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Abstract

Recent progress on Remote Sensing Foundation Models (RSFMs) aims toward
universal representations for Earth observation imagery. However, current efforts
often scale up in size significantly without addressing efficiency constraints critical
for real-world applications (e.g., onboard processing, rapid disaster response) or
treat multispectral (MS) data as generic imagery, overlooking valuable physical
priors. We introduce PhySwin, a foundation model for MS data that integrates
physical priors with computational efficiency. PhySwin combines three innovations:
(i) physics-informed pretraining objectives leveraging radiometric constraints to
enhance feature learning; (ii) an efficient MixMAE formulation tailored to SwinV2
for low-FLOP, scalable pretraining; and (iii) token-efficient spectral embedding
to retain spectral detail without increasing token counts. Pretrained on over 1M
Sentinel-2 tiles, PhySwin achieves SOTA results (+1.32% mloU segmentation,
+0.80% F1 change detection) while reducing inference latency by up to 14.4x and
computational complexity by up to 43.6x compared to ViT-based RSFMs.

1 Introduction

Earth-observation (EO) programmes now deliver petabyte-scale streams of multispectral (MS) im-
agery at global coverage and daily revisit rates (e.g., Sentinel-2 (S2), Landsat-8) [Roy et al.| 2014,
Drusch et al.,2012]. Such data supports applications ranging from precision agriculture and biodiver-
sity monitoring to rapid flood and wildfire assessment [[Gorelick et al.| 2017} [Van Etten et al.,[2018§]].
Effectively utilizing the data requires models that produce general representations, enable rapid task
adaptation (fine-tuning) and ensure computational efficiency for deployment.
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Figure 1: Motivations for PhySwin. (a) Bounded reflectance distribution in Sentinel-2 multispectral
data, illustrating the energy-conservation property that motivates our energy-bound loss. (b) Smooth
transitions across adjacent spectral bands, motivating the spectral-smoothness constraint used in
physics-informed pretraining. (¢) Accuracy—efficiency trade-off in change detection, highlighting
PhySwin’s balanced performance among EO foundation models.

Following the scaling trends in vision and NLP, Remote Sensing Foundation Models (RSFMs) have
evolved from ResNet-based contrastive learners [Manas et al., [2021, [Mall et al., [2023]] to Vision
Transformer (ViT) backbones with masked autoencoding (MAE) [Hong et al., 2024, |Cong et al.}
2022, Reed et al., [2023]]. Subsequent models further increase capacity by fusing modalities or
scaling to billion-parameter encoders [|Guo et al., 2024, Wang et al.| 2025a], improving accuracy
but sharply raising computational costs. This has driven interest in efficiency-oriented backbones.
State-space models (SSMs) adapted for EO [Wang et al.,2025b| |Chen et al., [2024] offer an efficient
parametric alternative, while hierarchical ViTs like Swin Transformer [Liu et al.| 2021} [2022a]] reduce
inference complexity. Other designs address redundancy, such as HyperSIGMA’s Sparse Sampling
Attention [Wang et al., |2025a]. However, we argue that architectural optimizations alone cannot fully
meet the dual goals of high accuracy and deployment-level efficiency required by EO systems.

Beyond computational efficiency, RSFMs often overlook the rich physics in MS data but treat them
as generic image channels. Each MS band captures physically meaningful surface reflectance shaped
by radiative-transfer processes [[van Trigt, 1990, |[Hapke, 1981} |Tominaga and Wandell, |1990], offering
prior knowledge beyond image statistics. As shown in Fig. [l and b, Sentinel-2 reflectance values
and band transitions exhibit bounded and smooth trends, which can guide model training and promote
more informative feature learning. So far, physics-aware learning has improved EO applications, for
example, in crop-nitrogen retrieval [Dehghan-Shoar et al.|[2024] and solar-irradiance forecasting [Liu
et al.,|2022b|], outperforming data-driven baselines. Such priors promote faster convergence, better
generalization and more informative representations. Despite this potential, most current FMs ignore
these physical priors, prioritizing computational or generic vision approaches. Thus, a critical gap
remains: developing models that fuse physics-awareness with computational efficiency for powerful
and practical EO deployment under operational constraints.

We introduce PhySwin, a foundation model designed for MS imagery that integrates physical priors
with computational efficiency through three complementary innovations: First, novel pretraining
objectives embed radiometric constraints, including adjacent-band spectral smoothness and energy
conservation, into self-supervised learning (SSL). This leads to more robust and meaningful fea-
ture representations. Second, PhySwin refines the Mixed and Masked Autoencoding (MixMAE)
method [Liu et al., [2023]] to address the limitations of standard MAE and computationally intensive
MIM variants in hierarchical models. Our approach leverages SwinV2’s shifted window mechanism
for scalable, low-cost pretraining while enabling effective cross-window interaction for global context
modeling. Third, PhySwin embeds MS data efficiently by grouping spectral bands and concatenating
distinct feature subspaces per patch to retain spectral detail without increasing token counts. During
pretraining, spectral group masking randomly removes entire groups of features to simulate spectral
variability and enhance robustness. Pretrained on over one million S2 tiles and evaluated on six EO
benchmarks, PhySwin outperforms strong ViT baselines, improving segmentation mloU by +1.32%
and change detection F1 by +0.80%, while reducing inference latency and computational cost by
up to 14.4x and 43.6 %, respectively. As shown in Fig. [Tk, PhySwin achieves a favorable balance
compared against other state-of-the-art (SOTA) baselines. Our main technical contributions are:



* The first integration of physics-aware objectives into large-scale MS foundation model
pretraining, using physical constraints to generate high-fidelity features that overcome the
typical accuracy trade-offs associated with computationally efficient architectures.

* A novel MixMAE formulation for SwinV2 that enables highly efficient and resolution-
flexible pretraining on large EO datasets.

* A token-efficient spectral embedding technique that efficiently represents comprehensive
MS band information without increasing token counts, addressing a common efficiency
issue in existing RSFMs.

