
Evaluating Text-to-Image Diffusion Models for Texturing Synthetic Data

Thomas Lips Francis wyffels
AI and Robotics Lab, IDLab, Ghent University - imec
{thomas.lips,francis.wyffels}@ugent.be

Abstract

Building computer vision systems that can handle diversity
in objects or environments often requires large amounts
of data, which can be difficult to collect. Synthetic data
generation offers a promising alternative, but limiting the
sim-to-real gap requires significant engineering efforts.
To reduce this engineering effort, we investigate the use
of pretrained text-to-image diffusion models for texturing
synthetic images. In particular, we compare diffusion-based
texturing with using random textures, a common domain
randomization technique in synthetic data generation. We
evaluate the texturing approaches on two object-centric
representations: keypoints and segmentation masks and
measure their efficacy on real-world datasets for three
object categories: shoes, T-shirts, and mugs. Surprisingly,
we find that texturing using a diffusion model performs
on par with random textures, despite generating seemingly
more realistic images. Our results suggest that, for
now, using diffusion models for texturing does not provide
advantages over the conceptually simpler method of using
random textures.

1. Introduction
To deal with the typical diversity in environments and object
shapes or appearances, learning-based methods are often
required when building computer vision systems. It is well
established that the performance of these learned models
strongly depends on the amount of data available to train
them. However, real-world data collection requires large
efforts [1, 15, 17]. Therefore, the amount of data is often
a bottleneck in the creation of generic computer vision
systems. Pretrained foundation models reduce the need for
task-specific data, but have not yet completely overcome
this need [37].

A parallel approach to overcome this data bottleneck is
to train the system on synthetically generated data instead of
real-world data. The main difficulty with synthetic data is
to ensure that models trained on synthetic data transfer well
to the real world, i.e., to limit the sim-to-real performance

gap [23]. In practice, this often requires significant amounts
of manual engineering for 3D asset generation, scene
composition and texturing [14, 20, 26, 34]. In this work, we
focus on texturing, which can be summarized as creating
the appearance of 3D objects and scenes by specifying the
optical properties (color being the most important one) of
each part of an object. Recently, researchers have sought
to (partially) outsource synthetic data generation to neural
networks, for example, by generating synthetic images
using text-to-image diffusion models [4, 21, 36].

We further investigate the use of text-to-image diffusion
models to texture RGB images of a 3D scene and compare
this method against using random textures. To generate the
synthetic images, we first create a 3D scene and obtain the
annotations for that scene. We then texture the scene by
either adding random textures to all elements or by using
a diffusion model to generate the textures. The process is
illustrated in Figure 1.

We evaluate the texturing approaches on two pixel-
level and object-centric representations: keypoint detection
and segmentation. These are often used in computer
vision systems that require high precision, including robotic
manipulation, which we use as an application context [24,
40]. These representations require precise annotations, and
therefore we first create an explicit 3D scene instead of
directly generating images from text prompts using a text-
to-image diffusion model: From the 3D scene, we can
extract pixel-perfect annotations. For this approach to work,
we need to ensure that the diffusion model does not alter
the semantics of the scene during texturing, as this would
invalidate the annotations. For example, the diffusion model
cannot alter the shape of the object or change its pose in
the image. To accomplish this, we use a Controlnet [38] to
condition on both a depth image of the scene and a prompt,
as in [4] and [22].

We evaluated the efficacy of the data generation methods
by measuring the downstream performance of models
trained on the data. We generated data for static scenes
of 3 different object categories: shoes, T-shirts and mugs.
The models were evaluated on real-world test datasets
using common metrics for each representation: mean



Figure 1. Left: In this work, we compare text-to-image diffusion models against random textures for texturing 3D scenes in a synthetic data
generation pipeline. Right: We evaluate the efficacy of the synthetic data on real-world data for both keypoint detection and segmentation.

average precision (mAP) [19] for segmentation and average
keypoint distance (AKD) for keypoint detection [32].

Surprisingly, we found that texturing with a diffusion
model performs similarly to using random textures. In
a series of additional experiments, we observed that both
methods exhibit limited scaling behavior and that using
LLM-generated prompts resulted in the best performance
for diffusion-based texturing.

In summary, our contributions are as follows.
• We developed a data generation pipeline to learn fine-

grained object representations leveraging text-to-image
diffusion models

• We extensively compare diffusion-based texturing with
using random textures, and surprisingly find that they
perform similarly.

• We provide insight into the use of diffusion models
for synthetic data generation by analyzing the scaling
behavior and comparing different prompt generation
methods.

