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ABSTRACT

Massive training datasets are fueling the astounding progress in molecular ma-
chine learning. Since these datasets are typically generated with computational
chemistry codes which do not randomize pose, the resulting geometries are usu-
ally not randomly oriented. While cheminformaticians are well aware of this fact,
it can be a real pitfall for machine learners entering the burgeoning field of molecu-
lar machine learning. We demonstrate that molecular poses in the popular datasets
QM9, QMugs and OMol25 are indeed biased. While the fact can easily be over-
seen by visual inspection alone, we show that a simple classifier can separate
original data samples from randomly rotated ones with high accuracy. Second, we
validate empirically that neural networks can and do exploit the orientedness in
these datasets by successfully training a model on chemical property regression
using the molecular orientation as sole input. Third, we present visualizations of
all molecular orientations and confirm that chemically similar molecules tend to
have similar canonical poses. In summary, we recall and document orientational
bias in the prevalent datasets that machine learners should be aware of.

1 INTRODUCTION

Machine learning has become a well established tool for designing, discovering and studying molec-
ular systems, for instance in drug-discovery, materials science and physical chemistry. Much of the
progress in the field is enabled by the curation of large-scale datasets that provide accurate molecular
properties. Computational chemistry codes used in the underlying data generating processes usu-
ally do not generate molecular geometries in random orientations. At the same time, handling the
arbitrariness of coordinate systems by incorporating symmetries into machine learning models has
become a central theme in geometric deep learning. SO(3)-equivariant neural networks guarantee
well-defined transformation behavior under rotations. In other words, equivariant models produce
consistent predictions for inputs that differ only by rotation (or equivalently, by choice of reference
frame). Consequently, equivariant architectures are agnostic to the orientation of molecular geome-
tries in ML datasets. However, most existing equivariant architectures rely on non-standard building
blocks, such as specialized normalization layers, nonlinearities and tensor operations, which often
are computationally demanding (Passaro & Zitnick, 2023) and can be challenging to tune in prac-
tice (Abramson et al., 2024). As a consequence, while exact equivariance is desirable in principle,
softening the constraint by learning approximate symmetries or breaking built-in equivariance is a
(re-)emerging pattern in molecular machine learning (Langer et al., 2024; Eissler et al., 2025). In that
case, possible orientational bias in molecular datasets might affect machine learning workflows. In
this paper, we show that molecules in some of the most popular molecular datasets, including QM9,
QMugs and OMol25, are by default not presented in random orientations and discuss implications
for machine learning practitioners.

To date, many architectures for molecular machine learning are benchmarked on the widely used
QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), a collection of around 134,000
small organic molecules with up to nine heavy atoms. While QM9 is the gold standard for prop-
erty prediction on smaller molecules, the QMugs collection (Isert et al., 2022) comprises quantum
mechanical properties for almost 2M larger drug-like molecules of up to 100 heavy atoms extracted
from the ChEMBL database (Mendez et al., 2019). The OMol25 dataset (Levine et al., 2025) com-
bines broad chemical diversity with a high level of accuracy at an unprecedented scale (100M sys-
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Figure 1: Molecules in many popular molecular datasets (here: QM9) are not randomly ori-
ented. Structurally similar molecules are oriented similarly. 2D Visualization of normalized
principal components (PCs) of all QM9 molecules reveals a clear non-uniform structure. Orienta-
tion reference frames consist of a triplet of points in the 2D area-preserving (Mollweide) projection
(blue ∼ PC1, yellow ∼ PC2, magenta ∼ PC3). Left and right: Two groups of structurally similar
molecules that share practically the same PC-orientation (left orientation ⃝, right orientation △).

tems), comprising not only neutral organics but also biomolecules, metal complexes and electrolytes
consisting of 83 different elements.

