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ABSTRACT

Massive training datasets are fueling the astounding progress in molecular ma-
chine learning. Since these datasets are typically generated with computational
chemistry codes which do not randomize pose, the resulting geometries are usu-
ally not randomly oriented. While cheminformaticians are well aware of this fact,
it can be a real pitfall for machine learners entering the burgeoning field of molecu-
lar machine learning. We demonstrate that molecular poses in the popular datasets
QM9, QMugs and OMol25 are indeed biased. While the fact can easily be over-
seen by visual inspection alone, we show that a simple classifier can separate
original data samples from randomly rotated ones with high accuracy. Second, we
validate empirically that neural networks can and do exploit the orientedness in
these datasets by successfully training a model on chemical property regression
using the molecular orientation as sole input. Third, we present visualizations of
all molecular orientations and confirm that chemically similar molecules tend to
have similar canonical poses. In summary, we recall and document orientational
bias in the prevalent datasets that machine learners should be aware of.

1 INTRODUCTION

Machine learning has become a well established tool for designing, discovering and studying molec-
ular systems, for instance in drug-discovery, materials science and physical chemistry. Much of the
progress in the field is enabled by the curation of large-scale datasets that provide accurate molecular
properties. Computational chemistry codes used in the underlying data generating processes usu-
ally do not generate molecular geometries in random orientations. At the same time, handling the
arbitrariness of coordinate systems by incorporating symmetries into machine learning models has
become a central theme in geometric deep learning. SO(3)-equivariant neural networks guarantee
well-defined transformation behavior under rotations. In other words, equivariant models produce
consistent predictions for inputs that differ only by rotation (or equivalently, by choice of reference
frame). Consequently, equivariant architectures are agnostic to the orientation of molecular geome-
tries in ML datasets. However, most existing equivariant architectures rely on non-standard build-
ing blocks, such as specialized normalization layers, nonlinearities and tensor operations, which
often are computationally demanding (Passaro & Zitnick, 2023) and can be challenging to tune
in practice (Abramson et al., 2024; Pertigkiozoglou et al., 2024; Elhag et al., 2024). As a con-
sequence, while exact equivariance is desirable in principle, softening the constraint by learning
approximate symmetries or breaking built-in equivariance is a (re-)emerging pattern in molecular
machine learning (Langer et al., 2024; Eissler et al., 2025), fueled by prominent examples such as Al-
phafold3 Abramson et al. (2024). Other recent examples include Wang et al. (2023b; 2025); Zhang
et al. (2025); Joshi et al. (2025). In that case, possible orientational bias in molecular datasets might
affect machine learning workflows. Building on and going beyond the recent work by Lawrence
et al. (2025a), we show that molecules in some of the most popular molecular datasets, including
QM9, QMugs and OMol25, are by default not presented in random orientations and discuss impli-
cations for machine learning practitioners.

To date, many architectures for molecular machine learning are benchmarked on the widely used
QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), a collection of around 134,000
small organic molecules with up to nine heavy atoms. While QM9 is the gold standard for prop-
erty prediction on smaller molecules, the QMugs collection (Isert et al., 2022) comprises quantum
mechanical properties for almost 2M larger drug-like molecules of up to 100 heavy atoms extracted
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Figure 1: Molecules in many popular molecular datasets (here: QM9) are not randomly ori-
ented. Structurally similar molecules are oriented similarly. 2D Visualization of normalized
principal components (PCs) of all QM9 molecules reveals a clear non-uniform structure. Orienta-
tion reference frames consist of a triplet of points in the 2D area-preserving (Mollweide) projection
(blue ∼ PC1, yellow ∼ PC2, magenta ∼ PC3). Left and right: Two groups of structurally similar
molecules that share practically the same PC-orientation (left orientation ⃝, right orientation △).

from the ChEMBL database (Mendez et al., 2019). The OMol25 dataset (Levine et al., 2025) com-
bines broad chemical diversity with a high level of accuracy at an unprecedented scale (100M sys-
tems), comprising not only neutral organics but also biomolecules, metal complexes and electrolytes
consisting of 83 different elements.

