
Gentle Manipulation of Tree Branches:
A Contact-Aware Policy Learning Approach

Jayadeep Jacob1,2, Shizhe Cai1 , Paulo Borges2,
Tirthankar Bandyopadhyay2 , Fabio Ramos1,3

1University of Sydney, 2Data61, CSIRO, 3NVIDIA

Abstract: Learning to interact with deformable tree branches with minimal dam-
age is challenging due to their intricate geometry and inscrutable dynamics. Fur-
thermore, traditional vision-based modeling systems suffer from implicit occlu-
sions in dense foliage, severely changing lighting conditions, and limited field of
view, in addition to having a significant computational burden preventing real-
time deployment. In this work, we simulate a procedural forest with realistic,
self-similar branching structures derived from a parametric L-system model, actu-
ated with crude spring abstractions, mirroring real-world variations with domain
randomisation over the morphological and dynamic attributes. We then train a
novel Proprioceptive Contact-Aware Policy (PCAP) for a reach task using rein-
forcement learning, aided by a whole-arm contact detection classifier and reward
engineering, without external vision, tactile, or torque sensing. The agent deploys
novel strategies to evade and mitigate contact impact, favouring a reactive ex-
ploration of the task space. Finally, we demonstrate that the learned behavioural
patterns can be transferred zero-shot from simulation to real, allowing the arm to
navigate around real branches with unseen topology and variable occlusions while
minimising the contact forces and expected ruptures.
Website: https://sites.google.com/view/pcap/home

Keywords: Reinforcement Learning, Sim-to-Real, Deformable Manipulation,
Robot-vegetation interaction

1 Introduction

Active interaction with natural deformables, such as tree branches, plants, and grass, has been a
persistent challenge in robotics; however, the potential benefits are immense for diverse fields, in-
cluding agriculture, autonomous navigation, and de-mining. The agriculture industry, in particular,
benefits from automation as limited labour resources and excessive wastage threaten sustainable
farming practices.

Robotic interaction with the natural environment is complex due to various factors. First, image-
based perception, a cornerstone of deformable manipulation in labs, has limited success outdoors
[1], as moving branches, occluding foliage, and poor illumination disrupt camera vision. Second,
the complex geometry and non-linear dynamics of natural entities limit model-based methods. Ad-
ditionally, the deformable behaviour of tree branches necessitates reactive control policies that gen-
eralise to unseen scenarios. On the other hand, training model-free learners for long trajectories is
computationally expensive, particularly with vision-derived states, while collecting real-world sam-
ples is complex. Vision techniques that work well with rigid objects are inadequate for deformable
objects [2] like vines and stems. Vision systems also fail to assess rigidity where stress-induced
deformation is non-uniform. Consequently, state-of-the-art crop harvesting systems, predominantly
vision-based planners, have success rates from 50% to 75% with partial occlusions, dropping to 5%
when targets are fully occluded [3].

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://sites.google.com/view/pcap/home

While collision avoidance is conventional wisdom, contact is inevitable in messy environments;
thus, minimising impact cost, both in plant damage and arm torques, is more prudent. Deep rein-
forcement learning (RL) on powerful GPU-based simulators is a safer, sample-efficient, and cost-
effective option for contact-rich tasks [4][5]. However, transferring policies from simulation to real-
ity, known as the sim-to-real problem [6], is notoriously hard due to discrepancies between the two.
Domain Randomisation, referring to introducing perturbations in simulation parameters, helps cre-
ate robust models generalising well to reality. Effective sim-to-real transfer and path planning with
deformable contacts require realistic simulation of intricate geometry and deformation parameters
to represent real-world occlusion patterns and interaction behaviour.

Given these challenges, this work proposes the following approach: First, we draw inspiration from
plant morphology using the parametric L-system (Lindenmayer system) [7] to simulate realistic
branching structures coupled with dynamics from crude spring actuation [8]. We domain randomise
over both the L-system and dynamic spring parameters to generate a procedural forest for training
our Proprioceptive Contact-Aware Policy (PCAP) for a reaching task, targeting, for instance,
pruning locations, ripe fruits, or diseased regions. The PCAP states include only observations from
proprioceptive sensors, not including vision or external torque sensors in favour of a blind reach
policy. An independent classifier predicts contact from internal sensor measurements, which aids
reward engineering. Finally, we perform zero-shot sim-to-real transfer by extending techniques
from [4] to operate on real branches with varying dynamics. With just thirty minutes of simulation
training on an RTX 4090, novel strategies emerge, allowing the arm to explore the task space while
minimising contacts and contact impact. These strategies and the reactive behaviour translate well
to the real world, where branch topology, obstruction patterns, dynamics parameters, and contact
forces are all unknown. To summarise, our contributions are as follows:

1) We devise a procedural forest generator based on the L-system formalism and Domain Randomi-
sation, where the individual trees are faithful to the real world in geometric complexity, dimensional
accuracy, and occlusion patterns.
2) We design an RL-based framework trained in simulation, which derives observations and rewards
from an independent collision detection classifier and proprioceptive sensor measurements only.
3) We demonstrate that the trained reactive policy and the learned contact minimisation strategies
can adapt zero-shot from simulation to real to navigate unseen branch topology and contact patterns
with the help of a few engineering optimisations.

2 Related Works

This section reviews advancements in sim-to-real transfer, deformable manipulation and robot-plant
interaction. Sim-to-real transfer is essential for applying simulation-trained policies to real-world
tasks. Many studies focus on deformable object manipulation and contact-rich tasks. For instance,
the IndustReal framework [4] used domain randomisation to bridge the sim-to-real gap. This ap-
proach varied simulation parameters, improving policy adaptability and performance in transferring
complex assembly tasks. [2] used Bayesian methods and parameter inference to manipulate de-
formable objects while [9] used sophisticated steering needles to operate inside a deformable en-
vironment, human lungs. [6] provided a survey on sim-to-real transfer, categorising methods into
domain randomisation, domain adaptation, and imitation learning, highlighting their combined ef-
fectiveness. Dextreme [5] and Shadow Hand [10] frameworks focus on agile in-hand manipulation,
using high-fidelity simulations and comprehensive RL regimes for successful sim-to-real transfer.

