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Abstract

In Graph Neural Networks (GNNs), hierarchical pooling operators generate local
summaries of the data by coarsening the graph structure and the vertex features.
While considerable attention has been devoted to analyzing the expressive power
of message-passing (MP) layers in GNNs, a study on how graph pooling affects the
expressiveness of a GNN is still lacking. Additionally, despite the recent advances
in the design of pooling operators, there is not a principled criterion to compare
them. In this work, we derive sufficient conditions for a pooling operator to fully
preserve the expressive power of the MP layers before it. These conditions serve
as a universal and theoretically grounded criterion for choosing among existing
pooling operators or designing new ones. Based on our theoretical findings, we
analyze several existing pooling operators and identify those that fail to satisfy the
expressiveness conditions. Finally, we introduce an experimental setup to verify
empirically the expressive power of a GNN equipped with pooling layers, in terms
of its capability to perform a graph isomorphism test.

1 Introduction

Significant effort has been devoted to characterizing the expressive power of Graph Neural Networks
(GNNs) in terms of their capabilities for testing graph isomorphism [34]. This has led to a better
understanding of the strengths and weaknesses of GNNs and opened up new avenues for developing
advanced GNN models that go beyond the limitations of such algorithms [32]. The more powerful
a GNN, the larger the set of non-isomorphic graphs that it can distinguish by generating distinct
representations for them. GNNs with appropriately formulated message-passing (MP) layers are
as effective as the Weisfeiler-Lehman isomorphism test (WL test) in distinguish graphs [38], while
higher-order GNN architectures can match the expressiveness of the k-WL test [29]. Several
approaches have been developed to enhance the expressive power of GNNs by incorporating random
features into the nodes [33, 1], by using randomized weights in the network architecture [42], or
by using compositions of invariant and equivariant functions [27]. Despite the progress made in
understanding the expressive power of GNNs, the results are still limited to flat GNNs consisting of a
stack of MP layers followed by a final readout [38, 5].

Inspired by pooling in convolutional neural networks, recent works introduced hierarchical pooling
operators that enable GNNs to learn increasingly abstract and coarser representations of the input
graphs [39, 9]. By interleaving MP with pooling layers that gradually distill global graph properties
through the computation of local summaries, it is possible to build deep GNNs that improve the
accuracy in graph classification [8, 4] and node classification tasks [18, 26].
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It is not straightforward to evaluate the power of a graph pooling operator and the quality of the
coarsened graphs it produces. The most common approach is to simply measure the performance of
a GNN with pooling layers on a downstream task, such as graph classification. However, such an
approach is highly empirical and provides an indirect evaluation affected by external factors. One
factor is the overall GNN architecture: pooling is combined with different MP layers, activation
functions, normalization or dropout layers, and optimization algorithms, which makes it difficult to
disentangle the contribution of the individual components. Another factor is the dataset at hand: some
classification tasks only require isolating a specific motif in the graph [23, 7], while others require
considering global properties that depend on the whole graph structure [15]. Recently, two criteria
were proposed to evaluate a graph pooling operator in terms of i) the spectral similarity between the
original and the coarsened graph topology and ii) its capability of reconstructing the features of the
original graph from the coarsened one [20]. While providing valuable insights, these criteria give
results that are, to some extent, contrasting and in disagreement with the traditional evaluation based
on the performance of the downstream task.

To address this issue, we introduce a universal and principled criterion that quantifies the power of
a pooling operator as its capability to retain the information in the graph from an expressiveness
perspective. In particular, we investigate how graph pooling affects the expressive power of GNNs
and derive sufficient conditions under which the pooling operator preserves the highest degree of
expressiveness. Our contributions are summarized as follows.

• We show that when certain conditions are met in the MP layers and in the pooling operator,
their combination produces an injective function between graphs. This implies that the GNN
can effectively coarsen the graph to learn high-level data descriptors, without compromising
its expressive power.

• Based on our theoretical analysis, we identify commonly used pooling operators that do not
satisfy these conditions and may lead to failures in certain scenarios.

• We introduce a simple yet effective experimental setup for measuring, empirically, the
expressive power of any GNN in terms of its capability to perform a graph isomorphism test.

Besides providing a criterion for choosing among existing pooling operators and for designing new
ones, our findings allow us to debunk criticism and misconceptions about graph pooling.

2 Background

2.1 Graph neural networks

Let G = (V, E) be a graph with node features X0 ∈ RN×F , where |V| = N . Each row x0
i ∈ RF

of the matrix X0 represents the initial node feature of the node i, ∀i = 1, . . . , N . Through the MP
layers a GNN implements a local computational mechanism to process graphs [19]. Specifically, each
feature vector xv is updated by combining the features of the neighboring nodes. After l iterations,
xl
v embeds both the structural information and the content of the nodes in the l–hop neighborhood of

v. With enough iterations, the feature vectors can be used to classify the nodes or the entire graph.
More rigorously, the output of the l-th layer of a MP-GNN is:

xl
v = COMBINE(l)(xl−1

v , AGGREGATE(l)({xl−1
u , u ∈ N [v]})) (1)

where AGGREGATE(l) is a function that aggregates the node features from the neighborhood N [v] at
the (l− 1)–th iteration, and COMBINE(l) is a function that combines the own features with those of the
neighbors. This type of MP-GNN implements permutation-invariant feature aggregation functions
and the information propagation is isotropic [35]. In graph classification/regression tasks, a READOUT
function typically transforms the feature vectors from the last layer L to produce the final output:

o = READOUT({xL
v , v ∈ V}). (2)

The READOUT is implemented as the sum, mean, or the maximum of all node features, or by more
elaborated functions [11, 40, 22].
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2.2 Expressive power of graph neural networks

When analyzing the expressive power of GNNs, the primary objective is to evaluate their capacity
to produce different outputs for non-isomorphic graphs. While an exact test for graph isomorphism
has a combinatorial complexity [2], the WL test for graph isomorphism [37] is a computationally
efficient yet effective test that can distinguish a broad range of graphs. The algorithm assigns to each
graph vertex a color that depends on the multiset of labels of its neighbors and on its own color. At
each iteration, the colors of the vertices are updated until convergence is reached.