2 Related Work

Backbone Evolution and Pretraining Paradigms. Early EO FMs adapted contrastive learning on
CNN s to leverage satellite time-series consistency [Manas et al., 2021}, [Mall et al., 2023|]. Subsequent
work adopted Transformer backbones, particularly as MAE techniques proved effective for large-scale
pretraining [Cong et al.l 2022]. This shift stimulated architectural diversification from standard ViTs
compatible with basic MAE to hierarchical Swin-style transformers [|Guo et al., 2024] requiring
adapted pretraining, and to efficiency-focused state-space models [Chen et al., 2024, |Wang et al.,
2025b]. Additional innovations include MAE variants tailored for scale [Noman et al.| 2024} Reed:
et al., 2023|] or spectral data [[Hong et al., [2024]], multi-tasking [Wang et al.| [2024]], continual
learning [Mendieta et al., 2023|] and multi-modal fusion [Guo et al.} 2024} Nedungadi et al., [2024].
While significant progress has been driven by scaling models and datasets to enhance performance,
recent research has increasingly prioritized computational efficiency and scalability for practical
deployment, particularly on resource-constrained platforms [Chen et al.| 2025, |Wang et al., 2025b].

Efficient Foundation Models. FM architectural choices strongly influence computational efficiency.
Hierarchical transformers like Swin [Liu et al., 2022a] reduce complexity from quadratic to linear
compared to standard ViTs through windowed attention. SSMs [Gu and Dao| 2023 offer linear
scaling for long sequences, though applicability may depend on task-specific adaptations or pretrain-
ing strategies. These designs often complicate pretraining. For example, MAE’s patch discarding
conflicts with the structure of hierarchical models [Liu et al.l 2023]]. A common alternative uses
MIM with [MASK] tokens (e.g., SImMIM [Xie et al.,|2022]]), though these non-informative tokens
add inefficiency and pretrain-finetune discrepancies. Other approaches include supervised pretrain-
ing [Bastani et al.,2023|| and contrastive learning, but MAE’s reconstruction objective often produces
richer features for dense prediction tasks [He et al., |2022]] while avoiding the label demands of
supervised methods. Returning to our focus on EO tasks, the existing work on FM architectures
and pretraining methods inspired our realization that designing efficient RSFMs requires balancing
architectural benefits, pretraining complexity, and performance trade-offs.

Physics-informed ML. Incorporating domain knowledge enhances foundation models. Physics-
informed learning, which integrates physical laws as priors, has shown promise in climate modeling,
materials science, and manufacturing [Karniadakis et al.,[2021,[Dehghan-Shoar et al.| 2024]]. Applying
such priors in large-scale RSFM pretraining remains underexplored. MS imagery is well-suited
due to physical principles governing surface reflectance: smooth spectral variation across adjacent
bands [van Trigt, 1990, Tominaga and Wandell, [1990] and energy conservation bounding reflectance
between 0 and 1 [Hapkel [1981]]. Leveraging these priors during pretraining improves representational
power and efficiency. PhySwin follows this principle, combining physics-informed objectives with
efficient architectures for high accuracy and practical deployment.

3 PhySwin

We identify three core challenges in building efficient RSFMs: (i) pretraining inefficiencies of
hierarchical architectures; (ii) the explosion of token counts when naively handling MS data; and (iii)
the degradation of representation quality under tight compute budgets. To address these challenges,
we propose PhySwin, an efficiency-oriented RSFM that leverages refined MixMAE pretraining,
token-efficient embedding and physics-aware objectives to achieve high performance on EO tasks
with significantly reduced computational cost (Fig. 2)), detailed in the following subsections.
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Figure 2: PhySwin framework: Two MS cubes are mixed via spatial masking, then grouped by
band types and embedded. The SwinV2 encoder with SW-Masking processes the inputs through
hierarchical stages. Pretraining is guided by L., and regularization: Lgnoom and Lpound. PhySwin
achieves high performance across diverse downstream tasks with improved efficiency.

3.1 Physically-Informed Pretraining Objective

Multispectral sensors (e.g., S2, Landsat-8) measure surface reflectance across B bands, each encoding
distinct material properties (e.g., vegetation health in Near-Infrared (NIR), moisture in Short-Wave
Infrared (SWIR) spectroscopy). We embed two radiometric priors as regularizers on the reconstructed
reflectance vector £ = [f1,...,7p] € RE:

Spectral Smoothness. Natural surface reflectance spectra are usually a smooth function of wave-
length, lacking sharp or random fluctuations between adjacent bands. This well-established property
stems from the continuous nature of light interactions with materials and is supported by both theo-
retical analysis [[van Trigt, [1990] and empirical studies [Tominaga and Wandell, [1990] (as shown in
Fig.[Ip). To discourage fitting noise or sensor artifacts, we impose a smoothness regularization based
on the first-order finite difference:
B—1
Lamootn = Y (Foyr —74)° M

b=1
which penalizes high-frequency spectral fluctuations.

Energy Conservation. Physically, surface reflectance quantifies the fraction of incident electromag-
netic energy reflected at each wavelength. Due to the energy conservation, this value is inherently
bounded, typically within the range [0, 1] [Hapke,|1981] (seen in Fig. ). Incorporating this constraint
guides the model to operate within a physically realistic output space. To enforce this constraint, we

apply:
B

Loouna = Y _ [ReLU(—7) + ReLU(#, — 1.2)]. 2)
b=1
Both terms remain fully differentiable. For implementation, we relax the upper bound to 1.2 to
accommodate sensor noise.

3.2 Efficient Pretraining via Refined MixMAE on SwinV2

PhySwin adopts Swin Transformer V2 [Liu et al.,2022a]] for its computational efficiency: the Swin
family scales linearly with input size via the shifted window self-attention (SW-MSA). Swin V2
extends V1 with improved scaling and a log-spaced continuous position bias [Liu et al.,2021]], which
enhances transferability across resolutions and window sizes and is particularly useful for the diverse
spatial scales of EO.

As discussed in Section[2] efficiently pretraining hierarchical ViTs remains nontrivial. To address this
bottleneck, MixMAE [Liu et al., 2023] is proposed. Its core idea is to replace masked patches from
one image (x}) with visible patches from a second image (2%) using a random binary mask A/. The
resulting mixed input contains only real image tokens (seen the mixing process in Fig. 2):

@ =al O M+a2h o (1-M).



A lightweight decoder reconstructs both original images under a dual reconstruction loss:
Leee = |(y7 — 27) © (1= M)II3 + [|(45 — 5) © M]J3, 3

where y" and y5 are the reconstructions of 2% and 2%, respectively. This dual reconstruction objective
ensures that each source image is reconstructed solely from its own unmasked context, encouraging the
model to infer missing regions using within-source evidence rather than cross-source tokens. During
encoding, tokens attend only to others from the same source image, as dictated by M, preventing
information leakage. This design enables MAE-style pretraining to be applied to hierarchical ViTs
while avoiding non-informative [MASK] tokens in the encoder. Notably, the original MixMAE
implementation disables SW-MSA and instead relies on large fixed windows to model global context.