Photo-realistic tree representations have been proposed with L-System [7][11][12], using polygons
[13][14], or with space colonisation algorithm [15]. Furthermore, plant simulations for physical in-
teractions are implemented with expensive FEM models [16] or using cheaper mass-spring systems
[17][8]. From a learning perspective, [18] explored an RL-based system aided by vision for known
plant topologies, emphasizing the need for detailed prior knowledge, often impractical in dynamic
environments. [19] developed graph representations to predict interactions between robots and plant
structures but restricted to simulation where the node positions are known apriori.

2

Policy learning for contact-rich tasks typically relies on external force/torque (F/T) sensors [20], tac-
tile sensing [10], or vision [4]. These add-ons work well for contacts localised to the end-effector,
but with plant manipulation, contact can occur throughout the arm. Contact-aware reaching in plants
using whole-arm tactile sensors is presented in [21], while internal sensors are used in [22], but in
a model-based indoor setting. In contrast, we use proprioceptive measurements and a model-free
context. Accurate models of tree branch dynamics have been proposed [8], using internal torque sen-
sors to estimate parameters like stiffness and damping. More broadly, [3] surveyed intelligent robots
for fruit harvesting, identifying trends and challenges, including the need for advanced perception
systems and multi-modal sensors to improve accuracy and reliability in agricultural robotics.

3 Approach

3.1 Shape Representation & Dynamics

L-system: The L-system formalism [7, 23] uses formal grammar theory and fractal geometry to
model the morphology of plants and other organic structures like algae. A parallel rewriting process
updates morphological attributes by applying production rules, starting from an axiom and operat-
ing on a fixed alphabet of symbols. The resulting sequence of strings can be interpreted using turtle
graphics [11], which moves in 2D or 3D space by attributing specific meanings to each symbol, such
as move-forward or push-pop from a queue, to generate graphical structures akin to real-world or-
ganic growth patterns. The parametric L-system associates parameters with symbols to diversify and
control limb generation. Formally, a parametric 0L-system is defined by G = ⟨V,Σ, ω, P ⟩, where V
is the alphabet, Σ the parameter set, ω the initial axiom, and P the production rules {p1, p2, p3, ...}.
We extend the ‘turtle’ interpretation to physics simulators by generating independent cylindrical
links that can be connected and actuated. We favour ternary branching structures over monopodial
and sympodial variations, as real-world manipulation problems are more challenging with the for-
mer. We experiment with four ternary structures: classes Ta, Tb, Tc, & Td, from [7]. The ternary
L-system we used and the parameters for Tb class Σb is provided in formulation (1), while the
corresponding simulations are shown in Fig.1(a)-(d). For detailed rules, parameters, and growth
attributes, see [7]; extensive simulations are available in our website.

Σb : {d1 7→ 137.5, d2 7→ 137.5, a 7→ 18.95,

lr 7→ 1.109, vr 7→ 0.14, n 7→ 8};

ω :
!(1)F (200)

45A
;

p1 : A : ∗ →!(vr)F (50) [&(a)F (50)A] /(d1)

[&(a)F (50)A] /(d2) [&(a)F (50)A]

p2 : F (l) : ∗ → F (l · lr);
p3 : !(w) : ∗ →!(w · vr)

(1)

Branch Dynamics: We extend the coarse-grained abstractions from [8] to model the deformable
plant behaviour by approximating branch segments with L-system derived rigid cylindrical links,
connected via revolute joints and actuated with proportional-derivative (PD) controllers. However,
unlike [8], where the distribution of stiffness and damping parameters ϕ = {Kp,Kd} of the tor-
sional mass-spring-damper system (Fig.2b) is estimated from real deformations, we do not perform
system identification, instead experiment with two models to populate them in advance, namely: a)
Rudimentary model: where ϕ is fixed for a given branch level (e.g., R2 in Fig.2a represents the
second level) and it decreases exponentially for each level away from the trunk, starting from an up-
per bound ϕu tuned manually based on a real tree branch, and subject to a lower bound ϕl to avoid
simulator instabilities. b) Beam deflection model [19]: where Kp = Eπr4

2l and Kd = Kp/10, where
E is the Young’s modulus of the plant material, and (r, l) are the radius and length of the links.

Domain Randomisation: We learn a robust policy despite the lack of strong vision priors by ran-
domising over both the shape representation and the dynamics parameters. In the former case, we
inject Gaussian perturbations (σ = 0.1) to the L-system parameters Σ, which represents structural
traits such as divergence angle (d1, d2), elongation rate (lr), width increase rate (vr), etc., to create
a procedural forest (Fig.2b) for each ternary class, where individual instances have unique, diverse,
and realistic forms. This paradigm fits neatly with our distributed physics simulator choice Isaac
Gym [24], where individual tree instances can be placed into each parallel environment. As for the

3

(a) (b) (c) (d)

Figure 1: L-system derived branching structure on Isaac Gym, ternary classes Ta, Tb, Tc, & Td

(a) (b) (c)

Figure 2: (a) Mass-Spring-Damper branch system from [8] (b) Training with our domain randomised
forest generator (ternary class Ta). (c) Real setup: Kinova arm reaching for a previously unseen
target (in red), obstructed by a real tree branch of unknown topology and dynamics.

dynamics, while the deformation parameters ϕ of the rudimentary model are randomised [25] with
a Gaussian (σ = 1.0), we do not perturb the Beam deflection model as the L-system shape randomi-
sation already influences the downstream dynamics. Furthermore, during the policy learning phase
in the simulation, we randomise the reach target and the part of the tree the robot has access to.

3.2 Contact Detection

We use proprioceptive measurements to develop a reactive policy without vision guidance, specifi-
cally the noisy joint torques, following a supervised learning approach similar to [26][27]. Unlike
prior works, however, where local collision detection is the end goal, we incorporate online predic-
tions from a pre-trained model into an RL framework for a reach policy with gentle contact.

The proposed online collision detector workflow is as follows: First, we execute arbitrary trajectories
with a Kinova 6-DOF Jaco 2 arm, obstructing the path at regular intervals with a soft touch or real
branch contact, recording obstruction times. Second, the resulting time series dataset, i.e., sequences
of joint velocity θ̇t and joint torque τt, is annotated with collision labels (1-contact, 0-no contact)
for each time step t. Next, we train a binary classifier to detect ‘bumps’ in the signals, indicating
contact. Finally, real-time predictions from the classifier are used for policy learning (section 3.3) as
part of the state observation ot and reward computation rt. This classifier is deployed only during
RL inference for real-world executions. In contrast, simulation training and testing use a proxy
classifier to check if the net rigid body contact force measurements Ft ∈ Rl×3, available from Isaac
Gym for all l robot links, breach a force threshold, I(∥Ft∥2 > fu). The contact impact threshold fu
is manually tuned based on real branch compliance during training.

