PhySwin: An Efficient and Physically-Informed Foundation Model for Multispectral Earth Observation

Chong Tang

University of Southampton UCL AI Centre Southampton, United Kingdom chong.tang@soton.ac.uk

Dirk Koch

University of Manchester Manchester, United Kingdom dirk.koch@manchester.ac.uk

Alex Weddell

University of Southampton Southampton, United Kingdom asw@ecs.soton.ac.uk

Joseph Powell

University of Manchester Manchester, United Kingdom joseph.powell@manchester.ac.uk

Robert Mullins

University of Cambridge Cambridge, United Kingdom robert.mullins@cl.cam.ac.uk

Jagmohan Chauhan

University College London UCL AI Centre London, United Kingdom jagmohan.chauhan@ucl.ac.uk

Abstract

Recent progress on Remote Sensing Foundation Models (RSFMs) aims toward universal representations for Earth observation imagery. However, current efforts often scale up in size significantly without addressing efficiency constraints critical for real-world applications (e.g., onboard processing, rapid disaster response) or treat multispectral (MS) data as generic imagery, overlooking valuable physical priors. We introduce PhySwin, a foundation model for MS data that integrates physical priors with computational efficiency. PhySwin combines three innovations: (i) physics-informed pretraining objectives leveraging radiometric constraints to enhance feature learning; (ii) an efficient MixMAE formulation tailored to SwinV2 for low-FLOP, scalable pretraining; and (iii) token-efficient spectral embedding to retain spectral detail without increasing token counts. Pretrained on over 1M Sentinel-2 tiles, PhySwin achieves SOTA results (+1.32% mIoU segmentation, +0.80% F1 change detection) while reducing inference latency by up to 14.4× and computational complexity by up to 43.6× compared to ViT-based RSFMs.

1 Introduction

Earth-observation (EO) programmes now deliver petabyte-scale streams of multispectral (MS) imagery at global coverage and daily revisit rates (e.g., Sentinel-2 (S2), Landsat-8) [Roy et al., 2014, Drusch et al., 2012]. Such data supports applications ranging from precision agriculture and biodiversity monitoring to rapid flood and wildfire assessment [Gorelick et al., 2017, Van Etten et al., 2018]. Effectively utilizing the data requires models that produce general representations, enable rapid task adaptation (fine-tuning) and ensure computational efficiency for deployment.

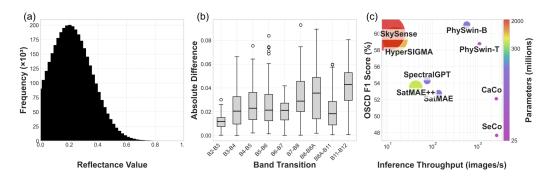


Figure 1: Motivations for PhySwin. (a) Bounded reflectance distribution in Sentinel-2 multispectral data, illustrating the energy-conservation property that motivates our energy-bound loss. (b) Smooth transitions across adjacent spectral bands, motivating the spectral-smoothness constraint used in physics-informed pretraining. (c) Accuracy–efficiency trade-off in change detection, highlighting PhySwin's balanced performance among EO foundation models.

Following the scaling trends in vision and NLP, Remote Sensing Foundation Models (RSFMs) have evolved from ResNet-based contrastive learners [Manas et al., 2021, Mall et al., 2023] to Vision Transformer (ViT) backbones with masked autoencoding (MAE) [Hong et al., 2024, Cong et al., 2022, Reed et al., 2023]. Subsequent models further increase capacity by fusing modalities or scaling to billion-parameter encoders [Guo et al., 2024, Wang et al., 2025a], improving accuracy but sharply raising computational costs. This has driven interest in efficiency-oriented backbones. State-space models (SSMs) adapted for EO [Wang et al., 2025b, Chen et al., 2024] offer an efficient parametric alternative, while hierarchical ViTs like Swin Transformer [Liu et al., 2021, 2022a] reduce inference complexity. Other designs address redundancy, such as HyperSIGMA's Sparse Sampling Attention [Wang et al., 2025a]. However, we argue that architectural optimizations alone cannot fully meet the dual goals of high accuracy and deployment-level efficiency required by EO systems.

Beyond computational efficiency, RSFMs often overlook the rich physics in MS data but treat them as generic image channels. Each MS band captures physically meaningful surface reflectance shaped by radiative-transfer processes [van Trigt, 1990, Hapke, 1981, Tominaga and Wandell, 1990], offering prior knowledge beyond image statistics. As shown in Fig. 1a and b, Sentinel-2 reflectance values and band transitions exhibit bounded and smooth trends, which can guide model training and promote more informative feature learning. So far, physics-aware learning has improved EO applications, for example, in crop-nitrogen retrieval [Dehghan-Shoar et al., 2024] and solar-irradiance forecasting [Liu et al., 2022b], outperforming data-driven baselines. Such priors promote faster convergence, better generalization and more informative representations. Despite this potential, most current FMs ignore these physical priors, prioritizing computational or generic vision approaches. Thus, a critical gap remains: developing models that fuse physics-awareness with computational efficiency for powerful and practical EO deployment under operational constraints.

We introduce PhySwin, a foundation model designed for MS imagery that integrates physical priors with computational efficiency through three complementary innovations: First, novel pretraining objectives embed radiometric constraints, including adjacent-band spectral smoothness and energy conservation, into self-supervised learning (SSL). This leads to more robust and meaningful feature representations. Second, PhySwin refines the Mixed and Masked Autoencoding (MixMAE) method [Liu et al., 2023] to address the limitations of standard MAE and computationally intensive MIM variants in hierarchical models. Our approach leverages SwinV2's shifted window mechanism for scalable, low-cost pretraining while enabling effective cross-window interaction for global context modeling. Third, PhySwin embeds MS data efficiently by grouping spectral bands and concatenating distinct feature subspaces per patch to retain spectral detail without increasing token counts. During pretraining, spectral group masking randomly removes entire groups of features to simulate spectral variability and enhance robustness. Pretrained on over one million S2 tiles and evaluated on six EO benchmarks, PhySwin outperforms strong ViT baselines, improving segmentation mIoU by +1.32% and change detection F1 by +0.80%, while reducing inference latency and computational cost by up to 14.4× and 43.6×, respectively. As shown in Fig. 1c, PhySwin achieves a favorable balance compared against other state-of-the-art (SOTA) baselines. Our main technical contributions are:

- The first integration of physics-aware objectives into large-scale MS foundation model pretraining, using physical constraints to generate high-fidelity features that overcome the typical accuracy trade-offs associated with computationally efficient architectures.
- A novel MixMAE formulation for SwinV2 that enables highly efficient and resolutionflexible pretraining on large EO datasets.
- A token-efficient spectral embedding technique that efficiently represents comprehensive MS band information without increasing token counts, addressing a common efficiency issue in existing RSFMs.

2 Related Work

Backbone Evolution and Pretraining Paradigms. Early EO FMs adapted contrastive learning on CNNs to leverage satellite time-series consistency [Manas et al., 2021, Mall et al., 2023]. Subsequent work adopted Transformer backbones, particularly as MAE techniques proved effective for large-scale pretraining [Cong et al., 2022]. This shift stimulated architectural diversification from standard ViTs compatible with basic MAE to hierarchical Swin-style transformers [Guo et al., 2024] requiring adapted pretraining, and to efficiency-focused state-space models [Chen et al., 2024, Wang et al., 2025b]. Additional innovations include MAE variants tailored for scale [Noman et al., 2024, Reed et al., 2023] or spectral data [Hong et al., 2024], multi-tasking [Wang et al., 2024], continual learning [Mendieta et al., 2023] and multi-modal fusion [Guo et al., 2024, Nedungadi et al., 2024]. While significant progress has been driven by scaling models and datasets to enhance performance, recent research has increasingly prioritized computational efficiency and scalability for practical deployment, particularly on resource-constrained platforms [Chen et al., 2025, Wang et al., 2025b].