PhySwin refines MixMAE for SwinV2 by retaining the SW-MSA mechanism to support improved
cross-window interactions and global context modeling (seen in SwinV2 block in Fig.[2). Specifically,
we introduce SW-Masking, in which the binary mask M is spatially shifted in alignment with SW-
MSA configurations. We argue that coordinating the masking pattern with shifted windows promotes
more robust feature learning across window boundaries, preserves spatial continuity, and reduces
reconstruction artifacts compared to fixed-window schemes.

3.3 Token-Efficient Grouped Spectral Embedding and Masking

Standard ViTs embed non-overlapped RGB patches (R *W>*3) into D-dimensional tokens, pro-
ducing N tokens for N patches. Directly extending this to MS data (RF*W*B_ with B > 3)
may diminish critical band-specific information. Prior works address this via methods like grouped
channel embeddings [Cong et al.,2022]], 3D spatial-spectral tokens [Hong et al.,|2024]] or separate
feature branches [Wang et al., 2025a]. However, these techniques increase token counts and may
overlook correlations between spectral bands.

We propose a token-efficient embedding strategy that preserves the token count comparable to standard
processing while retaining the rich spectral structure of MS data. Given a sample x € REXW x5,
we partition the B spectral bands into G physically coherent groups (e.g., visible, NIR, SWIR ),
z(9) e REXWxBy with Zle D, = D. For each spatial position (i, j), we extract group-wise

local patches osgf]j) € RPXPXBs_ Each group g is then processed by a lightweight, group-specific

embedding function f, : REXF*Bs — RDs_ and the final token e; ; € R is constructed by
concatenating the outputs across all groups (Fig.[2):

e;,; = Concat (f1 (xflj)), fg(.’ﬂg?j)), ce fg(xgcj))) e RP. )

This yields a single embedding vector ¢; ; € RP per spatial location. Therefore, an input image
divided into N spatial patches produces exactly N tokens, maintaining the sequence length efficiency.

Building on this design, we further introduce Spectral Group Masking (MaskSpec) during pretraining
to improve representation robustness and simulate real-world spectral variations. PhySwin randomly
zeros out one or more spectral group subspaces f, (xfgj)) within each token e; ;, encouraging repre-
sentations that are less reliant on any single spectral group. This spectral masking complements the
spatial masking of our refined MixMAE framework (Section [3.2), where we use a fixed 50% mixing
ratio. By operating in the spectral domain, we can modulate the overall pretraining difficulty. To
summarize the combined masking strategy, for each token e; ;, we apply:

é:; = MixMAE (Maskspec(efj, M{Y), MaskSpec(e?), M), M) , (5)
where M(g*) € {0,1}¢ are independent group masks. This joint masking regulates spatial and
spectral exposure, yielding more generalizable features.

3.4 Pretraining Details

Datasets and Preprocessing. Following a two-stage pretraining strategy similar to Spectral-
GPT [Hong et al.l 2024]], PhySwin is first trained for 200 epochs on FMoW-S2 (about 712, 000
samples) [Christie et al., 2018]] with 96 x 96 S2 tiles, then for 100 epochs on BigEarthNet-S2 (about
590, 000 samples) [[Sumbul et al., 2019]] with 128 x 128 tiles. Raw reflectance values are normalized



by 1/10,000 to approximate the [0, 1] range. We exclude three 60-meter resolution S2 bands (BO1,
B09, B10) following SpectralGPT and SatMAE [Hong et al., 2024} (Cong et al.,|2022]. The retained
10 bands are grouped into: Visible (B02, B03, B04), Red-Edge/NIR (B05, B06, BO7, BOS, B8A), and
SWIR (B11, B12) corresponding to our embedding method (Section [3.3).

Backbone Configurations. PhySwin is developed using two Swin Transformer V2 variants, both
configured with a base input resolution of 128 x 128, a patch size of 4 and a window size of 7.

Variant Embedding Dim Depths Num Heads #Params (M)
PhySwin-Tiny (T) 96 [2,2,6,2] [3,6,12,24] 29
PhySwin-Base (B) 128 [2,2,18,2] [4,8,16,32] 88

Training Setup. PhySwin was pretrained on eight NVIDIA RTX 8000 GPUs using mixed precision.
We employed the AdamW optimizer with a cosine learning rate schedule and a 15-epoch linear
warmup. The training objective

Ctotal = ['rec + )\‘Csmooth + ﬁ['bound~ (6)

Weights were fixed during pretraining at A = 0.25, 8 = 0.1. Full hyperparameters are detailed in
Appendix A.

4 Experiment

In this section, we evaluate the effectiveness and efficiency of PhySwin against SOTA RSFMs
across four downstream EO tasks. To ensure reproducibility, PhySwin is built on the Hugging Face
Transformers library [Wolf et al.,[2020]], following its coding standards and API conventions. PhySwin
models and SOTA baselines replicated in this study are fine-tuned under a unified protocol, including
SeCo (ResNet50), CACo (ResNet50), SatMAE (ViT-B), SatMAE++ (ViT-L) and Spectral GPT (ViT-
B). Performance for other baselines (e.g., SkySense, HyperSIGMA) is reported from the literature.
Across all tasks, PhySwin uses the following S2 bands: native (B02, B03, B04, BO8) and resampled
to 10m (B05, B06, BO7, B8A, B11, B12). Extended experimental results, including additional
benchmarks and ablation studies, are provided in Appendix[5]

4.1 Benchmarks

Semantic Segmentation. Performance is evaluated on two benchmarks. SegMunich [Hong et al.,
2024 contains overlapping 128 x 128 pixel tiles (50% overlap) with 13 Land Use and Land Cover
(LULC) classes. DynamicEarthNet-Sentinel2 (Dyna.-S2) [Toker et al., 2022] consists of monthly S2
composites from January 2018 to December 2019, tiled into 256 x 256 patches. Mean Intersection
over Union (mloU) is reported for both.

Change Detection. Evaluated on OSCD [Daudt et al., 2018, comprising 24 S2 image pairs (14
train, 10 test), split into non-overlapping 96 x 96 patches as the SkySense protocol [Guo et al.| [2024].
Precision, Recall, and F1 are reported. Dyna.-S2 image pairs are formed from monthly composites,
tiled into 96 x 96 patches, and semantic change segmentation score (SCS) [Toker et al [2022] is
calculated from 7-class segmentation labels.