We want to raise awareness of the fact that molecules in ML datasets are not oriented randomly
for two crucial reasons. First, non-equivariant architectures trained on these datasets must employ
explicit data augmentation; otherwise, their test performance will degrade significantly when eval-
uated on randomly oriented molecules. Second, orientation bias may have an undesired effect on
the performance of architectures that introduce symmetry breaking or are only approximately equiv-
ariant (Wang et al., 2023b; Pertigkiozoglou et al., 2024; Kaba & Ravanbakhsh, 2024; Elhag et al.,
2024; 2025; Lawrence et al., 2025b): for instance, exploiting spurious information contained in bi-
ased orientations of molecules may artificially inflate the performance of non-equivariant models.
In addition, when molecular properties such as the ground state electron density are evaluated on a
grid that is not spherically symmetric (Brockherde et al., 2017; Bogojeski et al., 2020; Jørgensen &
Bhowmik, 2022; Li et al., 2025), the canonical orientation may introduce a systematic bias in the
grid orientation even when equivariant architectures are used later in the prediction.

In this paper, we make the following contributions: we demonstrate, using QM9, QMugs and
OMol25 as prominent examples, that molecules in many popular ML datasets are not randomly
oriented by training a simple classifier that distinguishes between rotated and unrotated samples
with very high accuracy. We show that the accuracy remains high even when the default atom posi-
tions are perturbed with substantial noise and random rotations up to 90◦. Further, we demonstrate
that neural networks can leverage the canonical orientation to achieve artificially high accuracy in
an extreme scenario: using only the normalized principal components of atom positions as input, we
regress molecular properties and observe performance on the three standard datasets that exceeds
the best possible accuracy expected for randomly oriented data. Lastly, we visualize the orientations
of all molecules in these datasets and show that chemically similar molecules tend to be oriented
similarly (see Fig. 1).

2 BACKGROUND AND RELATED WORK

Formally, a function φ : V → W , mapping between vector spaces V and W , is equivariant under
a group G if ρout(g)φ(x) = φ(ρin(g)x) for all g ∈ G and x ∈ V . Here, ρin, ρout are group
representations on V and W , defining how elements of the group G act on elements from the vector
spaces respectively. In diagrammatic form, equivariance means that the following commutes:
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x φ(x)

x′ φ(x′)

φ

ρin(g) ρout(g)

φ

Several approaches for incorporating exact SO(3)-equivariance into neural networks exist. Most
famously, tensor field networks use tensorial features in all hidden layers to maintain a well-defined
transformation behavior throughout the network (Thomas et al., 2018; Geiger & Smidt, 2022; Batatia
et al., 2022; Liao et al., 2024; Aykent & Xia, 2025). Similarly, specialized architectures exist to
use elements of the projective geometric (or Clifford) algebra to achieve Euclidean rotation and
translation equivariance (Brehmer et al., 2023; Ruhe et al., 2023). On the contrary, canonicalization
approaches avoid the need for specialized architectural building blocks and use canonical reference
frames to guarantee exact equivariance (Puny et al., 2021; Pozdnyakov & Ceriotti, 2024; Spinner
et al., 2025; Lippmann et al., 2025). Data augmentation offers a simple and practical alternative
where equivariance is learned approximately by presenting the network with randomly rotated inputs
(and targets). It is an open research question when built-in equivariance is favorable over data
augmentation and often a fair comparison is non-trivial (Brehmer et al., 2024). Some evidence
points to the superiority of non-equivariant architectures (Langer et al., 2024; Lippmann et al.,
2025), possibly due to their less limited design space.

In their recent work, Lawrence et al. (2025a) introduced the idea that orientational biases exist in
molecular datasets. While the focus of their analysis lies on the detection of orientation bias, we here
introduce a set of alternative and complementary methods to systematically study the distribution of
molecular orientations.

Relating to broken symmetries in geometric datasets, there are several systems of interest in which
symmetries are spontaneously broken, such as dynamical phase transitions (Baek et al., 2017) or
polar fluids (Gibb et al., 2024). For these tasks networks with exact, built-in equivariance might
be too constraint and functional symmetry breaking, discussed in (Wang et al., 2023a), offers a
possible solution (Wang et al., 2022). The authors of (Wang et al., 2023a) further introduced the
notion of distributional symmetry breaking. The term applies to data distributions under which a
data sample and its transformed version are not equally likely, such as particle collisions recorded in
large colliders, where the beam axis singles out a preferred direction (Favaro et al., 2025). Orienta-
tion bias in molecular datasets can be seen as another instance of distributional symmetry breaking
w.r.t. symmetry group of rotations.

2.1 RELATED WORKS THAT MAY BE AFFECTED BY ORIENTATION BIAS

As pointed out above, one subtle example where an orientation bias may easily be overlooked is
the field of charge density prediction. In the field, several standard benchmarks exist that store DFT
ground state electron densities on regular Cartesian (axis-aligned) grids as training targets (Brock-
herde et al., 2017; Bogojeski et al., 2020; Jørgensen & Bhowmik, 2022; Li et al., 2025).

