
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LET THE CODE LLM EDIT ITSELF WHEN YOU EDIT
THE CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we investigate a typical scenario in code generation where a developer
edits existing code in real time and requests a code assistant, e.g., a large language
model, to re-predict the next token or next line on the fly. Naively, the LLM needs
to re-encode the entire KV cache to provide an accurate prediction. However,
this process is computationally expensive, especially when the sequence length is
long. Simply encoding the edited subsequence and integrating it to the original
KV cache meets the temporal confusion problem, leading to significantly worse
performance. We address this efficiency and accuracy trade-off by introducing
Positional Integrity Encoding (PIE). Building upon the rotary positional encoding,
PIE first removes the rotary matrices in the Key cache that introduce temporal
confusion and then reapplies the correct rotary matrices. This process ensures that
positional relationships between tokens are correct and requires only a single round
of matrix multiplication. We validate the effectiveness of PIE through extensive
experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models
with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world
coding tasks: code insertion, code deletion, and multi-place code editing. Results
demonstrate that PIE reduces computational overhead by over 85% compared to
the standard full recomputation approach across all model sizes and tasks while
well approximating the model performance.

0 50 100 150 200 250
Number of Edited Tokens

0

5

10

15

20

25

30

E
xa

ct
 M

at
ch

 (%
)

0 50 100 150 200 250
Number of Edited Tokens

0

100

200

300

400

500

600

Ti
m

e 
(m

s)

PIE (Ours) Full Recomputation

Figure 1: Latency and accuracy comparison of the full recomputation approach and our PIE using
DeepSeek-Coder 6.7B on the RepoBench-C-8k(XF-F) Python dataset on a single A100 GPU. The
latency only records the time cost for the KV cache update.

1 INTRODUCTION

Large language models (LLMs) (Dettmers et al., 2022; Anil et al., 2023; Touvron et al., 2023; Zeng
et al., 2023) have seen widespread adoption and achieved impressive results across various natural
language processing (NLP) tasks. Despite these successes, LLMs face significant computational
challenges, particularly in handling long sequences. To address this, numerous approaches have
been proposed to accelerate the inference process, including lossless (e.g., memory and IO optimiza-
tion (Dao et al., 2022; Kwon et al., 2023; Sheng et al., 2023), speculative decoding (Stern et al., 2018;
Leviathan et al., 2023)) and lossy techniques (e.g., quantization (Frantar et al., 2022; Xiao et al.,
2023) and KV cache eviction (Xiao et al., 2024; Zhang et al., 2024)). We refer to the above setting as

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the static setting, where the content is fixed, and the goal is to generate responses efficiently without
compromising too much on performance.

Besides the static setting, we observe there is a strong demand for an alternative, which we call the
real-time editing setting, where users frequently edit the content and expect the LLM to generate
correct responses based on the updated information. A typical scenario is the interactive coding
assistant, where developers often make incremental changes to their existing code and require the AI
copilot to correctly predict the next line or complete a partial code snippet on the fly. The standard
approach is re-encoding the KV cache of the content after each edit and then making the prediction.
However, as illustrated in Figure 1, this approach leads to considerable substantial computational
overhead and latency when the content is long (Fu, 2024; Agrawal et al., 2024), making it impractical
for real-time applications where quick and accurate responses are essential.

In this paper, we aim to improve the efficiency of AI copilots in real-time editing scenarios, as
illustrated in Figure 2. Naively, an efficient strategy is encoding only the edited subsequence and then
directly integrating those keys and values into the original KV cache. However, this strategy results
in temporal confusion between the pre-edit and post-edit sequences. Keys of certain positions either
disappear or multiple keys at different positions share the same index, causing the model to attend
to incorrect information, leading to poor next-token prediction performance in practice. To address
this problem, we introduce Positional Integrity Encoding (PIE). PIE is built upon rotary positional
encoding (RoPE) (Su et al., 2021), the de-facto standard component in modern LLMs. PIE first
removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies
the correct rotary matrix for each position through simple matrix multiplications. By ensuring that
the positional relationships between tokens in the new sequence are unique and consecutive, PIE can
help the model make accurate predictions. It is worth noting that the calculation of PIE requires only
a single round of matrix operations to modify the KV cache, resulting in negligible computational
overhead.

We demonstrate the effectiveness of Positional Integrity Encoding (PIE) through extensive experi-
ments conducted on the RepoBench-C-8k dataset, utilizing the DeepSeek-Coder (Guo et al., 2024)
models with 1.3B, 6.7B, and 33B parameters. To rigorously evaluate PIE’s performance, we curated
three tasks designed to simulate real-world coding scenarios: code insertion, code deletion, and
multi-place code edition. These tasks were chosen to reflect common operations that developers
perform during interactive coding sessions, thereby providing a comprehensive assessment of PIE’s
practical utility. Our experimental results indicate that PIE achieves a reduction in computational
overhead of over 85% for editing the KV cache across all model sizes and tasks without compromising
performance compared to the naive full-recomputation approach. By leveraging PIE, developers can
experience efficient interactions with AI coding assistants.

2 RELATED WORK

Positional Encodings Positional information is essential for modeling languages. The original
Transformer model (Vaswani et al., 2017) encodes positional information using Absolute Positional
Encoding (APE). In particular, a (learnable) real-valued embedding is assigned to each position i.
Differently, Relative Positional Encodings (RPE) (Shaw et al., 2018; Dai et al., 2019; Raffel et al.,
2020; Press et al., 2022; Su et al., 2021; Luo et al., 2021; 2022; Chi et al., 2022; Sun et al., 2023;
Chi et al., 2023; Li et al., 2023; He et al., 2024) instead encode the relative distance i− j for each
position pair (i, j). One of the most widely used RPE in state-of-the-art LLMs is Rotary Position
Encoding (RoPE) (Su et al., 2021). RoPE rotates the query and key vectors by an angle proportional
to their absolute positions before the attention mechanism, resulting in the attention being a function
of the relative distance between tokens.