We want to raise awareness of the fact that molecules in ML datasets are not oriented randomly
for two crucial reasons. First, non-equivariant architectures trained on these datasets must employ
explicit data augmentation; otherwise, their test performance will degrade significantly when eval-
uated on randomly oriented molecules. Second, architectures that introduce symmetry breaking
or are only approximately equivariant (Liao et al., 2024; Wang et al., 2023; Pertigkiozoglou et al.,
2024; Wang et al., 2022; Kaba & Ravanbakhsh, 2024; Lawrence et al., 2025) might artificially in-
flate their performance by exploiting the extrinsic canonicalization of molecule poses. In addition,
when molecular properties such as the ground state electron density are evaluated on a grid that is
not spherically symmetric (Brockherde et al., 2017; Bogojeski et al., 2020; Jørgensen & Bhowmik,
2022; Li et al., 2025), the canonical orientation may introduce a systematic bias in the grid orienta-
tion even when equivariant architectures are used later in the prediction.

In this paper, we make the following contributions: we demonstrate, using QM9, QMugs and
OMol25 as prominent examples, that molecules in many popular ML datasets are not randomly
oriented by training a simple classifier that distinguishes between rotated and unrotated samples
with very high accuracy. We show that the accuracy remains high even when the default atom posi-
tions are perturbed with substantial noise and random rotations up to 90◦. Further, we demonstrate
that neural networks can leverage the canonical orientation to achieve artificially high accuracy in
an extreme scenario: using only the normalized principal components of atom positions as input, we
regress molecular properties and observe performance on the three standard datasets that exceeds
the best possible accuracy expected for randomly oriented data. Lastly, we visualize the orientations
of all molecules in these datasets and show that chemically similar molecules tend to be oriented
similarly (see Fig. 1).

2 BACKGROUND AND RELATED WORK

Formally, a function φ : V → W , mapping between vector spaces V and W , is equivariant under
a group G if ρout(g)φ(x) = φ(ρin(g)x) for all g ∈ G and x ∈ V . Here, ρin, ρout are group
representations on V and W , defining how elements of the group G act on elements from the vector
spaces respectively. In diagrammatic form, equivariance means that the following commutes:

x φ(x)

x′ φ(x′)

ϕ

ρin(g) ρout(g)

ϕ

2



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2026

(a) QM9 (b) QMugs (c) OMol25 (centered)

Figure 2: Layering of 100 random molecular geometries from QM9, QMugs and OMol25
respectively. QM9 shows strong alignment of the edge adjacent to the origin with the Cartesian y-
axis (yellow). Bulges of QMugs and OMol25 molecules exhibit less structure, but are not spherically
symmetric.

Several approaches for incorporating exact SO(3)-equivariance into neural networks exist. Most
famously, tensor field networks use tensorial features in all hidden layers to maintain a well-defined
transformation behavior throughout the network (Thomas et al., 2018; Geiger & Smidt, 2022; Batatia
et al., 2022; Liao et al., 2024; Aykent & Xia, 2025). Similarly, specialized architectures exist to
use elements of the projective geometric (or Clifford) algebra to achieve Euclidean rotation and
translation equivariance (Brehmer et al., 2023; Ruhe et al., 2023). On the contrary, canonicalization
approaches avoid the need for specialized architectural building blocks and use canonical reference
frames to guarantee exact equivariance (Puny et al., 2021; Pozdnyakov & Ceriotti, 2024; Spinner
et al., 2025; Lippmann et al., 2025). Data augmentation offers a simple and practical alternative
where equivariance is learned approximately by presenting the network with randomly rotated inputs
(and targets). It is an open research question when built-in equivariance is favorable over data
augmentation and often a fair comparison is non-trivial (Brehmer et al., 2024). Some evidence
points to the superiority of non-equivariant architectures (Langer et al., 2024; Lippmann et al.,
2025), possibly due to their less limited design space.

3 INVESTIGATING ORIENTATIONS IN MOLECULAR DATASETS: METHODS,

RESULTS, AND IMPLICATIONS

Clearly, the first step that comes to mind when investigating the orientations of molecular geometries
is to visually inspect the 3D geometries for obvious alignment. Figure 2 shows 100 randomly sam-
pled molecular geometries from each dataset. For QM9 clear structure is visible. Most strikingly,
the first edge (adjacent to the origin) almost perfectly aligns with the Cartesian y-axis. The origi-
nal QM9 paper (Ramakrishnan et al., 2014) invoked the cheminormatics tool Corina (Version 3.491
2013) (Sadowski & Gasteiger, 1993) to generate 3D structures from a SMILES string representation.
The geometries were then relaxed using Kohn-Sham DFT calculations at the B3LYP/6-31G(2df,p)
level. The Corina algorithm (closed-source) most likely introduces the alignment with the y-axis,
while the subsequent geometry relaxation softens the strict alignment. For QMugs and OMol25 no
similarly distinct structure is visible regarding the orientation, but the central bulge of molecules is
clearly not spherically symmetric, hinting at a systematic orientation bias.