There is a strong analogy between an iteration of the WL-test and the aggregation scheme implemented
by MP in GNNs. In fact, it has been proven that MP-GNNs are at most as powerful as the WL test in
distinguishing different graph-structured features [38, 29]. Moreover, if the MP operation is injective,
the resulting MP-GNN is as powerful as the WL test [38]. The Graph Isomorphism Network (GIN)
implements such an injective multiset function as:

xl
v = MLP(l)

(1 + ϵl)xl−1
v +

∑
u∈N [v]

xl−1
u

 . (3)

Under the condition that the nodes’ features are from a countable multiset, the representational power
of GIN equals that of the WL test. Some GNNs can surpass the discriminative power of the WL test
by using higher-order generalizations of MP operation [29], or by using a composition of invariant
and equivariant functions [27], at the price of higher computational complexity. In this work, we
focus on the standard MP-GNN, which remains the most widely adopted due to its computational
efficiency.

2.3 Graph pooling operators

A graph pooling operator implements a function POOL : G 7→ GP = (VP , EP ) such that |VP | = K,
with K ≤ N . We let XP ∈ RK×F be the pooled nodes features, i.e., the features of the nodes VP

in the pooled graph. To formally describe the POOL function, we adopt the Select-Reduce-Connect
(SRC) framework [20], that expresses a graph pooling operator through the combination of three
functions: selection, reduction, and connection. The selection function (SEL) clusters the nodes
of the input graph into subsets called supernodes, namely SEL : G 7→ S = {S1, . . . ,SK} with

Sj =
{
sji

}N

i=1
where sji is the membership score of node i to supernode j. The memberships are

conveniently represented by a cluster assignment matrix S, with entries [S]ij = sji . Typically, a
node can be assigned to zero, one, or several supernodes, each with different scores. The reduction
function (RED) creates the pooled vertex features by aggregating the features of the vertices assigned
to the same supernode, that is, RED : (G,S) 7→ XP . Finally, the connect function (CON) generates the
edges, and potentially the edge features, by connecting the supernodes.

3 Expressive power of graph pooling operators

We define the expressive power of a graph pooling operator as its capability of preserving the
expressive power of the MP layers that came before it. We first present our main result, which is a
formal criterion to determine the expressive power of a pooling operator. In particular, we provide
three sufficient (though not necessary) conditions ensuring that if the MP and the pooling layers meet
certain criteria, then the latter retains the same level of expressive power as the former. Then, we
analyze several existing pooling operators and analyze their expressive power based on those criteria.

3.1 Conditions for expressiveness

Theorem 1. Let G1 = (V1, E1) with |V1| = N and G2 = (V2, E2) with |V2| = M with node features
X and Y respectively, such that G1 ̸=WL G2. Let GL

1 and GL
2 be the graph obtained after applying

a block of L MP layers such that XL ∈ RN×F and YL ∈ RM×F are the new nodes features. Let
POOL be a pooling operator expressed by the functions SEL, RED, CON, which is placed after the MP
layers. Let G1P = POOL(GL

1 ) and G2P = POOL(GL
2 ) with |V1P | = |V2P | = K. Let XP ∈ RK×F

and YP ∈ RK×F be the nodes features of the pooled graphs so that the rows xPj
and yPj

represent
the features of supernode j in graphs G1P and G2P , respectively. If the following conditions hold:
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1.
∑N

i xL
i ̸=

∑M
i yL

i ;

2. The memberships generated by SEL satisfy
∑K

j=1 sij = λ, with λ > 0 for each node i, i.e.,
the cluster assignment matrix S is a right stochastic matrix up to the global constant λ;

3. The function RED is of type RED : (XL,S) 7→ XP = STXL;

then G1P and G2P will have different nodes features, i.e., for all rows’ indices permutations π :
{1, . . .K} → {1, . . .K}, XP ̸= Π(YP ), where [Π(YP )]ij = yPπ(i)j

.

The proof can be found in Appendix A and a schematic summary is in Fig. 1.

Cond. 1

Cond. 2

Cond. 3

Figure 1: A GNN with expressive MP layers (condition 1) computes different features XL
1 and XL

2
for two graphs G1, G2 that are WL-distinguishable. A pooling layer satisfying the conditions 2 and 3
generates coarsened graphs G1P and G2P that are still WL-distinguishable.

Condition 1 is strictly related to the theory of multisets. Indeed, a major breakthrough in designing
highly expressive MP layers was achieved by building upon the findings of Deep Sets [41]. Under the
assumption that the node features originate from a countable universe, it has been formally proven
that there exists a function that, when applied to the node features, makes the sum over a multiset of
node features injective [38]. The universal approximation theorem guarantees that such a function
can be implemented by an MLP. Moreover, if the pooling operator satisfies conditions 2 and 3, it will
produce different sets of node features. Due to the injectiveness of the coloring function of the WL
algorithm, two graphs with different multisets of node features will be classified as non-isomorphic by
the WL test and, therefore, G1P ̸=WL G2P . This implies that the pooling operator effectively coarsens
the graphs while retaining all the information necessary to distinguish them. Therefore, our Theorem
ensures that there exists a specific choice of parameters for the MP layer that, when combined with a
pooling operator satisfying the Theorem’s conditions, the resulting GNN architecture is injective.

Condition 2 implies that all nodes in the original graph must contribute to the supernodes. Moreover,
letting the sum of the memberships sij to be a constant λ (usually, λ = 1), places a restriction on
the formation of the super-nodes. Condition 3 requires that the features of the supernodes XP are
a convex combination of the node features XL. It is important to note that the conditions for the
expressiveness only involve SEL and RED, but not the CON function. Indeed, both the graph’s topology
and the nodes’ features are embedded in the features of the supernodes by MP and pooling layers
satisfying the conditions of Th. 1. Nevertheless, even if a badly-behaved CON function does not affect
the expressiveness of the pooling operator, it can still compromise the effectiveness of the MP layers
that come afterward. This will be discussed further in Sections 3.3 and 4.