In the literature, relative positional encodings play essential roles across various tasks and data
modalities, such as improving the length extrapolation capability of language models (Press et al.,
2022; Sun et al., 2023; Chi et al., 2022; 2023; He et al., 2024) and enabling flexible modeling of
structural information beyond sequence data like images (Liu et al., 2021) and graphs (Ying et al.,
2021; Zhang et al., 2023a; Luo et al., 2023). In this work, we develop the Positional Integrity
Encoding based on RoPE to improve the efficiency of LLMs in the real-time editing setting.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Key1 Val1

KeyN ValN

Key2 Val2
……

KV Cache

Static setting

Real-time editing setting

Key1 Val1

KeyN ValN

Key2 Val2
……

KV Cache

Large 

Language 

Model

Key1 Val1

KeyN ValN

Key2 Val2
……

KV Cache

Output

Output

Output

Input Code

Input Code

Edited Input Code

Large 

Language 

Model

Figure 2: Illustration of the KV cache mechanism in both static and real-time editing settings for large
language models (LLMs). Top: In the static setting, the model processes a fixed input to generate
predictions, leveraging precomputed Key/Value (KV) pairs stored in the cache. Bottom: In the
real-time editing setting, the input code is frequently edited, necessitating updates to the KV cache
to maintain accurate information to generate the correct next tokens. Our objective is to optimize
the efficiency of the green arrow pathway, which represents the process of updating the KV cache in
response to code edits.

Transformer Efficiency Improving the efficiency of Transformer models has great significance
in real-world applications. In the literature, existing approaches can be briefly categorized into (1)
efficient attention, (2) model compression, and (3) system-architecture co-design.

The attention module of Transformer needs to calculate pairwise correlations between all positions,
resulting in quadratic time and memory cost with respect to the sequence length. To reduce the
cost, many efficient attention variants have been proposed, such as (1) sparse attentions (Child et al.,
2019; Beltagy et al., 2020; Qiu et al., 2020), which design either pre-defined or learnable patterns to
reduce the amount of the key-value pairs that each query needs to attend to; (2) approximation-based
attention (Katharopoulos et al., 2020; Wang et al., 2020; Choromanski et al., 2021; Kitaev et al.,
2020; Tay et al., 2020; Roy et al., 2021), which use tailored approaches like low-rank projection or
random features to approximate standard attention for efficient computation.

Another perspective for Transformer efficiency is model compression, mainly including (1) prun-
ing (Wang et al., 2021; Hubara et al., 2021; Ma et al., 2023; Frantar & Alistarh, 2023), which aims at
removing redundant model parameters or layers for efficient deployment without scarifying perfor-
mance; (2) quantization (Yao et al., 2022; Park et al., 2022; Dettmers et al., 2022; Frantar et al., 2022;
Xiao et al., 2023; Liu et al., 2023), which uses post-processing to represent weights and activations
via low-precision format for reducing time and memory costs; (3) knowledge distillation (Sanh
et al., 2019; Gu et al., 2024), which uses a smaller model to learn knowledge from a large model for
balancing efficiency-accuracy trade-offs.

In the era of LLMs, the importance of system-architecture co-design has been highlighted to im-
prove Transformer efficiency further. Many works begin to design more efficient approaches for
serving Transformers regarding the characteristics of computer systems for real-world applications,
such as FlashAttention (Dao et al., 2022; Dao, 2023), PagedAttention (Kwon et al., 2023), and
FlexGen (Sheng et al., 2023) that are proposed for memory and I/O optimization. Additionally, to
reduce functional calls during generation, speculative decoding (Stern et al., 2018; Leviathan et al.,
2023; Chen et al., 2023; Miao et al., 2023; Spector & Re, 2023; Cai et al., 2024; Zhang et al., 2023b;
He et al., 2023; Li et al., 2024) has been proposed. Our Positional Integrity Encoding is specially
designed to improve the efficiency of LLMs in real-time editing settings, which can be seamlessly
combined with all the above-introduced approaches to achieve further speed-ups.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODS

3.1 BACKGROUND

Let s = (w1, w2, . . . , wn) represent the input token sequence, where each wi belongs to a fixed
vocabulary. Let θLLM represent a Transformer-based large language model, which can calculate
the conditional probability distribution of the next token p(wn+1|s; θLLM) and generate tokens
iteratively. Typically, the input s is fixed. Therefore, the generation process of LLMs usually employs
the KV Cache mechanism (Pope et al., 2023) to store previously computed Key/Value vectors
during each layer’s attention calculation. We denote the KV cache as K = (K1,K2, . . . ,Kn) and
V = (V1, V2, . . . , Vn), where Ki and Vi are the keys and values associated with token wi. When
predicting the token at position n+1, we can use wn as input and, in each layer, compute the attention
between the current hidden representation and the stored KV cache, avoiding recomputing the hidden
representation of previous tokens. Without any confusion, we also denote the next token probability
distribution as p(wn+1|K,V , wn; θLLM).

In this study, we aim to investigate a new scenario where the context s is real-time edited by
users, which makes it impossible for the KV cache to predict the correct next token without any
modification. We can model such real-time context as a sequence of steps. Each step can be
formulated as an action where tokens from position i to j in s are edited, resulting in a modified
sequence sedit = [w1, . . . , wi, a1, a2, . . . , am, wj+1, . . . , wn], where [a1, a2, . . . , am] represent the
new inputs that replace [wi, . . . , wj ]. Our goal is to accurately and efficiently predict wn+1 given by
θLLM on sedit. This problem is crucial in various scenarios. For instance, users can frequently edit
their previous codes for different purposes and expect the code language model to swiftly adapt to
these changes and predict the correct next line based on the updated information.

