine-tuned, each generated image embeds a predetermined watermark, which can be decoded
by the watermarking decoder, effectively embedding the watermark within the model’s parameters.
Similarly, WOUAF (Kim et al., 2024) employs a trained mapping network and weight modulation
technique to modify the diffusion model’s decoder, instead of fine-tuning. These approaches are
well-suited for open-source diffusion models, as they prevent attackers from easily removing the
watermark by simply discarding the watermarking components.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 WATERMARK REMOVAL ATTACKS

Per-image-based: Per-image-based removal attacks (Jiang et al., 2023; An et al., 2024; Lukas
et al., 2024; Zhao et al., 2023; Saberi et al., 2024) involve adding a carefully crafted perturbation
on each watermarked image to remove the watermark. Common image processing techniques, such
as JPEG compression and contrast adjustment, can introduce a perturbation for the watermarked
image to remove the watermark. Furthermore, more sophisticated per-image-based removal attacks
can be employed if the attacker has access to the watermarking decoder or detection API. For in-
stance, Jiang et al. (2023) proposed a white-box attack that assumes the attacker has access to the
watermarking decoder, and a black-box attack that strategically manipulates the watermarked image
based on detection API query results to remove the watermark. These per-image-based removal at-
tacks are applicable to all three groups of watermarks mentioned above as they do not require access
to the image generation process. However, they are inefficient when applied to a large volume of
images due to the individualized design of perturbations for each watermarked image.

Model-targeted: Model-targeted removal attacks (Fernandez et al., 2023) are specifically designed
for removing in-generation watermark. Such attacks involve modifying the diffusion model’s pa-
rameters such that its generated images are non-watermarked. For instance, Fernandez et al. (2023)
proposed MP to attack their Stable Signature in-generation watermark. This method aims to purify
the diffusion model’s decoder using non-watermarked images. However, it encounters challenges in
effectively removing the watermark without significantly degrading image quality. Model-targeted
removal attacks show high efficiency in removing watermark from numerous watermarked images,
as it only requires a one-time modification of the diffusion model and images generated by the mod-
ified diffusion model are non-watermarked. These methods offer much higher efficiency compared
to per-image-based removal attacks when handling numerous watermarked images.

3 PROBLEM FORMULATION

3.1 WATERMARKED DIFFUSION MODEL DECODER Dw

We denote by Dc a clean diffusion model decoder without watermark. Dc is fine-tuned as a water-
marked diffusion model decoder Dw such that its generated images are inherently embedded with a
ground-truth watermark wg . Formally, any generated image Dw(DN(zT , c)) is embedded with wg ,
where zT is a noisy latent vector sampled from a Gaussian distribution, DN is the denoising layers,
and c is the conditioning. Dw is made open-source, allowing users to generate watermarked images.

3.2 THREAT MODEL

Attacker’s goals: Given a watermarked diffusion model decoder Dw, an attacker aims to fine-tune
it as a non-watermarked diffusion model decoder Dnw. Specifically, the attacker aims to achieve two
goals: 1) effectiveness goal, and 2) utility goal. The effectiveness goal means that images generated
by Dnw do not have the watermark wg embedded; while the utility goal means that the images
generated by Dnw maintain visual quality, compared to those generated by Dw.

Attacker’s knowledge: A watermarked latent diffusion model consists of an encoder E, diffusion
process DP , denoising layers DN , and a watermarked decoder Dw. The denoising layers DN and
decoder Dw are involved when generating images, i.e., Dw(DN(zT , c)) is a generated image, where
zT is a noisy latent vector sampled from Gaussian distribution and c is the conditioning. We assume
DN and Dw are open-source, and thus the attacker has access to them. Depending on whether E
and DP are open-source, we consider the following two scenarios:

• Encoder-aware (E-aware). In this scenario, the model provider also makes E and DP
open-source. Therefore, the attacker has access to them. For instance, Stable Diffusion
model makes its E and DP open-source.

• Encoder-agnostic (E-agnostic). In this scenario, E and DP are not open-source, e.g.,
because image generation only requires DN and Dw. Therefore, the attacker does not
have access to E and DP in this setting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Step I Step II

Update based on loss function

Encoder-agnostic

Update based on loss function

Discriminator

Encoder-aware

Text prompt

V

Generation

Figure 3: Overview of our attack. The solid arrows represent the direction of data flow and the
dashed arrows represent the direction of gradient flow.

Additionally, we assume the attacker has access to a set of non-watermarked images, which we
call attacking dataset. For instance, the attacker can simply use popular benchmark images (e.g.,
ImageNet) as the attacking dataset. The attacking dataset is used to remove watermark from the
watermarked diffusion model decoder Dw.