3.2 Expressiveness of existing pooling operators

The SRC framework allows building a comprehensive taxonomy of the existing pooling operators,
based on the density of supernodes, the trainability of the SEL, RED, and CON functions, and the
adaptability of the number of supernodes K [20]. The density of a pooling operator is defined as the
expected value of the ratio between the cardinality of a supernode and the number of nodes in the
graph. A method is referred to as dense if the supernodes have cardinality O(N), whereas a pooling
operator is considered sparse if the supernodes generated have constant cardinality O(1) [20].
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Pooling methods can also be distinguished according to the number of nodes K of the pooled graph.
If K is constant and independent of the input graph size, the pooling method is fixed. On the other
hand, if the number of supernodes is a function of the input graph, the method is adaptive. Finally, in
some pooling operators the SEL, RED, and CON functions can be learned end-to-end along with the
other components of the GNN architecture. In this case, the method is said to be trainable, meaning
that the operator has parameters that are learned by optimizing a task-driven loss function. Otherwise,
the methods are non-trainable.

Dense pooling operators Prominent methods in this class of pooling operators are DiffPool [39],
MinCutPool [8], and DMoN [36]. Besides being dense, all these operators are also trainable and
fixed. DiffPool, MinCutPool, and DMoN compute a cluster assignment matrix S ∈ RN×K either
with an MLP or an MP-layer, which is fed with the node features XL and ends with a softmax. The
main difference among these methods is in how they define unsupervised auxiliary loss functions,
which are used to inject a bias in how the clusters are formed. Thanks to the softmax normalization,
the cluster assignments sum up to one, ensuring condition 2 of Th. 1 to be satisfied. Moreover, the
pooled node features are computed as Xp = STXL, making also condition 3 satisfied.

There are dense pooling operators that use algorithms such as non-negative matrix factorization [3] to
obtain a cluster assignment matrix S, which may not satisfy condition 2. Nonetheless, it is always
possible to apply a suitable normalization to ensure that the rows in S sum up to a constant. Therefore,
we claim that all dense methods preserve the expressive power of the preceding MP layers.

Non-expressive sparse pooling operators Members of this category are Top-k [18, 23] AS-
APool [31], SAGPool [24] and PanPool [26], which are also trainable and adaptive. These methods
reduce the graph by selecting a subset of its nodes based on a ranking score and they mainly differ in
how their SEL function computes such a score. Specifically, the Top-k method ranks nodes based
on a score obtained by multiplying the node features with a trainable projection vector. A node i is
kept (si = 1) if is among the top-K in the ranking and is discarded (si = 0) otherwise. SAGPool
simply replaces the projection vector with an MP layer to account for the graph’s structure when
scoring the nodes. ASAPool, instead, examines all potential local clusters in the input graph given a
fixed receptive field and it employs an attention mechanism to compute the cluster membership of the
nodes. The clusters are subsequently scored using a particular MP operator. Finally, in PanPool the
scores are obtained from the diagonal entries of the maximal entropy transition matrix, which is a
generalization of the graph Laplacian.

Regardless of how the score is computed, all these methods generate a cluster assignment matrix S
where not all the rows sum to a constant. Indeed, if a node is not selected, it is not assigned to any
supernode in the coarsened graph. Therefore, these methods fail to meet condition 2 of Theorem 1.
Additionally, in the RED function of all these methods the features of each selected node are multiplied
by its ranking score, making condition 3 also unsatisfied.

Figure 2: Example of failure of
Top-k pooling. Given two WL-
distinguishable graphs with node fea-
tures x1 ≤ x2 ≤ x3 ≤ x4, two scor-
ing vectors s1 and s2 are computed
using a projector p. Then, the two
nodes associated with the highest
scores are selected. If p ≤ 0, nodes
1 and 2 are chosen in both graphs.
Conversely, if p > 0, nodes 3 and
4 are selected. Therefore, regardless
of the value learned for the projec-
tor p, the two input graphs will be
mapped into the same pooled graph.

Intuitively, these operators produce a pooled graph that is a subgraph of the original graph and discard
the content of the remaining parts. This hinders the ability to retain all the necessary information for
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preserving the expressiveness of the preceding MP layers. The limitation of Top-k is exemplified in
Fig. 2: regardless of the projector p, Top-k maps two WL-distinguishable graphs into two isomorphic
graphs, meaning that it cannot preserve the partition on graphs induced by the WL test.

Expressive sparse pooling operators Not all sparse pooling operators coarsen the graph by
selecting a subgraph. In fact, some of them assign each node in the original graph to exactly one
supernode and, thus, satisfy condition 2 of Th. 1. In matrix form and letting λ = 1, the cluster
assignment would be represented by a sparse matrix S that satisfies S1K = 1N and where every
row has one entry equal to one and the others equal to zero. Within this category of sparse pooling
operators, notable examples include Graclus [13], ECPool [14], and k-MISPool [4].

Graclus is a non-trainable, greedy bottom-up spectral clustering algorithm, which matches each
vertex with the neighbor that is closest according to the graph connectivity [13]. When Graclus is
used to perform graph pooling, the RED function is usually implemented as a max_pool operation
between the vertices assigned to the same cluster [12]. In this work, to ensure condition 3 of Th. 1 to
be satisfied, we use a sum_pool operation instead. Contrarily from Gralcus, ECPool, and k-MISPool
are trainable. ECPool first assigns to each edge ei→j a score rij = f(xi,xj ;Θ). Then, iterates
over each edge ei→j , starting from those with higher scores, and contracts it if neither nodes i and
j are attached to an already contracted edge. The endpoints of a contracted edge are merged into
a new supernode Sk = rij(xi + xj), while the remaining nodes become supernodes themselves.
Since each supernode either contains the nodes of a contracted edge or is a node from the original
graph, all columns of S have either one or two entries equal to one, while each row sums up to
one. The RED function can be expressed as r ⊙ STXL, where r[k] = rij if k is the contraction of
two nodes i j, otherwise r[k] = 1. As a result, ECPool met the expressiveness conditions of Th. 1.
Finally, k-MISPool identifies the supernodes with the centroids of the maximal k-independent sets of
a graph [6]. To speed up computation, the centroids are selected with a greedy approach based on a
ranking vector π. Since π can be obtained from a trainable projector p applied to the vertex features,
π = XLpT , k-MISPool is a trainable pooling operator. k-MISPool assigns each vertex to one of the
centroids and aggregates the features of the vertex assigned to the same centroid with a sum_pool
operation to create the features of the supernodes. Therefore, k-MISPool satisfies the expressiveness
conditions of Th. 1.