Efficient Foundation Models. FM architectural choices strongly influence computational efficiency. Hierarchical transformers like Swin [Liu et al., 2022a] reduce complexity from quadratic to linear compared to standard ViTs through windowed attention. SSMs [Gu and Dao, 2023] offer linear scaling for long sequences, though applicability may depend on task-specific adaptations or pretraining strategies. These designs often complicate pretraining. For example, MAE's patch discarding conflicts with the structure of hierarchical models [Liu et al., 2023]. A common alternative uses MIM with [MASK] tokens (e.g., SimMIM [Xie et al., 2022]), though these non-informative tokens add inefficiency and pretrain-finetune discrepancies. Other approaches include supervised pretraining [Bastani et al., 2023] and contrastive learning, but MAE's reconstruction objective often produces richer features for dense prediction tasks [He et al., 2022] while avoiding the label demands of supervised methods. Returning to our focus on EO tasks, the existing work on FM architectures and pretraining methods inspired our realization that designing efficient RSFMs requires balancing architectural benefits, pretraining complexity, and performance trade-offs.

Physics-informed ML. Incorporating domain knowledge enhances foundation models. Physics-informed learning, which integrates physical laws as priors, has shown promise in climate modeling, materials science, and manufacturing [Karniadakis et al., 2021, Dehghan-Shoar et al., 2024]. Applying such priors in large-scale RSFM pretraining remains underexplored. MS imagery is well-suited due to physical principles governing surface reflectance: smooth spectral variation across adjacent bands [van Trigt, 1990, Tominaga and Wandell, 1990] and energy conservation bounding reflectance between 0 and 1 [Hapke, 1981]. Leveraging these priors during pretraining improves representational power and efficiency. PhySwin follows this principle, combining physics-informed objectives with efficient architectures for high accuracy and practical deployment.

3 PhySwin

We identify three core challenges in building efficient RSFMs: (i) pretraining inefficiencies of hierarchical architectures; (ii) the explosion of token counts when naively handling MS data; and (iii) the degradation of representation quality under tight compute budgets. To address these challenges, we propose PhySwin, an efficiency-oriented RSFM that leverages refined MixMAE pretraining, token-efficient embedding and physics-aware objectives to achieve high performance on EO tasks with significantly reduced computational cost (Fig. 2), detailed in the following subsections.

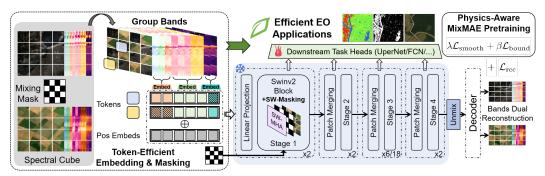


Figure 2: PhySwin framework: Two MS cubes are mixed via spatial masking, then grouped by band types and embedded. The SwinV2 encoder with SW-Masking processes the inputs through hierarchical stages. Pretraining is guided by \mathcal{L}_{rec} and regularization: \mathcal{L}_{smooth} and \mathcal{L}_{bound} . PhySwin achieves high performance across diverse downstream tasks with improved efficiency.

3.1 Physically-Informed Pretraining Objective

Multispectral sensors (e.g., S2, Landsat-8) measure surface reflectance across B bands, each encoding distinct material properties (e.g., vegetation health in Near-Infrared (NIR), moisture in Short-Wave Infrared (SWIR) spectroscopy). We embed two radiometric priors as regularizers on the reconstructed reflectance vector $\hat{\mathbf{r}} = [\hat{r}_1, \dots, \hat{r}_B] \in \mathbb{R}^B$:

Spectral Smoothness. Natural surface reflectance spectra are usually a smooth function of wavelength, lacking sharp or random fluctuations between adjacent bands. This well-established property stems from the continuous nature of light interactions with materials and is supported by both theoretical analysis [van Trigt, 1990] and empirical studies [Tominaga and Wandell, 1990] (as shown in Fig. 1b). To discourage fitting noise or sensor artifacts, we impose a smoothness regularization based on the first-order finite difference:

$$\mathcal{L}_{\text{smooth}} = \sum_{b=1}^{B-1} (\hat{r}_{b+1} - \hat{r}_b)^2, \qquad (1)$$

which penalizes high-frequency spectral fluctuations.

Energy Conservation. Physically, surface reflectance quantifies the fraction of incident electromagnetic energy reflected at each wavelength. Due to the energy conservation, this value is inherently bounded, typically within the range [0,1] [Hapke, 1981] (seen in Fig. 1a). Incorporating this constraint guides the model to operate within a physically realistic output space. To enforce this constraint, we apply:

$$\mathcal{L}_{\text{bound}} = \sum_{b=1}^{B} \left[\text{ReLU}(-\hat{r}_b) + \text{ReLU}(\hat{r}_b - 1.2) \right]. \tag{2}$$

Both terms remain fully differentiable. For implementation, we relax the upper bound to 1.2 to accommodate sensor noise.

3.2 Efficient Pretraining via Refined MixMAE on SwinV2

PhySwin adopts Swin Transformer V2 [Liu et al., 2022a] for its computational efficiency: the Swin family scales linearly with input size via the shifted window self-attention (SW-MSA). Swin V2 extends V1 with improved scaling and a log-spaced continuous position bias [Liu et al., 2021], which enhances transferability across resolutions and window sizes and is particularly useful for the diverse spatial scales of EO.

As discussed in Section 2, efficiently pretraining hierarchical ViTs remains nontrivial. To address this bottleneck, MixMAE [Liu et al., 2023] is proposed. Its core idea is to replace masked patches from one image (x_1^p) with visible patches from a second image (x_2^p) using a random binary mask M. The resulting mixed input contains only real image tokens (seen the mixing process in Fig. 2):

$$\hat{x}_{m}^{p} = x_{1}^{p} \odot M + x_{2}^{p} \odot (1 - M).$$

A lightweight decoder reconstructs both original images under a dual reconstruction loss:

$$\mathcal{L}_{\text{rec}} = \|(y_1^p - x_1^p) \odot (1 - M)\|_2^2 + \|(y_2^p - x_2^p) \odot M\|_2^2, \tag{3}$$

where y_1^p and y_2^p are the reconstructions of x_1^p and x_2^p , respectively. This dual reconstruction objective ensures that each source image is reconstructed solely from its own unmasked context, encouraging the model to infer missing regions using within-source evidence rather than cross-source tokens. During encoding, tokens attend only to others from the same source image, as dictated by M, preventing information leakage. This design enables MAE-style pretraining to be applied to hierarchical ViTs while avoiding non-informative [MASK] tokens in the encoder. Notably, the original MixMAE implementation disables SW-MSA and instead relies on large fixed windows to model global context.

PhySwin refines MixMAE for SwinV2 by retaining the SW-MSA mechanism to support improved cross-window interactions and global context modeling (seen in SwinV2 block in Fig. 2). Specifically, we introduce SW-Masking, in which the binary mask M is spatially shifted in alignment with SW-MSA configurations. We argue that coordinating the masking pattern with shifted windows promotes more robust feature learning across window boundaries, preserves spatial continuity, and reduces reconstruction artifacts compared to fixed-window schemes.

3.3 Token-Efficient Grouped Spectral Embedding and Masking

Standard ViTs embed non-overlapped RGB patches ($\mathbb{R}^{H \times W \times 3}$) into D-dimensional tokens, producing N tokens for N patches. Directly extending this to MS data ($\mathbb{R}^{H \times W \times B}$, with $B \gg 3$) may diminish critical band-specific information. Prior works address this via methods like grouped channel embeddings [Cong et al., 2022], 3D spatial-spectral tokens [Hong et al., 2024] or separate feature branches [Wang et al., 2025a]. However, these techniques increase token counts and may overlook correlations between spectral bands.