Scene and Multi-Label Land Cover Classification. Scene classification is evaluated on two
benchmarks. FMoW-S2 contains 62 land-use types; we follow the SatMAE splits [Cong et al., 2022]
and report top-1 accuracy. EuroSAT [Helber et al., 2018}, 2019] comprises 27, 000 S2 images (64 x 64
pixels) across 10 land cover classes; we follow [Helber et al.l|2019] and report overall accuracy (OA).
Multi-label classification is evaluated on BigEarthNet, which contains 120 x 120 S2 images from 10
countries annotated with 19 land cover classes, using official splits [Clasen et al.;|2024]]. We report
mean average precision (mAP).



Table 1: Semantic segmentation performanceﬂ

Model | SegMunich | AmlIoU (%) | Dyna.-S2 | AmloU (%)
SeCo 45.92 -5.08 40.19 -6.01

CACo 44.87 —-6.13 41.50 -4.70

SatMAE 48.71 -2.29 38.73 —7.47

SatMAE++ 50.62 -0.38 42.87 -3.33

Spectral GPT 51.00 - 44.72 —-1.48

SkySense' - - 46.20 -

PhySwin-T 49.53 -1.47 43.80 -2.40

PhySwin-B 52.32 +1.32 46.53 +0.33

Pre-Change Post-Change Ground- Truth! CACo SatMAE++  SpectralGPT PhySwin-T  PhySwin-B
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| & &
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Figure 3: Performance visualization of downstream tasks. TOP: OSCD change detection. BOTTOM:
SegMunich and Dyna.S2 semantic segmentation. Colors follow each dataset’s official palette.

4.2 Downstream Tasks Performance

Semantic Segmentation Results. Table[T|reports mIoU on SegMunich and Dyna.-S2 compared to
RSFM baselines. On SegMunich, PhySwin-T achieves 49.53%, ranking third behind Spectral GPT
(51.00%) and SatMAE++ (50.62%) and surpassing SatMAE ViT-B (48.71%). On Dyna.-S2, it
reaches 43.80%, outperforming both SatMAE variants while using only one-third the tokens of
Spectral GPT. PhySwin-B sets new SOTA results with 52.32% (+1.32% over SpectralGPT) on
SegMunich and 46.53% (+0.33% over SkySense) on Dyna.-S2. These results show PhySwin
improves dense prediction accuracy without increasing model size or runtime. Qualitatively (Fig. 3),
PhySwin produces sharper boundaries and better recovers thin structures, such as narrow roads and
small bodies, matching the quantitative improvements in Table [T}

Change Detection Results. Table2|reports F1, precision, and recall on OSCD and SCS on Dyna.-S2.
PhySwin-T achieves 58.74% F1, outperforming ChangeMamba (57.20%) and all ViT-based methods,
and records 17.61% SCS, closely matching SkySense (18.00%). PhySwin-B reaches 61.05% F1
(+0.80% over DynamicVis) and 18.13% SCS (+0.13% over SkySense). DynamicVis achieves the
highest precision (79.41%) but low recall (48.36%), while PhySwin-B offers a better balance (67.97%
precision, 55.41% recall). These gains, also shown in Fig.[3] demonstrate that our physics-informed

!The top two results for each dataset are highlighted in bold. A denotes the gain over the best published
RSEM baseline. ' indicates results reported from the corresponding literature.



Table 2: Change detection performance.

Model OSCD AF1% Dyna.-S2 ASCS%
F1% P% R% SCS%

SkySense’ 60.06 - - -0.19 18.00 -
HyperSIGMAT 59.28 59.12 59.45 -0.97 - -
Spectral GPT 54.29 52.39 57.20 -5.96 17.43 -0.57
ChangeMamba? 57.20 56.08 58.36 -3.05 - -
DynamicVis' 60.25 79.41 48.36 - - -
SpatSIGMA 58.53 64.59 53.50 -1.72 - -
SeCo 47.67 63.21 38.26 -12.58 16.00 -2.00
CACo 52.11 62.87 44.49 -8.14 16.53 -1.47
SatMAE 52.76 55.18 50.54 -7.49 16.20 -1.80
SatMAE++ 55.31 58.07 52.80 -4.94 17.88 -0.12
PhySwin-T 58.74 65.93 52.96 -1.51 17.61 -0.39
PhySwin-B 61.05 67.97 55.41 ‘ +0.80 ‘ 18.13 ‘ +0.13

Table 3: Multi-label and scene classification performance.

Model BigEarthNet FMoW-S2 EuroSAT
mAP%  AmAP% | Top-1 Acc%  AAcc% | OA%  AOA%

SkySense! 92.09 0.00 64.38 -0.86 — —
SatMAE 82.13 -9.96 63.84 -1.40 98.98 -0.23
SatMAE++ 85.11 -6.98 65.24 0.00 99.04 -0.17
Spectral GPT 88.22 -3.87 64.21 -1.03 99.21 0.00
SeCo 87.81 -4.28 51.65 -13.59 95.63 -3.58
CACo 87.00 -5.09 50.72 -14.52 95.90 -3.31
PhySwin-T 86.63 -5.46 59.26 -5.98 97.25 -1.96
PhySwin-B 87.93 -4.16 63.11 -2.13 98.73 -0.48

pretraining reduces false positives and better captures subtle spectral changes, producing cleaner
masks and more precise localization of small variations.

Multi-label and Scene Classification. Table 3|shows PhySwin achieves competitive, near-SOTA
results across all three benchmarks. On BigEarthNet, PhySwin-B reaches 87.93% mAP (third,
within 4.16% of SkySense), while PhySwin-T records 86.63%, outperforming SeCo and CACo. On
FMoW-S2, PhySwin-B achieves 63.11% top-1 accuracy (2.13% below SatMAE++), and PhySwin-T
scores 59.26%. On EuroSAT, PhySwin-B attains 98.73% overall accuracy (0.48% below SOTA
Spectral GPT), and PhySwin-T posts 97.25%. These small gaps likely reflect Swin’s windowed
attention emphasizing local context. We consider this an acceptable trade-off given PhySwin’s faster
inference and reduced memory compared to ViT-based RSFMs (discussed next).