2. Related Work
2.1. Synthetic Data Generation
Synthetic data generation offers a compelling alternative
to manual data collection for supervised machine learning.
It provides arbitrary amounts of perfectly labeled data,
enabling the desired generalizations. The main chal-
lenge is to overcome the sim-to-real gap to ensure that
models trained on synthetic data generalize to real-world
scenarios [23]. Common strategies to overcome this gap
include domain randomization [31], in which the appear-
ance and shape of objects, or the composition of the scene

is varied beyond what is considered realistic, and domain
adaptation [12], in which the differences between synthetic
and real data are explicitly learned. Despite these recipes,
achieving strong sim-to-real performance often requires
significant human effort to improve the diversity and quality
of assets (object shapes, materials) and scene compositions
used for data generation [14, 26, 34].

Researchers have tried to reduce human effort using
generative models. For example, [2] uses a class-
conditioned GAN [10] to train classifiers on images gener-
ated by the GAN. [39] go beyond image-level semantics and
trains a decoder on the latent codes of a GAN to automati-
cally obtain segmentation masks and keypoints for gener-
ated images. However, the quality of the images gener-
ated by such GANs is limited. Furthermore, these GANs
must be explicitly trained on each category. Recently, large,
pretrained text-to-image diffusion models [13, 28] have
been explored to overcome these limitations.

2.2. Text-to-image diffusion models for synthetic
data

Text-to-image diffusion models [28] have been used to
generate synthetic data for image classification [7, 9,
22, 30], semantic segmentation [21, 25, 35], 3D pose
estimation [22] and robot trajectory augmentation [4, 36].

For image classification, [7] show that diffusion-
generated synthetic data does not scale as well as real
data. [9] showed that directly training on the underlying
dataset of the generative model can outperform training on
synthetic images generated by the diffusion model.

For segmentation, a pixel-perfect object mask is
required, in addition to controlling the object category



with a textual description. [35], [21] and [25] use the
cross-attention between text and images in Stable Diffu-
sion [27] to generate these masks automatically. [25] uses
self-attention to improve the generated masks and generates
multiclass annotations.

For pose estimation, [22] uses 3D meshes to generate
edge maps and then renders images for these edge maps
using a Controlnet. They also report results for segmenta-
tion and classification, improving on previous methods that
do not use explicit 3D control.

For data augmentation, [36] augments robot trajectories
by inpainting parts of the image. [4] first renders depth
images of an object and then uses a Controlnet [38] to
texture them, after which they are used to augment the robot
trajectories.

In [4] and [22], a Controlnet [38] is used to condition
on both text prompts and renders of 3D objects to increase
control over the semantics of the generated images.

Various prompt strategies have been explored for diffu-
sion models, including fixed templates [7], generated image
captions [7, 35] and LLM-generated prompts [21, 22].

In this work, we require precise, pixel-level annotations.
We, therefore, follow [4] and [22] and condition on both
text prompts and renders of 3D scenes using a Controlnet
with Stable Diffusion. Our work is closely related to [21],
but we consider keypoint detection, make a more extensive
comparison with using random textures, and compare
various prompt generation methods.

3. Synthetic Data Generation
In this work, we generate synthetic images of static scenes
that contain an object on a table. Learning representations
on such images enables robotic manipulation of the object
category, and this is the motivation for our work.

The data generation process consists of two steps: In
the first step, we gather 3D meshes, annotate these meshes
and use them to generate 3D scenes. In the second step,
we texture the scene to provide the desired visual diversity.
Combining the annotations from the first step with the
textured images obtained after the second step, we obtain
a diverse dataset for the object category with pixel-accurate
labels.

For the second step, we compare different approaches to
texture the scene, using either random textures, a common
technique in domain randomization [29], or using text-to-
image diffusion models. Both stages are described in more
detail in the following sections. Figure 1 illustrates the data
generation process used in this work.

3.1. Scene Generation
For each category of objects for which we want to create
synthetic data, we first need to acquire a set of meshes.
The meshes do not need to be of a very high quality and

in particular do not require accurate UV-maps, which are
often hard to get. In addition to gathering the meshes,
we also need to obtain the required annotations. In this
work, these are the 3D positions of the semantic keypoints
and the object masks. The object masks can be simply
obtained from the rendering engine. The keypoints can be
manually annotated for each mesh, but it is often possible
to determine them automatically based on the geometry of
the mesh.