As the context between position i and position j is edited, the KV cache corresponding to these tokens
must be updated. Furthermore, these changes will impact the representations of subsequent tokens af-
ter position j, thereby necessitating updates to all subsequent KV cache. The naive approach involves
a full-recomputation strategy: re-encoding all the KV cache for [a1, a2, . . . , am, wj+1, . . . , wn]
layer by layer, followed by making predictions using the updated cache K∗ and V ∗. This ap-
proach ensures the KV cache is exact when predicting the next tokens. However, it is easy to
see that it is computationally expensive, especially when the edits are light but the texts to be re-
encoded are long. It’s worth noting that the original K and V already encode rich information on
[wj+1, . . . , wn], and a full recomputation may not be essential for practical problems. With this in
mind, we seek to find ways to efficiently edit K and V , yielding Kedit and V edit, which approximates
p(wn+1|K∗,V ∗, wn; θLLM) ≈ p(wn+1|Kedit,V edit, wn; θLLM) in an effective way.

3.2 POSITIONAL INTEGRITY ENCODING (PIE)

When a user modifies s into sedit, KV cache associated with the first i tokens, i.e., K[1:i] and V[1:i],
remains unchanged. As [a1, a2, . . . , am] is the user’s new input, we feed this subsequence to the
LLM to obtain the keys and values from position i+ 1 to i+m. We denote this piece of new KV
cache as Kedit

[i+1:i+m] and V edit
[i+1:i+m], and now have the edited KV cache as:

Kedit = Concat(K[1:i],K
edit
[i+1:i+m],K[j+1:n]), (1)

V edit = Concat(V[1:i],V
edit
[i+1:i+m],V[j+1:n]), (2)

where the red symbols indicate real-time calculations.

Challenges. The key challenge lies in how to edit the succeeding KV cache K[j+1:n] and V[j+1:n].
Clearly, the modification of [a1, a2, . . . , am] impacts the subsequent content in two ways: seman-
tically and structurally. The semantic impact refers to the changes in the understanding of the
subsequent text caused by the edited content. This can be a problem in natural language applications,
such as dialog systems, where modifications to earlier conversations can significantly influence the
generation of current responses. The other impact is structural, primarily concerning the temporal
confusion between the pre-edit and post-edit sequences when j − i ̸= m. This issue arises with
common editing actions in code, such as additions and deletions (corresponding to j − i = 0 or
m = 0). To be more concrete, imagine the original sequence has 5 tokens. If we add three tokens

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

between the second and third position, it will occupy the positional index [3, 4, 5]. We calculate
Kedit

[3:5] and V edit
[3:5] in equation (1) and (2). However, in the original K[3:5] and V[3:5], the positional

index [3, 4, 5] is also occupied. If we integrate them together and take no actions during the next
token prediction, the model will calculate similarity with multiple keys in the KV cache with the
same index [3, 4, 5], causing confusion and potential prediction errors. Empirically, in code tasks, we
find that the semantic impact is relatively small. Addressing temporal confusion for light edits alone
can already lead to good performance (see the experiments in Section 4 for more details).

Our approach. To mitigate the temporal confusion during real-time editing, we propose a simple
yet effective solution: Positional Integrity Encoding (PIE), which ensures that positional information
remains correctly ordered after editing without the need to re-encode the KV cache for subsequent
tokens. PIE builds upon the rotary positional encoding (RoPE) (Su et al., 2021), which is the most
widely used positional encoding in LLMs. Without loss of generality, given a query vector xi at
position i and a key vector xj at position j, RoPE calculates the dot-product similarity using

zij = xT
i W

T
q Rj−iWkxj (3)

where Rj−i is the rotary matrix parameterized by the relative distance j − i, and Wq and Wk are
learnable projection matrices. By definition, Rj−i can be expressed by the multiplication of two
rotary matrices:

Rj−i = RT
i Rj (4)

For practical implementation, during inference, we compute RΘ,iWkxi as the key on the fly and store
it in the cache, and when a query arrives at a new position, we rotate the query using its corresponding
rotary matrix and calculate its similarity with all the keys in the cache to obtain the attention scores.

It can be easily seen that the positional information in the KV cache is encoded within the rotary
matrix. When an edit occurs, the rotary matrix associated with the keys must be adjusted to reflect their
post-edit locations. Leveraging the formulation of RoPE-based attention calculation, this challenge
can be addressed by first removing the rotary matrices in K that introduce temporal confusion and
then reapplying the correct rotary matrix. In detail, assume we would like to update the key vector
kl
j′ for the original position j′ ∈ [j + 1, n], where l ∈ [1, L] is the layer index. We can simply edit

the key vector by using

kedit,l
j′ = Ri+m+j′−jR

−1
j′ kl

j′ (5)

where R−1
j′ , the inverse rotary matrix at position j′, is used to remove the incorrect positional

information, and Ri+m+j′−j is used to encode the correct position i +m + j′ − j in sedit. It can
easily seen that the computation can be further simplified as

kedit,l
j′ = Ri+m+j′−jR

−1
j′ kl

j′ = Ri+m+j′−jR−j′k
l
j′ = Ri+m−jk

l
j′ (6)

Hence, the full editing process for K[j+1:n] is as follows:

Kedit
[j+1:n] = [Kedit

j+1, . . . ,K
edit
n ] (7)

where each Kedit
j′ = {kedit,1

j′ , · · · ,kedit,l
j′ , · · · ,kedit,L

j′ }, j′ ∈ [j + 1, n], l ∈ [1, L]

each kedit,l
j′ = Ri+m−jk

l
j′

Unlike the full recomputation approach, the above calculation only requires a single round of matrix
multiplication to directly modify the pre-computed KV cache, where the computational overhead
can be considered negligible. By utilizing these transformations, we finally construct the edited KV
cache as:

Kedit = Concat(K[1:i],K
edit
[i+1:i+m],K

edit
[j+1:n]), (8)

V edit = Concat(V[1:i],V
edit
[i+1:i+m],V[j+1:n]), (9)

where the red symbols indicate real-time calculations. The LLM then makes predictions based on
p(xn+1|Kedit,V edit, xn; θLLM). It is worth noting that PIE is compatible with KV cache eviction
methods (Xiao et al., 2024; Zhang et al., 2024; Liu et al., 2024b). These KV cache eviction methods
focus on reducing the memory usage of the KV cache during inference. PIE is designed to obtain the
KV cache of the edited context with minimal overhead. By integrating PIE with KV cache eviction
methods, it is possible to maintain efficient memory management while ensuring the integrity of the
positional information in the real-time edit setting.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Statistics of RepoBench-C-8k (Liu et al., 2024a) test set.
Language XF-F XF-R IF Average Number of Tokens

Python 18,000 7,500 10,500 3,967

Java 18,000 7,500 10,500 4,179

4 EXPERIMENTS

In this section, we empirically study the effectiveness of our proposed method. In particular, we aim
at answering the following questions through experiments:

• Question 1: Can our Positional Integrity Encoding maintain the prediction accuracy of full
re-computation in code editing scenarios?

• Question 2: How much efficiency improvement can be achieved by using our Positional
Integrity Encoding compared to existing approaches?

• Question 3: How large is the gap between our Positional Integrity Encoding and full
re-computation in terms of LLM’s predictions & representations?

We will answer each question with carefully designed experiments in the following sub-sections.

4.1 EXPERIMENTAL SETUP

Tasks. Our experiments are conducted on RepoBench-C-8k (Liu et al., 2024a). This benchmark
focuses on the prediction of the next line of code, given a set of in-file context (including import
statements and preceding lines before the target line), and cross-file context (comprising snippets
from other files parsed by import statements). The detailed statistics of RepoBench-C-8k is shown
in Table 1. To effectively evaluate next-line prediction performance of code LLMs, we follow Liu
et al. (2024a) to use three task settings: (1) Cross-File-First (XF-F): mask the first appearance of a
cross-file line within a file; (2) Cross-File-Random (XF-R): mask a random and non-first occurrence
of a cross-file line; (3) In-File (IF): mask an in-file line that does not involve any cross-file modules.
Moreover, we carefully design three real-world scenarios covering code insertion, code deletion,
and code edition to comprehensively examine our approach. See Appendix A.1 for more detailed
descriptions of tasks construction.

Settings. In our experiments, we employ DeepSeek-Coder (Guo et al., 2024), a code LLM that
achieves strong performance in handling repository-level code completion tasks (We also conduct
experiments on CodeLlama (Roziere et al., 2023) in Appendix A.2). We use Transformers (Wolf
et al., 2020) as our codebase. We benchmark our method on models of different sizes covering 1.3B,
6.7B, and 33B. During inference, the greedy decoding strategy is used to deterministically generate
64 tokens. For 1.3B and 6.7B models, all the experiments are conducted on a single NVIDIA A100
GPU. For 33B models, the time for encoding the context is conducted on two NVIDIA A100 GPUs
and the full generation process is conducted on eight NVIDIA A100 GPUs. The first non-comment
line in the output is truncated and used as the prediction. The batch size is set to 1. All experiments
are repeated three times with different seeds and the averaged scores are reported.

Evaluation. For comparison with our Positional Integrity Encoding, we choose two standard
approaches as baselines: (1) Full-recomputation: re-compute the KV cache for all edited tokens
and subsequent tokens; (2) Conflict Fast Encoding: re-compute the KV cache for the edited tokens
while keeping the rest of the cache intact (i.e., using equation (1,2). Following Lu et al. (2021), we
use Exact Match (EM) and Edit Similarity (ES) (Svyatkovskiy et al., 2020) to evaluate the accuracy
of the predicted code lines on code completion tasks. We also report the time required to encode
the edited context for efficiency evaluation.

4.2 MAIN RESULTS

Positional Integrity Encoding perfectly preserves the full re-computation performance. Results
of different code editing settings are presented in Table 2, 3 and 4 respectively. It can be easily seen

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance comparisons of insertion experiments. In this task, for each next-line
prediction target, we insert several lines of code into its context randomly to simulate real-world
scenarios. EM and ES denote the Exact Match and Edit Similarity score respectively. All results
demonstrate that our Positional Integrity Encoding approach brings substantial speed-ups without
performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 1.3B Full-recomputation 22.42 65.26 192ms 35.41 72.96 193ms 28.78 69.22 193ms
1.3B Conflict Fast Encoding 7.32 43.73 23ms 10.61 47.18 22ms 8.91 45.25 22ms
1.3B PIE 22.3 65.2 29ms 35.33 72.88 28ms 28.69 69.13 29ms

Py
th

on 6.7B Full-recomputation 28.95 70.11 561ms 40.89 76.19 564ms 35.26 72.73 562ms
6.7B Conflict Fast Encoding 5.35 33.32 34ms 6.52 35.25 34ms 6.09 38.76 34ms
6.7B PIE 28.83 70.01 50ms 40.77 76.14 50ms 35.2 72.72 50ms

Py
th

on 33B Full-recomputation 35.75 73.46 2194ms 46.0 78.9 2199ms 39.75 75.12 2194ms
33B Conflict Fast Encoding 3.96 30.13 126ms 5.41 32.32 121ms 3.92 35.56 127ms
33B PIE 35.77 73.45 134ms 45.74 78.85 140ms 39.74 75.1 141ms

Ja
va

1.3B Full-recomputation 26.21 70.89 200ms 36.77 76.31 200ms 45.89 78.04 198ms
1.3B Conflict Fast Encoding 0.29 3.12 22ms 0.57 3.19 23ms 0.7 2.63 23ms
1.3B PIE 26.13 70.82 30ms 36.67 76.25 30ms 45.92 77.99 29ms