We propose a token-efficient embedding strategy that preserves the token count comparable to standard processing while retaining the rich spectral structure of MS data. Given a sample $x \in \mathbb{R}^{H \times W \times B}$, we partition the B spectral bands into G physically coherent groups (e.g., visible, NIR, SWIR), $x^{(g)} \in \mathbb{R}^{H \times W \times B_g}$ with $\sum_{g=1}^G D_g = D$. For each spatial position (i,j), we extract group-wise local patches $x_{i,j}^{(g)} \in \mathbb{R}^{P \times P \times B_g}$. Each group g is then processed by a lightweight, group-specific embedding function $f_g: \mathbb{R}^{P \times P \times B_g} \to \mathbb{R}^{D_g}$, and the final token $e_{i,j} \in \mathbb{R}^D$ is constructed by concatenating the outputs across all groups (Fig. 2):

$$e_{i,j} = \text{Concat}\left(f_1(x_{i,j}^{(1)}), f_2(x_{i,j}^{(2)}), \dots, f_G(x_{i,j}^{(G)})\right) \in \mathbb{R}^D.$$
 (4)

This yields a single embedding vector $e_{i,j} \in \mathbb{R}^D$ per spatial location. Therefore, an input image divided into N spatial patches produces exactly N tokens, maintaining the sequence length efficiency.

Building on this design, we further introduce *Spectral Group Masking* (MaskSpec) during pretraining to improve representation robustness and simulate real-world spectral variations. PhySwin randomly zeros out one or more spectral group subspaces $f_g(x_{i,j}^{(g)})$ within each token $e_{i,j}$, encouraging representations that are less reliant on any single spectral group. This spectral masking complements the spatial masking of our refined MixMAE framework (Section 3.2), where we use a fixed 50% mixing ratio. By operating in the spectral domain, we can modulate the overall pretraining difficulty. To summarize the combined masking strategy, for each token $e_{i,j}$, we apply:

$$\tilde{e}_{i,j} = \text{MixMAE}\left(\text{MaskSpec}(e_{i,j}^{(1)}, M_g^{(1)}), \ \text{MaskSpec}(e_{i,j}^{(2)}, M_g^{(2)}), \ M\right), \tag{5}$$

where $M_g^{(*)} \in \{0,1\}^G$ are independent group masks. This joint masking regulates spatial and spectral exposure, yielding more generalizable features.

3.4 Pretraining Details

Datasets and Preprocessing. Following a two-stage pretraining strategy similar to Spectral-GPT [Hong et al., 2024], PhySwin is first trained for 200 epochs on FMoW-S2 (about 712,000 samples) [Christie et al., 2018] with 96×96 S2 tiles, then for 100 epochs on BigEarthNet-S2 (about 590,000 samples) [Sumbul et al., 2019] with 128×128 tiles. Raw reflectance values are normalized

by 1/10,000 to approximate the [0,1] range. We exclude three 60-meter resolution S2 bands (B01, B09, B10) following SpectralGPT and SatMAE [Hong et al., 2024, Cong et al., 2022]. The retained 10 bands are grouped into: Visible (B02, B03, B04), Red-Edge/NIR (B05, B06, B07, B08, B8A), and SWIR (B11, B12) corresponding to our embedding method (Section 3.3).

Backbone Configurations. PhySwin is developed using two Swin Transformer V2 variants, both configured with a base input resolution of 128×128 , a patch size of 4 and a window size of 7.

Variant	Embedding Dim	Depths	Num Heads	#Params (M)
PhySwin-Tiny (T)	96	[2, 2, 6, 2]	[3, 6, 12, 24]	29
PhySwin-Base (B)	128	[2, 2, 18, 2]	[4, 8, 16, 32]	88

Training Setup. PhySwin was pretrained on eight NVIDIA RTX 8000 GPUs using mixed precision. We employed the AdamW optimizer with a cosine learning rate schedule and a 15-epoch linear warmup. The training objective

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{rec}} + \lambda \mathcal{L}_{\text{smooth}} + \beta \mathcal{L}_{\text{bound}}.$$
 (6)

Weights were fixed during pretraining at $\lambda=0.25,\ \beta=0.1.$ Full hyperparameters are detailed in Appendix A.

4 Experiment

In this section, we evaluate the effectiveness and efficiency of PhySwin against SOTA RSFMs across four downstream EO tasks. To ensure reproducibility, PhySwin is built on the Hugging Face Transformers library [Wolf et al., 2020], following its coding standards and API conventions. PhySwin models and SOTA baselines replicated in this study are fine-tuned under a unified protocol, including SeCo (ResNet50), CACo (ResNet50), SatMAE (ViT-B), SatMAE++ (ViT-L) and SpectralGPT (ViT-B). Performance for other baselines (e.g., SkySense, HyperSIGMA) is reported from the literature. Across all tasks, PhySwin uses the following S2 bands: native (B02, B03, B04, B08) and resampled to 10m (B05, B06, B07, B8A, B11, B12). Extended experimental results, including additional benchmarks and ablation studies, are provided in Appendix 5.

4.1 Benchmarks

Semantic Segmentation. Performance is evaluated on two benchmarks. SegMunich [Hong et al., 2024] contains overlapping 128×128 pixel tiles (50% overlap) with 13 Land Use and Land Cover (LULC) classes. DynamicEarthNet-Sentinel2 (Dyna.-S2) [Toker et al., 2022] consists of monthly S2 composites from January 2018 to December 2019, tiled into 256×256 patches. Mean Intersection over Union (mIoU) is reported for both.

Change Detection. Evaluated on OSCD [Daudt et al., 2018], comprising 24 S2 image pairs (14 train, 10 test), split into non-overlapping 96×96 patches as the SkySense protocol [Guo et al., 2024]. Precision, Recall, and F1 are reported. Dyna.-S2 image pairs are formed from monthly composites, tiled into 96×96 patches, and semantic change segmentation score (SCS) [Toker et al., 2022] is calculated from 7-class segmentation labels.

Scene and Multi-Label Land Cover Classification. Scene classification is evaluated on two benchmarks. FMoW-S2 contains 62 land-use types; we follow the SatMAE splits [Cong et al., 2022] and report top-1 accuracy. EuroSAT [Helber et al., 2018, 2019] comprises 27, 000 S2 images (64×64 pixels) across 10 land cover classes; we follow [Helber et al., 2019] and report overall accuracy (OA). Multi-label classification is evaluated on BigEarthNet, which contains 120×120 S2 images from 10 countries annotated with 19 land cover classes, using official splits [Clasen et al., 2024]. We report mean average precision (mAP).

Table 1:	Semantic segmentatio	n performance. 1
radic 1.	Schiantic Segmentatio	ii periorinance.

Model	SegMunich	ΔmIoU (%)	DynaS2	ΔmIoU (%)
SeCo	45.92	-5.08	40.19	-6.01
CACo	44.87	-6.13	41.50	-4.70
SatMAE	48.71	-2.29	38.73	-7.47
SatMAE++	50.62	-0.38	42.87	-3.33
SpectralGPT	51.00	-	44.72	-1.48
SkySense [†]	_	_	46.20	-
PhySwin-T	49.53	-1.47	43.80	-2.40
PhySwin-B	52.32	+1.32	46.53	+0.33

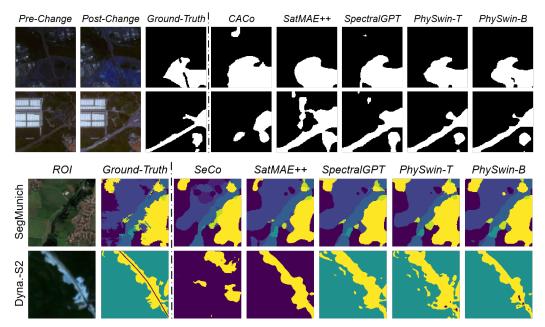


Figure 3: Performance visualization of downstream tasks. TOP: OSCD change detection. BOTTOM: SegMunich and Dyna.S2 semantic segmentation. Colors follow each dataset's official palette.

4.2 Downstream Tasks Performance

Semantic Segmentation Results. Table 1 reports mIoU on SegMunich and Dyna.-S2 compared to RSFM baselines. On SegMunich, PhySwin-T achieves 49.53%, ranking third behind SpectralGPT (51.00%) and SatMAE++ (50.62%) and surpassing SatMAE ViT-B (48.71%). On Dyna.-S2, it reaches 43.80%, outperforming both SatMAE variants while using only one-third the tokens of SpectralGPT. PhySwin-B sets new SOTA results with 52.32% (+1.32% over SpectralGPT) on SegMunich and 46.53% (+0.33% over SkySense) on Dyna.-S2. These results show PhySwin improves dense prediction accuracy without increasing model size or runtime. Qualitatively (Fig. 3), PhySwin produces sharper boundaries and better recovers thin structures, such as narrow roads and small bodies, matching the quantitative improvements in Table 1.