Once we have the meshes and their annotations, we
generate 3D scenes of the objects. To model the table,
we simply use a 2D plane. To introduce the desired scene
geometry variations, we randomize the table’s dimensions
as well as the object and camera pose.

In these scenes, as we know the intrinsics and extrinsics
of the camera, we can project all 3D mesh annotations to
the image planes, obtaining pixel-perfect annotations. To
generate visual diversity, we also need to texture the scene,
which is discussed next.

3.2. Texturing

To texture (an image of) the scene, we consider two
different approaches: In the first approach, we simply apply
random textures to the elements of the scene. In the second,
we use a text-to-image diffusion model and condition it on
a depth image of the 3D scene and a suitable prompt. Each
approach is now discussed in more detail.

3.2.1. random textures

With this method, we apply a random texture to the meshes
of the object and the surface. In addition, we use a 360
image as a scene background to further increase visual
diversity. We follow [20] and use textures and 360 images
from PolyHaven1.

3.2.2. diffusion texturing

We use a depth-conditioned text-to-image diffusion model
to texture the scene. In fact, to be more precise, we texture
a 2D image of the 3D scene. To do so, we first generate
a list of descriptions for both the object’s appearance and
plausible scene backgrounds. These descriptions then serve
as input to the diffusion model, together with a depth image
of the scene, taken from the desired camera pose. The
diffusion model then outputs an RGB image of the scene.

By also conditioning on a depth image, we make sure
that texturing does not alter the semantics of the object,
ensuring the accuracy of the precomputed 2D annotations.
We use Controlnet [38] for this image conditioning and
use the Stable Diffusion 1.5 [28] text-to-image model
throughout this work.

1https://polyhaven.com/

https://polyhaven.com/


4. Experiments
We evaluated the data generation procedures described in
Section 3 on three object categories: mugs, shoes and T-
shirts. We generated a dataset for each category and trained
models for two object representations: keypoint detection
and segmentation masks. For all experiments, we report the
performance of these models on our real-world test datasets.
Section 4.1 provides more details about the synthetic
and real datasets. The tasks and the metrics used to
evaluate them are introduced in Section 4.2. The remaining
sections describe the experiments we conducted, comparing
diffusion-based texturing with the use of random textures in
Section 4.3 and further exploring different aspects of the
diffusion-based texturing pipeline in Section 4.4.

4.1. Object categories & datasets
We evaluated three object categories: mugs, shoes, and
T-shirts. For each category, we generated synthetic data
using the methods described in Section 3. For the mugs,
we gathered 100 meshes from the Objaverse [5] dataset.
214 shoe meshes were obtained from the Google Scanned
Objects dataset [6]. For the T-shirts, we used 250 meshes
from [20]. For each category, 2500 distinct 3D scenes were
generated by varying the mesh pose, the size and orientation
of the table and the camera pose. Fig 1 shows a number
of meshes and generated 3D scenes. 5000 images were
generated from these scenes by sampling different camera
poses for each scene and texturing them using one of the
methods described in Section 3.2. We used Blender [3] to
generate scenes and random texture datasets. To create the
diffusion textures, we used Huggingface Diffusers [33]. All
hyperparameters for the diffusion models were set to their
default values, except for the conditioning scale, which we
set to 1.5 to ensure that the semantics remained unchanged
during texturing. Using an NVIDIA RTX3090 GPU, it
took about 3s to render a 512x512 image with random
textures using Cycles, Blender’s physically-based renderer.
Running inference on the diffusion model for texturing also
took around 3s per image.

We evaluated the performance on a real-world test
dataset and also provided a baseline train dataset with
real images to put the results in perspective. For the T-
shirts we used the aRTF dataset from [20], for the mugs
and shoes we collected and annotated datasets manually:
For the evaluation dataset we gathered a set of mugs
and shoes and took pictures with a smartphone in various
backgrounds. We gathered another set of mugs and shoes
for the training dataset, but this time used a robot to
auto-collect images from various angles. Backgrounds
and objects are distinct in the train and test splits, to
properly measure generalization. All images were manually
annotated. The dataset sizes and number of distinct objects
are given in Table 1. The number of objects is similar

Table 1. Number of images and unique objects used in the real-
world evaluation and baseline datasets.

train dataset evaluation dataset

category # images # objects # images # objects

Mugs 1500 21 350 15
Shoes 2000 15 300 15
T-shirts 210 15 400 20

to [24]. The number of training images is about an order of
magnitude smaller and more training images would likely
increase the performance of the real-world baseline. Fig. 1
shows images from the real datasets on the right.