Attacker’s capability: We assume the attacker can modify the parameters of the open-sourced
watermarked latent diffusion model decoder Dw. The denoising layers DN , which are much larger
than the decoder, requires much more computational resources to modify. For instance, in Stable
Diffusion 2.1, the denoising layers have about 10 times more parameters than the decoder. There-
fore, we assume the attacker modifies the decoder.

4 OUR ATTACK

4.1 OVERVIEW

We propose a two-step method to fine-tune the decoder Dw to make the diffusion model’s generated
images non-watermarked using an attacking dataset of size n, as illustrated in Figure 3. In Step I, we
estimate the denoised latent vector zi for each non-watermarked image xi in the attacking dataset,
where i = 1, 2, . . . , n. In Step II, by utilizing these images and their estimated denoised latent
vectors, we fine-tune the decoder Dw to ensure that the reconstructed images closely match the non-
watermarked images when the inputs are the corresponding estimated denoised latent vectors. Our
intuition is that a watermarked decoder will transform a denoised latent vector zi to the watermarked
version of xi, denoted as xi

w. Therefore, through fine-tuning the decoder to reconstruct xi from the
input zi, the decoder is trained to map any given denoised latent vector to the non-watermarked
version of its corresponding image, effectively removing watermarks from images generated by the
diffusion model.

4.2 STEP I: ESTIMATE THE DENOISED LATENT VECTOR z

To estimate the denoised latent vector zi for the non-watermarked image xi, we propose different
methods in different scenarios.

E-aware: In this scenario, an attacker has access to the encoder E, diffusion process DP , de-
noising layers DN , and watermarked decoder Dw. Based on the pipeline of the diffusion model,
the denoised latent vector zi can be represented as zi = DN(DP (E(xi)), ci). However, since we
don’t have access to the ground-truth conditioning ci to reconstruct zi, we cannot directly compute
zi even though we have access to E, DP , and DN . We observe that the denoising layers DN are
trained to denoise the noisy latent vector zT such that DN(zT , c) is close to E(x). Therefore, the
attacker can utilize the encoder to encode the non-watermarked image xi into the latent space to get

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

an estimation of the denoised latent vector zi, denoted by ẑi, as follows:

ẑi = E(xi),∀i. (1)

E-agnostic: In this scenario, an attacker only has access to the denoising layers DN and water-
marked decoder Dw. The most straightforward way to estimate the denoised latent vector zi is
to train a new encoder based on DN and Dw and use the method in E-aware scenario. However,
training an encoder from scratch for a latent diffusion model to achieve good encoding performance
requires a large number of data and computational resources, which is very time-consuming and
infeasible for an attacker with limited resources. Recall that our goal is to estimate the denoised
latent vector zi which will be mapped to the watermarked image xi

w by the watermarked decoder
Dw. Formally, we can formulate an equation as follows:

Dw(z
i) = xi

w,∀i. (2)

This equation is difficult to solve since there are two variables in it, the denoised latent vector
zi and watermarked image xi

w. To reduce the number of variables, we use the known xi as an
approximation of xi

w since the watermarked version of an image should be highly perceptually
close to the non-watermarked version. Therefore, to get an estimation of zi, we can reformulate the
equation as follows:

Dw(ẑ
i) = xi,∀i. (3)

We can easily get an estimation of zi for Equation 3 if Dw is invertible, i.e., ẑi = D−1
w (xi),∀i.

However, since the diffusion model’s decoder is a complicated neural network and it is usually
infeasible to get its inverse function, solving the Equation 3 directly is challenging. To address the
challenge, we can treat ẑi as a trainable variable and reformulate Equation 3 into an optimization
problem as follows:

min
ẑi

lp(Dw(ẑ
i), xi),∀i, (4)

where lp(·, ·) denotes the perceptual loss between two images to ensure the visual similarity. How-
ever, it is still challenging to make Dw(ẑ

i) closely resemble the non-watermarked image xi since
ẑi is randomly initialized and Dw(ẑ

i) is completely different from xi at the early stage of the opti-
mization process.

Therefore, we propose a two-stage optimization method to solve the optimization problem described
in Equation 4. At the first stage, for each ẑi, we randomly initialize it using a standard Gaussian
distribution. Then we employ gradient descent to find an initial point ẑiinit for ẑi that minimizes the
mean square error between Dw(ẑ

i
init) and xi. This stage ensures that Dw(ẑ

i
init) roughly resembles

xi, though with a significant loss of detailed information. At the second stage, we initialize ẑi

with the initial point ẑiinit obtained from the first stage. Then we set lp(·, ·) to be the Watson-VGG
perceptual loss (Czolbe et al., 2020) and use gradient descent to further optimize ẑi, enabling it to
capture the detailed information of the non-watermarked image xi. The detailed method to estimate
the denoised latent vector zi in E-agnostic scenario is shown in Algorithm 1 in Appendix.