Ja
va

6.7B Full-recomputation 32.51 75.56 578ms 41.97 79.41 578ms 50.86 80.53 578ms
6.7B Conflict Fast Encoding 0.47 2.77 34ms 0.76 2.78 35ms 0.67 2.48 33ms
6.7B PIE 32.21 75.47 50ms 41.96 79.32 49ms 50.85 80.43 48ms

Ja
va

33B Full-recomputation 35.05 76.93 2269ms 44.95 80.87 2281ms 53.23 81.76 2270ms
33B Conflict Fast Encoding 0.38 2.51 120ms 0.59 2.40 122ms 0.68 2.09 122ms
33B PIE 34.78 76.78 138ms 45.01 80.95 133ms 53.16 81.66 139ms

Table 3: Performance comparisons of deletion experiments. In this task, for each next-line
prediction target, we delete several lines of code of its context randomly to simulate real-world
scenarios. EM and ES denotes the Exact Match and Edit Similarity score respectively. All results
demonstrate that our Positional Integrity Encoding approach brings substantial speed-ups without
performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 1.3B Full-recomputation 22.42 65.26 192ms 35.41 72.96 193ms 28.78 69.22 193ms
1.3B Conflict Fast Encoding 0.41 39.31 22ms 0.59 42.02 24ms 1.05 42.85 22ms
1.3B PIE 22.31 65.19 29ms 35.25 72.81 27ms 28.8 69.16 27ms

Py
th

on 6.7B Full-recomputation 28.95 70.11 561ms 40.89 76.19 564ms 35.26 72.73 562ms
6.7B Conflict Fast Encoding 0.51 40.24 30ms 0.77 42.77 31ms 1.42 43.93 30ms
6.7B PIE 28.86 70.01 43ms 40.77 76.15 42ms 35.09 72.67 42ms

Py
th

on 33B Full-recomputation 35.75 73.46 2194ms 46.0 78.9 2199ms 39.75 75.12 2194ms
33B Conflict Fast Encoding 1.42 43.93 105ms 1.55 44.22 108ms 2.4 45.04 108ms
33B PIE 35.09 72.67 128ms 45.21 78.18 118ms 39.69 75.05 119ms

Ja
va

1.3B Full-recomputation 26.21 70.89 200ms 36.77 76.31 200ms 45.89 78.04 198ms
1.3B Conflict Fast Encoding 0.33 33.48 22ms 0.55 36.24 22ms 1.35 38.65 22ms
1.3B PIE 26.05 70.77 28ms 36.83 76.34 27ms 45.74 77.91 27ms

Ja
va

6.7B Full-recomputation 32.51 75.56 578ms 41.97 79.41 578ms 50.86 80.53 578ms
6.7B Conflict Fast Encoding 0.49 33.6 29ms 0.8 36.17 29ms 1.84 38.82 29ms
6.7B PIE 32.57 75.56 42ms 41.83 79.39 43ms 50.88 80.52 42ms

Ja
va

33B Full-recomputation 35.05 76.93 2269ms 44.95 80.87 2281ms 53.23 81.76 2270ms
33B Conflict Fast Encoding 0.91 35.06 109ms 1.01 37.97 106ms 2.31 40.15 105ms
33B PIE 34.82 76.76 117ms 44.93 80.86 120ms 53.19 81.71 119ms

that all metrics indicate that our Positional Integrity Encoding can perfectly maintain the prediction
accuracy of full re-computation in different scenarios. This indicates that PIE effectively addresses
temporal confusion, and the semantic impact of minor edits is relatively negligible. For example, in
the most challenging XF-F setting requiring to handle long-range cross-file context, the maximum
relative difference between our PIE and Full-recomputation across different model sizes and code
languages is 0.3%/0.15%, 0.66%/0.79%, 1.33%/2.24% for code insertion, deletion, and edition in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance comparisons of edition experiments. In this task, for each next-line
prediction target, we delete several lines of code of its context and simultaneously insert other lines
of code randomly to simulate real-world scenarios. EM and ES denote the Exact Match and Edit
Similarity score respectively. All results demonstrate that our Positional Integrity Encoding approach
brings substantial speed-ups without performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 1.3B Full-recomputation 22.42 65.26 242ms 35.41 72.96 242ms 28.78 69.22 244ms
1.3B Conflict Fast Encoding 8.80 50.08 23ms 13.83 54.01 22ms 11.29 51.99 22ms
1.3B PIE 22.04 64.59 30ms 34.49 72.02 29ms 28.15 68.32 29ms

Py
th

on 6.7B Full-recomputation 28.95 70.11 705ms 40.89 76.19 706ms 35.26 72.73 713ms
6.7B Conflict Fast Encoding 11.26 51.63 34ms 12.57 53.27 34ms 12.75 51.45 34ms
6.7B PIE 28.07 69.00 54ms 39.89 75.10 54ms 34.05 71.64 54ms

Py
th

on 33B Full-recomputation 35.75 73.46 2766ms 46.00 78.90 2759ms 39.75 75.12 2787ms
33B Conflict Fast Encoding 14.33 53.73 126ms 15.12 54.59 121ms 13.88 51.94 127ms
33B PIE 34.62 72.47 146ms 44.59 77.69 142ms 38.83 74.08 141ms

Ja
va

1.3B Full-recomputation 26.21 70.89 251ms 36.77 76.31 253ms 45.89 78.04 249ms
1.3B Conflict Fast Encoding 5.87 31.46 22ms 8.01 32.74 23ms 10.20 34.34 23ms
1.3B PIE 25.29 68.93 30ms 35.59 74.17 30ms 44.51 76.06 29ms

Ja
va

6.7B Full-recomputation 32.51 75.56 733ms 41.97 79.41 736ms 50.86 80.53 728ms
6.7B Conflict Fast Encoding 9.28 39.32 34ms 11.47 39.11 35ms 15.51 41.92 33ms
6.7B PIE 31.32 73.83 52ms 40.89 77.65 53ms 49.44 78.80 53ms

Ja
va

33B Full-recomputation 35.05 76.93 2892ms 44.95 80.87 2894ms 53.23 81.76 2833ms
33B Conflict Fast Encoding 8.02 32.93 120ms 9.67 33.29 122ms 12.10 34.70 122ms
33B PIE 33.72 74.69 134ms 43.71 78.66 138ms 51.71 79.49 143ms

terms of EM/ES respectively, which is rather negligible. This thorough examination serves as a strong
support of the reliability of our PIE approach in real-world code editing scenarios.