Feature extraction for the classifier focuses on amplitude variations, disregarding the frequency spec-
trum. We create sliding window features, [τt, τt−1, τt−2, ..., τt−(m−1)], over the last m time steps.
Apart from min and max, we compute statistical moments, including mean, variance, skewness, and
kurtosis for each of the six dofs separately. We also use a smoothed version of τt by averaging the
last k neighbours to account for high sensor noise levels. We add joint velocity values θ̇t (com-
manded and executed) and the raw torque measurements τt for each joint to the feature set. Overall,
we capture 28 trajectories with soft contacts on each of the 7 links of the arm in 4 directions, plus
12 trajectories without obstructions. The final dataset has 90 features, with m = 10 and k = 3
performing best. We tune hyper-parameters manually and use two lightweight classifiers: a 3-layer
Neural Network and a Random Decision Forest, settling on the latter for its high specificity.

4

3.3 Policy Learning

We formulate the reaching task as a discrete-time sequential decision problem where the agent at-
tempts to maximise the expected discounted rewards accumulated by interacting with an environ-
ment over T time steps. Traditionally, such problems are modelled as an MDP (Markov Decision
Process) framework, defined by the quintuple ⟨S,A, P,R, γ⟩, where S is a finite set of possible
states, A the set of actions taken by the agent, P (s′|s, a) the state transition model, R(s, a, s′)
the reward received on transitioning from s to s′ upon action a, and γ ∈ [0, 1] the discount ra-
tio, subject to s, s′ ∈ S and a ∈ A. Given the agent has access only to a noisy representation
of the state, o ∈ O, actions can be sampled from a learned stochastic policy πw(a|o) parame-
terised by the network weights w, i.e., a ∼ πw, where the learning objective was to maximise
Eπ

[∑T−1
t=0 γtR(st, at)

]
. Specifically, we use Proximal Policy Optimisation(PPO)[28] variation

from the rl-games library[29], designed to avoid extensive destabilising updates w.r.t the policy at a
previous time step, by maximising a clipped surrogate objective.

Action & Observation Space: In our discrete-time setting, each action at corresponds to a 6-dof
velocity target, clamped to the arm limits. In velocity control mode, the arm is essentially non-
compliant to external disturbances, generating any amount of force to clear obstacles, subject to joint
torque limits. We justify our use of velocity control over the more compliant torque/impedance con-
trol with similar reasoning as mentioned earlier, viz. deploying torque/impedance control requires
accurate F/T sensor measurements, plant manipulation requires whole body contact detection, and
Kinova torque readings suffer from high noise perturbations.

On the other hand, our observation ot consists of the robot joint pose, joint velocity, deviation of the
end-effector pose from the reach target, end-effector orientation, and most crucially, the predicted
contact flag from the aforementioned classifier. Notably, our observation space does not include any
real-time inputs from the tree, such as branch images or measurements from visual tags. Besides the
cost implications, adding any of these inputs can cause an explosion in training time in the context
of a distributed simulator, not to mention the corresponding sim-to-real hurdles.

Reward Formulation: Our extensive reward-engineering nudges the arm to evade plant contact,
reduce impact upon contact, and minimise ruptures, thereby decreasing overall plant damage while
reaching the target. We favour a dense reward function, described in formulation (2), over episodic
rewards for faster learning and easier credit assignment during each exploration step.

rd =

[
1

1 + ∥dt∥22

]2
, rb =

7rd if ∥dt∥2 < 0.0125,

3rd if ∥dt∥2 < 0.025,

rd if ∥dt∥2 < 0.05,

rs = −
6∑

j=1

θ̇2tj ,

rc =

{
1.2 if ∥Ft∥2 ≤ fu,

0 otherwise
, rp =

{
0 if ∥Ft∥2 ≤ 2fu,

−1.2 otherwise.

(2)

Reward rt at each training time step t consists of five distinct components along with their cor-
responding scaling factors, which are: a) a distance reward rd that progressively increases as the
end-effector reaches closer to the target, where the distance dt ∈ R3 is computed as the differ-
ence of the end-effector position from the target, b) a bonus distance reward rb for close target
proximity required for grasps, c) a smoothness reward rs on the six joint velocities, d) a collision
reward rc to encourage contact evasion or prefer low impact collisions, and finally, e) a rupture
avoidance reward to penalise extreme contact forces. For the proposed PCAP algorithm, we define
rt = {gd · (rd + rb) + gs · rs} · rc + rp, where gd, gs are scaling factors. The product term with
rc ensures that the agent receives distance rewards only for the steps where the contact forces are
none or negligible; for instance, contact with leaves or thin limbs. Intuitively, the additional rupture
penalty rp is to account for cases where the agent learns to apply quick bouts of extreme forces, in
an otherwise smooth path, to rupture branches as a strategic sacrifice to acquire the long-term reward
of moving closer to the target through the breach, a behaviour that we experimentally observe.

5

3.4 Sim-to-Real

Hardware Setup: Our policies are trained on a server equipped with NVIDIA RTX 4090 GPU,
40-core CPU, and 64GB of RAM, while the Kinova ROS api runs on a second workstation with a
basic 8-core CPU, and 32GB of RAM, connected to the robot. They interact with each other via a
custom REST service that controls the latency specifications of the arm.

The input joint velocity frequency requirement for Kinova ROS API is 60Hz-100Hz due to an on-
board DSP that loops close to 10ms. On the other hand, the publish rate for sensor metrics (θt, θ̇t, qt,
e.t.c,) is 10Hz on the ROS topics. Therefore, to prevent oversampling at fetch, we nudge the policies
during simulation training to generate actions at 10Hz; moreover, at the time of real deployment, we
slice the output action at into n equal segments to feed the API at a higher frequency (e.g., 60Hz for
n = 6), i.e, ∆θ̇ = at/n, given ∆θ̇ ∈ R6 for the six joints.