4.3 STEP II: FINE-TUNE THE DECODER Dw

Given a set of estimated denoised latent vectors ẑi and non-watermarked images xi, our goal is to
modify the parameters of the watermarked decoder Dw to make the diffusion model’s generated
images non-watermarked. The main idea is to modify the decoder’s parameters to enable it to map
the denoised latent vector zi, which is originally mapped to the watermarked image xi

w, to the
non-watermarked image xi. To achieve this, we use the estimated denoised latent vectors ẑi and
non-watermarked images xi to fine-tune the decoder, ensuring that the reconstructed images closely
resemble the non-watermarked images at the pixel level to effectively remove the watermark signal
from each pixel. Formally, we can formulate the optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

However, since the mean square error measures the average difference between the non-watermarked
and reconstructed images, it tends to penalize large errors more severely than small ones, leading to
a smoothing effect where the reconstructed images may lose lots of detailed information. To solve
this challenge, a perceptual loss that measures the distance of the high-level features produced by
a pre-trained neural network between two images is employed to ensure the visual quality of the
reconstructed images. Formally, we can reformulate the optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑
i=1

lp(Dw(ẑ
i), xi), (6)

where λ denotes the weight for the perceptual loss. To solve the optimization problem, we employ
gradient descent to optimize the parameters of Dw to minimize the objective function in Equation 6.
During the optimization, we adopt a convolution neural network introduced by Zhu et al. (2018) as
a discriminator to perform adversarial training. The discriminator is trained to distinguish Dw(ẑ

i)
from xi and the decoder Dw is trained to fool the discriminator. Formally, we reformulate the
optimization problem as follows:

min
Dw

1

n

n∑
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑
i=1

lp(Dw(ẑ
i), xi)

+ µ
1

n

n∑
i=1

log(1− disc(Dw(ẑ
i))),

(7)

where disc denotes the discriminator and µ denotes the weight for the adversarial loss. The detailed
method to fine-tune the decoder Dw is shown in Algorithm 2 in Appendix.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets: We employ public non-AI-generated images as our attacking datasets. Specifically,
we utilize three datasets: ImageNet (Russakovsky et al., 2015), MS-COCO (Lin et al., 2014), and
Conceptual Captions (Sharma et al., 2018). From each dataset, we randomly select 4,000 images
as an attacking dataset to fine-tune the watermarked decoder. The images in the attacking datasets
are resized to 256 × 256. For testing, we evaluate the effectiveness and utility goals using images
generated by an open-source watermarked diffusion model and its versions fine-tuned by watermark
removal attacks. These images are produced using text prompts from the Stable Diffusion Prompts
dataset created by MagicPrompt (Santana, 2023). Specifically, we randomly sample 1,000 text
prompts from the dataset to generate 1,000 images for testing.

Detecting watermark in an image: In our experiments, we consider double-tail detector (Jiang
et al., 2023), which is a more robust version of watermark-based detector, as introduced in detail in
Appendix A.1.

Diffusion model and watermarking decoder: We evaluate two recent watermarking meth-
ods designed for open-source diffusion models: Stable Signature (Fernandez et al., 2023) and
WOUAF (Kim et al., 2024). For Stable Signature, we use the open-source Stable Diffusion 2.1
model and its watermarked version produced by Stable Signature. For WOUAF, we use the open-
source Stable Diffusion 2-base model and its watermarked version produced by WOUAF’s mapping
network (Kim et al., 2024). Further details on both methods are provided in Appendix A.2. For the
watermarking decoder Wd, we use the respective open-source decoders provided by Stable Signature
and WOUAF. Unless otherwise mentioned, we adopt Stable Signature as the default watermarking
method.

Different variants to estimate the denoised latent vector z: In our experiments, we compare our
two-stage optimization method (denoted by 2S) with the variants shown in Appendix A.3 to estimate
the denoised latent vector z.

Per-image-based removal attacks: In our experiments, we compare our attack with five commonly
used per-image-based removal attacks, including the state-of-the-art one proposed by Jiang et al.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ImageNet MS-COCO CC
0.0

0.2

0.4

0.6

0.8

1.0

E
va

si
on

R
at

e No attack

MP

E-aware

E-agnostic

(a) Evasion rate

ImageNet MS-COCO CC
0.5

0.6

0.7

0.8

0.9

1.0

B
it

w
is

e
A

cc
u

ra
cy

No attack

MP

E-aware

E-agnostic

(b) Bitwise accuracy

ImageNet MS-COCO CC
0

5

10

15

20

25

F
ID

No attack

MP

E-aware

E-agnostic

(c) FID

ImageNet MS-COCO CC
0.00

0.04

0.08

0.12

0.16

0.20

L
P

IP
S

No attack

MP

E-aware

E-agnostic

(d) LPIPS

Figure 4: Effectiveness and utility of MP and our attack on Stable Signature with the three attacking
datasets.

(2023). The details of the per-image-based removal attacks we use are shown in Appendix A.4. It
should be emphasized that all of these per-image-based attacks require to craft a perturbation for
each watermarked image individually to remove watermark.

