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Abstract

Differentially private stochastic gradient descent privatizes model training by1

injecting noise into each iteration, where the noise magnitude increases with the2

number of model parameters. Recent works suggest that we can reduce the noise by3

leveraging public data for private machine learning, by projecting gradients onto a4

subspace prescribed by the public data. However, given a choice of public datasets,5

it is not clear which one may be most appropriate for the private task. We give an6

algorithm for selecting a public dataset by measuring a low-dimensional subspace7

distance between gradients of the public and private examples. The computational8

and privacy cost overhead of our method is minimal. Empirical evaluation suggests9

that trained model accuracy is monotone in this distance.10

1 Introduction11

Machine learning models have shown that they can memorize the information of their training data12

[7]. Recent works have shown that attackers can recover many training samples from published13

models through carefully designed attacks [3, 18]. This will cause critical privacy issues when the14

models are trained on private data.15

Differential Privacy (DP) [5] is a rigorous privacy criterion that provides theoretical guarantees16

to the amount of information attackers can infer about any single training point. Differentially17

private stochastic gradient descent (DPSGD) [1, 19, 2] is one of the most popular methods to18

achieve differential privacy in deep learning. It makes two modifications to vanilla SGD: 1) clipping19

per-sample gradients to ensure a bound on their ℓ2 norms; 2) adding Gaussian noise to the gradient.20

One downside of applying DP to machine learning is that we need to sacrifice the utility of machine21

learning models to maintain privacy. Specifically, DPSGD adds random noise drawn from a spherical22

Gaussian distribution, N
(
0, σ2Ip

)
, where p is the model dimension, i.e., the number of model23

parameters, and the variance σ2 scales the noise. The magnitude of the noise introduced in each24

step scales with the square root of the number of parameters p. For classic deep learning models for25

Computer Vision tasks like ResNet, the added noise will be tens of times greater than the original26

gradients, inevitably leading to worse utility.27

Many works have proposed various methods to improve the utility of private machine learning [25,28

8, 16, 24, 12]. One promising approach involves employing public data. Generally, there are two29

ways of using public data in private training. One is transfer learning, where we pretrain the model30

on a public dataset and then finetune the model on our target tasks (private data) [16, 1, 23, 15].31

Another approach arises from the empirical observation that during the training process, the stochastic32

gradients always stay in a lower-dimensional subspace of the high-dimensional gradient space p.33

Based on this observation, some work suggests another approach to leverage public data: they use34
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the public data to find this lower-dimensional subspace and then project the noisy gradient onto this35

subspace [25, 8, 24, 12]. This generally improves utility over DPSGD without supplementary data.36

However, this leaves an open question: which public dataset should one select for a particular private37

task? The ideal case may be if some part of the private dataset is public, as this avoids any distribution38

shift. But otherwise, we would like a way to quantify a public dataset’s fitness for use. Our main39

contribution is an algorithm for this purpose.40

Our method needs a single batch of private and public examples from the dataset. Specifically,41

the algorithm performs three steps to derive the closeness between public data and private data: 1)42

compute the per-sample gradient of both public and private data, 2) find the gradient subspace of both43

private and public data by applying singular value decomposition (SVD), 3) compute the subspace44

distance d using Projection Metric [11]. Our algorithm gives a value that measures a type of distance45

between public and private data. Our empirical evaluation shows that the distance d derived from our46

algorithm follows the utility of the projection method monotonously, meaning that the distance d is a47

good indicator of public data’s utility.48

2 Preliminaries49

Notation. In this paper, we use p to denote the model dimension, i.e., the number of parameters in50

the model. k is the dimension of the lower-dimensional space we choose. m refers to the number of51

examples in a batch. We use superscript or subscript interchangeably to denote private or public data,52

like xpriv, V pub.53

Definition 1 (Differential Privacy [5]). A randomized algorithm A is (ϵ, δ)-differential private if
for any pair of datasets D, D’ that differ in exactly one data point and for all subsets E of outputs, we
have:

Pr[A(D) ∈ E] ≤ Pr[A(D′) ∈ E] + δ.

Definition 2 (Projection Metric [20, 6]). The projection metric between two k-dimensional sub-
spaces V1, V2 is defined as:

d (V1, V2) =

(
k∑

i=1

sin2 θi

)1/2

=

(
k −

k∑
i=1

cos2 θi

)1/2

where θi’s come from the principal angles between V1 and V2.54

Appendix A gives the formal definition of principle angles.55

In this paper, we evaluate our method using GEP [24], the state-of-the-art private deep learning56

algorithm that leverages public data. We briefly describe their algorithm in Appendix A.57

3 Methods58

Now we define the problem formally. Suppose we have a task that consists of a private dataset Xpriv59

and a private deep learning algorithm A that can leverage public data to improve model utility. We60

have a list of potential choice of public dataset [Xpub
1 , Xpub

2 , · · ·]. We would like a metric that can61

prescribe which public dataset, when used with algorithm A on the private task Xpriv , will have the62

best model utility.63

At a high level, our method involves the following two steps: finding the gradient subspace of the64

data examples and computing the gradient subspace distance. The algorithm uses the same model A65

and a batch of unlabeled data examples from private and public datasets. Following standard DPSGD,66

the algorithm will first compute and store per-example gradients from each data example, that is67