Segmented Steady State Error Control: Despite manual calibration, discrepancies persist in robot
parameters, such as joint damping, friction, and gravity compensation values between simulation and
real, and steady-state error is inevitable [4]. Moreover, accurately replicating the complex contact
dynamics between the branches and arm is challenging [25][30], especially when the robot operates
in a velocity control mode. As an alternative to parameter estimation, [4] proposes to use Policy
Level Action Integrator (PLAI) by integrating policy actions over time, effectively applying them to
the desired state sdt in contrast to the current state st, in other words, sdt+1 = sdt ⊕ at = sdt ⊕ π(ot),
where ⊕ is the state update operation following a sampled action at from the policy π. Despite the
absence of direct feedback control, except at policy evaluation with the current observation ot, the
authors show that PLAI acts as a continuous correction model robust to disturbances, compared to
the conventional model, sdt+1 = st ⊕ π(ot), that transitions from the current state. However, when
the control action regulates joint velocity instead, we observe that the position error accumulates
over time due to the integral effect, which is harder to control without direct feedback. Therefore,
we follow a middle ground between PLAI and the nominal approach. We update from the last
desired state for each segment within a time step but use the current state when updating across the
trajectory time steps.

sdi+1 = sdi ⊕
π(ot)

n
, sdi =

{
st if i%n = 0

sdi otherwise
, for i = 0, 1, 2, . . . , n× t (3)

Intuitively, formulation (3) could be viewed as local disturbance rejection over the short term, with
periodic syncing to the current state to offset accumulated deviations.

Robot Parameters: The Domain Randomisation in section (3.1) detailed how we introduce vari-
ability in both branch shapes and the tree dynamics. On the other hand, we do not randomise the
robot dynamics. Instead, we tune the robot damping and friction parameters heuristically by com-
paring real torques and velocities to simulation-generated values, whereas the inertial priors are
gleaned directly from Kinova specification. Furthermore, we perturb the measured contact forces in
simulation with a small Gaussian noise (σ = 1.) to account for classifier generalisation error in real.

4 Experiments & Results

We evaluate the effectiveness of our proposed approach through the following experimental setups:

Experiment 1 (Simulation Tests): Here, we compare four distinct policies by ablating over the
observations and rewards: First, a baseline PPO that does not include a penalty for high contact
forces and can, therefore, apply maximum arm torques (subject to arm torque limits) to push through
branch occlusions, disregarding any plant damage. Second, a Contact Penalty Only (CPO) policy
uses our reward formulation (2), but that does not take in the classifier predictions towards ot. Third,
a Model Predictive Control (MPC) baseline from [31], however, without a prior for the tree geometry
to ensure a fair comparison to our blind model. The fourth is our proposed PCAP approach, which
combines both classifier prediction and reward formulation (2). Specific policy details are presented
in Table 1, where θt, θ̇t, qt, & dt represent the joint angle (6D), joint velocity (6D), the gripper

6

1 2 3 4
Collision Patterns

0

20

40

60

80

100

Su
cc

es
s R

at
e

- S
R

(%
)

88%

80%

71% 69%
72%

69%

47%

69%

17% 18% 20%

28%

72%
67%

62%
59%

PPO: Baseline - SR
MPC: Baseline - SR
CPO: +Contact Penalty Only - SR
PCAP:+Contact Penalty +Classifier - SR

1 2 3 4
Collision Patterns

0

10

20

30

40

50

60

Av
g

Co
nt

ac
t F

or
ce

s -
 F

t
2 (

N)

*4%
 18.1N

*11%
 33.8N

*17%
 43.1N

*29%
 58.8N

*3%
 11.8N

*9%
 24.7N

*19%
 36.3N

*13%
 31.0N

*5%
 19.9N

*6%
 22.9N

*8%
 28.1N

*8%
 30.4N

*0%
 9.3N

*2%
 14.7N

*0%
 17.1N

*2%
 18.6N

PPO: Baseline - Ft 2
MPC: Baseline - Ft 2
CPO: +Contact Penalty Only - Ft 2
PCAP:+Contact Penalty +Classifier - Ft 2

* :Rupture Threshold Breach
Rupture Threshold - 80.0N

Ta Tb Tc Td
Train L-System Pattern

Ta
Tb

Tc
TdTe

st
 L

-S
ys

te
m

 P
at

te
rn

 -
SR

 (%
) 73.9 71.7 65.2 58.7

98.3 96.6 86.4 91.5

63.8 46.8 55.3 55.3

91.2 89.5 73.7 86.0
50

60

70

80

90

1 2
Collision Patterns

0

20

40

60

80

100
Su

cc
es

s R
at

e
- S

R
(%

) 78%
86%

75% 71%

PPO: SR
PCAP: SR

1 2
Branching Patterns

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ax

 Jo
in

t T
or

qu
es

 -
2,

m
ax

 (N
m

)

*22%
10.8Nm

*14%
5.1Nm

*12%
4.8Nm

*14%
4.5Nm

PPO: 2, max
PCAP: 2, max

* :Real Rupture/Hard Stop

Figure 3: (Top) Exp 1: Comparison of Success Rates (SR) and Average Contact Forces across
four policies: PPO, MPC, CPO, and PCAP (ours). For SR, higher values are better, for ∥Ft∥2
& Rupture values (red%), the lower the better. (Bottom Left) Exp 2: SR for various L-System
ternary classes. E.g., the cell (c:1,r:2,v:98.3) indicates a policy trained on a Ta forest but tested
on a Tb instance. (Bottom Right) Exp 3: Comparison of SR and Max Joint Torque averaged over
trajectories, between PPO & PCAP. Note: ∥τ∥2,max (lower the better) is taken as a proxy for contact
impact in real. Rupture values in red show %cases real branches broke or the arm had to be hard-
stopped due to high forces.

orientation (4D), and the distance of gripper from target (3D). An important exception is that during
real deployment, we replace I(∥Ft∥2 > fu) observation with the classifier prediction and update
the reward terms accordingly. The results in Fig.(3: top), demonstrate that our PCAP framework
is the best suited to avoid plant damage, with a comparable success rate to a baseline that ignores
contact impact. To illustrate, the fourth block in both charts, corresponding to the hardest obstruction
pattern, indicates that for a moderate drop in Success Rate (69 to 59%), the net forces acting on the
plant reduce by ≈ 3x, while expected plant ruptures reduce by ≈ 15x. Additional experimental
details, time limits, and success metric definitions can be found in section A.3.