A common characteristic of these methods is that the number of supernodes K cannot be directly
specified. Graclus and ECPool achieve a pooling ratio of approximately 0.5 by roughly reducing
each time the graph size by 50%. On the other hand, k-MISPool can control the coarsening level
by computing the maximal independent set from Gk, which is the graph where each node of G is
connected to its k-hop neighbors. As the value of k increases, the pooling ratio decreases.

3.3 Criticism on graph pooling

Recently, the effectiveness of graph pooling has been questioned using as an argument a set of empir-
ical results aimed at exposing the weaknesses of certain pooling operators [28]. The experiments
showed that using a randomized cluster assignment matrix S (followed by a softmax normalization)
gives comparable results to using the assignment matrices learned by Diffpool [39] and MinCut-
Pool [8]. Similarly, applying Graclus [13] on the complementary graph would give a performance
similar to using the original graph.

We identified potential pitfalls in the proposed evaluation, which considered only pooling operators
that are expressive and that, even after being modified, retain their expressive power. Clearly, even
if expressiveness ensures that all the information is preserved in the pooled graph, its structure is
corrupted when using a randomized S or a complementary graph. This hinders the effectiveness of
the MP layers that come after pooling, as their inductive biases no longer match the data structure
they receive. Notably, this might not affect certain classification tasks where the goal is to detect
small structures, such as a motif in a molecule graph [25, 21], that are already captured by the MP
layers before pooling.

To address these limitations, first, we propose to corrupt a pooling operator that is not expressive. In
particular, we design a Top-k pooling operator where the nodes are ranked based on a score that is
sampled from a Normal distribution rather than being produced by a trainable function of the vertex
features. Second, we evaluate all the modified pooling operators in a setting where the MP layers
after pooling are essential for the task and show that the performance drop is significant.
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4 Experimental Results

To empirically confirm the theoretical results presented in Section 3, we designed a synthetic dataset
that is specifically tailored to evaluate the expressive power of a GNN. We considered a GNN with
MP layers interleaved with 10 different pooling operators: DiffPool [39], DMoN [36], MinCut [8],
ECPool [14], Graclus, k-MISPool [4], Top-k [18], PanPool [26], ASAPool [31], and SAGPool [24].
For each pooling method, we used the implementation in Pytorch Geometric [17] with the default
configuration. In addition, following the setup used to criticize the effectiveness of graph pooling [28],
we considered the following pooling operators: Rand-Dense, a dense pooling operator where the
cluster assignment is a normalized random matrix; Rand-Sparse, a sparse operator that ranks nodes
based on a score sampled from a Normal distribution; Cmp-Graclus, an operator that applies the
Graclus algorithm on the complement graph.

4.1 The EXPWL1 dataset

Our experiments aim at evaluating the expressive power of MP layers when combined with pooling
layers. However, existing real-world and synthetic benchmark datasets are unsuitable for this
purpose as they are not specifically designed to relate the power of GNNs to that of the WL test.
Recently, the EXP dataset was proposed to test the capability of special GNNs to achieve higher
expressive power than the WL test [1], which, however, goes beyond the scope of our evaluation.
Therefore, we introduce a modified version of EXP called EXPWL1, which comprises a collection
of graphs {G1, . . . ,GN ,H1, . . . ,HN} representing propositional formulas that can be satisfiable or
unsatisfiable. Each pair (Gi,Hi) in EXPWL1 consists of two non-isomorphic graphs distinguishable
by a WL test, which encode formulas with opposite SAT outcomes. Therefore, any GNN that has
an expressive power equal to the WL test can distinguish them and achieve approximately 100%
classification accuracy on the dataset. Compared to the original EXP dataset, we increased the size of
the dataset to a total of 3000 graphs and we also increased the size of each graph from an average of
55 nodes to 76 nodes. This was done to make it possible to apply an aggressive pooling without being
left with a trivial graph structure. The EXPWL1 dataset and the code to reproduce the experimental
results are publicly available2.

4.2 Experimental procedure

To empirically evaluate which pooling operator maintains the expressive power of the MP layers
preceding it, we first identified a GNN architecture without pooling layers, which achieves approx-
imately 100% accuracy on the EXPWL1. We tried different baselines (details in Appendix C.1)
and we found that a GNN with three GIN layers [38] followed by a global_sum_pool reaches
the desired accuracy. Then, we inserted a pooling layer between the 2nd and 3rd GIN layer, which
performs an aggressive pooling by using a pooling ratio of 0.1 that reduces the graph size by 90%.
The details of the GNN architectures are in Appendix C.2. Besides 0.1, we also considered additional
pooling ratios and we reported the results in Appendix C.3. To ensure a fair comparison, when testing
each method we shuffled the datasets and created 10 different train/validation/test splits using the
same random seed. We trained each model on all splits for 500 epochs and reported the average
training time and the average test accuracy obtained by the models that achieved the lowest loss on
the validation set. To validate our experimental approach, we also measured the performance of the
proposed GNN architecture equipped with the different pooling layers on popular benchmark datasets
for graph classification [30, 10].