4.3 Efficiency Analysis

Table 4| compares feature-extraction efficiency at 128 x 128 input on an RTX 2000 Ada GPU. CNNs
like SeCo offer high throughput with low compute and memory cost but lower accuracy. ViTs
improve accuracy but lose efficiency when scaled (e.g., SatMAE++ vs. SatMAE) or with more
tokens (e.g., Spectral GPT vs. SatMAE), shown by higher FLOPs, memory and lower throughput.
PhySwin balances these trade-offs: PhySwin-T delivers 14.4x higher throughput than SpectralGPT
with 43.6x fewer FLOPs and 62.5% less memory. PhySwin-B exceeds SatMAE++ with 13.5x
speedup and 64% memory reduction. These results show PhySwin improves efficiency over ViTs,
approaching CNN-level efficiency without sacrificing accuracy advantages (as shown in Fig. [Tk).

4.4 Ablation Study

We perform ablations on PhySwin-B to isolate the contributions of each design choice. All exper-
iments use the same evaluation heads and data splits as in Sec. 4| Physically-Informed Losses
Ablation. We ablate physics-informed losses on PhySwin-B (Table[5a). The baseline without physics
priors shows the lowest scores. Adding spectral smoothness (Lsmooth) O reflectance bounding (Lyound)



Table 4: Inference efficiency (feature extraction) at 128 x 128 input, batch size 4, after 10 warm-up
iterations on a single RTX 2000 Ada GPU. Type = model; Params = parameters; Throughput =
images/s; Mem = peak GPU memory. CACo is excluded as it shares SeCo’s ResNet50 backbone.

Model \ Type \ Params (M)  FLOPs (G) Throughput (imgs/s)  Mem (GB)
SpectralGPT | ViT-B 85.4 87.2 76.4 0.8
SatMAE ViT-B 85.7 65.5 136.4 0.5
SatMAE++ ViT-L 303.2 232.6 42.8 1.4
SeCo ResNet-50 23.5 1.4 2642.8 0.1
PhySwin-T SwinV2-T 28.5 2.0 1102.0 0.3
PhySwin-B SwinV2-B 87.9 7.6 576.8 0.5

Table 5: Ablation studies on physics-informed losses and masking schemes. Seg: SegMunich (mloU
%), CD: OSCD (F1 %), CLS: FMoW-S2 (Top-1 %), Throughput in images per second (img/s).

Variant | Seg (%) CD (%) CLS (%)

No physics 4773 5337 5766  Masktype | Seg (%) CD (%) | Throughput

Lsmooth only 5091 58.99 61.93 SimMIM | 47.79  52.46 188.50

Lbound only 49.78 56.42 59.46 MixMAE 52.11 59.33 153.26

Lsmooth + Lbound | 52.32 61.05 63.11 Ours 52.32 61.05 149.84
(a) Ablation of physics-informed losses. (b) Ablation of masking schemes.

significantly improves performance, with Lgyo0m Obtaining larger gains by better capturing inter-band
relationships. Combining both losses achieves the best results, confirming complementary effects.
These results demonstrate that physics-informed constraints enhance feature quality.

Pretraining Methods. Table [5b]compares pretraining methods for SwinV2-B beyond throughput.
SimMIM shows highest throughput but lowest accuracy, as [MASK] tokens offer less effective
feature learning. MixMAE improves accuracy via dual reconstruction and better token use. Our
method enhances MixMAE with SW-MSA and SW-Masking, achieving top accuracy with minimal
throughput loss. These results highlight the advantage of effective information learning (MixMAE,
ours), with SW-MSA providing additional global context.

Spectral Embedding Ablation. Table [0 evaluates five spectral embedding strategies. Since the
spectral structure is ignored, the naive flattened processing has the highest throughput but the lowest
accuracy. SpectralGPT’s 3D Patch improves accuracy by splitting spectra into 3-band tokens, but
significantly reduces throughput. SatMAE’s Grouped Embedding (GE) uses one-third fewer tokens
than Spectral GPT and boosts performance. Our token-efficient GE packs spectral groups into single
embeddings, matching SatMAE GE accuracy with 3x higher throughput. Adding MaskSpec subspace
masking further enhances robustness, delivering the best accuracy-efficiency balance.

Hyperparameter Sensitivity. We tested the physics-loss weights A € {0.1,0.25,0.5}, 8 €
{0.05,0.1,0.2}, and MixMAE mixing ratios of 50%, 67% and 75%. Across these settings, segmenta-
tion mIoU and change-detection F1 vary by less than 2%, demonstrating that our defaults (A = 0.25,
£ = 0.1, mix=50%) lie in a stable region.

5 Conclusion and Limitations

We presented PhySwin, a novel foundation model for multispectral EO that integrates three key
innovations: (1) physics-informed pretraining via spectral-smoothness and energy-conservation
losses, (2) refined MixMAE tailored to SwinV2, and (3) token-efficient embedding with MaskSpec.
Pretrained on over one million Sentinel-2 tiles and evaluated across various downstream benchmarks,
PhySwin achieves SOTA performance while significantly reducing both computational complexity
and inference latency. We observe that model size correlates positively with FM performance.
However, in ViT-based models, scaling these factors drastically increases fine-tuning and inference
complexity, limiting practical deployment. Our results confirm that the hierarchical structure mitigates



Table 6: Ablation of embedding strategies (PhySwin-B Inference). 3D Patch follows Spectral GPT;
Grouped Embedding (GE) group bands for embedding; MaskSpec adds random subspace masking.

Variant \ Seg mloU (%) OSCD F1 (%) FMoW-S2 Top-1 (%) \ Throughput (img/s)
Naive 43.21 44.76 52.73 599.38
3D Patch 53.47 61.34 64.13 144.32
GE (SatMAE) 54.22 60.11 63.77 155.98
GE (Ours) 52.03 60.89 63.02 544.25
GE+MaskSpec (Ours) 52.32 61.05 63.11 584.58

these issues, offering multi-stage features beneficial for challenging EO tasks such as change detection.
PhySwin further amplifies these strengths, delivering an optimal balance between computational
efficiency and downstream task accuracy.