Experiment 2 (L-System Variability): We generate four distinct sets of ternary forests, each cor-
responding to classes Ta, Tb, Tc, & Td (Fig.1). Then, we train PCAP policies on each forest and
test its performance on all classes. The result heat map, presented in Fig.(3: bottom left), leads us to
the following conclusions. Policies trained on class Ta outperform other classes (col 1), whereas the
success rate is the lowest with class Tc (col 3). While numerous factors may impact the performance
of a class, like the stochasticity during the forest generation and the specific combination of occlu-
sions and target; primarily, this variation is a result of the hanging arch-like geometry (most evident
in class Tc, arising from plant tropism) that varies between classes. In contrast, Tb class tasks are
the easiest to solve (row 2), for all policies, presumably due to the thinner, pliant outer branches.

Experiment 3 (Real-world Tests): Here, we use real tree branches, with varying topology, extracted
from two distinct species to obstruct the path between the Kinova arm and a reach target. However,

7

in real, we compare only two policies: the baseline PPO and our contact-aware policy (PCAP). The
policies trained beforehand in the Isaac Gym simulator are deployed in real as checkpoints and are
used in conjunction with the pre-trained classifier described in section 3.2. Unlike in simulation,
where the contact forces between rigid bodies are available from Isaac Gym, in real, we use the
joint torques as a proxy metric to compare PPO and PCAP. Specifically, we compute ∥τt∥2 at each
time step and choose the maximum within each test trajectory to indicate plant damage. Overall, the
real-world experiment results in Fig.(3: bottom right) echo the simulation tests, proving that PCAP
mitigates branch impact with solid success rates and successful sim-to-real transfer. Additional
experiments are included in the Appendix for time efficiency (A.4), geometry ablation with and
without L-system (A.5), dynamics ablation (A.7), and the classifier performance (A.8).

Discussion: Throughout our experiments, in simulation and real, we observe the agent deploying
novel and unexpected strategies to evade contacts and reduce contact forces. For lack of a better
definition, we consider a behaviour novel if an ethologist would likely consider it “intelligent” if
displayed by a biological organism. We encourage readers to view the extensive videos on our
website and the supplementary material to see these behaviours in action.

Some strategies are highly beneficial but unsurprising, such as the arm slowing down (i.e., reducing
robot joint acceleration) to mitigate the impulse from collision or pushing through regions with lower
resistance, like pliant green foliage. In contrast, other demonstrated characteristics are unforeseen.
First, the agent learns to use the continuous joints of the Kinova arm at the wrists to perform a rolling
motion along obstructions. This rolling motion is observed both along and against the gravity axis
(i.e., rolling up and down upright limbs) and in lateral directions. Second, from training, the agent
forms an abstract awareness of the arch-like canopy shape typical of real-world plants. We deduce
this from its attempts to repeatedly favour trajectories through the outer periphery of the arch, where
the stiffness is lower, to get under the arch where there is no resistance, even when a shorter path
exists through the top. Third, the agent pulls the arm back towards itself, often multiple times, when
entangled in runners or facing stiff resistance. Furthermore, we notice the arm sliding on thicker
branches, wiggling through occlusions, and shaking off entanglements. Arguably, the most vital
result of our framework is the ability to perform reactive exploration of the task space; for instance,
the arm pulls back from a heavy impact, changes trajectory direction, and advances again, often in
repeated cycles, in search of a low-cost path. A few striking similarities between these emergent
behaviours and evolved animal traits in nature are listed in Appendix (A.1).

Failure Modes: There are multiple scenarios where PCAP fails in both simulation and real (refer
to supplement video). In simulation, these are primarily due to the arm failing to reach the target
within the specified step limit (sim: 800). Two frequent causes are (i) the arm getting entangled in
branches from which it cannot retract and (ii) the arm exploring various paths without success. The
agent fails the max limit (real:1000) from exploration in real as well in addition to ruptures from
shoving motions and entanglements; although we hard-stop in advance in at least some cases.

5 Conclusion and Limitations

We introduced a Proprioceptive Contact-Aware Policy (PCAP) for the delicate manipulation of tree
branches, using a simulated forest with realistic branching structures derived from a parametric
L-system model. Our approach avoids reliance on vision or external torque sensors, leveraging pro-
prioceptive measurements and a contact detection classifier to train reinforcement learning policies.
We demonstrated the effectiveness of our method in both simulated and real-world environments,
highlighting its robustness and adaptability to varying dynamics and unseen branch topologies.

Limitations to the method include the reliance on simulated environments, which may not capture
all real-world complexities. We acknowledge that the [purposeful] absence of vision-based feedback
could restrict performance in highly unpredictable scenarios, but the objective was to push the limits
of the proprioceptive approach. Future work should explore integrating multi-modal sensory inputs
and improving the fidelity of simulated environments to enhance the transferability and efficacy of
contact-aware policies in diverse applications.

8

Acknowledgments

This work was partially supported the SILVANUS Project through European Commission Funding
on the Horizon 2020 call number H2020-LC-GD-2020, Grant Agreement number 101037247. The
authors are also grateful to multiple groups at CSIRO, Data61 and the University of Sydney who
supported this work.

References
[1] D.-V. Nguyen, L. Kuhnert, and K. D. Kuhnert. Spreading algorithm for efficient vegetation

detection in cluttered outdoor environments. Robotics and Autonomous Systems, 60(12):1498–
1507, 2012.

[2] R. Antonova, J. Yang, P. Sundaresan, D. Fox, F. Ramos, and J. Bohg. A bayesian treatment of
real-to-sim for deformable object manipulation. IEEE Robotics and Automation Letters, 7(3):
5819–5826, 2022.

[3] H. Zhou, X. Wang, W. Au, H. Kang, and C. Chen. Intelligent robots for fruit harvesting:
Recent developments and future challenges. Precision Agriculture, 23(5):1856–1907, 2022.

[4] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos, D. Fox, and Y. Narang.
Industreal: Transferring contact-rich assembly tasks from simulation to reality. arXiv preprint
arXiv:2305.17110, 2023.

[5] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 5977–5984. IEEE, 2023.

[6] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI),
pages 737–744. IEEE, 2020.

[7] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants, chapter 2, pages
58–61. Springer Science & Business Media, 2012.

[8] J. Jacob, T. Bandyopadhyay, J. Williams, P. Borges, and F. Ramos. Learning to simulate tree-
branch dynamics for manipulation. IEEE Robotics and Automation Letters, 2024.