Model-targeted removal attack: For model-targeted attacks, we compare our attack with MP, the
only existing model-targeted attack, introduced in Stable Signature (Fernandez et al., 2023). Note
that this method requires the access to the diffusion model’s encoder and is only applicable in the
E-aware scenario, which is introduced in detail in Appendix A.5.

Evaluation metrics: To evaluate whether our attack achieves the effectiveness goal, we utilize two
metrics: evasion rate and bitwise accuracy. Additionally, to evaluate whether our attack achieves
the utility goal, we use two commonly used metrics for the generation quality of generative models,
i.e., Fréchet Inception Distance (FID) and LPIPS (Zhang et al., 2018). The details of the evaluation
metrics are shown in Appendix A.6.

Parameter settings: In our experiments, 2S is employed as the default method to estimate the
denoised latent vector z in the E-agnostic scenario. Given that the watermark length in our experi-
ments is 48, τ is set to be 0.77 to ensure that the false positive rate of the double-tail detector does
not exceed 10−4. The detailed parameter settings for our experiments are shown in Appendix A.7.

5.2 EXPERIMENTAL RESULTS

Our attack achieves both the effectiveness and utility goals: Figures 4 and 5 show the evasion
rate, bitwise accuracy, FID, and LPIPS for MP and our attack across the three attacking datasets
on Stable Signature and WOUAF, respectively. First, we observe that our attack effectively evades
watermark-based detection in both E-aware and E-agnostic scenarios. For Stable Signature, the
evasion rate exceeds 94%, with a bitwise accuracy below 66%, while maintaining an FID lower
than 14.79 and an LPIPS under 0.066. Similarly, for WOUAF, the evasion rate reaches 100%, with
a bitwise accuracy below 57%, while maintaining an FID below 18.1 and an LPIPS under 0.077.
Notably, in the E-aware scenario, our attack produces images with lower FID and LPIPS than the wa-
termarked images produced by WOUAF without attack. This improvement occurs because WOUAF
compromises the original image quality when embedding the watermark. Our attack recovers these
images from the degradation, thereby enhancing their quality.

Second, we observe that our attack outperforms MP in both scenarios. In the E-aware scenario, our
attack achieves a higher evasion rate and lower bitwise accuracy, while consistently maintaining a
significantly lower FID and LPIPS across all three attacking datasets. In the E-agnostic scenario,
our attack still achieves a comparable or higher evasion rate and comparable bitwise accuracy, while
continuing to maintain a much lower FID and LPIPS in all datasets. It is important to note that MP

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ImageNet MS-COCO CC
0.0

0.2

0.4

0.6

0.8

1.0

E
va

si
on

R
at

e No attack

MP

E-aware

E-agnostic

(a) Evasion rate

ImageNet MS-COCO CC
0.40

0.52

0.64

0.76

0.88

1.00

B
it

w
is

e
A

cc
u

ra
cy

No attack

MP

E-aware

E-agnostic

(b) Bitwise accuracy

ImageNet MS-COCO CC
0

7

14

21

28

35

F
ID

No attack

MP

E-aware

E-agnostic

(c) FID

ImageNet MS-COCO CC
0.00

0.04

0.08

0.12

0.16

0.20

L
P

IP
S

No attack

MP

E-aware

E-agnostic

(d) LPIPS

Figure 5: Effectiveness and utility of MP and our attack on WOUAF with the three attacking
datasets.

Table 1: Utility and processing time of per-image-based attacks and our attack.

Utility Time
Method FID ↓ LPIPS ↓ PSNR ↑ Fine-tuning (min) ↓ Removal (s/img) ↓
JPEG 31.79 0.283 27.28 - 0.036

Brightness 112.84 0.688 5.25 - 0.005
Contrast 88.25 0.557 10.03 - 0.002

GN 132.92 1.145 12.99 - 0.017
WEvade-W-II 8.66 0.051 29.56 - 651.034

E-aware 8.48 0.047 29.51 14.197 -
E-agnostic 14.15 0.061 28.76 8777.885 -

assumes the attacker has access to the encoder, whereas our attack in the E-agnostic scenario does
not. Figure 8 and 9 in Appendix provide image examples comparing our attack with the clean and
watermarked images by Stable Signature and WOUAF. We observe that the images produced by
our non-watermarked decoder are nearly indistinguishable from those generated by the clean and
watermarked decoders.

Comparing with per-image-based removal attacks: Table 1 shows the utility and the processing
time of our attack compared with five per-image-based removal attacks when achieving similar eva-
sion rate and bitwise accuracy. Figure 10 in Appendix shows the generated (or perturbed) images
by different attacks. We also show the Peak signal-to-noise ratio (PSNR), a common metric for as-
sessing per-image-based attacks’ utility. The processing time is divided into decoder fine-tuning and
watermark removal phases. Note that our attack’s fine-tuning time, measured on a single NVIDIA
A6000 GPU, can be significantly reduced using multiple GPUs. For instance, with four NVIDIA
A6000 GPUs, fine-tuning in the E-agnostic scenario takes about 2K minutes.