While PhySwin shows a modest performance gap on certain classification benchmarks, we attribute
this mainly to SwinV2’s hierarchical design, which is less suited for global pooling classification.
Model scaling was not the focus of this study, though larger variants may yield further gains. Addi-
tional limitations include the spectral-smoothness prior’s sensitivity to residual band misregistration
and the use of single-timestamp pretraining, adopted to preserve an edge-friendly compute budget.
Future work will extend PhySwin toward multi-temporal pretraining through efficient temporal
patching and spatio-temporal masking, and explore misregistration-robust smoothness variants, hy-
brid architectures, and advanced radiative-transfer constraints (e.g., BRDF models, atmospheric
correction) for multi-modal fusion such as SAR-MS.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that PhySwin proposes three core
innovations (physics-informed pretraining, refined MixMAE, and token-efficient spectral
embedding) to address efficiency and performance challenges in the multispectral EO
domain.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 5 discusses limitations, including reduced classification performance
due to SwinV2’s hierarchical design and the lack of model size scaling exploration.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or proofs, focusing
instead on model design and empirical evaluation.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix details all datasets, splits, model configurations and
evaluation protocols. Standard datasets are used, and code will be released upon acceptance
to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experiments use publicly available datasets as detailed in Section 4. The
code and full reproducibility instructions will be released upon acceptance to ensure faithful
replication of results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix provide full experimental details, including dataset
splits, pretraining setup, fine-tuning protocols, optimizer settings and hyperparameter ranges
used for ablations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars or statistical significance tests were not reported, as experiments
focus on deterministic model performance using fixed datasets and splits.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Full compute details, including GPU type, memory, and training time, will be
provided in the appendix. The main paper already describes model sizes, input resolutions
and FLOPs in Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. The study uses only
publicly available, non-human, non-PII datasets and does not involve human subjects,
personal data, or sensitive information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While PhySwin is foundational research, it has positive potential for environ-
mental monitoring, disaster response and agricultural management through more efficient
EO analysis. No direct negative societal impacts or misuse risks are identified.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. It does not involve pretrained language models,
generative models, or scraped datasets, and only uses publicly available Earth observation
datasets.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

Justification: All datasets and models used are publicly available and properly cited (Sec-
tion 4). Standard Earth observation datasets and baseline models (e.g., SatMAE, Spectral-
GPT) are credited with references to the original papers and repositories; no proprietary or
scraped data were used.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the

license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces PhySwin, a new foundation model for multispectral
Earth observation data. Full model documentation, including architecture details, training
settings, and pretrained weights, will be provided upon release to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
All datasets used are publicly available Earth observation data.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects or crowdsourcing
and therefore did not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the development of core methods or experiments. Any
LLM-assisted editing was limited to writing and formatting support only.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix A: Training and Implementation Details

Compute environment. Training was conducted on two nodes equipped with 8 NVIDIA Quadro RTX
8000 GPUs (each with 48 GB memory). Mixed-precision training (AMP) was enabled throughout.
Distributed training was implemented via torchrun with NCCL backend, using socket-based
transport for stability. Inference evaluations were performed on a single RTX 8000 GPU and also a
single NVIDIA RTX 2000 Ada GPU (8§ GB VRAM).

Training configuration. We summarize the key hyperparameters in Table

Table 7: Training configurations for progressive pretraining.

Parameter | Stage 1: FMoW-S2 | Stage 2: BigEarthNet-S2
Image resolution 96 x 96 128 x 128
Epochs 200 100
Batch size per GPU 256 256

Total batch size 2048 2048
Learning rate 1x1074 5x107°
Weight decay 5x 1075 5x107°
Warmup epochs 10 5
Scheduler Cosine decay Cosine decay
Gradient clipping max_norm = 1.0 max_norm = 1.0
Steps per epoch 695 537
Warmup steps 6950 2685

Appendix B: Dataset Processing and Band Grouping

We apply a unified preprocessing pipeline across all Sentinel-2 datasets used in this work. Key
preprocessing steps include band selection, normalization, and spatial resizing, detailed in Table (]
Bands BO1, B09, and B10 are excluded due to their coarse 60 m resolution. All retained bands are
grouped into physically coherent spectral categories for structured encoding.

Table 8: The summary of common preprocessing and dataset-specific properties.

Common Preprocessing Across All Datasets

Normalization Pixel values divided by 10,000
Valid reflectance range | Clipped to [0, 1.2]
Resizing method Bicubic interpolation to fixed spatial size
Excluded bands BO1, B09, B10 (60 m resolution)
Retained bands B02-BOSA, B11, B12 (10 bands)
Spectral groupings Visible: B02, B03, B04

Red-Edge/NIR: B0O5-B08, BSA

SWIR: B11, B12

Dataset-Specific Details

Dataset Tile Size #Tiles Task

FMoW-S2 96 x 96 712,874 Pretraining & scene-level classification
BigEarthNet-S2 | 128 x 128 549,488 Pretraining & multi-label classification
OSCD 96 x 96 336 pairs | Change detection

SegMunich 128 x 128 8,430 Semantic segmentation

DynaS2 256 x 256 | 5,472 pairs | Multi-temporal change detection
EuroSAT 64 x 64 27,000 Land cover classification

Dataset licenses and sources.

* BigEarthNet-S2: https://bigearth.netl Licensed under the Community Data Li-
cense Agreement — Permissive, Version 1.0.
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* FMoW-S2: https://github.com/fMoW/dataset. Released under the Functional Map
of the World Challenge Public License. Openly available for non-commercial research
use.

* OSCD (Onera Satellite Change Detection): https://rcdaudt.github.io/oscd/.
Publicly released for academic benchmarking; no explicit license provided.

* DynaS2 (DynamicEarthNet Sentinel-2): https://mediatum.ub.tum.de/1650201.
Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-
SA 4.0).

* EuroSAT: https://github.com/phelber/eurosat. Licensed under the MIT License.

* SegMunich: https://huggingface.co/datasets/earthflow/SegMunich. Dis-
tributed under Creative Commons Attribution-NonCommercial 4.0 International (CC
BY-NC 4.0).

Appendix C: Expanded Ablation Studies

All ablations in this section are conducted using the PhySwin-T model pretrained on the BigEarthNet-
S2 dataset for 100 epochs. So, the reported results may slightly differ from those presented in Section
4. Evaluation is performed on three downstream tasks: SegMunich (semantic segmentation), OSCD
(change detection), and EuroSAT (land cover classification).

C.1 Physics Loss Weights

Table 9: Sensitivity to physics-informed loss weights (A, 8). Mixing ratio is fixed at 50%, and
spectral grouping follows the default setting in Section 4. The best results are highlighted in bold.

(A\,B) | SegMunich mIoU (%) OSCDF1 (%) EuroSAT OA (%)

(0.1, 0.05) 47.97 56.33 96.64
(0.25, 0.1)* 48.46 56.98 96.88
(0.5,0.2) 48.21 57.03 96.27

C.2 Mixing Ratio Effects

Table 10: Ablation on MixMAE spatial mixing ratio. Physics-informed loss weights are fixed at
(A =0.25,8 = 0.1), and spectral grouping follows the default setting in Section 4. The best results
are highlighted in bold.