[9] M. Fu, A. Kuntz, R. J. Webster, and R. Alterovitz. Safe motion planning for steerable needles
using cost maps automatically extracted from pulmonary images. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4942–4949. IEEE, 2018.

[10] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[11] P. Prusinkiewicz. Graphical applications of l-systems. In Proceedings of graphics interface,
volume 86, pages 247–253, 1986.

[12] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Mech. L-systems: from the theory to visual
models of plants. In Proceedings of the 2nd CSIRO Symposium on Computational Challenges
in Life Sciences, volume 3, pages 1–32. Citeseer, 1996.

[13] J. Weber and J. Penn. Creation and rendering of realistic trees. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, pages 119–128, 1995.

[14] B. Lintermann and O. Deussen. Interactive modeling of plants. IEEE Computer Graphics and
Applications, 19(1):56–65, 1999.

9

[15] A. Runions, B. Lane, and P. Prusinkiewicz. Modeling trees with a space colonization algo-
rithm. Nph, 7(63-70):6, 2007.

[16] Y. Zhao and J. Barbič. Interactive authoring of simulation-ready plants. ACM Transactions on
Graphics (TOG), 32(4):1–12, 2013.

[17] F. Yandun, A. Silwal, and G. Kantor. Visual 3d reconstruction and dynamic simulation of
fruit trees for robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 54–55, 2020.

[18] F. Yandun, T. Parhar, A. Silwal, D. Clifford, Z. Yuan, G. Levine, S. Yaroshenko, and G. Kantor.
Reaching pruning locations in a vine using a deep reinforcement learning policy. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2400–2406. IEEE, 2021.

[19] C. H. Kim, M. Lee, O. Kroemer, and G. Kantor. Towards robotic tree manipulation: Leveraging
graph representations. arXiv preprint arXiv:2311.07479, 2023.

[20] S. Kozlovsky, E. Newman, and M. Zacksenhouse. Reinforcement learning of impedance poli-
cies for peg-in-hole tasks: Role of asymmetric matrices. IEEE Robotics and Automation Let-
ters, 7(4):10898–10905, 2022.

[21] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp. Reaching in clutter with whole-arm
tactile sensing. The International Journal of Robotics Research, 32(4):458–482, 2013.

[22] T. Pang and R. Tedrake. Easing reliance on collision-free planning with contact-aware con-
trol. In 2022 International Conference on Robotics and Automation (ICRA), pages 8375–8381.
IEEE, 2022.

[23] H. Honda. Description of the form of trees by the parameters of the tree-like body: Effects
of the branching angle and the branch length on the shape of the tree-like body. Journal of
theoretical biology, 31(2):331–338, 1971.

[24] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[25] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[26] D. Popov, A. Klimchik, and N. Mavridis. Collision detection, localization & classification for
industrial robots with joint torque sensors. In 2017 26th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pages 838–843. IEEE, 2017.

[27] Z. Zhang, K. Qian, B. W. Schuller, and D. Wollherr. An online robot collision detection and
identification scheme by supervised learning and bayesian decision theory. IEEE Transactions
on Automation Science and Engineering, 18(3):1144–1156, 2020.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] D. Makoviichuk and V. Makoviychuk. rl-games: A high-performance framework for rein-
forcement learning. Denys88/rl games, 2022.

[30] Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D. M. Kaufman,
and D. Panozzo. Intersection-free rigid body dynamics. ACM Transactions on Graphics, 40
(4), 2021.

10

[31] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox, F. Ramos, and B. Boots.
Storm: An integrated framework for fast joint-space model-predictive control for reactive ma-
nipulation. In Conference on Robot Learning, pages 750–759. PMLR, 2022.

[32] C. Friedlander. Thigmokinesis in woodlice. Animal Behaviour, 12(1):164–174, 1964.

[33] D. Treit and M. Fundytus. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacology
Biochemistry and Behavior, 31(4):959–962, 1988.

[34] H.-T. Lin, G. G. Leisk, and B. Trimmer. Goqbot: a caterpillar-inspired soft-bodied rolling
robot. Bioinspiration & biomimetics, 6(2):026007, 2011.

11

A Appendix

A.1 Resemblances to Biological Traits

Remarkably, some of the demonstrated PCAP behaviours have evolved in nature as well. For exam-
ple, positive thigmokinesis refers to a pattern in which an organism, such as woodlice [32], slows
down in response to external contact. Similarly, many organisms, such as rodents and ground beetles,
exhibit both negative and positive thigmotaxis [33], orienting themselves away or towards impact
as a movement response to tactile stimuli. Likewise, rolling behaviour is exhibited by many species
for defensive locomotion, such as caterpillars (termed ballistic rolling) [34] and chitons (termed vol-
vation). In some instances of our experiments, particularly when rolling and sliding strategies are
exhibited, we observe that the agent exploits the momentum from the branch resistance to advance
the arm in the direction of the opposing force, not unlike squirrels and monkeys which utilise branch
momentum to traverse among trees. Nevertheless, we emphasise that given the enormity of evolu-
tionary pressures and intents that shape biological complexity, our mention of similarity to animal
behaviour should only be taken as a curious resemblance rather than as a scientific claim.

A.2 Observation/Reward Table

The observation and reward combinations for each policy type are presented in Table 1, where
θt, θ̇t, qt, & dt represent the joint angle (6D), joint velocity (6D), the gripper orientation (4D), and
the distance of gripper from target (3D). The reward parameters rd, rs, rb, rc, rp and the scaling
factors gd, gs are described in section (3.3)

Policy ototot rtrtrt
PPO θt, θ̇t, qt, dt gd · (rd + rb) + gs · rs
CPO θt, θ̇t, qt, dt {gd · (rd + rb) + gs · rs} · rc + rp
PCAP (ours) θt, θ̇t, qt, dt, I(∥Ft∥2 > fu) {gd · (rd + rb) + gs · rs} · rc + rp

Table 1: Training observations & rewards provided for each policy

A.3 Experimental Setup

For all simulation experiments, we generate 60 random targets within the reach radius of the arm
but constrained to the direction of the tree. Collision patterns, numbered 1 to 4 in Fig.(3: top), are
constructed either by reorienting a test tree or changing the tree itself to expose the agent to varying
occlusion patterns. In any case, the test trees are unseen during the training phase. We define
success as the arm’s end-effector achieving a position within 5cms of the desired target, regardless
of the orientation, but subject to a maximum step limit. The Success Rate (SR) is calculated as
follows: First, we create an ensemble oracle with 2x PPO, 1x CPO, 1x PCAP, 1x MPC to find the
feasible tasks within the arm torque, velocity limits based on the intuition that a task is solvable if
any algorithm finds a feasible reach trajectory. Then, we baseline the depicted methods against the
oracle with the ideal 100% success. However, for the Contact Force metrics ∥Ft∥2, we average over
all the 60 tasks because the branches can rupture in the real world regardless of the reach success. We
assume reach targets are known, as fruits and diseased regions generally have distinct and consistent
visual features (color, texture, shape) that differentiate them from the green of branches and foliage.
Even when partially occluded, the conspicuous parts may still provide enough contrast for vision
algorithms to predict the rest based on learned shapes, which is not the case with branches.