3.1 LEARNED DETECTION OF DEFAULT ORIENTATIONS

To validate empirically that molecules in ML datasets exhibit pose bias, we have trained a simple
message passing network to distinguish between molecules in their original (“canonical”) orientation
and ones that have been randomly rotated. If the dataset were truly orientation invariant, such a
classification task would be impossible beyond random guessing.
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Figure 3: Canonical orientations in QM9, QMugs and OMol25 are highly consistent and de-
tectable. A simple geometric message passing network accurately discerns canonical samples from
randomly rotated ones, even if the atom positions are previously perturbed and the molecule ran-
domly rotated by an angle up to α.

For each sample in the dataset1, we randomly decide whether to apply a global rotation, sampling
a rotation matrix uniformly from SO(3). To ensure that the learned detection is not just based on a
simple geometric pattern (such as a particular edge being aligned with a coordinate axis, cf. Fig. 2),
we apply Gaussian noise (with standard deviation δ up to 1 Å) to the default atomic positions as well
as random rotations up to a maximum angle α (prior to the uniformly sampled rotation that should
be detected by the network). A noise level of δ = 1 Å is quite substantial, considering that the
length of a carbon-carbon single bond is 1.5 Å, and shorter for a double or triple bond. The network
is then trained to minimize a binary cross-entropy loss, predicting whether the input molecule has
been randomly rotated or is in its (perturbed) default pose. We employ a straightforward point cloud
architecture, consisting of three layers of message passing:

f
(k+1)
i =

⊕

j∈N (i)

MLP(f
(k)
j , emb(xi − xj)), (1)

where f
(k)
i denotes the feature vector of atom i in layer k, xi its position and N (i) its neighborhood

(defined by a radial cutoff of 10 Å). This network is neither rotation equivariant, nor invariant, but
rotation dependent by design. During message passing the angular and radial part of the relative
distance vectors xi−xj are embedded using Gaussian radial basis functions. Prior to these message
passing layers, we combine a learned embedding of the neighbor geometry of every atom with an

embedding of the atom type to create the initial node features f (0). We use the same architecture for
all three datasets, see App. C for details.

The results, summarized in Fig. 3, reveal that even a simple classifier can discern random and canon-
ical poses with very test high accuracy, even when the default atom positions are substantially per-
turbed. This provides clear evidence that molecules in the considered datasets are not randomly
oriented, and that the canonical poses are highly consistent and detectable.

3.2 QUANTITATIVE ORIENTATION ANALYSIS

To systematically study the orientation of molecules in the respective datasets, we devise a map-
ping Ω from the set of molecular geometries M = {{(za, xa)}a∈A} to the set of orientations SO(3).
For each molecule, comprised of atoms A with charges za and positions xa, it outputs an orienta-
tion. Clearly, for general molecules no canonical orientation function exists. However, it is very
reasonable to require that orientations predicted for two molecules that differ just by a rotation must
be consistent. Intuitively, the orientation Ω(M) can be thought of as a coordinate frame attached to
the molecule that should rotate along when the molecule is rotated. Formally, we thus demand that
the mapping Ω : M → SO(3) is equivariant under rotations R applied to the molecular geometry:

Ω(RM) := Ω({(za, Rxa)}a∈A) = Ω({(za, xa)}a∈A)R
T = Ω(M)RT. (2)

1For all our experiments we use the QM9 dataset readily available in PytorchGeometric (Fey &
Lenssen, 2019), QMugs from https://doi.org/10.3929/ethz-b-000482129 and OMol25 avail-
able through the fairchem repository (https://github.com/facebookresearch/fairchem).
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Figure 4: Quantitative comparison of canonical orientations vs. uniform random orientations.
The empirical distribution of relative angles between all orientations in the respective dataset and the
most common reference orientation differs significantly from the same distribution for a randomly
rotated dataset and from the theoretical expectation for uniform random orientations. Histograms
for QMugs and OMol25 are based on 130,000 randomly sampled molecules.