Change Detection Results. Table 2 reports F1, precision, and recall on OSCD and SCS on Dyna.-S2. PhySwin-T achieves 58.74% F1, outperforming ChangeMamba (57.20%) and all ViT-based methods, and records 17.61% SCS, closely matching SkySense (18.00%). PhySwin-B reaches 61.05% F1 (+0.80% over DynamicVis) and 18.13% SCS (+0.13% over SkySense). DynamicVis achieves the highest precision (79.41%) but low recall (48.36%), while PhySwin-B offers a better balance (67.97% precision, 55.41% recall). These gains, also shown in Fig. 3, demonstrate that our physics-informed

¹The top two results for each dataset are highlighted in **bold**. Δ denotes the gain over the best published RSFM baseline. † indicates results reported from the corresponding literature.

Table 2: Change detection performance.

Model	F1%	OSCD P%	R%	ΔF1%	DynaS2 SCS%	ΔSCS%
SkySense [†]	60.06	_	_	-0.19	18.00	_
HyperSIGMA [†]	59.28	59.12	59.45	-0.97	_	_
SpectralGPT	54.29	52.39	57.20	-5.96	17.43	-0.57
ChangeMamba [†]	57.20	56.08	58.36	-3.05	_	_
DynamicVis†	60.25	79.41	48.36	_	_	_
SpatSIGMA [†]	58.53	64.59	53.50	-1.72	_	_
SeCo	47.67	63.21	38.26	-12.58	16.00	-2.00
CACo	52.11	62.87	44.49	-8.14	16.53	-1.47
SatMAE	52.76	55.18	50.54	-7.49	16.20	-1.80
SatMAE++	55.31	58.07	52.80	-4.94	17.88	-0.12
PhySwin-T	58.74	65.93	52.96	-1.51	17.61	-0.39
PhySwin-B	61.05	67.97	55.41	+0.80	18.13	+0.13

Table 3: Multi-label and scene classification performance.

Model	BigE	arthNet	FMoW	-S2	Eur	oSAT
Model	mAP%	Δ mAP%	Top-1 Acc%	$\Delta Acc\%$	OA%	$\Delta \mathrm{OA}\%$
SkySense [†]	92.09	0.00	64.38	-0.86	_	_
SatMAE	82.13	-9.96	63.84	-1.40	98.98	-0.23
SatMAE++	85.11	-6.98	65.24	0.00	99.04	-0.17
SpectralGPT	88.22	-3.87	64.21	-1.03	99.21	0.00
SeCo	87.81	-4.28	51.65	-13.59	95.63	-3.58
CACo	87.00	-5.09	50.72	-14.52	95.90	-3.31
PhySwin-T	86.63	-5.46	59.26	-5.98	97.25	-1.96
PhySwin-B	87.93	-4.16	63.11	-2.13	98.73	-0.48

pretraining reduces false positives and better captures subtle spectral changes, producing cleaner masks and more precise localization of small variations.

Multi-label and Scene Classification. Table 3 shows PhySwin achieves competitive, near-SOTA results across all three benchmarks. On BigEarthNet, PhySwin-B reaches 87.93% mAP (third, within 4.16% of SkySense), while PhySwin-T records 86.63%, outperforming SeCo and CACo. On FMoW-S2, PhySwin-B achieves 63.11% top-1 accuracy (2.13% below SatMAE++), and PhySwin-T scores 59.26%. On EuroSAT, PhySwin-B attains 98.73% overall accuracy (0.48% below SOTA SpectralGPT), and PhySwin-T posts 97.25%. These small gaps likely reflect Swin's windowed attention emphasizing local context. We consider this an acceptable trade-off given PhySwin's faster inference and reduced memory compared to ViT-based RSFMs (discussed next).

4.3 Efficiency Analysis

Table 4 compares feature-extraction efficiency at 128×128 input on an RTX 2000 Ada GPU. CNNs like SeCo offer high throughput with low compute and memory cost but lower accuracy. ViTs improve accuracy but lose efficiency when scaled (e.g., SatMAE++ vs. SatMAE) or with more tokens (e.g., SpectralGPT vs. SatMAE), shown by higher FLOPs, memory and lower throughput. PhySwin balances these trade-offs: PhySwin-T delivers $14.4 \times$ higher throughput than SpectralGPT with $43.6 \times$ fewer FLOPs and 62.5% less memory. PhySwin-B exceeds SatMAE++ with $13.5 \times$ speedup and 64% memory reduction. These results show PhySwin improves efficiency over ViTs, approaching CNN-level efficiency without sacrificing accuracy advantages (as shown in Fig. 1c).

4.4 Ablation Study

We perform ablations on PhySwin-B to isolate the contributions of each design choice. All experiments use the same evaluation heads and data splits as in Sec. 4. **Physically-Informed Losses Ablation.** We ablate physics-informed losses on PhySwin-B (Table 5a). The baseline without physics priors shows the lowest scores. Adding spectral smoothness ($L_{\rm smooth}$) or reflectance bounding ($L_{\rm bound}$)

Table 4: Inference efficiency (feature extraction) at 128×128 input, batch size 4, after 10 warm-up iterations on a single RTX 2000 Ada GPU. Type = model; Params = parameters; Throughput = images/s; Mem = peak GPU memory. CACo is excluded as it shares SeCo's ResNet50 backbone.

Model	Type	Params (M)	FLOPs (G)	Throughput (imgs/s)	Mem (GB)
SpectralGPT	ViT-B	85.4	87.2	76.4	0.8
SatMAE	ViT-B	85.7	65.5	136.4	0.5
SatMAE++	ViT-L	303.2	232.6	42.8	1.4
SeCo	ResNet-50	23.5	1.4	2642.8	0.1
PhySwin-T	SwinV2-T	28.5	2.0	1102.0	0.3
PhySwin-B	SwinV2-B	87.9	7.6	576.8	0.5

Table 5: Ablation studies on physics-informed losses and masking schemes. **Seg**: SegMunich (mIoU %), **CD**: OSCD (F1 %), **CLS**: FMoW-S2 (Top-1 %), **Throughput** in images per second (img/s).

Variant	Seg (%)	CD (%)	CLS (%)
No physics	47.73	53.37	57.66
Lsmooth only	50.91	58.99	61.93
Lbound only	49.78	56.42	59.46
Lsmooth + Lbound	52.32	61.05	63.11

Mask type	Seg (%)	CD (%)	Throughput
SimMIM	47.79	52.46	188.50
MixMAE	52.11	59.33	153.26
Ours	52.32	61.05	149.84

significantly improves performance, with $L_{\rm smooth}$ obtaining larger gains by better capturing inter-band relationships. Combining both losses achieves the best results, confirming complementary effects. These results demonstrate that physics-informed constraints enhance feature quality.

Pretraining Methods. Table 5b compares pretraining methods for SwinV2-B beyond throughput. SimMIM shows highest throughput but lowest accuracy, as [MASK] tokens offer less effective feature learning. MixMAE improves accuracy via dual reconstruction and better token use. Our method enhances MixMAE with SW-MSA and SW-Masking, achieving top accuracy with minimal throughput loss. These results highlight the advantage of effective information learning (MixMAE, ours), with SW-MSA providing additional global context.

Spectral Embedding Ablation. Table 6 evaluates five spectral embedding strategies. Since the spectral structure is ignored, the naive flattened processing has the highest throughput but the lowest accuracy. SpectralGPT's 3D Patch improves accuracy by splitting spectra into 3-band tokens, but significantly reduces throughput. SatMAE's Grouped Embedding (GE) uses one-third fewer tokens than SpectralGPT and boosts performance. Our token-efficient GE packs spectral groups into single embeddings, matching SatMAE GE accuracy with $3\times$ higher throughput. Adding MaskSpec subspace masking further enhances robustness, delivering the best accuracy-efficiency balance.