Mixing Ratio \ SegMunich mloU (%) OSCD F1 (%) EuroSAT OA (%)

50%* 48.46 56.98 96.88
67% 45.29 55.63 96.01
75% 42.97 53.61 94.79

C.3 Spectral Grouping Variants

Table 11: Performance of different spectral grouping strategies. Physics loss weights are fixed at
(A = 0.25,8 = 0.1), and the MixMAE spatial mixing ratio is fixed at 50%. Default grouping
is: Visible (B02-B04), RedEdge+NIR (BO5-B08A), SWIR (B11-B12). The best two results are
highlighted in bold.

Grouping Scheme | #Groups | SegMunich mIoU (%) OSCD F1 (%) EuroSAT OA (%)
Visible | RedEdge+NIR | SWIR* 3 48.46 56.98 96.88
Visible+RedEdge | NIR | SWIR 3 48.37 57.41 96.04
Visible+NIR | RedEdge | SWIR 3 47.95 56.74 97.11
Visible+SWIR | RedEdge | NIR 3 47.48 55.23 96.49
Visible+SWIR | RedEdge+NIR 2 46.77 54.45 96.73
Visible | RedEdge | NIR | SWIR 4 48.24 57.20 96.07
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Appendix D: Model Configurations

D.1 MixMAE Decoder Configuration
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Figure 4: PhySwin Decoder Structure.

PhySwin’s decoder maps the encoder’s hidden states (dimension equal to the encoder’s hidden size)
into per-patch reconstructions via a lightweight Transformer stack, as shown in Fig.[d] Concretely, the
decoder first projects hidden features into a Dg.. = 512—-dimensional space, then applies an unmixing
module (two linear layers with GELU nonlinearity) to disentangle mixed tokens. Two streams are
built by masking/unmasking this output according to the MixMAE mask, then concatenated and
summed with bicubically-interpolated 2D sine—cosine positional embeddings. This fused sequence
is processed by 8 Transformer blocks, followed by LayerNorm and a final linear prediction head
that emits stride® x C values per token (where stride = 4 and C' = 10 bands). All linear layers are
Xavier-initialized and biases zeroed.

D.2 Downstream Plug-and-Play Heads

To ensure fair comparisons across backbones, we adopt a “plug-and-play” evaluation strategy: all
models, including PhySwins and baselines, share the same task-specific head types, and only the
encoder varies across models. This design isolates the effect of pretraining and encoder quality.

Table 12: Downstream task heads and objectives. UPerNet = Unified Perceptual Parsing Network;
FPN = Feature Pyramid Network; MLP = multi-layer perception. All models use a frozen encoder
with plug-and-play heads.

Dataset | Task | Head Type | Objectives
SegMunich Semantic segmentation UPerNet decoder (FPN + classifier) | Cross-entropy
Dyna.-S2 Semantic segmentation UPerNet decoder (FPN + classifier) | Cross-entropy
OSCD Binary change detection FPN + 3-layer Conv Binary cross-entropy
Dyna.-S2 (CD) | Semantic change detection | FPN + 3-layer Conv Cross-entropy

. . GlobalAvgPool + LayerNorm
FMoW-S2 Scene classification + 3-layer MLP Cross-entropy

. . GlobalAvgPool + LayerNorm
EuroSAT Scene classification + 3-layer MLP Cross-entropy

. . . . GlobalAvgPool + LayerNorm .

BigEarthNet Multi-label classification + 3-layer MLP + Sigmoid Binary cross-entropy

Appendix E: Qualitative Examples

In this section, we provide additional qualitative examples for both semantic segmentation and change
detection tasks. These remain highly challenging for RSFMs, and only a few of the predictions
achieve acceptable accuracy. Nevertheless, PhySwin consistently delivers superior overall quality
than competing methods, as seen in Figures[5} [7]and [} and in many cases finer detail.

That said, there is still considerable room for improvement, especially on the most demanding
benchmarks such as the Dyna.—S2 change detection challenge. Although PhySwin leads all SOTA
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Table 13: Downstream task training configurations.

Dataset | Input Size | Batch Size | Optimizer / LR | Epochs
SegMunich 128%128 96 AdamW / 5e-4 70
Dyna.-S2 256x256 36 AdamW / le-4 120
OSCD 96x96 128 AdamW / 1e-3 60
Dyna.-S2 (CD) 96x96 64 AdamW / Se-4 70
FMoW-S2 96x96 128 AdamW / 1e-5 100
EuroSAT 96x96 128 AdamW / le-3 100
BigEarthNet 128%128 96 AdamW / 5e-5 100

baselines in the quantitative metrics reported in Table 2, its combined mask visualizations in Figure
[l remain visually inconsistent. Bridging this gap between numerical performance and perceptual
fidelity will be a key focus for future RSFM development.

Pre-Change Post-Change Ground-Truth CACo SatMAE++  SpectralGPT PhySwin-T  PhySwin-B

Figure 5: Additional visualizations on the OSCD dataset. Although pixel-level change detection
remains challenging, PhySwin-B achieves the best performance among all baselines, producing fewer
false positives.

Appendix F: Extended Results

To facilitate reproducibility and enable fair comparison with recent Earth Observation foundation
models, we integrated the PhySwin encoder into the PANGAEA evaluation framework [Marsocci
et al.| 2024]]. We include a representative subset of benchmarks for evaluation following the official
training and evaluation protocols.

Segmentation and Change Detection. Table 14 summarizes results on four representative bench-
marks using the PANGAEA settings. Each value represents the mean + standard deviation across
three random seeds (42, 177, 892). PhySwin-B consistently ranks among the top two performers
across Sentinel-2—exclusive datasets, demonstrating its strong balance between accuracy and effi-
ciency. PhySwin-B achieves top-tier performance across multiple PANGAEA segmentation and
change detection benchmarks, while PhySwin-T remains competitive given its smaller capacity.
These results further support PhySwin’s efficiency-oriented design.
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Pre-Change Post-Change Ground-Truth CACo

.

Figure 6: Additional visualizations on Dyna.-S2 change detection. This benchmark is even more
challenging, and visually all RSFMs fail to produce coherent change masks. Although PhySwin-B
attains the best quantitative results, these examples highlight the substantial room for improvement in
RSFMs.

SatMAE++  SpectralGPT PhySwin-T ~ PhySwin-B

Table 14: PANGAEA segmentation and change detection performance (mean = std over three seeds).