To understand the constraint imposed by Eq. (2), we view Ω(M) ∈ SO(3) as a collection of three
row vectors ei ∈ R

3, i = 1, 2, 3, i.e. Ω(M) = (e1, e2, e3)
T. The ei are precisely the basis vectors

of the reference frame that rotates along with the molecular geometry M , i.e.

M ′ = RM → e′i = Rei or equivalently:

Ω(RM) = (Re1, Re2, Re3)
T = (e1, e2, e3)

TRT = Ω(M)RT ,

as demanded per Eq. (2). A simple such orientation function is obtained by choosing the basis
vectors ei to be the normalized principal components of the centered atom position. To account
for the fact that the sign of eigenvectors is ambiguous, we choose the sign of the first two principal
components such that they point in the direction of the largest absolute projection, that is, we orient
them to satisfy

max
a∈A

|xa · ei| = max
a∈A

xa · ei for i = 1, 2. (3)

The orientation of the third principal component e3 is fixed by the constraint that
det((e1, e2, e3)

T) = 1. While one may also use a weighted covariance matrix based on atomic
masses (yielding the same eigenvectors as the moment of inertia tensor), we opted for the simpler
unweighted version which is robust against exchange of atom types.

To compare the orientations of different molecules we define a distance measure based on the fol-
lowing fact: Any rotation can be described by a rotation axis (vectors pointing along this axis are
left invariant) and the rotation angle, specifying how much to rotate around that axis. This angle is
given by acos((tr(R) − 1)/2), see App. A. Then, for two rotations R1, R2 ∈ SO(3), we use the
rotation angle of the relative rotation matrix RT

1 R2 as a measure of distance:

θ(R1, R2) = acos

(

tr(RT
1 R2)− 1

2

)

. (4)

Intuitively, θ(R1, R2) is the angle of the rotation that changes from reference frame R1 to R2 and
vice versa. The properties of the trace imply that θ(R1, R2) = θ(R2, R1) = θ(RT

1 , R
T
2 ). If the

orientations of molecules in a dataset D were truly random, the set of all orientations would sample

SO(3) uniformly. In that case, for any given reference orientation R̃ the empirical distribution of

distances {θ(R̃,Ω(Mi)) | i ∈ D} should approximate the following distribution (see App. B):

p(θ) =
2

π
sin(θ/2)2, θ ∈ [0, π]. (5)

To characterize the deviation from this distribution, for each dataset, we propose the following: First,
we compute the full distance matrix Θij = θ(Ω(Mi),Ω(Mj)) for all Mi,Mj ∈ D. Afterwards, we

apply a 1D Gaussian kernel2 k(θ|µ, σ2) centered at θ = 0 to each entry in Θ and sum over the rows

2Given that we work with small σ, we approximate the von Mises distribution on the circle with a Gaussian
kernel.
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Table 1: Molecular property prediction from a molecule’s orientation alone. A simple MLP
trained on the canonical datasets to regress molecular properties given only normalized principal
components of atom positions as input significantly outperforms the test performance achievable
with uninformative input features (averages over 5 runs each).

Dataset Property Random orientation MSE of mean (test) MSE of MLP (test)

QM9 ϵLUMO [eV]
no 1.6355 1.4237 ± 0.0048
yes 1.6355 1.6367 ± 0.0001

QM9 ZPVE [eV]
no 0.8107 0.6204 ± 0.0011
yes 0.8107 0.8111 ± 0.0001

QM9 cV
[

cal
mol K

] no 16.169 13.814 ± 0.083
yes 16.169 16.173 ± 0.001

QMugs URT [Eh]
no 890.54 843.48 ± 0.09
yes 890.54 890.55 ± 0.02

QMugs V̂ee [Eh]
no 4,894.0 × 103 (4,596.6 ± 0.7) × 103

yes 4,894.0 × 103 (4,894.6 ± 0.2) × 103

OMol25 Etot [eV]
no 14,394.3 × 106 (13,689.1 ± 1.7) × 106

yes 14,394.3 × 106 (14,398.7 ± 0.3) × 106

(or columns) of the resulting matrix to obtain the following kernel density estimate at θ = 0:

KDE(θ = 0|Mi) =
1

|D|
∑

j∈D

k(0|Θij , σ
2) =

1

|D|
∑

j∈D

k(Θij |0, σ2), (6)

with kernel k(θ|µ, σ2) =
1√
2πσ2

exp

(

− (θ − µ)2

2σ2

)

. (7)

The most prominent orientation in the dataset is then given by

Ω(Mi∗) with i∗ = argmax
i∈D

KDE(θ = 0|Mi). (8)

Empirically, we find that Ω(Mi∗) is fairly robust against the choice of σ. Using Ω(Mi∗) as refer-
ence rotation, the distribution of relative rotation angles in row Θi∗ differs strongly from the theo-
retically expected distribution for uniformly sampled orientations given by Eq. (5), see Fig. 4. For
both QMugs and OMol25 the most common principal component directions (using σ = 0.5) in-
deed align closely with the standard Cartesian coordinate frame (e1 = (1, 0, 0)T, e2 = (0, 1, 0)T,
e3 = (0, 0, 1)T), see also Fig. 5. For QM9 the most common principal component direction is more
ambiguous (compare Figs. 1 and 5). Our analysis has identified the most common principal com-
ponent orientation in QM9 to lie around e1 = (−0.34,−0.94, 0)T, e2 = (0.94,−0.34, 0)T, e3 =
(0, 0, 1)T. All three datasets contain significantly more molecules in the most common orientation
than expected for a uniform distribution of orientations as well as significantly more orientations
that differ by a rotation of 180◦, forming the peak at θ = π. The latter likely correspond to the same
principal components, but with orientations flipped relative to the reference.

3.3 EXPLOITING THE CANONICAL ORIENTATION FOR PROPERTY PREDICTION

While our previous investigations demonstrate that molecules in QM9, QMugs and OMol25 are not
randomly oriented, it does not yet address possible impact on the performance of machine learning
models. In the following, we will investigate whether neural networks can exploit the “canonical”
orientation of molecules in typical machine learning tasks such as molecular property prediction.

We here consider an extreme scenario: Can a network learn anything about molecular proper-
ties when presented with the orientation of the molecule alone, without any information about the
molecule’s constitution or geometry? In the following, we investigate the regression performance
of a model which receives only normalized principal components of the atom positions as input fea-
tures (cf. Sec. 3.2), once in canonical pose and once after random rotation. For a fair comparison,
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Figure 5: 2D visualization of normalized principal components of all molecules in QMugs and
106 random samples from OMol25. The equal-area Mollweide projection of the three principal
axes reveals that the most common principal axes orientation aligns with the standard Cartesian
coordinate system. Orientation frames consist of a triplet of points in the 2D projection (blue ∼
PC1, yellow ∼ PC2, magenta ∼ PC3).

we here use a deterministic rotation conditioned on the molecule index so that the same sample will
be transformed with the same rotation when revisited during training. This is equivalent to using
a version of the dataset that has been rotated once prior to training. For molecules in random ori-
entations the normalized principal components do not contain any chemically relevant information.
Using MSE (mean squared error) loss, the best performance any model can achieve in this case is
by approximating the mean of the target feature, since

mean({yi}) = argmin
x

∑

i

(x− yi)
2. (9)

Therefore, if the trained model achieves a significantly better MSE on the test set than the mean
of the test targets does, the model has learned a non-trivial pattern from the normalized principal
components. This indicates that chemically similar molecules, by default, tend to have similar
orientations. The results, presented in Tab. 1, reveal precisely that. Indeed, simple MLPs trained
and tested on the canonical datasets significantly outperform the theoretically best possible results,
while models trained on the transformed datasets do not, as expected. The chemical properties used
for regression were chosen based on the amount of structure in the visualization of all molecular
orientations when using the respective features as heat map (see Sec. 3.4). This is empirical proof
that the canonical orientation alone holds information about a molecule’s properties, which could be
exploited by non-equivariant models, potentially leading to artificially inflated performance metrics
in the absence of a randomly oriented test set.