Hyperparameter Sensitivity. We tested the physics-loss weights $\lambda \in \{0.1, 0.25, 0.5\}$, $\beta \in \{0.05, 0.1, 0.2\}$, and MixMAE mixing ratios of 50%, 67% and 75%. Across these settings, segmentation mIoU and change-detection F1 vary by less than 2%, demonstrating that our defaults ($\lambda = 0.25$, $\beta = 0.1$, mix=50%) lie in a stable region.

5 Conclusion and Limitations

We presented PhySwin, a novel foundation model for multispectral EO that integrates three key innovations: (1) *physics-informed pretraining* via spectral-smoothness and energy-conservation losses, (2) *refined MixMAE* tailored to SwinV2, and (3) *token-efficient embedding* with MaskSpec. Pretrained on over one million Sentinel-2 tiles and evaluated across various downstream benchmarks, PhySwin achieves SOTA performance while significantly reducing both computational complexity and inference latency. We observe that model size correlates positively with FM performance. However, in ViT-based models, scaling these factors drastically increases fine-tuning and inference complexity, limiting practical deployment. Our results confirm that the hierarchical structure mitigates

⁽a) Ablation of physics-informed losses.

⁽b) Ablation of masking schemes.

Table 6: Ablation of embedding strategies (PhySwin-B Inference). 3D Patch follows SpectralGPT; Grouped Embedding (GE) group bands for embedding; MaskSpec adds random subspace masking.

Variant	Seg mIoU (%)	OSCD F1 (%)	FMoW-S2 Top-1 (%)	Throughput (img/s)
Naive	43.21	44.76	52.73	599.38
3D Patch	53.47	61.34	64.13	144.32
GE (SatMAE)	54.22	60.11	63.77	155.98
GE (Ours)	52.03	60.89	63.02	544.25
GE+MaskSpec (Ours)	52.32	61.05	63.11	584.58

these issues, offering multi-stage features beneficial for challenging EO tasks such as change detection. PhySwin further amplifies these strengths, delivering an optimal balance between computational efficiency and downstream task accuracy.

While PhySwin shows a modest performance gap on certain classification benchmarks, we attribute this mainly to SwinV2's hierarchical design, which is less suited for global pooling classification. Model scaling was not the focus of this study, though larger variants may yield further gains. Additional limitations include the spectral-smoothness prior's sensitivity to residual band misregistration and the use of single-timestamp pretraining, adopted to preserve an edge-friendly compute budget. Future work will extend PhySwin toward multi-temporal pretraining through efficient temporal patching and spatio-temporal masking, and explore misregistration-robust smoothness variants, hybrid architectures, and advanced radiative-transfer constraints (e.g., BRDF models, atmospheric correction) for multi-modal fusion such as SAR–MS.

Acknowledgments and Disclosure of Funding

This work was supported by the Engineering and Physical Sciences Research Council (EP-SRC), United Kingdom, under the project *Perfect Recollection for Clearer Insight* (grant number EP/Y036077/1).

References

- D. P. Roy, M. A. Wulder, T. R. Loveland, et al. Landsat-8: Science and product vision for terrestrial global change research. *Remote Sensing of Environment*, 145:154–172, 2014. doi: 10.1016/j.rse. 2014.02.001.
- M. Drusch, U. Del Bello, S. Carlier, et al. Sentinel-2: Esa's optical high-resolution mission for gmes operational services. *Remote Sensing of Environment*, 120:25–36, 2012. doi: 10.1016/j.rse.2011. 11.026.
- Noel Gorelick, Matt Hancher, Mike Dixon, Sergei Ilyushchenko, David Thau, and Rebecca Moore. Google earth engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*, 202:18–27, 2017. doi: 10.1016/j.rse.2017.06.031.
- Adam Van Etten, David Lindenbaum, and Todd M. Bacastow. Spacenet: A remote sensing dataset and challenge series. *arXiv preprint arXiv:1807.01232*, 2018. URL https://arxiv.org/abs/1807.01232.
- Oscar Manas, Alexandre Lacoste, Xavier Giró-i Nieto, David Vazquez, and Pau Rodriguez. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9414–9423, 2021.
- Utkarsh Mall, Bharath Hariharan, and Kavita Bala. Change-aware sampling and contrastive learning for satellite images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5261–5270, 2023.
- Danfeng Hong, Bing Zhang, Xuyang Li, Yuxuan Li, Chenyu Li, Jing Yao, Naoto Yokoya, Hao Li, Pedram Ghamisi, Xiuping Jia, et al. Spectralgpt: Spectral remote sensing foundation model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

- Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke, David Lobell, and Stefano Ermon. Satmae: Pre-training transformers for temporal and multispectral satellite imagery. Advances in Neural Information Processing Systems, 35:197–211, 2022.
- Colorado J Reed, Ritwik Gupta, Shufan Li, Sarah Brockman, Christopher Funk, Brian Clipp, Kurt Keutzer, Salvatore Candido, Matt Uyttendaele, and Trevor Darrell. Scale-mae: A scale-aware masked autoencoder for multiscale geospatial representation learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4088–4099, 2023.
- Xin Guo, Jiangwei Lao, Bo Dang, Yingying Zhang, Lei Yu, Lixiang Ru, Liheng Zhong, Ziyuan Huang, Kang Wu, Dingxiang Hu, et al. Skysense: A multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 27672–27683, 2024.
- Di Wang, Meiqi Hu, Yao Jin, Yuchun Miao, Jiaqi Yang, Yichu Xu, Xiaolei Qin, Jiaqi Ma, Lingyu Sun, Chenxing Li, et al. Hypersigma: Hyperspectral intelligence comprehension foundation model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025a.
- Guanchun Wang, Xiangrong Zhang, Zelin Peng, Tianyang Zhang, and Licheng Jiao. S2mamba: A spatial-spectral state space model for hyperspectral image classification. *IEEE Transactions on Geoscience and Remote Sensing*, 2025b.
- Hongruixuan Chen, Jian Song, Chengxi Han, Junshi Xia, and Naoto Yokoya. Changemamba: Remote sensing change detection with spatio-temporal state space model. *IEEE Transactions on Geoscience and Remote Sensing*, 2024.
- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 10012–10022, 2021.
- Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12009–12019, 2022a.
- Cornelius van Trigt. Smoothest reflectance functions. i. definition and main results. *Journal of the Optical Society of America A*, 7(10):1891–1904, 1990.
- Bruce Hapke. Bidirectional reflectance spectroscopy: 1. theory. *Journal of Geophysical Research: Solid Earth*, 86(B4):3039–3054, 1981.
- Shoji Tominaga and Brian A Wandell. Component estimation of surface spectral reflectance. *Journal of the Optical Society of America A*, 7(2):312–317, 1990.
- Mohammad Hossain Dehghan-Shoar, Gabor Kereszturi, Reddy R Pullanagari, Alvaro A Orsi, Ian J Yule, and James Hanly. A physically informed multi-scale deep neural network for estimating foliar nitrogen concentration in vegetation. *International Journal of Applied Earth Observation and Geoinformation*, 130:103917, 2024.
- Weijia Liu, Yangang Liu, Tao Zhang, Yongxiang Han, Xin Zhou, Yu Xie, and Shinjae Yoo. Use of physics to improve solar forecast: Part ii, machine learning and model interpretability. *Solar Energy*, 244:362–378, 2022b.
- Jihao Liu, Xin Huang, Jinliang Zheng, Yu Liu, and Hongsheng Li. Mixmae: Mixed and masked autoencoder for efficient pretraining of hierarchical vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6252–6261, 2023.
- Mubashir Noman, Muzammal Naseer, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, and Fahad Shahbaz Khan. Rethinking transformers pre-training for multi-spectral satellite imagery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 27811–27819, 2024.