The real experimental setup and the comparison metrics are similar to simulation experiments, with
a few notable differences. First, we only capture 30 test trajectories in real. Second, we hard
stop the arm if the branches are likely to rupture to keep the geometry similar between PPO and
PCAP. The rupture % values (in red) include both cases where the physical branches broke apart
and where the arm was stopped in advance. On the other hand, in simulation, rupture % is computed
as the proportion of steps over the trajectory length when the contact forces on the branch exceed a
threshold (e.g., 80N) as a proxy metric. Here, we allowed the arm to time out regardless of reach

12

failure or extreme forces. Third, for real experiments, due to the limited size of our tests and the
sparsity of real branches, we disregard collision-free trajectories that avoid contact between the arm
and the tree. In other words, we use only the targets where both PPO and PCAP has at least some
interaction with the hindering tree. Finally, we do not use an oracle for real; the SR is simply the
proportion of successful to attempted targets.

A.4 Time Efficiency

In every experiment throughout this work, we limit the number of steps (simulation: 800, real: 1000)
the agent can take. The experiment in this section compares the normalised count of minimum steps
the agent takes to reach the target, which we take as a proxy for the clock-time efficiency across all
methods. The worst-case normalised reach step count of 1.0 indicates a timeout failure while the
ideal 0.0 represents a success at the first time step. To exemplify, the final block from the results
in Fig.(4) indicates that for the fifth Collision Pattern, on average across 60 tasks, PCAP takes 670
steps to reach the target, while baseline PPO takes 550 steps if the allocated step budget is 1000.

1 2 3 4 5
Collision Patterns

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Re

ac
h

St
ep

 C
ou

nt
 (R

S)

0.26
0.33

0.43

0.55 0.55

0.81
0.85 0.88 0.91

0.86

0.33

0.47
0.54

0.65 0.67

PPO: Baseline - RS
CPO: +Contact Penalty Only - RS
PCAP:+Contact Penalty +Classifier - RS

Figure 4: Comparison of the number of RL steps taken to reach the target (or timeout) across three
policies: PPO, CPO, & PCAP (ours). For RS, lower values are better, indicating lower time taken.

The results demonstrate that, on average, PCAP takes 25% more time steps across collision patterns
to reach the target compared to the baseline PPO. We emphasise that this slight loss of efficiency
in PCAP is the trade-off for increased exploration of the task space and additional learnt maneuvers
such as rolling and retractions (rather than brute forcing through), resulting in gentler branch con-
tacts. We also note that the intermediate CPO method is the worst performer primarily due to the
significant number of failed tasks from timeouts.

A.5 Geometry Ablation

This section demonstrates the benefits of the novel L-System-based forest generator compared to the
simpler branching structure proposed in [8]. While it is well known that L-system generated topol-
ogy can generate realistic branching patterns compared to naive models (sample images presented
in Fig.5.), we show empirical evidence that the richer occlusion patterns are beneficial to robotic
applications as well.

In this experiment, we train policies on two independent forests, one generated with the basic design
in [8] and the other with our L-system models. In the former, we randomise branch lengths, radius,
and divergence angles while ensuring a similar span for the part of the tree the robot has access to,
whereas for the latter, we vary the L-system parameters as described in 3.1. The results in Fig. 6
show that, on average, the success rate, contact forces, and branch rupture metrics are all superior for

13

the L-system geometry. We hypothesise that this is because the recursive fractal-based models allow
for variations in geometric parameters, resulting in organic, asymmetrical forms that better capture
the irregularities found in nature, whereas simple contrived structures, even with noise perturbations,
lack this diversity limiting its policy robustness.

Figure 5: (Left): A simplistic tree procedurally generated from [8] (Right): An L-System generated
tree from the ternary classes Tc, based on our method. Both simulations are presented without
any randomisation, to highlight the intrinsic advantage of L-system to generate diverse occlusion
patterns, asymmetric arching angles and non-uniform parent-child splits across the topology.

1 2 3 4
Collision Patterns

0

20

40

60

80

100

Su
cc

es
s R

at
e

- S
R

(%
)

88%

66%

55%

71%

86%

73% 70%
74%

PCAP : Simplistic Model - SR
PCAP+: L-System Model - SR

1 2 3 4
Collision Patterns

0

10

20

30

40

50

Av
g

Co
nt

ac
t F

or
ce

s -
 F

t
2 (

N)

*4%
13.4N

*2%
16.1N

*6%
27.5N

*5%
26.5N

*0%
4.3N

*0%
9.6N

*1%
14.5N

*3%
20.4N

PCAP : Simplistic Model - Ft 2
PCAP+: L-System Model - Ft 2

* :Rupture Threshold Breach
Rupture Threshold - 80.0N

Figure 6: Ablation study of the geometric models comparing the simplistic branching model from
[8] and the L-system model (ours), keeping the Dynamics fixed. The comparison is performed by
domain randomising both base models. For SR, higher values are better, for ∥Ft∥2, the lower the
better.