3.4 VISUALIZATION OF MOLECULAR ORIENTATIONS

To further investigate whether chemically similar molecules in molecular datasets tend to be sim-
ilarly oriented, we have devised the following visualization strategy: for every molecule M , we
compute the normalized principal components e1, e2, e3 ∈ R

3 and combine them into a rotation
matrix Ω(M) = (e1, e2, e3)

T, as described in Sec. 3.2. The e1, e2, e3 ∈ S
2 are projected using the

equal-area Mollweide projection, and are each visualized in a different color (blue ∼ PC1, yellow
∼ PC2, magenta ∼ PC3), such that an orientation frame Ω(M) consist of a triplet of orthogonal
points in the projection, see Figs. 1 and 5. Notably, using an equal-area projection, a perfectly
uniform distribution would also be perceived as uniform distribution. Contrarily, the visualizations
show a clear pattern and illustrate the previous finding (Sec. 3.2) that the most common principal
component orientation in the QMugs and OMol25 dataset aligns with the standard Cartesian co-
ordinate system. Similarly, Fig. 1 reveals the structure in all principal component orientations for
QM9. Based on the distance measure defined in Eq. (4), we have cherry-picked two groups of QM9
molecules of practically identical orientation that arguably have very similar chemical constitution
and geometry. These examples nicely illustrate that, as one of the signatures of the cheminformatics
codes used in the data generating process, chemically similar molecules tend to have similar canon-
ical orientations. In Fig. 6 we show one selected chemical property for each dataset as heat map in
the projections instead of using colors to differentiate the principal components. The three visual-
izations visibly confirm the correlation between chemical properties of molecules and their default
orientations.
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Figure 6: Default orientations of molecules are correlated with chemical properties. Plots are
colored by chemical properties in 2D projections of the three normalized principal components to
reveal substructure within the distributions. Non-equivariant architectures may exploit such correla-
tion to artificially inflate performance.

Lastly, we show that the orientation distribution in the large collection of OMol25 differ strongly
between different subsets of the dataset (subsets are based on the “data id” field of OMol25 sam-
ples), see Fig. 7. The plots demonstrate that while molecules in some subsets are visibly strongly
aligned with the standard Cartesian axes, for other subsets the distribution of orientation is (almost)
perceptually uniform (e.g. for the SPICE2 dataset (Eastman et al., 2023), Fig. 7(j)). In particular
small biases as in the Biomolecules subset (Fig. 7(i)) may be easily overlooked, highlighting the
need for random rotations even in the absence of an obvious alignment.

(a) GEOM (b) ANI-2X (c) Reactivity (d) Orbnet Denali (e) Transition-1X

(f) RGD1 (g) Metal Complexes (h) Electrolytes (i) Biomolecules (j) SPICE2

Figure 7: Visualization of molecular orientation in OMol25 subsets. Molecules in some subsets
display a strong alignment of principal components (PCs) with the standard Cartesian coordinate
system (a,b,c,d,e,f). For others, orientations are more uniformally distributed (g,h,i,j). PCs are
projected using the equal-area Mollweide projection and colored as in Fig. 5.

4 CONCLUSION

We have demonstrated in various ways that the default orientations of molecules in some of the
most popular molecular datsets (QM9, QMugs, OMol25) are far from random, and that the align-
ment of chemically similar molecules can in principle be exploited by machine learning models.
We are not aware of prior work that describes the orientation of molecules in these datasets and
believe that these orientation biases can be easily overlooked. Our experiments highlight the degree
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of orientational bias across different datasets and estimate the dominant orientations. Given that
generally agreed-upon canonical orientations do not—and probably cannot—exist, the presence of
orientational bias is not a deficit of these important community resources. However, for researchers
entering the field of molecular machine learning the assumption that molecule poses are fully ran-
dom can be a significant source of error. Based on our findings, we thus recommend the following
best practices for rigorous evaluation and development of molecular machine learning models: First,
it is essential to evaluate equivariant models on randomly oriented test sets as a sanity check for true
equivariance. This ensures that any claimed equivariant behavior is genuine and bug-free. Secondly,
for non-equivariant or only approximately equivariant models, it is crucial to use data augmentation
during training to prevent overfitting to any canonical orientations and to provide a more realistic
assessment of model generalization. It is quite likely that other data generating processes too intro-
duce preferred orientations for geometric data. Therefore, we recommend, when in doubt, to follow
the same best practices also for other geometric datasets.