- Di Wang, Jing Zhang, Minqiang Xu, Lin Liu, Dongsheng Wang, Erzhong Gao, Chengxi Han, Haonan Guo, Bo Du, Dacheng Tao, et al. Mtp: Advancing remote sensing foundation model via multi-task pretraining. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 2024.
- Matías Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Towards geospatial foundation models via continual pretraining. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16806–16816, 2023.
- Vishal Nedungadi, Ankit Kariryaa, Stefan Oehmcke, Serge Belongie, Christian Igel, and Nico Lang. Mmearth: Exploring multi-modal pretext tasks for geospatial representation learning. In *European Conference on Computer Vision*, pages 164–182. Springer, 2024.
- Keyan Chen, Chenyang Liu, Bowen Chen, Wenyuan Li, Zhengxia Zou, and Zhenwei Shi. Dynamicvis: An efficient and general visual foundation model for remote sensing image understanding. *arXiv* preprint arXiv:2503.16426, 2025.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9653–9663, 2022.
- Favyen Bastani, Piper Wolters, Ritwik Gupta, Joe Ferdinando, and Aniruddha Kembhavi. Sat-laspretrain: A large-scale dataset for remote sensing image understanding. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16772–16782, 2023.
- Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16000–16009, 2022.
- George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.
- Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 6172–6180, 2018.
- Gencer Sumbul, Marcela Charfuelan, Begüm Demir, and Volker Markl. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In *IGARSS* 2019-2019 IEEE international geoscience and remote sensing symposium, pages 5901–5904. IEEE, 2019.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online, October 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
- Aysim Toker, Lukas Kondmann, Mark Weber, Marvin Eisenberger, Andrés Camero, Jingliang Hu, Ariadna Pregel Hoderlein, Çağlar Şenaras, Timothy Davis, Daniel Cremers, et al. Dynamicearthnet: Daily multi-spectral satellite dataset for semantic change segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21158–21167, 2022.
- Rodrigo Caye Daudt, Bertr Le Saux, Alexandre Boulch, and Yann Gousseau. Urban change detection for multispectral earth observation using convolutional neural networks. In *IGARSS* 2018-2018 *IEEE International Geoscience and Remote Sensing Symposium*, pages 2115–2118. Ieee, 2018.
- Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. In *IGARSS* 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pages 204–207. IEEE, 2018.

- Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.
- Kai Norman Clasen, Leonard Hackel, Tom Burgert, Gencer Sumbul, Begüm Demir, and Volker Markl. reben: Refined bigearthnet dataset for remote sensing image analysis. *arXiv preprint arXiv:2407.03653*, 2024.
- Valerio Marsocci, Yuru Jia, Georges Le Bellier, David Kerekes, Liang Zeng, Sebastian Hafner, Sebastian Gerard, Eric Brune, Ritu Yadav, Ali Shibli, Heng Fang, Yifang Ban, Maarten Vergauwen, Nicolas Audebert, and Andrea Nascetti. Pangaea: A global and inclusive benchmark for geospatial foundation models, 2024. URL https://arxiv.org/abs/2412.04204.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that PhySwin proposes three core innovations (physics-informed pretraining, refined MixMAE, and token-efficient spectral embedding) to address efficiency and performance challenges in the multispectral EO domain.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5 discusses limitations, including reduced classification performance due to SwinV2's hierarchical design and the lack of model size scaling exploration.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or proofs, focusing instead on model design and empirical evaluation.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix details all datasets, splits, model configurations and evaluation protocols. Standard datasets are used, and code will be released upon acceptance to ensure reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in

some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All experiments use publicly available datasets as detailed in Section 4. The code and full reproducibility instructions will be released upon acceptance to ensure faithful replication of results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 4 and Appendix provide full experimental details, including dataset splits, pretraining setup, fine-tuning protocols, optimizer settings and hyperparameter ranges used for ablations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars or statistical significance tests were not reported, as experiments focus on deterministic model performance using fixed datasets and splits.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Full compute details, including GPU type, memory, and training time, will be provided in the appendix. The main paper already describes model sizes, input resolutions and FLOPs in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. The study uses only publicly available, non-human, non-PII datasets and does not involve human subjects, personal data, or sensitive information.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: While PhySwin is foundational research, it has positive potential for environmental monitoring, disaster response and agricultural management through more efficient EO analysis. No direct negative societal impacts or misuse risks are identified.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. It does not involve pretrained language models, generative models, or scraped datasets, and only uses publicly available Earth observation datasets.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and models used are publicly available and properly cited (Section 4). Standard Earth observation datasets and baseline models (e.g., SatMAE, Spectral-GPT) are credited with references to the original papers and repositories; no proprietary or scraped data were used.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces PhySwin, a new foundation model for multispectral Earth observation data. Full model documentation, including architecture details, training settings, and pretrained weights, will be provided upon release to ensure reproducibility.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. All datasets used are publicly available Earth observation data.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects or crowdsourcing and therefore did not require IRB approval.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the development of core methods or experiments. Any LLM-assisted editing was limited to writing and formatting support only.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix A: Training and Implementation Details

Compute environment. Training was conducted on two nodes equipped with 8 NVIDIA Quadro RTX 8000 GPUs (each with 48 GB memory). Mixed-precision training (AMP) was enabled throughout. Distributed training was implemented via torchrun with NCCL backend, using socket-based transport for stability. Inference evaluations were performed on a single RTX 8000 GPU and also a single NVIDIA RTX 2000 Ada GPU (8 GB VRAM).

Training configuration. We summarize the key hyperparameters in Table 7.

Table 7: Training configurations for progressive pretraining.

Parameter	Stage 1: FMoW-S2	Stage 2: BigEarthNet-S2			
Image resolution	96×96	128×128			
Epochs	200	100			
Batch size per GPU	256	256			
Total batch size	2048	2048			
Learning rate	1×10^{-4}	5×10^{-5}			
Weight decay	5×10^{-5}	5×10^{-5}			
Warmup epochs	10	5			
Scheduler	Cosine decay	Cosine decay			
Gradient clipping	$max_norm = 1.0$	$max_norm = 1.0$			
Steps per epoch	695	537			
Warmup steps	6950	2685			

Appendix B: Dataset Processing and Band Grouping

We apply a unified preprocessing pipeline across all Sentinel-2 datasets used in this work. Key preprocessing steps include band selection, normalization, and spatial resizing, detailed in Table 8. Bands B01, B09, and B10 are excluded due to their coarse 60 m resolution. All retained bands are grouped into physically coherent spectral categories for structured encoding.

Table 8: The summary of common preprocessing and dataset-specific properties.

Common Preprocessing Across All Datasets			
Normalization	Pixel values divided by 10,000		
Valid reflectance range	Clipped to $[0, 1.2]$		
Resizing method	Bicubic interpolation to fixed spatial size		
Excluded bands	B01, B09, B10 (60 m resolution)		
Retained bands	B02–B08A, B11, B12 (10 bands)		
Spectral groupings	Visible: B02, B03, B04		
	Red-Edge/NIR: B05–B08, B8A		
	SWIR: B11, B12		

Dataset-Specific Details

Dataset	Tile Size	#Tiles	Task
FMoW-S2	96×96	712,874	Pretraining & scene-level classification
BigEarthNet-S2	128×128	549,488	Pretraining & multi-label classification
OSCD	96×96	336 pairs	Change detection
SegMunich	128×128	8,430	Semantic segmentation
DynaS2	256×256	5,472 pairs	Multi-temporal change detection
EuroSAT	64×64	27,000	Land cover classification

Dataset licenses and sources.

• BigEarthNet-S2: https://bigearth.net. Licensed under the Community Data License Agreement - Permissive, Version 1.0.

- FMoW-S2: https://github.com/fMoW/dataset. Released under the Functional Map of the World Challenge Public License. Openly available for non-commercial research use.
- OSCD (Onera Satellite Change Detection): https://rcdaudt.github.io/oscd/. Publicly released for academic benchmarking; no explicit license provided.
- DynaS2 (DynamicEarthNet Sentinel-2): https://mediatum.ub.tum.de/1650201.
 Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
- EuroSAT: https://github.com/phelber/eurosat. Licensed under the MIT License.
- SegMunich: https://huggingface.co/datasets/earthflow/SegMunich. Distributed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Appendix C: Expanded Ablation Studies

All ablations in this section are conducted using the PhySwin-T model pretrained on the BigEarthNet-S2 dataset for 100 epochs. So, the reported results may slightly differ from those presented in Section 4. Evaluation is performed on three downstream tasks: SegMunich (semantic segmentation), OSCD (change detection), and EuroSAT (land cover classification).