4.3 Experimental Results

Table 1 reports the performances of different pooling operators on EXPWL1. These results are
consistent with our theoretical findings: pooling operators that satisfy the conditions of Th. 1 achieve
the highest average accuracy and, despite the aggressive pooling, they retain all the necessary
information to achieve the same performance of a GNN without a pooling layer. On the other
hand, non-expressive pooling operators achieve a significantly lower accuracy as they are not able to
correctly distinguish all graphs.

2https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs
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Pooling s/epoch GIN layers Pool Ratio Test Acc Expressive
No-pool 0.33s 3 – 99.3±0.3 ✓
DiffPool 0.69s 2+1 0.1 97.0±2.4 ✓
DMoN 0.75s 2+1 0.1 99.0±0.7 ✓
MinCut 0.72s 2+1 0.1 98.8±0.4 ✓
ECPool 20.71s 2+1 0.2 100.0±0.0 ✓
Graclus 1.00s 2+1 0.1 99.9±0.1 ✓
k-MIS 1.17s 2+1 0.1 99.9±0.1 ✓
Top-k 0.47s 2+1 0.1 67.9±13.9 ✗
PanPool 3.82s 2+1 0.1 63.2±7.7 ✗
ASAPool 1.11s 1+1 0.1 83.5±2.5 ✗
SAGPool 0.59s 1+1 0.1 79.5±9.6 ✗

Rand-dense 0.41s 2+1 0.1 91.7±1.3 ✓
Cmp-Graclus 8.08s 2+1 0.1 91.9±1.2 ✓
Rand-sparse 0.47s 2+1 0.1 62.8±1.8 ✗

Table 1: Classification results on EXPWL1.

Table 1 also shows that employing a pooling operator based on a normalized random cluster assign-
ment matrix (Rand-dense) or the complement graph (Cmp-Graclus) gives a lower performance. First
of all, this result disproves the argument that such operators are comparable to the regular ones [28].
Additionally, we notice that the reduction in performance is less significant for Rand-Dense and
Cmp-Graclus than for Rand-sparse. This outcome is expected because, in terms of expressiveness,
Rand-dense and Cmp-Graclus still satisfy the conditions of Th. 1. Nevertheless, their performance is
still lower than their regular counterparts. The reason is that even if a badly-behaved CON function
does not compromise the expressiveness of the pooling operator, the structure of the pooled graph
is corrupted when utilizing a randomized S or a complementary graph. This, in return, reduces the
effectiveness of the last GIN layer, which is essential to correctly classify the graphs in EXPWL1.

There are two remarks about the experimental evaluation. As discussed in Section 3.2, it is not
possible to explicitly specify the pooling ratio in Graclus, ECPool, and k-MISPool. For k-MISPool,
setting k = 5 gives a pooling ratio of approximately 0.09 on EXPWL1. However, for Graclus,
Cmp-Graclus, and ECPool, the only option is to apply the pooling operator recursively until the
desired pooling ratio of 0.1 is reached. Unfortunately, this approach is demanding, both in terms of
computing time and memory usage. While in EXPWL1 it was possible to do this for Graclus and
Cmp-Graclus, we encountered an out-of-memory error after a few epochs when running ECPool on
an RTX A6000 with 48GB of VRAM. Thus, the results for ECPool are obtained with a recursion that
gives a pooling ratio of approximately 0.2. While this simplifies the training in ECPool we argue that,
due to its expressiveness, ECPool would have reached approximately 100% accuracy on EXPWL1 if
implementing a more aggressive pooling was feasible.

The second remark is that in EXPWL1 when using too many MP layers, at least one node ends up
containing enough information to accurately classify the graphs. This was demonstrated a model with
3 GIN layers followed by global_max_pool, which achieved an accuracy of 98.3±0.6 (more details
in Appendix C.1). Note that the baseline model in Tab. 1 with 3 GIN layers equipped with the more
expressive global_sum_pool achieves a slightly higher accuracy of 99.3±0.3. In contrast, a model
with only 2 GIN layers and global_max_pool gives a significantly lower accuracy of 66.5±1.8.
Therefore, to ensure that the evaluation is meaningful, no more than 2 MP layers should precede the
pooling operator. Since ASAPool and SAGPool implement an additional MP operation internally, we
used only 1 GIN layer before them, rather than 2 as for the other pooling methods.

Finally, Fig. 3 shows the average accuracy and the average run-time obtained on several bench-
mark datasets by a GNN equipped with the different pooling methods (the detailed results are in
Appendix C.5). These benchmarks are not designed to test the expressive power and, thus, a GNN
equipped with a non-expressive pooling operator could achieve good performance. Specifically, this
happens in those datasets where all the necessary information is captured by the first two GIN layers
that come before pooling or in datasets where only a small part of the graph is needed to determine the
class. Nevertheless, this second experiment serves two purposes. First, it demonstrates the soundness
of the GNN architecture used in the first experiment, which achieves results comparable to those
of GNNs carefully optimized on the benchmark datasets [16]. Second, and most importantly, it
shows that the performances on the benchmark datasets and EXPWL1 are aligned; this underlines the
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Figure 3: Average accuracy (and std.) v.s. average runtime on the benchmark datasets.

relevance of our theoretical result on the expressiveness in practical applications. It is worth noting
that on the benchmark datasets, it was not possible to obtain a pooling ratio of 0.1 for both Graclus
and ECPool. Using a pooling ratio of 0.5 gives Graclus and ECPool an advantage over other methods,
which makes the comparison not completely fair and shows an important limitation of these two
methods.

As a concluding remark, we comment on the training time of the dense and sparse pooling methods.
A popular argument in favor of sparse pooling methods is their computational advantage compared
to the dense ones. Our results show that this is not the case in modern deep-learning pipelines. In
fact, ECPool, Graclus, PanPool, and even ASAPool are slower than dense pooling methods, while
the only sparse method with training times lower than the dense ones is k-MIS. Even if it is true that
the sparse methods save memory by avoiding computing intermediate dense matrices, this is relevant
only for very large graphs that are rarely encountered in most applications.