Gpriv,Gpub ∈ Rm×p. Then it computes the top-k singular vectors of both the private and public68

gradient matrix by performing singular value decomposition (SVD). Finally we use projection metric69

to derive the subspace distance d by taking the right singular vectors V pub
k ,V priv

k from the previous70

step. The pseudo-code of our method is given in Algorithm 1.71

Our algorithm is based on the empirical observation that the stochastic gradients stay in a lower-72

dimensional subspace during the training procedure of a deep learning model [10, 14]. We also73
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Algorithm 1 Gradient Subspace Distance

Input: Private examples xpriv , public examples xpub, loss function L, model weights w0

Output: Distance between two image datasets d
1: Gpriv = ∇L(w0, xpriv) ▷ Compute per-sample gradient matrix for private examples
2: Compute top-k subspace of private gradient matrix V priv

k :
Upriv, Spriv, V priv ← SVD(Gpriv)

3: Gpub = ∇L(w0, xpub) ▷ Compute per-sample gradient matrix for public examples
4: Compute top-k subspace of private public matrix V pub

k :
Upub, Spub, V pub ← SVD(Gpub)

5: d = ProjectionMetric(V priv
k , V pub

k )

empirically evaluate this finding over different datasets and model settings. Details are given in74

Appendix C.1. Such observation suggests that most of the information the gradient carries is75

contented in much lower-dimensional space. Our method finds such subspace for private and public76

data examples and then measures the distance between two subspaces.77

We follow the conclusion in [11] and use projection metric [20, 6] to measure the subspace distance78

between V pub
k and V priv

k . Intuitively, it considers all the principal angles by averaging them to show79

intermediate characteristics between the two subspaces. It is suggested to be robust to the distribution80

of data examples and enjoys great distance structure properties such as triangle inequality.81

While one may have concern that such distance computation and comparison may have privacy82

leakage, our method only needs a batch of private examples and use this batch once for distance83

computation. There will be little privacy leakage during this process. Even if there are some extremely84

private cases when we have to publish our choices of public data, we can spend some privacy budget85

and apply some differential privacy mechanism such as exponential mechanism. The scoring function86

would be the projection metric of
√
k-sensitivity.87

4 Experiments88

We evaluate our algorithm on three datasets widely used in Computer Vision: Fashion MNIST [22],89

SVHN [17] and CIFAR-10 [13]. We also choose one medical image dataset: ChestX-ray14 [21], as90

medical images are considered highly private-sensitive. A variety of datasets are chosen as public91

data respectively. We use the state-of-the-art private deep learning algorithm that leverage public data,92

GEP[24], for private training. The details of experiment settings are in Appendix B.93

(a) Distance in 1 Epoch (b) Distance over 100 Epoch

Figure 1: The trend of distance during the process of training a Resnet 20 model on CIFAR-10 using
vanilla SGD. We follow a standard SGD training procedure and compute the distance between the
current private batch and public examples at each iteration.

.
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Result. We first empirically evaluate our distance measurement along the training process, as shown94

in Figure 1. Our empirical study shows that the relative distance between private and public datasets95

is uniform at most times over the training process. Based on this observation, our algorithm will only96

require a batch of private examples and one computation step that involves private gradient, meaning97

the privacy cost and computation overhead is minimal.98

Table 1: GEP evaluation accuracy and corresponding distance in descending order. "-" means vanilla
DP-SGD training.

.

Accuracy Private Dataset Public Dataset Distance
58.63%

CIFAR-10

CIFAR-100 0.20
57.64% CIFAR-10 0.24
56.75% SVHN 0.28
52.16% - -
91.32%

SVHN

SVHN 0.25
89.29% CIFAR-100 0.31
89.08% MNIST-M 0.39
83.21% - -
85.25%

FMNIST

FMNIST 0.34
84.54% FLOWER 0.43
83.91% MNIST 0.50
79.77% - -

We compute the distance and evaluate using GEP for the chosen datasets. The evaluation results99

are given in Table 1. The empirical evaluation shows that the distance derived by our algorithm100

follows monotonously with the final trained model accuracy. Smaller distance implies that the private101

examples share more similarities with public examples, thus leading to better accuracy when we use102

those public data.103

Table 2: GEP evaluation AUC and corresponding distance in descending order. "-" means vanilla
DP-SGD training.

.