C.1 Physics Loss Weights

Table 9: Sensitivity to physics-informed loss weights (λ, β) . Mixing ratio is fixed at 50%, and spectral grouping follows the default setting in Section 4. The best results are highlighted in **bold**.

(λ,eta)	SegMunich mIoU (%)	OSCD F1 (%)	EuroSAT OA (%)
(0.1, 0.05)	47.97	56.33	96.64
(0.25, 0.1)*	48.46	56.98	96.88
(0.5, 0.2)	48.21	57.03	96.27

C.2 Mixing Ratio Effects

Table 10: Ablation on MixMAE spatial mixing ratio. Physics-informed loss weights are fixed at $(\lambda=0.25,\beta=0.1)$, and spectral grouping follows the default setting in Section 4. The best results are highlighted in **bold**.

Mixing Ratio	SegMunich mIoU (%)	OSCD F1 (%)	EuroSAT OA (%)
50%*	48.46	56.98	96.88
67%	45.29	55.63	96.01
75%	42.97	53.61	94.79

C.3 Spectral Grouping Variants

Table 11: Performance of different spectral grouping strategies. Physics loss weights are fixed at $(\lambda=0.25,\beta=0.1)$, and the MixMAE spatial mixing ratio is fixed at 50%. Default grouping is: Visible (B02–B04), RedEdge+NIR (B05–B08A), SWIR (B11–B12). The best two results are highlighted in **bold**.

Grouping Scheme	#Groups	SegMunich mIoU (%)	OSCD F1 (%)	EuroSAT OA (%)
Visible RedEdge+NIR SWIR*	3	48.46	56.98	96.88
Visible+RedEdge NIR SWIR	3	48.37	57.41	96.04
Visible+NIR RedEdge SWIR	3	47.95	56.74	97.11
Visible+SWIR RedEdge NIR	3	47.48	55.23	96.49
Visible+SWIR RedEdge+NIR	2	46.77	54.45	96.73
Visible RedEdge NIR SWIR	4	48.24	57.20	96.07

Appendix D: Model Configurations

D.1 MixMAE Decoder Configuration

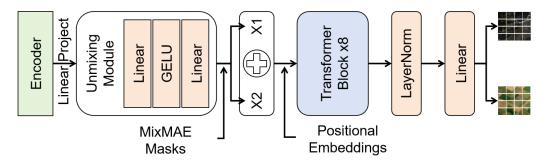


Figure 4: PhySwin Decoder Structure.

PhySwin's decoder maps the encoder's hidden states (dimension equal to the encoder's hidden size) into per-patch reconstructions via a lightweight Transformer stack, as shown in Fig. 4. Concretely, the decoder first projects hidden features into a $D_{\rm dec}=512$ –dimensional space, then applies an *unmixing module* (two linear layers with GELU nonlinearity) to disentangle mixed tokens. Two streams are built by masking/unmasking this output according to the MixMAE mask, then concatenated and summed with bicubically-interpolated 2D sine–cosine positional embeddings. This fused sequence is processed by 8 Transformer blocks, followed by LayerNorm and a final linear prediction head that emits stride $^2 \times C$ values per token (where stride = 4 and = 10 bands). All linear layers are Xavier-initialized and biases zeroed.

D.2 Downstream Plug-and-Play Heads

To ensure fair comparisons across backbones, we adopt a "plug-and-play" evaluation strategy: all models, including PhySwins and baselines, share the same task-specific head types, and only the encoder varies across models. This design isolates the effect of pretraining and encoder quality.

Table 12: Downstream task heads and objectives. UPerNet = Unified Perceptual Parsing Network; FPN = Feature Pyramid Network; MLP = multi-layer perception. All models use a frozen encoder with plug-and-play heads.

Dataset	Task	Head Type	Objectives
SegMunich	Semantic segmentation	UPerNet decoder (FPN + classifier)	Cross-entropy
DynaS2	Semantic segmentation	UPerNet decoder (FPN + classifier)	Cross-entropy
OSCD	Binary change detection	FPN + 3-layer Conv	Binary cross-entropy
DynaS2 (CD)	Semantic change detection	FPN + 3-layer Conv	Cross-entropy
FMoW-S2	Scene classification	GlobalAvgPool + LayerNorm + 3-layer MLP	Cross-entropy
EuroSAT	Scene classification	GlobalAvgPool + LayerNorm + 3-layer MLP	Cross-entropy
BigEarthNet	Multi-label classification	GlobalAvgPool + LayerNorm + 3-layer MLP + Sigmoid	Binary cross-entropy

Appendix E: Qualitative Examples

In this section, we provide additional qualitative examples for both semantic segmentation and change detection tasks. These remain highly challenging for RSFMs, and only a few of the predictions achieve acceptable accuracy. Nevertheless, PhySwin consistently delivers superior overall quality than competing methods, as seen in Figures 5, 7 and 8, and in many cases finer detail.

That said, there is still considerable room for improvement, especially on the most demanding benchmarks such as the Dyna.–S2 change detection challenge. Although PhySwin leads all SOTA

Table 13: Downstream task training configurations.

Dataset	Input Size	Batch Size	Optimizer / LR	Epochs
SegMunich	128×128	96	AdamW / 5e-4	70
DynaS2	256×256	36	AdamW / 1e-4	120
OSCD	96×96	128	AdamW / 1e-3	60
DynaS2 (CD)	96×96	64	AdamW / 5e-4	70
FMoW-S2	96×96	128	AdamW / 1e-5	100
EuroSAT	96×96	128	AdamW / 1e-3	100
BigEarthNet	128×128	96	AdamW / 5e-5	100

baselines in the quantitative metrics reported in Table 2, its combined mask visualizations in Figure 8 remain visually inconsistent. Bridging this gap between numerical performance and perceptual fidelity will be a key focus for future RSFM development.

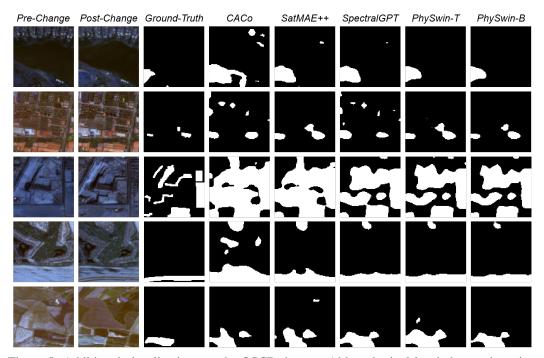


Figure 5: Additional visualizations on the OSCD dataset. Although pixel-level change detection remains challenging, PhySwin-B achieves the best performance among all baselines, producing fewer false positives.

Appendix F: Extended Results

To facilitate reproducibility and enable fair comparison with recent Earth Observation foundation models, we integrated the PhySwin encoder into the PANGAEA evaluation framework [Marsocci et al., 2024]. We include a representative subset of benchmarks for evaluation following the official training and evaluation protocols.

Segmentation and Change Detection. Table 14 summarizes results on four representative benchmarks using the PANGAEA settings. Each value represents the mean \pm standard deviation across three random seeds (42, 177, 892). PhySwin-B consistently ranks among the top two performers across Sentinel-2–exclusive datasets, demonstrating its strong balance between accuracy and efficiency. PhySwin-B achieves top-tier performance across multiple PANGAEA segmentation and change detection benchmarks, while PhySwin-T remains competitive given its smaller capacity. These results further support PhySwin's efficiency-oriented design.

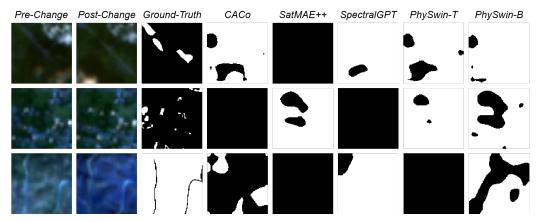


Figure 6: Additional visualizations on Dyna.-S2 change detection. This benchmark is even more challenging, and visually all RSFMs fail to produce coherent change masks. Although PhySwin-B attains the best quantitative results, these examples highlight the substantial room for improvement in RSFMs.