Model MADOS CROPMAP PASTIS SENIFLOODSI11
CROMA 57.81+£0.34 44.17+0.78 15.83 £0.17 87.12 £1.18
DOFA 64.40+£0.19 3848 +0.53 12.58£0.19 8542 £0.83
PRITHVI 41.66 £0.70 50.60 £0.21 11.61 £0.23 87.38 £0.95
DINO 55.05+£0.82 4793 +£0.52 15.40+0.18 86.11 £0.51
SatLasNet 52.80 £0.68 45.04 £036 13.29+0.21 82.96 £ 1.57
Terramind-L  64.20 £1.07 49.29 £ 047 17.11 £0.90 87.45 +£0.37
PhySwin-T 5575 £0.50 4437+0.79 14.31+£0.14 85.93 £0.77
PhySwin-B  63.06 £0.88 51.83 £0.31 15.69 +£0.25 88.30 £ 0.41

Classification and F1 Metrics. To provide a more comprehensive evaluation, we additionally
report macro-F1 alongside accuracy and mean average precision (mAP) under the unified PANGAEA
recipe. For EuroSAT, macro-F1 is equivalent to accuracy since the dataset is single-label and balanced.
For BigEarthNet, macro-F1 is reported on the standard subset used by GeoBench (20k training and
1k testing patches). Results are shown in Table [I5]

Table 15: PANGAEA classification results (mean + std).

Model EuroSAT Acc  EuroSAT macro-F1 ~ BigEarthNet mAP  BigEarthNet macro-F1
CROMA 93.13 £0.18 93.13 £0.18 72.50 £0.73 64.90 £ 0.65
DOFA 94.85 +0.28 94.85 +£0.28 69.50 £ 0.39 62.40 £ 0.25
PRITHVI 92.66 + 0.85 92.66 £ 0.85 64.50 £ 0.65 58.30 £0.58
DINO 93.41 £ 1.06 93.41 £ 1.06 68.40 + 0.37 60.30 £ 0.60
SatLasNet 97.81 £0.95 97.81 £0.95 70.00 + 0.70 64.80 + 0.30
Terramind-L. ~ 94.40 £+ 0.19 94.40 £ 0.19 73.70 £ 0.64 65.73 £0.92
PhySwin-T 96.32 £ 0.16 96.32 £ 0.16 68.20 £ 0.68 61.90 £ 0.24
PhySwin-B 98.17 £0.19 98.17 £0.19 71.60 £ 0.43 64.10 £ 0.27

The unified PANGAEA results confirm that PhySwin delivers near—state-of-the-art accuracy and F1
scores while maintaining computational efficiency. Reported values are based on our own runs for
PhySwin and publicly available checkpoints for other baselines.

Ablations on Physics-Informed Losses. To isolate the contribution of the physics-informed
objectives, we conducted ablation experiments covering different pretraining variants: (i) Physics-
only (no Spectral Group Masking or refined MixMAE), (ii) Group-only, (iii) Refined-MixMAE-only,
(iv) Full configuration (all components), and two baselines: a SimMIM-pretrained encoder and a
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Figure 7: Additional visualizations on SegMunich semantic segmentation. While most models
capture the overall scene layout, PhySwin-B more accurately delineates object boundaries and small
regions, demonstrating finer detail.

randomly initialized SwinV?2 trained from scratch. Each variant was trained for 15 epochs using the
PhySwin-T configuration and evaluated across three random seeds (42, 177, 892) to ensure statistical
reliability.

Table 16: Ablation results isolating the contribution of physics-informed losses (mean =+ std).

Variant OSCD F1 (%) SegMunich mloU (%) EuroSAT F1 (%)
Base (SimMIM) 49.31 £0.99 42.64 £+ 0.85 92.83 £ 0.37
Physics-only 52.23 +0.26 44.71 £ 0.89 94.05 + 0.94
Group-only 48.50 £ 0.49 40.22 £+ 0.80 91.47 £+ 1.37
Refined-MixMAE-only  49.06 + 0.98 43.10 £ 0.86 92.61 £1.85
Full (with all) 52.07 £0.52 43.29 £0.43 93.73 £ 0.94
Base (scratch) 4490 £ 0.45 40.37 £ 0.32 89.24 + 1.34

Physics-only pretraining improves consistently over the SimMIM baseline across all tasks (+2.9 F1 on
OSCD, +2.1 mloU on SegMunich, and +1.2 F1 on EuroSAT), confirming that the physics-informed
losses independently contribute to accuracy. The full configuration maintains these accuracy gains
while providing the efficiency benefits of grouped embedding and refined MixMAE. Group-only
and refined-MixMAE-only variants do not account for the observed improvements, indicating that
the physics priors are the primary factor driving performance enhancements, while the architectural
modifications mainly improve efficiency.

Physics-Informed Losses on MAE Backbones. To evaluate the generality of the proposed physics
constraints beyond the Swin-based design, we further applied the same physics losses to a ViT-B
backbone pretrained with standard MAE (without grouped embedding or refined MixMAE). Both
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Figure 8: Additional visualizations on Dyna.-S2 semantic segmentation. Despite the overall challenge,
most models capture the coarse layout. PhySwin-B presents finer details.

models were trained for 15 epochs under identical settings and evaluated on OSCD, SegMunich, and
EuroSAT using the same random seeds.

Table 17: Impact of physics-informed losses on MAE pretraining (mean =+ std).

Backbone OSCD F1 (%) SegMunich mloU (%) EuroSAT F1 (%)
ViT-B MAE 50.46 £ 0.51 42.00 £+ 0.84 94.78 £ 1.90
ViT-B MAE + Physics  52.41 + 0.52 44.17 £ 0.88 95.20 £ 0.95

Adding physics-informed regularization consistently improves the ViT-B MAE baseline across
all tasks, demonstrating the general applicability of the proposed losses. These findings align
with the results reported in the main paper, showing that the spectral-smoothness and energy-
conservation constraints promote inter-band consistency and suppress out-of-range reconstructions,

thereby encouraging physically plausible representations and faster adaptation during downstream
fine-tuning.

27



	Introduction
	Related Work
	PhySwin
	Physically-Informed Pretraining Objective
	Efficient Pretraining via Refined MixMAE on SwinV2
	Token-Efficient Grouped Spectral Embedding and Masking
	Pretraining Details

	Experiment
	Benchmarks
	Downstream Tasks Performance
	Efficiency Analysis
	Ablation Study

	Conclusion and Limitations