Positional Integrity Encoding significantly reduces computational overhead. Moreover, we
further benchmark the computational costs brought by different approaches. From all results in the
above tables, it can be easily seen that our Positional Integrity Encoding can achieve substantial speed-
up compared to full re-computation while preserving its performance simultaneously. In particular,
for the code edition experiment that requires both insertion and deletion, the averaged reductions of
computational overhead induced by our PIE are 87.9%/88.2%, 92.4%/92.8%, 94.8%/95.2% for 1.3B,
6.7B, and 33B models on Python/Java languages respectively. Furthermore, compared to Conflict
Fast Encoding which induces minimal costs but largely hurts performance, our PIE only brings
negligible overhead, showing its good accuracy-efficiency balance.

In summary, our main results comprehensively demonstrate the superiority of our Positional Integra-
tion Encoding for code LLMs towards real-world code editing scenarios, which perfectly preserves
the prediction accuracy and significantly addresses the crucial gap in the efficient deployment of
LLMs in real-time dynamic scenarios.

4.3 MORE ANALYSIS

In this subsection, we further present detailed analysis to investigate how large is the gap between
our Positional Integrity Encoding and full re-computation in terms of context representations and
predictions from LLMs, which provide additional insight of our approach.

How large is the gap on context representations? In practical scenarios, real-time editing by users
results in the modified sequence xedit, requiring the KV cache to must be updated. In our analysis,
we use the cosine similarity between context representations of full re-computation K∗

[j+1:n] and (1)
our Positional Integrity Encoding Kedit

[j+1:n]; (2) Conflict Fast Encoding K[j+1:n]. We employ the
DeepSeek-Coder 6.7B model on the Python subset of RepoBench. Averaged results are reported.

In Figure 3, the cosine similarity between representations of full re-computation and our Positional
Integraty Enocding is consistently around 1.0 across all layers. This high similarity demonstrates the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer id

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

S
im

ila
rit

y

XF-F

0 5 10 15 20 25 30
Layer id

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

S
im

ila
rit

y

XF-R

0 5 10 15 20 25 30
Layer id

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

S
im

ila
rit

y

IFPIE (Ours) and Full-recomputation Conflict Fast Encoding and Full-recomputation

Figure 3: Cosine similarity of key representations across model layers. The plots compare the cosine
similarity between K[j+1:n] and K∗

[j+1:n] (indicating temporal confusion of Conflict Fast Encoding)
with the cosine similarity between Kedit

[j+1:n] and K∗
[j+1:n] (showing the effectiveness of PIE).

effectiveness of PIE in preserving the contextual integrity of the key representations after editing,
suggesting that PIE successfully mitigates the temporal confusion that typically arises when manipu-
lating the KV cache. In contrast, the cosine similarity between representations of full re-computation
and Conflict Fast Encoding is significantly lower, indicating the temporal confusion issue that hurts
model performance a lot.

0 10 20 30 40 50 60
Generated token id

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

K
L 

D
iv

er
ge

nc
e

XF-F

0 10 20 30 40 50 60
Generated token id

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

K
L 

D
iv

er
ge

nc
e

XF-R

0 10 20 30 40 50 60
Generated token id

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

K
L 

D
iv

er
ge

nc
e

IFPIE (Ours) and Full-recomputation Conflict Fast Encoding and Full-recomputation

Figure 4: KL divergence of the generated token distributions. The plots compare the KL divergence
between the generated token distributions of PIE and Full-recomputation, and the KL divergence
between the generated token distributions of Conflict Fast Encoding and Full-recomputation.

How large is the gap on model predictions? Moreover, we further use Kullback-Leibler (KL)
divergence as the metric to investigate the gap between model predictions of different approaches.
Similarly, we employ the DeepSeek-Coder 6.7B model on the Python subset of RepoBench and report
the averaged results. In Figure 4, the KL divergence between model predictions of full re-computation
and our Positional Integrity Encoding remains consistently low, i.e., below 0.0002 across 64 tokens.
However, the KL divergence between model predictions of full re-computation and Conflict Fast
Encoding is substantially higher (2x larger). These findings again underscore the importance of
maintaining positional integrity within the KV cache to ensure accurate generation results.

5 CONCLUSION

In this paper, we introduce Positional Integrity Encoding (PIE), a novel method designed to enhance
the efficiency of large language models (LLMs) in the real-time editing setting. Our approach
addresses the significant computational overhead associated with re-encoding contexts after small
edits, a common scenario in interactive coding environments. Through extensive experiments,
we demonstrated that PIE not only significantly reduces latency but also maintains high accuracy
compared to the naive full re-computation method.