First, our attack’s utility surpasses most per-image-based removal attacks. Second, the removal
time is 0 once the decoder is fine-tuned, making our method highly efficient for large numbers of
generated images. For instance, our attack outperforms WEvade-W-II when processing more than
one image in the E-aware scenario and 809 images in the E-agnostic scenario. Note that WEvade-
W-II requires the access to the watermarking decoder Wd to perform a white-box attack, and it
represents the upper bound of the utility that can be achieved by a removal attack. Our attack
achieves similar utility to WEvade-W-II when compared to clean, non-watermarked images, as we
optimize the decoder’s output to be closer to the non-watermarked image. It is difficult for human’s
eyes to notice their differences, as shown in Figure 10 in Appendix.

Different variants to estimate z: Figure 6 shows the FID and examples of reconstructed images by
different methods to estimate the denoised latent vector z for non-watermarked images. The FID is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1S-M 1S-P 1S-Mix 2S
Variant

0

25

50

75

100

125

F
ID

(a) FID (b) NW (c) 1S-M (d) 1S-P (e) 1S-Mix (f) 2S

Figure 6: Image reconstruction performance for different variants to estimate z on ImageNet. NW
denotes the non-watermarked image.

0 0.001 0.01 0.1 1 5 10
λ

0.80

0.85

0.90

0.95

1.00

E
va

si
on

R
at

e

E-aware

E-agnostic

0 0.001 0.01 0.1 1 5 10
λ

0.50

0.55

0.60

0.65

0.70

B
it

w
is

e
A

cc
u

ra
cy

E-aware

E-agnostic

0 0.001 0.01 0.1 1 5 10
λ

5

10

15

20

25

F
ID

E-aware

E-agnostic

0 0.0001 0.001 0.01 0.1 0.5 1
µ

0.80

0.85

0.90

0.95

1.00

E
va

si
on

R
at

e

E-aware

E-agnostic

(a) Evasion rate

0 0.0001 0.001 0.01 0.1 0.5 1
µ

0.50

0.55

0.60

0.65

0.70

B
it

w
is

e
A

cc
u

ra
cy

E-aware

E-agnostic

(b) Bitwise accuracy

0 0.0001 0.001 0.01 0.1 0.5 1
µ

5

10

15

20

25

F
ID

E-aware

E-agnostic

(c) FID

Figure 7: Effectiveness and utility of our attack with different λ (first row) and µ (second row) values
on ImageNet.

calculated between 100 randomly selected ImageNet images and their reconstructed versions. The
2S method produces images more similar to the originals and achieves a much lower FID than other
methods. The examples also show that z from our method retains more detail and achieves higher
visual similarity to original images.

Different λ: The first row of Figure 7 shows the evasion rate, bitwise accuracy, and FID for different
λ values in our attack. We observe that increasing λ reduces the effectiveness of the attack because
the loss function emphasizes perceptual loss over mean square error, hindering watermark removal.
Initially, utility improves with larger λ as the weight on perceptual loss increases. However, further
increases in λ lead to worse utility since focusing more on perceptual loss causes the reconstructed
image to deviate pixel-wise from the non-watermarked image.

Different µ: The second row of Figure 7 shows the evasion rate, bitwise accuracy, and FID for
different µ values in our attack. In the E-aware scenario, effectiveness remains constant initially and
then decreases, while utility does not change as µ increases. This occurs because small µ values
already make the reconstructed image similar to the non-watermarked one, so further increases in
µ do not provide additional benefits. Larger µ values also reduce the mean square error’s ability
to remove watermarks, decreasing effectiveness. In the E-agnostic scenario, both effectiveness and
utility initially remain unchanged but later improve with larger µ, as the initial reconstructed image is
significantly different from the non-watermarked one, and larger µ values make them more similar.

6 CONCLUSION AND FUTURE WORK

In this work, we find that image watermark for open-source diffusion model is not robust as previ-
ously thought. Given a watermarked diffusion model, an attacker can remove the watermark from
it by strategically fine-tuning its decoder. Our results show that our attack achieves both the ef-
fectiveness and utility goals in removing watermark from diffusion models in both E-aware and
E-agnostic scenarios, and outperforms the existing model-targeted attack which is only applicable
to E-aware scenario. Interesting future work is to design a more robust image watermarking method
for open-source diffusion models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ali Al-Haj. Combined dwt-dct digital image watermarking. Journal of computer science, 2007.

Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng,
Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, et al. Benchmarking the ro-
bustness of image watermarks. arXiv preprint arXiv:2401.08573, 2024.