5 Conclusions

In this work, we studied for the first time the expressive power of pooling operators in GNNs. We
identified the sufficient conditions that a pooling operator must satisfy to fully preserve the expressive
power of the original GNN model. Based on our theoretical results, we proposed a principled
approach to evaluate the expressive power of existing graph pooling operators by verifying whether
they met the conditions for expressiveness.

To empirically test the expressive power of a GNN, we introduced a new dataset that allows verifying
if a GNN architecture achieves the same discriminative power of the WL test. We used such a dataset
to evaluate the expressiveness of a GNN equipped with different pooling operators and we found that
the experimental results were consistent with our theoretical findings. We believe that this new dataset
will be a valuable tool as it allows, with minimal effort, to empirically test the expressive power
of any GNN architecture. In our experimental evaluation, we also considered popular benchmark
datasets for graph classification and found that the expressive pooling operators achieved higher
performance. This confirmed the relevance in practical applications of our principled criterion to
select a pooling operator based on its expressiveness. Finally, we focused on the computational time
of the pooling methods and found that most sparse pooling methods not only perform worse due to
their weak expressive power but are often not faster than the more expressive pooling methods.

We hope that our work will provide novel insights into the relational deep learning community and
help to debunk misconceptions about graph pooling. We conclude by pointing to three limitations
of our work. Firstly, the conditions of Th. 1 are sufficient but not necessary, meaning that there
could be a non-expressive pooling operator that preserves all the necessary information. A similar
consideration holds for EXPWL1: methods failing to achieve 100% accuracy are non-expressive,
but the opposite is not necessarily true. In fact, reaching 100% accuracy on EXPWL1 is a necessary
condition for expressiveness, though not sufficient. Secondly, condition 1 is not guaranteed to hold for
continuous node features, which is a theoretical limitation not necessarily relevant in practice. Finally,
our investigation focused on the scenario where the MP operation before pooling is as powerful as
the 1-WL test. Even if layers more powerful than 1-WL test are rarely used in practice, it would be
interesting to extend our approach to investigate the effect of pooling in these powerful architectures.
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Appendices
A Proof of Theorem 1

Proof. Let S ∈ RN×K and T ∈ RM×K be the matrices representing the cluster assignments
generated by SEL(GL

1 ) and SEL(GL
2 ), respectively. When condition 2 holds, we have that the entries

of matrices S and T satisfy
∑k

j=1 sij = λ,∀i = 1, . . . , N and
∑K

j=1 tij = λ,∀i = 1, . . . ,M .

If condition 3 holds, then the j-th row of XP is xPj
=

∑N
i=1 x

L
i · sij . The same holds for the

j-th row of YP , which is yPj
=

∑M
i=1 y

L
i · tij . Suppose that there exists a rows’ permutation

π : {1, . . . ,K} → {1, . . . ,K} such that xPj = yPπ(j)
∀i = 1, . . . ,M , that is:

N∑
i=1

xL
i · sij =

M∑
i=1

yL
i · tiπ(j) ∀j = 1, . . . ,K

which implies
K∑
j=1

N∑
i=1

xL
i · sij =

K∑
j=1

M∑
i=1

yL
i · tiπ(j) ⇔

N∑
i=1

xL
i ·

K∑
j=1

sij =

M∑
i=1

yL
i ·

K∑
j=1

tiπ(j)
2⇔

2⇔
N∑
i=1

xL
i · λ =

M∑
i=1

yL
i · λ ⇔

N∑
i=1

xL
i =

M∑
i=1

yL
i

which contradicts condition 1.

Note that there are no restrictions on the cardinality of the original sets of nodes, |V1| = N and
|V2| = M . Indeed, since the proof does not depend on the number of nodes in the original graphs,
N can either be equal to M or not. Additionally, we only focused on pooled graphs with the same
number of nodes, i.e., |V1P | = |V2P | = K. The case where |V1P | ≠ |V2P | is trivial since two graphs
with different numbers of nodes are inherently not WL equivalent.

B Examples from the EXPWL1 dataset

In Figure 4 we report four graph pairs from the EXPWL1 dataset. Each pair contains graphs with a
different SAT outcome, which are WL-1 distinguishable. In the Figure, we used a different color map
for each pair but the node features always assume a binary value in {0, 1} in each graph.

C Experimental details

C.1 Baseline models

To identify a GNN architecture that achieves approximately 100% accuracy on EXPWL1, we
tried configurations with a different number of GIN layers followed by a global_max_pool or
global_sum_pool. For the sake of comparison, we also considered a GNN with GCN layers, which
are not expressive. The results are shown in Table 2.

As expected, the architectures with GIN layers outperform those with GCN layers, especially when
the layers are two. This is due to the fact that GCN implements mean pooling as an aggregator, which
is a well-defined multiset function due to its permutation invariance, but it lacks injectiveness, leading
to a loss of expressiveness. Similarly, the GNNs with global_sum_pool perform better than those
with global_max_pool, since the former is more expressive than the latter. An architecture with 3
GIN layers followed by global_sum_pool achieves approximately 100% accuracy on EXPWL1,
making it the ideal baseline for our experimental evaluation. Perhaps more importantly, there is a
significant difference in the performance of a 2-layers GNN followed by a global pooling layer that is
more or less expressive. For this reason, the node embeddings generated by 2 GIN layers are a good
candidate to test the expressiveness of the pooling operators considered in our analysis.
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Figure 4: Four pairs of graphs from the EXPWL1 dataset. Each pair consists of two graphs with
different classes that are 1-WL distinguishable.

MP layers Global Pool Test Acc
2 GIN global_max_pool 66.5±1.8

2 GIN global_sum_pool 92.1±1.0

2 GCN global_max_pool 62.3±2.4

2 GCN global_sum_pool 76.7±2.4

3 GIN global_max_pool 98.3±0.6

3 GIN global_sum_pool 99.3±0.3

3 GCN global_max_pool 97.4±0.5

3 GCN global_sum_pool 98.7±0.6

Table 2: Performance of baseline architectures on EXPWL1.