At the same time, our results highlight the potential benefits of leveraging a well-defined canonical
pose, as explored in recent work (e.g. by Baker et al. (2024)). In scenarios where a meaningful
canonicalization is available and justified by the application, it can be advantageous to incorporate
this information explicitly.
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A DERIVATION OF THE ROTATION ANGLE OF A GIVEN ROTATION MATRIX

Let R ∈ SO(3) be a rotation matrix. Since R is real orthogonal, all its eigenvalues lie on the unit
circle and complex ones occur in conjugate pairs. With detR = 1, the three eigenvalues must be
{ 1, eiϕ, e−iϕ } for some φ ∈ [0, π]. Let u be a unit eigenvector with Ru = u (the rotation axis).
Now, let us extend u to an orthonormal basis {e1, e2, u} with appropriate basis vectors e1 and e2. In
this basis R leaves span{e1, e2} invariant and acts on the corresponding subspace as a 2× 2 planar
rotation by θ. Hence R is (by change of basis) orthogonally similar to

(

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)

.

Since the trace is invariant under similarity, we have

tr(R) = cos θ + cos θ + 1 = 1 + 2 cos θ, (10)

which yields the rotation angle of R

θ = arccos

(

tr(R)− 1

2

)

∈ [0, π]. (11)

Furthermore, the fact that the trace of R is also given by the sum its eigenvalues tr(R) = 1 + eiϕ +
e−iϕ = 1 + 2 cos(φ) reveals that φ = θ.

B DERIVATION OF ANGLE DISTRIBUTION FOR UNIFORMLY SAMPLED

ROTATIONS

Let R ∈ SO(3) be Haar–uniform, i.e. drawn from the unique probability measure on the rotation
group that is invariant under multiplying by any fixed rotation on the left or right. Further, we
identify each R ∈ SO(3) with a unit quaternion q = (w, v⃗) ∈ S

3 ⊂ R
4 modulo the antipodal map

q ∼ −q. The rotation angle θ ∈ [0, π] of R is related to q by

θ = 2arccos
(

|w|
)

. (12)

Further, the rotation axis n⃗ of R is related to v⃗ by n⃗ = v⃗/∥v⃗∥2. Now, if we parametrize the 3-sphere
by q = (cosχ, sinχ n⃗) with n⃗ ∈ S

2 and χ ∈ [0, π] the polar angle as measured from the “north
pole” in the w-direction, the uniform surface element on S

3 factorizes as

dσS3 = sin2 χ dχ dΩ2, (13)

where dΩ2 is the uniform measure on S
2. Since w is directly related to the rotation angle θ by

Eq. (12), we are interested in the marginal distribution of w. To get the marginal of w, we compute
the area (hence the probability mass for the uniform measure) of the “spherical band” between χ
and χ+ dχ. This area is proportional to

sin2 χ dχ = sin2 χ

∣

∣

∣

∣

dχ

dw

∣

∣

∣

∣

dw = sin2 χ
1

sinχ
dw = sinχ dw =

√

1− w2 dw, (14)

where we have used that w = cosχ and that dw = − sinχ dχ, the marginal density of w is given
by

fw(w) ∝
√

1− w2, w ∈ [−1, 1]. (15)
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Normalizing with
∫ 1

−1

√
1− w2 dw = π/2 gives

fw(w) =
2

π

√

1− w2, w ∈ [−1, 1]. (16)

Now , since q and −q represent the same rotation, let us consider the density of |w|:

f|w|(u) = 2fW (u) =
4

π

√

1− u2, u ∈ [0, 1]. (17)

Using that u = |w| = cos(θ/2) (cf. Eq. (12)) and thus du/dθ = − 1
2 sin(θ/2), the density of

θ ∈ [0, π] follows by change of variables:

p(θ) = f|w|

(

cos(θ/2)
)

∣

∣

∣

d

dθ
cos(θ/2)

∣

∣

∣

=
4

π

√

1− cos2(θ/2) · 1

2
sin(θ/2)

=
2

π
sin2

(

θ/2
)

, θ ∈ [0, π]. (18)

Hence, the principal rotation angle of a Haar–uniform R ∈ SO(3) has density p(θ) = 2
π
sin2(θ/2)

on [0, π].