AUC Private Dataset Public Dataset Distance
69.02%

ChestX-ray14

ChestX-ray14 0.15
66.62% KagChest 0.36
64.90% - -
48.80% CIFAR-100 0.55

For ChestX-ray14, we use the AUC metric because ChestX-ray14 is highly imbalanced where the104

"no finding" class takes up a large portion of the dataset. The evaluation results are given in Table105

2. For more complex tasks, a bad choice of public data, such as CIFAR-100 for ChestX-ray14, will106

result in worse utility than the DPSGD baseline. When practitioners want to leverage public data107

for private machine learning, it would be much more essential to use our algorithm to evaluate the108

quality of the public data before performing private training using algorithms like GEP.109

5 Conclusion110

While recent studies are focusing on leveraging public data for private machine learning, the quality111

of public data also matters and is still an open question. In this work, we propose a new algorithm112

that can help private deep learning practitioners to select public data at minimal time and privacy cost.113

The empirical evaluation suggests that our distance measurement is a good indicator of public data114

quality for private machine learning algorithms that leverage public examples.115
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A Missing Preliminaries193

Definition 3 (Principal Angles [9]). Let V1 and V2 be two orthonormal matrices of Rp×k. The
principal angles 0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2 between two subspaces span(V1) and span(V2), are
defined recursively by

cosθk = max
uk∈span(V1)

max
vk∈span(V2)

u′
kvk, subject to

u′
kuk = 1,v′

kvk = 1,u′
kui = 0,v′

kvi = 0, (i = 1, ..., k − 1)

The first principal angle θ1 is the smallest angle between all pairs of unit vectors over two subspaces.194

The rest are similarly defined.195

Gradient Embedding Perturbation (GEP). In this paper, we evaluate our method using GEP196

[24], the state-of-the-art private deep learning algorithm that leverages public data for private training.197

Here we briefly introduce their algorithm. GEP involves three steps: 1) it computes a set of the198

orthonormal basis for the lower-dimensional subspace; 2) GEP projects the private gradients to the199

subspace derived from step 1, thus dividing the private gradients into two parts: embedding gradients200

that contain most of the information carried by the gradient, and the remainder are called residual201

gradients; 3) GEP clips two parts of the gradients separately and perturbs them to achieve differential202

privacy.203

B Experiments Setting204

Model Architecture. For Fashion MNIST, we use a simple convolutional neural network with205

around 26000 parameters as in Table 3. For SVHN and CIFAR-10, we use ResNet20 which contains206

roughly 260,000 parameters. Batch normalization layers are replaced by group normalization layers207

for different private training, aligning with GEP settings. For ChestX-ray14, we use ResNet152208

which has been pretrained on ImageNet1k, a subset of the full ImageNet [4] dataset. We privately209

fine-tune its classification layer, which contains around 28,000 parameters. We use the same model210

architecture for subspace distance computation and GEP private training.211

Table 3: Model architecture for Fashion MNIST.

.

Layer Parameters
Conv2d 16 filters of 8x8, stride=2

Maxpooling2d stride=2
Conv2d 32 filters 4x4, stride=2
Linear 32 units

Softmax 10 units

Table 4: Choices of public dataset for private dataset. The four datasets in the first row are private
datasets. The datasets listed in the first columns are choices of public datasets. ’X’ means we choose
the two corresponding datasets as a pair of private/public dataset.

.

CIFAR-10 SVHN Fashion MNIST ChestX-ray14
CIFAR-10 X

CIFAR-100 X X X
SVHN X X

MNIST_M X
Fashion MNIST X

Flower X
MNIST X

ChestX-ray14 X
KagChest X
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Dataset Choice. ChestX-ray14 consists of frontal view X-ray images with 14 different classes of212

lung disease. In our evaluation, there are 78,466 training examples and 20433 testing examples in213

ChestX-ray14. Our choices of public datasets for the four private datasets are described in Table 4.214

We sample 2000 examples from both private and public datasets for distance comparison using our215

algorithm. The same 2000 public examples are given to GEP for evaluation.216

Hyperparameter Setting. For distance computation, we choose k = 16, that is, we only consider217

a 16-dimensional subspace. We follow the hyperparameter setting in the GEP paper for evaluation. In218

the GEP paper, they didn’t evaluate GEP on the ChestX-ray14 dataset. In our evaluation, we choose219

k = 100 and clip norms are 3 and 1 for original and residual gradients, respectively. The learning220

rate for the SGD optimizer is set to 0.05. All other hyperparameters are set as default. We use ϵ = 2221

and δ = 1e− 5 for all the evaluations.222

C More Experiments223

C.1 Gradients are in a lower-dimensional subspace.224

We evaluate the empirical observation that the stochastic gradients stay in a lower-dimensional225

subspace during the training procedure of a deep learning model [10, 14], as shown in Figure 2.226

Results show that only a tiny fraction of singular values are enormous. At the same time, the rest are227

close to 0, meaning that most of the gradients lie in a lower-dimensional subspace, corresponding to228

the top singular vectors.229

(a) CIFAR-10 (b) ChestX-ray14

Figure 2: Top 500 singular values in the training procedure using vanilla SGD. Model architectures
are in the Appendix B. Only a small fraction of singular values are extremely large while the rest are
close to 0, meaning that most of the gradients lie in a lower-dimensional subspace, which corresponds
to the top singular vectors.

.
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