Ning Bi, Qiyu Sun, Daren Huang, Zhihua Yang, and Jiwu Huang. Robust image watermarking
based on multiband wavelets and empirical mode decomposition. IEEE Transactions on Image
Processing, 2007.

Steffen Czolbe, Oswin Krause, Ingemar Cox, and Christian Igel. A loss function for generative
neural networks based on watson’s perceptual model. In Conference on Neural Information Pro-
cessing Systems, 2020.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In Conference on Neural Information Processing Systems, 2021.

Daniel Falbel. torch-vgg. https://github.com/pytorch/vision/tree/main/
references/classification, 2024.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable
signature: Rooting watermarks in latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Conference
on Neural Information Processing Systems, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. The Journal of Machine
Learning Research, 2022.

Zhengyuan Jiang, Jinghuai Zhang, and Neil Zhenqiang Gong. Evading watermark based detection
of ai-generated content. In ACM Conference on Computer and Communications Security (CCS),
2023.

Zhengyuan Jiang, Moyang Guo, Yuepeng Hu, Jinyuan Jia, and Neil Zhenqiang Gong. Certifiably
robust image watermark. In European Conference on Computer Vision, 2024.

Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. Hinet: Deep image hiding by
invertible network. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020.

Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, and Yezhou Yang. Wouaf: Weight
modulation for user attribution and fingerprinting in text-to-image diffusion models. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Conference on Neural Information Processing Systems, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, 2014.

Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, and Florian Kerschbaum. Leveraging optimization
for adaptive attacks on image watermarks. In International Conference on Learning Representa-
tions, 2024.

Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. Distortion agnostic
deep watermarking. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020.

11

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shelby Pereira and Thierry Pun. Robust template matching for affine resistant image watermarks.
IEEE Transactions on Image Processing, 2000.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, 2021.

Robin Rombach. stable-diffusion-watermark-decoder. https://github.com/CompVis/
stable-diffusion/blob/main/scripts/tests/test_watermark.py, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
2015.

Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao
Wang, and Soheil Feizi. Robustness of ai-image detectors: Fundamental limits and practical
attacks. In International Conference on Learning Representations, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealis-
tic text-to-image diffusion models with deep language understanding. In Conference on Neural
Information Processing Systems, 2022.

Gustavo Santana. magic-prompt. https://huggingface.co/datasets/Gustavosta/
Stable-Diffusion-Prompts, 2023.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Annual Meeting of the
Association for Computational Linguistics, 2018.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
2020.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Qingquan Wang. invisible-watermark. https://github.com/ShieldMnt/
invisible-watermark, 2021.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Finger-
prints for diffusion images that are invisible and robust. In Conference on Neural Information
Processing Systems, 2023.

Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis, and Mario Fritz. Responsible disclosure
of generative models using scalable fingerprinting. arXiv preprint arXiv:2012.08726, 2020.

Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In So Kweon. Udh: Universal deep
hiding for steganography, watermarking, and light field messaging. In Conference on Neural
Information Processing Systems, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan Vasan, Ilya Grishchenko, Christopher
Kruegel, Giovanni Vigna, Yu-Xiang Wang, and Lei Li. Invisible image watermarks are provably
removable using generative ai. arXiv preprint arXiv:2306.01953, 2023.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In European Conference on Computer Vision, 2018.

12

https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py
https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://github.com/ShieldMnt/invisible-watermark
https://github.com/ShieldMnt/invisible-watermark

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 1 Estimate the denoised latent vector z

Input: Non-watermarked images {xi}ni=1, watermarked decoder Dw, number of iteration for the
first stage n iter1, number of iteration for the second stage n iter2, learning rate α, perceptual
loss function lp

Output: Estimated denoised latent vectors {ẑi}ni=1
1: Q← ∅
2: for i = 1 to n do
3: ẑi ∼ N (0, 1)
4: for j = 1 to n iter1 do
5: g ← ∇ẑi∥Dw(ẑ

i)− xi∥2
6: ẑi ← ẑi − α · g
7: for j = 1 to n iter2 do
8: g ← ∇ẑi lp(Dw(ẑ

i), xi)
9: ẑi ← ẑi − α · g

10: Q← Q ∪ {ẑi}
11: return Q

Algorithm 2 Fine-tune the decoder Dw

Input: Non-watermarked images {xi}ni=1, estimated denoised latent vectors {ẑi}ni=1, watermarked
decoder Dw, number of epoch n epoch, decoder learning rate α, discriminator learning rate β,
perceptual loss function lp, discriminator disc, weight for perceptual loss λ, weight for adver-
sarial loss µ