4.2. Performance Evaluation
We used two different tasks to evaluate the performance of
the synthetic data: semantic keypoint detection and instance
segmentation. Both require precise annotations and are
often used in robotics [20, 24, 32]. For each task, we briefly
discuss the training setup and the metric used to evaluate
performance in the following sections. We refer to the
accompanying code repository for more details.

In addition to measuring the task performance of models
trained on the synthetic data, which is expensive, we
have tried common image metrics such as CLIP-score [11]
to quantify the quality of the dataset, but found that
these correlate very poorly with the downstream task
performance and therefore do not report them in this paper.

4.2.1. Keypoint Detection
Following [20], we formulate keypoint detection as pixel-
wise regression of 2D target heatmaps. Each semantic
category is mapped onto a different heatmap. Ground
truth heatmaps are generated from the annotations by
creating a Gaussian blob around each ground truth keypoint.
The predicted heatmaps are regressed to the ground truth
heatmaps using a binary cross-entropy loss.

To measure performance, we used the average keypoint
distances (AKD), also known as RMS, between the ground
truth keypoints and the predicted keypoint with the highest
probability [32].

For the T-shirts, we used the same 12 keypoints as
in [20]. For the shoes, we defined 3 keypoints on the nose,
heel and tip. For the mugs, we defined 3 keypoints on the
handle, bottom and top rim. These keypoints differ slightly
from [24], as we found it easier to annotate keypoints
that are on the surface of the object. The keypoints are
visualized in Figure 1.

4.2.2. Instance Segmentation
For instance segmentation, we used YOLOv8 [16]. All
hyperparameters are set to their default value, and we
use the small model variant, pretrained on the COCO



Table 2. Performance of the different texturing methods for all object categories and tasks. Random textures perform similar to diffusion
textures. Both outperform the real baseline.

keypoint AKD(↓) segmentation mAP(↑)

Training dataset Mugs Shoes T-shirts Mugs Shoes T-shirts

real data baseline 21.7 33.7 25.6 0.97 0.88 0.87

random textures 18.3 13.4 37.9 0.97 0.94 0.75
diffusion texturing 17.4 19.6 45.8 0.99 0.95 0.93

dataset [19]. To measure performance, we report the
mean average precision (mAP) on different IoU thresholds
ranging from 0.5 to 0.95, which is the default segmentation
metric for COCO [19].

4.3. Comparing Texturing Methods
We now compare the performance of synthetic data gener-
ated with random textures against data textured using a
diffusion model, as described in Section 3.2. The perfor-
mance of the synthetic data generated by the different
texturing methods is given in Table 2. We also provide the
performance of a real-world train dataset as a baseline. We
observed that both random textures and diffusion textures
outperform the real data baseline in most cases, confirming
the efficacy of our synthetic data pipelines. Comparing both
texturing approaches, we observed that diffusion textures
perform very similar to random textures, which is surprising
as the images obtained through diffusion texturing seem
more realistic (see Fig. 1 for examples).

4.4. Further Exploration of Diffusion Texturing
Next to comparing diffusion texturing against random
textures, we have performed additional experiments to
validate some design choices and to provide additional
insight. We compared different strategies to generate
prompts for the diffusion models and evaluated the scaling
behavior of both methods. These experiments and their
results are described in this section.

4.4.1. Prompting Strategy
A key design choice when using text-to-image diffusion
models is how to prompt the models. In this experiment,
we compared three different prompting strategies.

The first and simplest strategy is to use a fixed caption
for each category, e.g., A photo of a shoe.

To create diverse prompts and thereby more diverse
images, we also used a BLIP [18] model to caption images
from the real training sets for each category. We then used
these captions as prompts for the diffusion model. This
method aims to match the prompts with the real (target)
images. We collected approximately 3000 prompts for each
category using this strategy.

For the final strategy, we queried an LLM (we
used Google Gemini) to generate descriptions using the
following prompt: provide a description for X. Include
color, patterns, materials and other visual characteristics..
We randomly combined descriptions for the object and the
table, obtaining a set of 5000 prompts for each category.

For each prompting strategy, we generated 5000 images
using the diffusion texturing pipeline and trained models on
these datasets for both tasks. The results are provided in
Table 3. Using a fixed template performed worse than using
BLIP captions or LLM-generated prompts. The LLM-
prompts scored slightly better than the BLIP captions. In
addition, using LLM-prompts does not require real target
images making this strategy more flexible. Therefore, we
used the LLM-generated prompts in all other experiments
of the paper.