Table 14: PANGAEA segmentation and change detection performance (mean \pm std over three seeds).

Model	MADOS	CROPMAP	PASTIS	SEN1FLOODS11
CROMA	57.81 ± 0.34	44.17 ± 0.78	15.83 ± 0.17	87.12 ± 1.18
DOFA	64.40 ± 0.19	38.48 ± 0.53	12.58 ± 0.19	85.42 ± 0.83
PRITHVI	41.66 ± 0.70	50.60 ± 0.21	11.61 ± 0.23	87.38 ± 0.95
DINO	55.05 ± 0.82	47.93 ± 0.52	15.40 ± 0.18	86.11 ± 0.51
SatLasNet	52.80 ± 0.68	45.04 ± 0.36	13.29 ± 0.21	82.96 ± 1.57
Terramind-L	64.20 ± 1.07	49.29 ± 0.47	17.11 ± 0.90	87.45 ± 0.37
PhySwin-T	55.75 ± 0.50	44.37 ± 0.79	14.31 ± 0.14	85.93 ± 0.77
PhySwin-B	63.06 ± 0.88	51.83 ± 0.31	15.69 ± 0.25	88.30 ± 0.41

Classification and F1 Metrics. To provide a more comprehensive evaluation, we additionally report macro-F1 alongside accuracy and mean average precision (mAP) under the unified PANGAEA recipe. For EuroSAT, macro-F1 is equivalent to accuracy since the dataset is single-label and balanced. For BigEarthNet, macro-F1 is reported on the standard subset used by GeoBench (20k training and 1k testing patches). Results are shown in Table 15.

Table 15: PANGAEA classification results (mean \pm std).

Model	EuroSAT Acc	EuroSAT macro-F1	BigEarthNet mAP	BigEarthNet macro-F1
CROMA	93.13 ± 0.18	93.13 ± 0.18	72.50 ± 0.73	64.90 ± 0.65
DOFA	94.85 ± 0.28	94.85 ± 0.28	69.50 ± 0.39	62.40 ± 0.25
PRITHVI	92.66 ± 0.85	92.66 ± 0.85	64.50 ± 0.65	58.30 ± 0.58
DINO	93.41 ± 1.06	93.41 ± 1.06	68.40 ± 0.37	60.30 ± 0.60
SatLasNet	97.81 ± 0.95	97.81 ± 0.95	70.00 ± 0.70	64.80 ± 0.30
Terramind-L	94.40 ± 0.19	94.40 ± 0.19	73.70 ± 0.64	65.73 ± 0.92
PhySwin-T	96.32 ± 0.16	96.32 ± 0.16	68.20 ± 0.68	61.90 ± 0.24
PhySwin-B	98.17 ± 0.19	98.17 ± 0.19	71.60 ± 0.43	64.10 ± 0.27

The unified PANGAEA results confirm that PhySwin delivers near–state-of-the-art accuracy and F1 scores while maintaining computational efficiency. Reported values are based on our own runs for PhySwin and publicly available checkpoints for other baselines.

Ablations on Physics-Informed Losses. To isolate the contribution of the physics-informed objectives, we conducted ablation experiments covering different pretraining variants: (i) *Physics-only* (no Spectral Group Masking or refined MixMAE), (ii) *Group-only*, (iii) *Refined-MixMAE-only*, (iv) *Full configuration (all components)*, and two baselines: a SimMIM-pretrained encoder and a

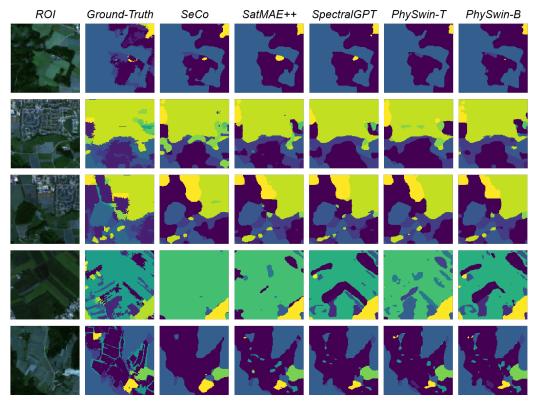


Figure 7: Additional visualizations on SegMunich semantic segmentation. While most models capture the overall scene layout, PhySwin-B more accurately delineates object boundaries and small regions, demonstrating finer detail.

randomly initialized SwinV2 trained from scratch. Each variant was trained for 15 epochs using the PhySwin-T configuration and evaluated across three random seeds (42, 177, 892) to ensure statistical reliability.

Table 16: Ablation results isolating the contribution of physics-informed losses (mean \pm std).

Variant	OSCD F1 (%)	SegMunich mIoU (%)	EuroSAT F1 (%)
Base (SimMIM)	49.31 ± 0.99	42.64 ± 0.85	92.83 ± 0.37
Physics-only	52.23 ± 0.26	44.71 ± 0.89	94.05 ± 0.94
Group-only	48.50 ± 0.49	40.22 ± 0.80	91.47 ± 1.37
Refined-MixMAE-only	49.06 ± 0.98	43.10 ± 0.86	92.61 ± 1.85
Full (with all)	52.07 ± 0.52	43.29 ± 0.43	93.73 ± 0.94
Base (scratch)	44.90 ± 0.45	40.37 ± 0.32	89.24 ± 1.34

Physics-only pretraining improves consistently over the SimMIM baseline across all tasks (+2.9 F1 on OSCD, +2.1 mIoU on SegMunich, and +1.2 F1 on EuroSAT), confirming that the physics-informed losses independently contribute to accuracy. The full configuration maintains these accuracy gains while providing the efficiency benefits of grouped embedding and refined MixMAE. Group-only and refined-MixMAE-only variants do not account for the observed improvements, indicating that the physics priors are the primary factor driving performance enhancements, while the architectural modifications mainly improve efficiency.

Physics-Informed Losses on MAE Backbones. To evaluate the generality of the proposed physics constraints beyond the Swin-based design, we further applied the same physics losses to a ViT-B backbone pretrained with standard MAE (without grouped embedding or refined MixMAE). Both

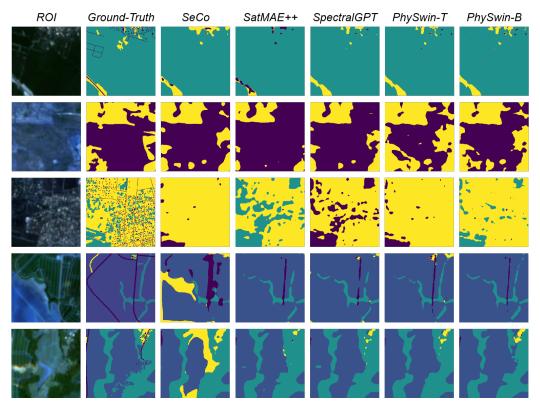


Figure 8: Additional visualizations on Dyna.-S2 semantic segmentation. Despite the overall challenge, most models capture the coarse layout. PhySwin-B presents finer details.

models were trained for 15 epochs under identical settings and evaluated on OSCD, SegMunich, and EuroSAT using the same random seeds.

Table 17: Impact of physics-informed losses on MAE pretraining (mean \pm std).

Backbone	OSCD F1 (%)	SegMunich mIoU (%)	EuroSAT F1 (%)
ViT-B MAE ViT-B MAE + Physics	50.46 ± 0.51 52.41 ± 0.52	42.00 ± 0.84 44.17 ± 0.88	$94.78 \pm 1.90 \\ 95.20 \pm 0.95$

Adding physics-informed regularization consistently improves the ViT-B MAE baseline across all tasks, demonstrating the general applicability of the proposed losses. These findings align with the results reported in the main paper, showing that the spectral-smoothness and energy-conservation constraints promote inter-band consistency and suppress out-of-range reconstructions, thereby encouraging physically plausible representations and faster adaptation during downstream fine-tuning.