Output: Non-watermarked decoder Dnw

1: Dnw ← Dw

2: for i = 1 to n epoch do
3: gdisc ← −∇disc

1
n

∑n
i=1[log(1− disc(Dnw(ẑ

i))) + log(disc(xi))]
4: disc← disc− β · gdisc
5: g ← ∇Dnw

1
n

∑n
i=1 ∥Dnw(ẑ

i) − xi∥2 + λ 1
n

∑n
i=1 lp(Dnw(ẑ

i), xi) + µ 1
n

∑n
i=1 log(1 −

disc(Dnw(ẑ
i)))

6: Dnw ← Dnw − α · g
7: return Dnw

A DETAILS OF EVALUATION

A.1 DETAILS OF DETECTING WATERMARK IN AN IMAGE

A watermarking decoder Wd is used to detect whether wg is in an image x. Specifically, Wd is used
to decode a watermark, represented as Wd(x), from the image x. The bitwise accuracy BA(w1, w2)
between two watermarks w1 and w2 is the proportion of bits that are identical in w1 and w2. x
is detected as watermarked with wg if the bitwise accuracy BA(Wd(x), wg) exceeds a detection
threshold τ or falls below 1 − τ , i.e., BA(Wd(x), wg) > τ or BA(Wd(x), wg) < 1 − τ . Such
detector is known as double-tail detector (Jiang et al., 2023), which is more robust than single-tail
detector that detects the image x as watermarked if the bitwise accuracy BA(Wd(x), wg) exceeds
τ . Therefore, we use double-tail detector in this work.

A.2 DETAILS OF THE WATERMARKED DIFFUSION MODELS

For the watermarked version of Stable Diffusion 2.1 obtained through Stable Signature, the wa-
termarked decoder Dw is fine-tuned from the clean decoder Dc of Stable Diffusion 2.1 using the
MS-COCO dataset. The images generated by this watermarked model are embedded with a 48-bit
ground-truth watermark wg . For the watermarked Stable Diffusion 2-base produced by WOUAF,
the watermarked decoder Dw is generated through WOUAF’s mapping network and weight mod-
ulation (Karras et al., 2020; Yu et al., 2020). The mapping network converts the watermark into a
latent embedding, and WOUAF applies weight modulation to the clean decoder Dc, transforming

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 8: Image generated by the clean Stable Diffusion 2.1 (first row), Stable Diffusion 2.1 water-
marked by Stable Signature (second row), watermarked Stable Diffusion 2.1 fine-tuned by our attack
in E-aware scenario (third row), and watermarked Stable Diffusion 2.1 fine-tuned by our attack in
E-agnostic scenario (fourth row). The same denoised latent vector is used by all diffusion models’
decoders to generate the images in the same column. The watermark can only be detected in the
images generated by Stable Diffusion 2.1 watermarked by Stable Signature (second row).

it into the watermarked decoder Dw. The images generated by this watermarked model contain a
32-bit ground-truth watermark wg .

A.3 OTHER VARIANTS TO ESTIMATE THE DENOISED LATENT VECTOR z

In our experiments, we compared our 2S method with the following variants. All of these methods
initialize ẑ with a standard Gaussian distribution and treat it as a trainable variable.

• One-stage mean square error (1S-M) This method optimizes ẑ to minimize the mean
square error between the reconstructed image Dw(ẑ) and the non-watermarked image x.

• One-stage perceptual loss (1S-P) This method optimizes ẑ to minimize the perceptual
loss calculated by the Watson-VGG model between Dw(ẑ) and x.

• One-stage mixed loss (1S-Mix) This method optimizes ẑ to minimize the mixed loss con-
sisting of mean square error and perceptual loss calculated by the Watson-VGG model
between Dw(ẑ) and x. The weights for different loss functions are set to be 1.

A.4 DETAILS OF PER-IMAGE-BASED REMOVAL ATTACKS

• JPEG It is a commonly used image compression technique that can significantly decrease
the size of image files while preserving high image quality. The quality of images processed
by JPEG is governed by a quality factor. Using a smaller quality factor to post-process
watermarked images can make the detection of watermarks within the image more difficult.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 9: Image generated by the clean Stable Diffusion 2-base (first row), Stable Diffusion 2-base
watermarked by WOUAF (second row), watermarked Stable Diffusion 2-base fine-tuned by our
attack in E-aware scenario (third row), and watermarked Stable Diffusion 2-base fine-tuned by our
attack in E-agnostic scenario (fourth row). The same denoised latent vector is used by all diffusion
models’ decoders to generate the images in the same column. The watermark can only be detected
in the images generated by Stable Diffusion 2-base watermarked by WOUAF (second row).

• Brightness This method modifies the brightness of an image by initially converting the
image to a color space that includes a brightness-related channel. It then isolates this chan-
nel, adjusts its intensity by multiplying it with a specified factor, and finally converts the
image back to its original color space. This method may disrupt the watermark patterns in
watermarked images to evade watermark detection.