PIE represents a substantial step forward in the development of efficient LLMs, particularly in
dynamic contexts where frequent edits are made. Future work could explore the integration of
PIE with other optimization techniques and its application to a broader range of tasks beyond code
generation. Our method paves the way for more responsive and resource-efficient AI assistants,
enhancing their practicality and usability in various real-world scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm inference
with sarathi-serve. arXiv preprint arXiv:2403.02310, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023. URL https://arxiv.org/abs/2302.01318.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized
relative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and Peter Ramadge. Dissecting transformer
length extrapolation via the lens of receptive field analysis. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13522–
13537, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In acl, July 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023. URL https://arxiv.org/abs/2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://arxiv.org/abs/2208.07339.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=tcbBPnfwxS&fbclid=
IwAR0QoRRF 7gr6NEt2sKchK5wgGNLfJUNavvbSeCRlWhpVmtUbo0W3ExJXZE.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analysis.
arXiv preprint arXiv:2405.08944, 2024.

10

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2307.08691
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://arxiv.org/abs/2208.07339
https://openreview.net/forum?id=tcbBPnfwxS&fbclid=IwAR0QoRRF_7gr6NEt2sKchK5wgGNLfJUNavvbSeCRlWhpVmtUbo0W3ExJXZE
https://openreview.net/forum?id=tcbBPnfwxS&fbclid=IwAR0QoRRF_7gr6NEt2sKchK5wgGNLfJUNavvbSeCRlWhpVmtUbo0W3ExJXZE


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Di He, Jingjing Xu, Zhi Zhang, Hongxia Yang, and
Liwei Wang. Two stones hit one bird: Bilevel positional encoding for better length extrapolation.
arXiv preprint arXiv:2401.16421, 2024.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: m transposable masks. In
Advances in Neural Information Processing Systems (NeurIPS), 2021. URL https://arxiv.org/
abs/2102.08124.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Symposium on Operating Systems Principles (SOSP), 2023. URL
https://arxiv.org/abs/2309.06180.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning (ICML), 2023.
URL https://proceedings.mlr.press/v202/leviathan23a.html.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2024a. URL https://arxiv.org/abs/2306.03091.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023. URL https://arxiv.
org/abs/2305.17888.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

11

https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2309.06180
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang,
and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding.
Advances in Neural Information Processing Systems, 34:22795–22807, 2021.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer
may not be as powerful as you expect. Advances in Neural Information Processing Systems, 35:
4301–4315, 2022.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One
transformer can understand both 2d & 3d molecular data. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=vZTp1oPV3PC.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems (NeurIPS), 2023. URL
https://arxiv.org/pdf/2305.11627.pdf.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023. URL https://arxiv.org/abs/2305.09781.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022. URL https://arxiv.org/abs/2206.09557.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations (ICLR), 2022.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-
attention for long document understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 2555–2565, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019. URL
https://arxiv.org/abs/1910.01108.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Association for Computational Linguistics (ACL), June 2018.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023. URL https://arxiv.org/abs/2308.04623.

12

https://openreview.net/forum?id=vZTp1oPV3PC
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/abs/2305.09781
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2308.04623


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for
deep autoregressive models. In Advances in Neural Information Processing Systems
(NeurIPS), 2018. URL https://proceedings.neurips.cc/paper files/paper/2018/file/
c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2021.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary,
Xia Song, and Furu Wei. A length-extrapolatable transformer. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, July 2023.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM joint meeting on European
software engineering conference and symposium on the foundations of software engineering, pp.
1433–1443, 2020.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems (NeurIPS), 30, 2017.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021. URL https://arxiv.org/abs/2012.09852.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.
6.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), 2023. URL https://proceedings.mlr.press/
v202/xiao23c/xiao23c.pdf.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and
Yuxiong He. Zeroquant: Efficient and affordable post-training quantization for
large-scale transformers. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://arxiv.org/abs/2012.09852
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=-Aw0rrrPUF.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=r9hNv76KoT3.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SETUP

Tasks Construction for Code Insertion. To simulate code insertion tasks, we start by randomly
deleting five consecutive lines from each context. The resulting context, which lacks these five lines,
is considered the original context. The complete context, which includes the previously deleted lines,
is treated as the edited context. The tokens within the deleted lines are identified as the inserted
tokens (around 64 tokens for Python and 51 tokens for Java). This setup allows us to evaluate the
model’s capability to accurately restore missing code segments, mimicking real-world scenarios
where developers frequently insert blocks of code.

Tasks Construction for Code Deletion. For code deletion tasks, we begin by randomly selecting a
line within the context and then inserting five randomly sampled lines at this position. The context
containing these additional lines is designated as the original context. The complete context, which
excludes the inserted lines, is regarded as the edited context. The tokens in the inserted lines are
treated as the deleted tokens (around 64 tokens for Python and 51 tokens for Java). This construction
enables us to assess the model’s performance in identifying and removing extraneous code, reflecting
situations where developers need to clean up or refactor their codebase.

Tasks Construction for Multi-place Code Edition To comprehensively evaluate the model’s
performance in handling simultaneous code insertion and deletion, we construct a task scenario that
integrates both operations. Initially, we randomly delete five consecutive lines from each context to
simulate code insertion. The context without these lines is treated as the original context. The tokens
in the deleted lines are identified as the inserted tokens.

Simultaneously, we randomly select another line within the context and insert five randomly sampled
lines at this position. The complete context, which includes all lines as they appear after both
deletions and insertions, is regarded as the edited context. The tokens in the newly inserted lines are
considered the deleted tokens. This dual operation setup allows us to evaluate the model’s ability to
handle complex, simultaneous edits, adding missing code segments while removing extraneous ones,
reflecting the multifaceted nature of real-world coding environments where developers often perform
multiple types of edits concurrently.

A.2 RESULTS ON CODELLAMA

Results of different code editing settings on CodeLlama (Roziere et al., 2023) are presented in
Table 5, 6 and 7 respectively. Similar to DeepSeek-Coder, CodeLlama with Positional Integrity
Encoding demonstrates strong performance and fast speed across various editing scenarios. The
metrics indicate that PIE effectively maintains prediction accuracy and addresses temporal confusion,
ensuring the impact of minor edits is minimal.