C.2 Hyperparameters of the GNN architectures

The GNN architecture used in all experiments consists of: [2 GIN layers] – [1 pooling layer with
pooling ratio 0.1] – [1 GIN layer] – [global_sum_pool ] – [dense readout]. Each GIN layer is
configured with an MLP with 2 hidden layers of 64 units and ELU activation functions. The readout
is a 3-layer MLP with units [64, 64, 32], ELU activations, and dropout 0.5. The GNN is trained
with Adam optimizer with an initial learning rate of 1e-4 using batches with size 32. For SAGPool
or ASAPool we used only one GIN layer before pooling. For PanPool we used 2 PanConv layers
with filter size 2 instead of the first 2 GIN layers. The auxiliary losses in DiffPool, MinCutPool,
and DMoN are added to the cross-entropy loss with weights [0.1,0.1], [0.5, 1.0], [0.3, 0.3, 0.3],
respectively. For k-MIS we used k = 5 and we aggregated the features with the sum. For Graclus,
we aggregated the node features with the sum.

C.3 EXPWL1 with different pooling ratios

In Table 3 we report the classification results obtained with different pooling ratios. Since in k-MIS
we cannot specify the pooling ratio directly, we report the results obtained for k = 3, 5, 6 that
gives approximately a pooling ratio of 0.19, 0.09, and 0.07 respectively. As we discussed in the
experimental section, Graclus, Cmp-Graclus, and ECPool roughly reduce the graph size by half.
Therefore, to obtain the desired pooling ratio we apply them recursively. This creates a conspicuous
computational overhead, especially in the case of ECPool which triggers an out-of-memory error for
lower pooling ratios. Importantly, the results do not change significantly for the expressive pooling
methods, while we notice a drastic improvement in the performance of the non-expressive ones for
higher pooling ratios. Such sensitivity to different pooling ratios further highlights the practical
difference between expressive and non-expressive operators.
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Pooling Pool Ratio 0.05 Pool Ratio 0.1 Pool Ratio 0.2
DiffPool 95.2±2.1 97.0±2.4 97.4±2.2

DMoN 98.5±1.1 99.0±0.7 98.1±1.7

MinCut 98.3±0.7 98.8±0.4 98.4±0.6

ECPool OOM OOM 100.0±0.0

Graclus 100.0±0.0 99.9±0.1 99.9±0.1

k-MIS 99.8±0.2 99.9±0.1 100.0±0.0

Top-k 69.7±7.1 67.9±13.9 89.4±10.5

PanPool 61.3±5.5 63.2±7.7 75.4±12.8

ASAPool 84.3±2.5 83.5±2.5 87.3±7.2

SAGPool 61.6±10.6 79.5±9.6 82.4±11.1

Rand-dense 91.3±1.9 91.7±1.3 91.6±0.8

Cmp-Graclus 91.7±1.1 91.9±1.2 92.1±1.4

Rand-sparse 59.6±3.3 62.8±1.8 67.1±2.3

Table 3: Classification results on EXPWL1 using different pooling ratios.

C.4 Statistics of the datasets

Table 4 reports the information about the datasets used in the experimental evaluation. Since the
COLLAB and REDDIT-BINARY datasets lack vertex features, we assigned a constant feature value
of 1 to all vertices.

Dataset #Samples #Classes Avg. #vertices Avg. #edges Vertex attr. Vertex labels
EXPWL1 3,000 2 76.96 186.46 – yes
NCI1 4,110 2 29.87 64.60 – yes
Proteins 1,113 2 39.06 72.82 1 yes
COLORS-3 10,500 11 61.31 91.03 4 no
Mutagenicity 4,337 2 30.32 61.54 – yes
COLLAB 5,000 3 74.49 4,914.43 – no
REDDIT-B 2,000 2 429.63 995.51 – no
B-hard 1,800 3 148.32 572.32 – yes
MUTAG 188 2 17.93 19.79 – yes
PTC_MR 344 2 14.29 14.69 – yes
IMDB-B 1,000 2 19.77 96.53 – no
IMDB-MULTI 1,500 3 13.00 65.94 – no
ENZYMES 600 6 32.63 62.14 18 yes
REDDIT-5K 4,999 5 508.52 594.87 – no

Table 4: Details of the graph classification datasets.

C.5 Detailed performance on the benchmark datasets

DiffPool DMoN MinCut ECPool Graclus k-MIS Top-k PanPool ASAPool SAGPool
0.96s 0.88s 1.02s 18.85s 6.44s 0.75s 0.87s 8.89s 1.29s 0.76s

71.4±3.7 72.3±3.4 72.8±3.7 72.4±3.5 71.6±3.8 72.2±3.3 66.1±5.2 61.6±5.2 63.9±4.7 62.6±4.9

Table 5: Average run-time in seconds per epoch (first row) and average classification accuracy (second
row) achieved by the different pooling methods on the benchmark datasets.

The test accuracy of the GNNs configured with the different pooling operators on the graph classifica-
tion benchmarks is reported in Table 6, while Table 7 reports the run-time of each model expressed in
seconds per epoch. The overall average accuracy and average run-time computed across all datasets
are presented in Table 5. For each dataset, we use the same GNN configured as described in C.2,
as we are interested in validating the architecture used to classify EXPWL1. Clearly, by using less
aggressive pooling, by fine-tuning the GNN models, and by increasing their capacity it is possible to
improve the results on several datasets. Such results are reported in the original papers introducing
the different pooling operators.
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Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB REDDIT-B B-hard
DiffPool 77.8±3.9 72.8±3.3 87.6±1.0 80.0±1.9 76.6±2.5 89.9±2.8 70.2±1.5