• Contrast This method alters the contrast of an image by modifying its pixel values. Specif-
ically, for each pixel, it subtracts 127 from the pixel’s value, multiplies the result by a factor
k, and then adds 127 to the outcome. The factor k determines the level of contrast enhance-
ment or reduction, with values greater than 1 increasing contrast and values between 0 and
1 decreasing it.

• Gaussian noise (GN) This method adds a noise that follows a Gaussian distribution with
a zero mean and a standard deviation of σ to the watermarked image. It simulates the
noise effects commonly encountered in the real world. A larger σ value makes it more
challenging to detect watermarks, simultaneously compromising image quality.

• WEvade-W-II (Jiang et al., 2023) This method employs projected gradient descent (PGD)
to optimize a perturbation applied to the watermarked image such that the decoded water-
mark from the perturbed image by the model provider’s watermarking decoder closely
matches a randomly generated watermark, with each bit uniformly sampled from {0, 1}.
We assume that the attacker has access to the watermarking decoder for this method.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Clean (b) Watermarked (c) JPEG (d) Brightness (e) Contrast

(f) GN (g) WEvade-W-II (h) E-aware (i) E-agnostic

Figure 10: An example of generated image (a) with clean decoder, (b) with watermarked decoder, (c)
with watermarked decoder attacked by JPEG, (d) with watermarked decoder attacked by Brightness,
(e) with watermarked decoder attacked by Contrast, (f) with watermarked decoder attacked by GN,
(g) with watermarked decoder attacked by WEvade-W-II, (h) with non-watermarked decoder fine-
tune by our attack in E-aware scenario, (i) with non-watermarked decoder fine-tune by our attack in
E-agnostic scenario. The watermark can only be detected in (b).

A.5 DETAILS OF MP

MP involves fine-tuning the diffusion model’s encoder and decoder with the encoder’s parameters
fixed to reconstruct non-watermarked images using mean square error as the reconstruction loss.
Following the configuration by Fernandez et al. (2023), we employ AdamW and a learning rate of
0.0005 with a linear warm-up period of 20 iterations followed by a half-cycle cosine decay to fine-
tune the decoder with a batch size of 4 to achieve similar bitwise accuracy on the attacking dataset
as our attack in the E-aware scenario.

A.6 DETAILS OF EVALUATION METRICS

The evasion rate refers to the proportion of generated images (or perturbed images, in the case of
per-image-based removal attacks) that are detected as watermarked by the watermark-based detector.
Bitwise accuracy measures the proportion of bits in the watermark decoded from a generated (or
perturbed) image that match the ground-truth watermark wg . For the FID score, we calculate it on
the test set by comparing the generated (or perturbed) images to the original images produced by
the clean Stable Diffusion 2.1 model using the same random seed. Similarly, LPIPS is computed by
comparing the generated (or perturbed) images to the original images generated by the clean Stable
Diffusion 2.1, also using the same random seed. Both bitwise accuracy and LPIPS are averaged
across 1,000 images in the test set.

A.7 DETAILS OF PARAMETER SETTINGS

In the E-aware scenario, we use the Watson-VGG (Czolbe et al., 2020) model to measure the percep-
tual loss in Step II. However, in Step I of our attack, we use the Watson-VGG model to measure the
perceptual loss in the E-agnostic scenario. To avoid potential local minima issues that could emerge
from using the same perceptual loss model, we use VGG-16 (Falbel, 2024) to measure the percep-
tual loss in E-agnostic scenario in Step II. For the discriminator disc, we employ the discriminator
in HiDDeN (Zhu et al., 2018).

To estimate the denoised latent vector z in the E-agnostic scenario, we execute 500 epochs for each
stage of 2S. In each stage, the Adam optimizer, with a learning rate of 0.1, is used to optimize ẑ. For
other variants to estimate z, we execute 1,000 epochs–equivalent to the total epoch count in 2S–and
maintain consistent optimizer settings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For decoder fine-tuning, we execute 1 epoch in the E-aware scenario and 2 epochs in the E-agnostic
scenario. We set the parameters λ = 1 and µ = 0.1. Additionally, the AdamW optimizer is used,
with a base learning rate of 0.0005 with a linear warm-up period of 20 iterations followed by a
half-cycle cosine decay. The batch size is set to be 4. For optimizing the discriminator, the Adam
optimizer is used with a learning rate of 0.001.

17

	Introduction
	Related Works
	Latent Diffusion Model
	Image Watermark
	Watermark Removal Attacks

	Problem Formulation
	Watermarked Diffusion Model Decoder Dw
	Threat Model

	Our Attack
	Overview
	Step I: Estimate the Denoised Latent Vector z
	Step II: Fine-tune the Decoder Dw

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	Details of Evaluation
	Details of Detecting Watermark in an Image
	Details of the Watermarked Diffusion Models
	Other Variants to Estimate the Denoised Latent Vector z
	Details of Per-image-based Removal Attacks
	Details of MP
	Details of Evaluation Metrics
	Details of Parameter Settings