14

https://openreview.net/forum?id=-Aw0rrrPUF
https://openreview.net/forum?id=r9hNv76KoT3


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Performance comparisons of insertion experiments for CodeLlama. In this task, for
each next-line prediction target, we insert several lines of code into its context randomly to simulate
real-world scenarios. EM and ES denotes the Exact Match and Edit Similarity score respectively.
All results demonstrate that our Positional Integrity Encoding approach brings substantial speed-ups
without performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 7B Full-recomputation 25.72 66.49 561ms 38.87 73.81 564ms 33.55 70.26 562ms
7B Conflict Fast Encoding 14.49 55.10 34ms 19.32 57.34 34ms 15.49 53.05 34ms
7B PIE 25.42 66.40 50ms 38.76 73.83 50ms 33.30 70.11 50ms

Py
th

on 34B Full-recomputation 31.04 69.48 2013ms 42.80 76.27 2029ms 37.69 72.36 1999ms
34B Conflict Fast Encoding 11.56 50.23 113ms 16.06 52.59 110ms 11.58 48.36 112ms
34B PIE 30.53 68.79 123ms 42.73 76.40 119ms 37.51 72.25 123ms

Ja
va

7B Full-recomputation 28.02 72.49 578ms 39.61 77.81 578ms 49.20 79.76 578ms
7B Conflict Fast Encoding 10.45 37.69 34ms 14.28 38.45 35ms 16.95 38.15 33ms
7B PIE 28.02 72.39 50ms 39.48 77.74 49ms 49.31 79.79 48ms

Ja
va

34B Full-recomputation 32.16 75.09 2179ms 43.45 79.89 2184ms 52.43 80.97 2197ms
34B Conflict Fast Encoding 12.04 41.76 104ms 14.25 39.19 107ms 17.29 38.50 109ms
34B PIE 31.45 74.64 119ms 43.54 79.80 118ms 52.42 81.00 115ms

Table 6: Performance comparisons of deletion experiments for CodeLlama. In this task, for
each next-line prediction target, we delete several lines of code of its context randomly to simulate
real-world scenarios. EM and ES denote the Exact Match and Edit Similarity score respectively. All
results demonstrate that our Positional Integrity Encoding approach brings substantial speed-ups
without performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 7B Full-recomputation 25.72 66.49 561ms 38.87 73.81 564ms 33.55 70.26 562ms
7B Conflict Fast Encoding 10.14 52.80 30ms 15.24 57.88 31ms 13.04 54.53 30ms
7B PIE 25.52 66.47 43ms 38.88 73.87 42ms 33.51 70.18 42ms

Py
th

on 34B Full-recomputation 31.04 69.48 2013ms 42.80 76.27 2029ms 37.69 72.36 1999ms
34B Conflict Fast Encoding 12.15 54.76 88ms 16.40 59.29 94ms 13.78 55.90 93ms
34B PIE 31.01 69.44 100ms 42.76 76.13 100ms 37.60 72.38 102ms

Ja
va

7B Full-recomputation 28.02 72.49 578ms 39.61 77.81 578ms 49.20 79.76 578ms
7B Conflict Fast Encoding 7.21 42.51 29ms 7.77 43.86 29ms 8.78 44.46 29ms
7B PIE 28.01 72.45 42ms 39.51 77.78 42ms 49.30 79.80 42ms

Ja
va

34B Full-recomputation 32.16 75.09 2179ms 43.45 79.89 2184ms 52.43 80.97 2197ms
34B Conflict Fast Encoding 8.76 45.44 92ms 8.67 45.57 92ms 10.11 46.64 95ms
34B PIE 32.12 75.02 99ms 43.33 79.86 98ms 52.36 80.96 107ms

Table 7: Performance comparisons of edition experiments for CodeLlama. In this task, for each
next-line prediction target, we delete several lines of code of its context and simultaneously insert
other lines of code randomly to simulate real-world scenarios. EM and ES denote the Exact Match
and Edit Similarity score respectively. All results demonstrate that our Positional Integrity Encoding
approach brings substantial speed-ups without performance drops.

Model Method XF-F XF-R IF

EM ES Time EM ES Time EM ES Time

Py
th

on 7B Full-recomputation 25.72 66.49 705ms 38.87 73.81 706ms 33.55 70.26 713ms
7B Conflict Fast Encoding 19.97 61.46 34ms 29.79 67.31 34ms 24.70 63.28 34ms
7B PIE 24.97 66.04 54ms 38.21 73.40 54ms 32.84 69.66 54ms

Py
th

on 34B Full-recomputation 31.04 69.48 2574ms 42.80 76.27 2569ms 37.69 72.36 2581ms
34B Conflict Fast Encoding 21.91 61.78 91ms 30.87 67.16 91ms 25.76 63.15 90ms
34B PIE 29.92 68.7 126ms 41.74 75.37 126ms 37.01 71.76 127ms

Ja
va

7B Full-recomputation 28.02 72.49 733ms 39.61 77.81 736ms 49.20 79.76 728ms
7B Conflict Fast Encoding 18.78 57.38 34ms 25.79 60.97 35ms 32.60 62.66 33ms
7B PIE 27.43 71.60 52ms 38.89 76.96 53ms 48.60 78.94 53ms

Ja
va

34B Full-recomputation 32.16 75.09 2726ms 43.45 79.89 2807ms 52.43 80.97 2727ms
34B Conflict Fast Encoding 21.25 59.70 104ms 27.83 61.91 107ms 32.98 62.03 109ms
34B PIE 30.82 73.84 126ms 42.71 78.94 119ms 51.64 80.15 125ms

15


	Introduction
	Related Work
	Methods
	Background
	Positional Integrity Encoding (PIE)

	Experiments
	Experimental Setup
	Main Results
	More Analysis

	Conclusion
	Experimental Details
	Experimental Setup
	Results on CodeLlama


