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Do deep neural networks (DNNs) reuse the same algorithmic primitives to learn group 
multiplications? For modular addition, [1] describe network representations as (approximate) cosets, 
proving O(log n) such representations are learned. They conjecture that these same primitives will 
be used in DNNs learning dihedral group multiplication (DGM). Thus, we reverse engineer DNNs 
trained on DGM, finding representations are exact or approximate cosets by studying the activation 
geometry of clusters of neurons, finding manifolds aligned with (approximate) coset structures.  

Background. The dihedral group Dn is the symmetries of a regular 
n-gon, containing 2n elements: n rotations rk for k∈{0, …, n-1} that rotate the 
n-gon by 2π/n radians, and n reflections srk reflecting about n distinct axes. The 
rotation r0 is the identity element, denoted e, for which ex = xe = x for any x∈ 
Dn. These operations form a non-commutative group multiplication when n≥3, 
meaning the order in which operations are multiplied matters—for instance, sr ≠ rs. DGM: a·b = C, 
a,b ∈ Dn involves composing two symmetries in sequence (notation: applied right to left): ra·rb = r(a + 

b) mod n (rotation), sra·rb = sr(a+b) mod n (reflection), ra·srb = sr(b-a) mod n (reflection), sra·srb = r(b - a) mod n 
(rotation). Cayley graphs encode geometric structure. A Cayley graph of Dn is expressed via a 
generating set {r, s}, where nodes are group elements and (directed) edges are labeled by {r, s}. 
Particularly, an edge labeled x∈{r,s} between nodes a, b exists if b = xa. Fig. 1 shows a Cayley 
graph for D3. We will train on D18: note that D18 can be decomposed into six D3 graphs, with each 
one corresponding to a coset. To contrast, approximate cosets arise when neurons fail to 
decompose D18 into subgraphs, i.e. approximate cosets are when all of D18, is learned.  

Results. We cluster 
neurons by their 
group-Fourier-basis similarities. 
For each cluster, we then apply 
PCA to the activation matrix 
(neuron × datum). This analysis 
shows that the representations 
learned by DNNs are either 
cosets (Fig. 2) or approximate 
cosets (Fig. 3). In Fig. 2, six 
disjoint hexagrams are learned, 
each corresponding to a different 
D3, which together compose D18. 
In contrast, Fig. 3 shows that a 
single non-disjoint approximate 
coset structure is learned, covering all of D18 without decomposition. Fig. 3 
shows that if the answer to the DGM is a rotation (panel 1) it’s embedded 
perpendicularly compared to if the answer C is a reflection (panel 2). We 
also study 1000 random seeds, quantitatively finding models prefer 
precise coset representations, i.e. trained DNNs learn precise cosets 
much more frequently (Fig. 4).  

Discussion. Our results show that DNNs can utilize coset and 
approximate coset structures to learn non-commutative group 
multiplications. Thus, our work provides empirical evidence toward proving the conjecture that 
DNNs will always use (approximate) coset structure to learn group multiplications. Also, we perform 
our analysis in a setting that’s significantly different to [1], which only investigated commutative 
multiplications, extending our understanding of DNNs trained on group multiplications. 
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