Our findings are in line with [7], where the authors also
found fixed templates inferior to BLIP captions. LLM-
based prompts are a.o. used in [21] and [22], but to
the best of our knowledge, they have not been explicitly
compared with other prompting strategies for synthetic data
generation.

4.4.2. Data Scaling Behavior
We have also explored the scaling behavior of both texturing
methods. To this end, we generated a dataset with 10,000
images using both random textures and diffusion texturing.
We then created dataset splits with various sizes and trained
models for both keypoint detection and segmentation on
all datasets. The performance of these models can be
seen in Figure 2. For both diffusion and random textures,
the performance increased with increasing dataset sizes.
However, around 5000 images, the performance starts to
plateau without reaching optimal performance, indicating
that neither method was able to bridge the sim-to-real gap
completely and obtain optimal performance. Based on this
experiment, we have used a dataset size of 5000 for all other
experiments in this paper.

5. Discussion

In this work, we have compared text-to-image diffusion
models against random textures for texturing synthetic



Table 3. Comparison of different prompting strategies for
diffusion texturing. Using prompts generated by an LLM
produced the best results.

AKD(↓) mAPseg(↑)

strategy Mugs Shoes T-shirts Mugs Shoes T-shirts

classname 22.8 23.4 66.4 0.98 0.90 0.77
BLIP captions 16.3 25.2 45.9 0.99 0.94 0.90
LLM prompts 17.4 19.6 45.8 0.99 0.95 0.93

Figure 2. Scaling behavior of the different texturing approaches.
For both diffusion textures and random textures, the performance
improves with increasing data, though it starts to plateau around
5,000 images.

data. We have observed that the diffusion-based texturing
pipeline does not outperform random textures. This was
surprising, as the diffusion-textured images appeared more
realistic to us, and therefore we expected them to reduce
the sim-to-real gap. We suspect that this increased realistic
appearance is countered both by the tendency of the
diffusion network to slightly alter the object semantics (e.g.,
change the shape of the mug handle slightly), polluting
the annotations, and by the diffusion models leaving strong
artifacts in the synthetic images on which the models can
then overfit (e.g., blurring the background or smoothening
transitions between objects and background). Further
research is required to test these hypotheses, but there seems
to be a big difference between appearing realistic and
actually matching the distribution of real-world images.

In addition to downstream model performance, data
generation speed is also important. We have not optimized
this in our paper, the single-stage diffusion pipeline and
random textures pipeline both took about 3 seconds to
texture an image. Both can be sped up significantly and
although diffusion models are becoming faster, we believe
that the random textures pipeline will nonetheless be faster
when fully optimized.

Finally, we note that the performance of the diffusion-
based pipeline strongly depends on the context of the
synthetic data. There are limits to the semantic knowledge
of a diffusion model, imposed by the dataset on which

it was trained. There are techniques to insert knowledge
about new semantic categories [8, 30], but these come with
additional engineering and data collection effort. Even for
known objects, the performance can also depend on the
camera angle. For example, we observed that images in
which the mug handle was prominently visible tended to
be more realistic than images in which the mug handle was
occluded. This is in line with [22].

Overall, our diffusion-based texturing pipeline does not
provide much performance gain over the random texturing
approach and increases complexity. At the same time,
neither method scales to achieve perfect performance, so
better approaches are still needed. Improving generative
models, both text-to-image and text-to-3D models, seems
like the best path to reduce engineering effort in synthetic
data generation, and we expect diffusion-based texturing
to outperform random textures in the future. End-to-end
synthetic data generation, as in [21], reduces pipeline
complexity but requires methods to annotate images after-
wards. For keypoints, this is even harder than for segmen-
tation masks due to the increased precision and semantic
granularity. In addition, our explicit procedure offers
controllability of the generation process, allowing more
control over the data distribution.

6. Conclusion
In this work, we evaluated text-to-image diffusion models
for texturing synthetic images. As a testbed context, we
used robotic manipulation of everyday objects. Surpris-
ingly, our diffusion-based pipeline does not outperform
texturing the 3D scenes using random textures, which is a
conceptually simpler approach that is not limited to familiar
objects and camera angles, unlike the diffusion pipeline.
Both diffusion texturing and random textures cannot reach
optimal performance, indicating that there is still a signif-
icant sim-to-real gap. We conclude that, although they
remain a promising option to reduce engineering effort in
synthetic data generation, the use of generative models does
not provide many gains for synthetic image texturing at this
time.
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