DMoN 78.5±1.4 73.1±4.6 88.4±1.4 81.3±0.3 80.9±0.7 91.3±1.4 71.1±1.0

MinCut 80.1±2.6 76.0±3.6 88.7±1.6 81.2±1.9 79.2±1.5 91.9±1.8 71.2±1.1

ECPool 79.8±3.3 69.5±5.9 81.4±3.3 82.0±1.6 80.9±1.4 90.7±1.7 74.5±1.6

Graclus 81.2±3.4 73.0±5.9 77.6±1.2 81.9±1.6 80.4±1.5 92.9±1.7 72.3±1.3

k-MIS 77.6±3.0 75.9±2.9 82.9±1.7 82.6±1.2 73.7±1.4 90.6±1.4 71.7±0.9

Top-k 72.6±3.1 73.2±2.7 57.4±2.5 74.4±4.7 77.9±2.1 87.4±3.5 68.1±7.7

PanPool 66.1±2.3 75.2±6.2 40.7±11.5 67.2±2.0 78.2±1.5 83.6±1.9 44.2±8.5

ASAPool 73.1±2.5 75.5±3.2 43.0±4.7 76.5±2.8 78.4±1.6 88.0±5.6 67.5±6.1

SAGPool 79.1±3.0 75.2±2.7 43.1±11.1 77.9±2.8 78.1±1.8 84.5±4.4 54.0±6.6

Rand-dense 78.2±2.0 75.3±1.3 83.3±0.9 81.4±1.8 69.3±1.6 89.3±2.1 71.0±2.2

Cmp-Graclus 77.8±1.8 73.6±4.7 84.7±0.9 80.7±1.8 OOM OOM OOM
Rand-sparse 69.1±3.3 74.6±4.2 35.5±1.1 69.8±1.0 68.8±1.6 84.5±1.9 50.1±4.0

Pooling MUTAG PTC_MR IMDB-B IMDB-MULTI ENZYMES REDDIT-5K
DiffPool 86.8±9.7 54.7±6.1 71.3±3.1 45.2±3.4 62.3±7.3 53.7±1.8

DMoN 86.3±7.1 55.5±7.3 71.9±3.3 47.0±5.5 61.0±5.0 56.6±2.3

MinCut 83.1±9.6 57.9±7.7 71.9±5.7 46.6±4.0 62.3±3.8 56.2±2.8

ECPool 90.0±7.2 54.7±8.4 71.3±3.4 49.2±2.9 59.6±3.7 53.6±2.2

Graclus 85.2±8.0 55.2±6.4 72.3±5.8 46.2±4.4 61.0±6.6 52.3±1.4

k-MIS 85.7±6.2 59.7±5.7 73.1±4.2 46.8±4.6 63.5±7.1 56.4±2.3

Top-k 78.4±11.8 58.2±8.9 70.9±3.3 44.8±2.9 45.5±10.5 50.4±3.7

PanPool 83.1±13.2 53.5±7.7 73.9±3.5 48.3±3.7 40.5±5.0 46.5±2.4

ASAPool 74.2±6.8 50.5±12.1 71.4±2.8 46.1±4.2 44.8±7.6 48.8±1.6

SAGPool 73.7±6.6 58.8±8.0 71.0±4.0 44.0±3.4 41.6±5.2 49.9±2.9

Rand-dense 88.9±4.3 56.1±9.7 70.5±3.4 45.2±5.6 62.1±5.0 54.5±2.1

Cmp-Graclus 83.2±9.1 55.9±4.6 OOM OOM 63.5±5.0 OOM
Rand-sparse 68.9±17.3 56.4±5.9 71.6±3.6 45.8±3.7 62.1±5.0 50.6±2.4

Table 6: Graph classification test accuracy on benchmark datasets.

Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB REDDIT-B B-hard
DiffPool 0.83s 0.23s 1.67s 0.90s 1.68s 1.74s 0.29s
DMoN 1.01s 0.28s 1.94s 1.06s 1.83s 1.04s 0.33s
MinCut 0.95s 0.28s 1.82s 1.10s 1.82s 1.78s 0.35s
ECPool 4.39s 1.97s 10.30s 4.22s 44.11s 3.17s 6.90s
Graclus 0.95s 0.27s 2.47s 0.98s 3.01s 0.75s 0.31s
k-MISPool 0.88s 0.25s 2.48s 0.95s 1.38s 0.48s 0.43s
Top-k 1.04s 0.29s 2.78s 1.04s 2.79s 0.47s 0.30s
PanPool 2.81s 0.81s 7.16s 5.48s 7.67s 46.15s 6.27s
ASAPool 1.83s 0.52s 4.48s 1.80s 3.97s 0.79s 0.52s
SAGPool 1.09s 0.30s 2.52s 1.07s 2.81s 0.43s 0.28s
Rand-dense 0.54s 0.14s 1.44s 0.55s 0.88s 1.44s 0.26s
Cmp-Graclus 7.94s 3.27s 34.05s 1.94s – – –
Rand-sparse 0.64s 0.18s 1.72s 0.68s 1.00s 0.47s 0.31s

Pooling MUTAG PTC_MR IMDB-B IMDB-MULTI ENZYMES REDDIT-5K
DiffPool 0.04s 0.07s 0.14s 0.28s 0.12s 4.52s
DMoN 0.05s 0.09s 0.17s 0.37s 0.15s 3.21s
MinCut 0.04s 0.08s 0.16s 0.35s 0.14s 4.45s
ECPool 0.08s 0.12s 1.66s 1.01s 0.54s 37.13s
Graclus 0.09s 0.14s 0.24s 0.33s 0.14s 74.02s
k-MIS 0.06s 0.10s 0.28s 0.21s 0.12s 2.02s
Top-k 0.04s 0.08s 0.24s 0.32s 0.13s 1.75s
PanPool 0.26s 0.49s 1.30s 1.92s 0.98s 34.3s
ASAPool 0.14s 0.10s 0.43s 0.40s 0.16s 1.89s
SAGPool 0.04s 0.05s 0.23s 0.27s 0.08s 1.09s
Rand-dense 0.04s 0.06s 0.13s 0.19s 0.12s 3.48s
Cmp-Graclus 0.17s 0.47s – – 1.38s –
Rand-sparse 0.04s 0.08s 0.15s 0.23 0.14s 1.67s

Table 7: Graph classification test run-time in s/epoch.
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