A.6 Explicit Classifier vs Raw Joint Torques

As illustrated in Table 1, PCAP uses joint position and velocity measurements along with the classi-
fier output as part of the observations ot. We justify excluding raw joint torques τt with the following
arguments: First, real Kinova joint torque measurements and simulation values differ considerably
owing to heteroscedastic noise (Fig.8) and inertial parameter discrepancies, posing substantial chal-
lenges for zero-shot sim-to-real transfer. The noise is primarily due to indirect torque inference
rather than dedicated external sensors [8]. Second, we perform an additional ablation study (Fig.
7), to demonstrate that even with perfect knowledge of the raw torques (in simulation), PCAP has
a clear edge over PPO for contact forces (≈ 2x) and ruptures (≈ 5x) while the success rates are
comparable. The results also show that CPO gains ground on the contact force/rupture metrics on
adding τt to ot, but sacrificing SR. We posit that the temporal dependency features of the contact
detection classifier are the primary determinant of PCAP performance, which the RL agent cannot

14

access in other instances. However, we acknowledge that swapping the MLP network of PPO for a
component like RNN may result in performance on par with PCAP. Furthermore, the classifier also
uses important non-torque features, such as commanded (due to velocity control mode) and executed
joint velocities. It is conceivable that, even without any torque signals, the controller’s inability to
execute the commanded joint velocities could be an indication to the classifier of an obstacle on the
way. Third, using an explicit classifier allows the operators to incorporate expert knowledge apriori
into the policy through the dataset collection and the feature selection process; for instance, ensuring
contact with all links and in all directions. Finally, this modular architecture provides the flexibility
to train and test the contact detector robustness independent of policy learning.

1 2 3 4
Collision Patterns

0

20

40

60

80

100

Su
cc

es
s R

at
e

- S
R

(%
)

86% 84%

74% 76%

<5% <5% <5% <5%

84%

72%
67%

62%

PPO: +Joint Torques - SR
CPO: +Joint Torques- SR
PCAP:+Contact Penalty +Classifier - SR

1 2 3 4
Collision Patterns

0

10

20

30

40

50

Av
g

Co
nt

ac
t F

or
ce

s -
 F

t
2 (

N)

*0%
 6.8N

*3%
 19.3N

*12%
 35.3N *9%

 31.7N

*1%
 6.8N

*2%
 12.8N

*1%
 13.2N

*2%
 17.7N

*0%
 4.3N

*0%
 9.3N

*2%
 14.7N

*0%
 17.1N

PPO: +Joint Torques - Ft 2

CPO: +Joint Torques - Ft 2

PCAP:+Contact Penalty +Classifier - Ft 2

* :Rupture Threshold Breach
Rupture Threshold - 80.0N

Figure 7: Ablation results comparing PCAP with the explicit classifier to PPO+ and CPO+ with τt
included as part of ot.

Figure 8: A sample prediction given by the classifier. The input in blue is the time series noisy
joint torques of the six dofs. Red solid lines represent the ground truth, i.e., the start and end of the
obstruction. Yellow dashed lines represent the predicted contact at each time-step.

15

A.7 Dynamics Ablation

1 2 3
Collision Patterns

0

20

40

60

80

100
Su

cc
es

s R
at

e
- S

R
(%

)

88%

71%
77%

82%

57% 57%

PCAP: Rudimentary- SR
PCAP: Beam Deflection - SR

1 2 3
Collision Patterns

0

10

20

30

40

50

Av
g

Co
nt

ac
t F

or
ce

s -
 F

t
2 (

N)

*1%
7.5N

*1%
11.8N

*1%
17.5N

*2%
10.9N

*1%
11.4N

*2%
37.3N

PCAP: Rudimentary- Ft 2
PCAP: Beam Deflection - Ft 2

* :Rupture Threshold Breach
Rupture Threshold - 80.0N

Figure 9: Ablation on the tree dynamics models, keeping the L-system geometry fixed. Comparison
of Success Rates (SR) and Average Contact Forces across two dynamics models: Rudimentary and
Beam Deflection. For SR, higher values are better, for ∥Ft∥2, the lower the better.

In our final ablation study, we keep the L-system geometry, generated with class Ta, fixed and
vary the dynamics between the two models described in section 3.1. From Fig.(9), the superior
performance of the Rudimentary model compared to Beam deflection isn’t surprising, given that in
the former, ϕ is approximately the same for a specific branch level between training and test, i.e.,
except for the additional parameter perturbations while training. This result strongly suggests that
integrating system identification for dynamic parameters [8] can significantly boost policy learning.

A.8 Classifier Metrics

Metrics for our contact detection classifier with two off-the-shelf classifiers are given in Fig.(10): a
3-Layer Neural Network and a Random Decision Forest. For the real PCAP experiments, we use
the latter mainly due to the low false positives.

0 1

0
1

Ac
tu

al

93.0% 7.0%

19.6% 80.4%

Random Forest

0 1
Predicted

0
1

Ac
tu

al

84.9% 15.1%

6.4% 93.6%

Neural Network

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Random Forest (AUC = 0.95)
Neural Network (AUC = 0.95)

Figure 10: Confusion matrix & ROC for the two contact detection classifiers

16

A.9 L-System Perturbation

We domain randomise L-system morphological parameters Σ by injecting Gaussian Noise while
recursing through the production rules. From Fig.11, we observe that low-level perturbations (σ =
0.01) create structures with limited diversity in topology, identical branches, and similar spans. By
contrast, high noise levels (σ = 0.25) generate infeasible spans with few prospects for robot engage-
ment. We settle for a Goldilocks level (σ = 0.1) with sufficient feasibility but high diversity. Notice
the branch radius variations for the corresponding middle row, starting from the trunk. Additionally,
we create thousands of tree structures to weed out intractable ones with low contact, move the trees
along the gravity axis, and rotate them to maximise occlusions and arm interactions.

Figure 11: Effects of perturbations on topology: Samples generated by varying noise levels injected
in L-System parameters. (Top Row): too low (σ = 0.01) , (Middle Row): our choice (σ = 0.1),
(Bottom Row): too high (σ= 0.25)

17

A.10 Hyper Parameters

Param Parameter Description Value
E Young’s modulus 3e9
gd Distance reward scaling factor 2.0
gs Smoothness reward scaling factor 0.01
fu Simulation force threshold 40N

Simulation rupture threshold 80N
Robot friction [0.01,0.01,0.01,0.01,0.01,0.01]
Robot damping [80.,80.,80.,80.,80.,80.]
Table 2: Additional hyper parameter and configuration settings

18

	Introduction
	Related Works
	Approach
	Shape Representation & Dynamics
	Contact Detection
	Policy Learning
	Sim-to-Real

	Experiments & Results
	Conclusion and Limitations
	Appendix
	Resemblances to Biological Traits
	Observation/Reward Table
	Experimental Setup
	Time Efficiency
	Geometry Ablation
	Explicit Classifier vs Raw Joint Torques
	Dynamics Ablation
	Classifier Metrics
	L-System Perturbation
	Hyper Parameters