C DETAILS REGARDING MODEL TRAINING AND ARCHITECTURES

Details on the message passing architecture used for the detection of default orientations. In
Sec. 3.1, we demonstrate that a simple geometric message passing network accurately discerns
canonical samples from randomly rotated ones. For the model, we employ a straightforward point
cloud architecture, consisting of three layers of message passing:

f
(k+1)
i =

⊕

j∈N (i)

MLP(f
(k)
j , emb(xi − xj)), (19)

where f
(k)
i denotes the feature vector of atom i in layer k, xi its position and N (i) its neighborhood

(defined by a radial cutoff of 10 Å). As aggregation function
⊕

j∈N (i) we use the component-

wise max operation. The input to these message passing layers consists of a learned embedding of
the neighbor geometry combined with an embedding of the atom type. More specifically, for the
radial embedding of the relative distance rij = ∥xi − xj∥ we use Bessel functions of the first kind
with 32 learnable frequencies. Similarly, we use Bessel functions with 20 learnable frequencies to
separately embed each component of the normalized relative distance vector as angular embedding.
The aggregated (summed) angular and radial embeddings from the local neighborhood are combined

with a one-hot embedding of the atom type to form the input node features f
(0)
i . During message

passing the angular and radial part of the relative distance vectors xi − xj are embedded using 64

Gaussian radial basis functions (spaced equidistantly between 0 and 10 Å). The network is then
trained to minimize a binary cross-entropy loss, predicting whether the input molecule has been
randomly rotated or is in its (perturbed) default pose. All hyperparameters are summarized in Tab. 2.

MLP used for the molecular property prediction from molecular orientations alone. In
Sec. 3.3, we demonstrate that a simple MLP receiving as input only normalized principal com-
ponents (PCs) of atom positions can successfully regress molecular properties. The MLP receives
the first two normalized PCs as input, uses SiLU activations and four hidden channels with 256 fea-
tures each. It is trained with MSE loss without weight decay. We have trained one separate model
of the same architecture for each property from the different datasets reported in Tab. 1.

Dealing with the dataset size. For QM9 we train all models for 100 epochs on the full dataset
using a train-val-test split of (11000, 10000, ∼20000). For the larger QMugs dataset we use a
train-val-test split of (80%, 10%, 10%). However, in order to keep the train time and learning rate
scheduling comparable to the one in QM9, we train all QMUGS models for 100 epochs with a
different random train subsets of size 110000 for each epoch. For the massive OMol25 dataset we
use a train-val-test split of (99,8%, 0.1%, 0.1%) and train for a total of 200 epochs again on different
random subsets of the training set of size 110000.
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LLM usage. Large Language Models (LLMs) were used in the preparation of this submission
to polish the writing regarding formulations and wording. In addition, we have used LLM based
auto-completion in the development of our research code.
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Table 2: Hyperparameters for training our simple message passing network on default orien-
tation detection.

Architecture hyperparameter

Bessel frequencies (radial) 32
Bessel frequencies (angular) 20
Num. message passing layers (Eq. (19)) 3
Aggregation operation in message passing max
Node feature dimension 512
Hidden layers in message MLP [128]
Activation function SiLU

Radial cutoff for message passing 10 Å
Hidden layers in readout MLP [512, 128, 32]

Training hyperparameter

Optimizer AdamW
Weight decay 5e-3
Learning rate 5e-4
Scheduler Cosine-LR
Epochs 200 for OMol25, 100 otherwise
Warm up epochs 5
Gradient clip 0.5
Loss function BCE-loss
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