We have investigated all four dataset to reveal that they are indeed highly canonicalized (see
App. E.1). The combined datasets (Brockherde et al., 2017; Bogojeski et al., 2020) contain
molecular dynamics trajectories for six different molecules (around 1000 data samples each). The
datasets (Jørgensen & Bhowmik, 2022; Li et al., 2025) both contain electron densities evaluated on
regular Cartesian grids for all QM9 molecules. The two datasets differ in the DFT software used to
calculate the reference electron density: VASP in (Jørgensen & Bhowmik, 2022) and PySCF in (Li
et al., 2025). However, both datasets use the standard QM9 dataset which exhibits orientation bias
(cf. Fig. 1). Since the volumetric grids are not spherically symmetric, the evaluation of the loss
function is not rotationally-invariant which may introduce a systematic bias even when equivariant
architectures are used later in the prediction. We can think of two scenarios in which such biases
may lead to problems: a) when practitioners deploy trained models, e.g. in MD simulations, they
will (most likely) not rotate the simulated molecules in a preferred orientation, which possibly de-
creases the performance of the model. And b) when studying extrapolation capabilities of trained
models, e.g. for larger molecules, the generalization to new datasets may be hindered by orientation
biases in the two datasets.

Furthermore, as mentioned previously, using non-equivariant architectures for (equivariant) molec-
ular tasks has emerged as a recent but growing trend. Some of the proposed architectures do not use
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(a) QM9 (b) QMugs (c) OMol25 (centered)

Figure 2: Layering of 100 random molecular geometries from QM9, QMugs and OMol25
respectively. QM9 shows strong alignment of the edge adjacent to the origin with the Cartesian y-
axis (yellow). Bulges of QMugs and OMol25 molecules exhibit less structure, but are not spherically
symmetric.

explicit data augmentation, making them susceptible to orientation biases in molecular datasets: For
instance, the authors of (Pertigkiozoglou et al., 2024) relax the equivariance constraint in the inter-
mediate layers of networks during training by introducing an additional non-equivariant term that is
progressively constrained until one arrives at a fully equivariant solution. Therefore, orientation bias
in the used datasets (e.g. in MD17, see Fig. 10) could have an undesired effect on the optimization
trajectory of such networks. The authors of (Elhag et al., 2024; 2025) present machine learned inter-
atomic potentials (MLIPs) trained to learn rotational equivariance approximately by minimizing an
additional loss. The MLIPs are trained on OMol25 and the MD17 dataset, which can both be shown
to exhibit strong orientation bias (cf. Fig 5b and 10) that may influence the training and evaluation
of these models. Motivated by the “bitter lesson” Sutton (2019), the conformer generation model
presented in (Wang et al., 2023b) is based on an efficient and scalable diffusion model that oper-
ates directly on 3D atom positions without enforcing rotational equivariance. The authors conduct
experiments on QM9 and the strongly aligned GEOM dataset (cf. Fig. 7a). Notably, the authors
stumble across the fact that randomly rotating their training set prior to training negatively impacts
their performance and hypothesize that the reason may be that “DFT simulations used to generate
the data might be implicitly encoding a canonical coordinate system, which affects generalization if
broken” (Wang et al., 2023b) (p. 8).

3 INVESTIGATING ORIENTATIONS IN MOLECULAR DATASETS: METHODS,
RESULTS, AND IMPLICATIONS

Clearly, the first step that comes to mind when investigating the orientations of molecular geometries
is to visually inspect the 3D geometries for obvious alignment. Figure 2 shows 100 randomly sam-
pled molecular geometries from each dataset. For QM9 clear structure is visible. Most strikingly,
the first edge (adjacent to the origin) almost perfectly aligns with the Cartesian y-axis. The origi-
nal QM9 paper (Ramakrishnan et al., 2014) invoked the cheminformatics tool Corina (Version 3.491
2013) (Sadowski & Gasteiger, 1993) to generate 3D structures from a SMILES string representation.
The geometries were then relaxed using Kohn-Sham DFT calculations at the B3LYP/6-31G(2df,p)
level. The Corina algorithm (closed-source) most likely introduces the alignment with the y-axis,
while the subsequent geometry relaxation softens the strict alignment. For QMugs and OMol25 no
similarly distinct structure is visible regarding the orientation, but the central bulge of molecules is
clearly not spherically symmetric, hinting at a systematic orientation bias.
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(c) OMol25

Figure 3: Canonical orientations in QM9, QMugs and OMol25 are highly consistent and de-
tectable. A simple geometric message passing network accurately discerns canonical samples from
randomly rotated ones, even if the atom positions are previously perturbed and the molecule ran-
domly rotated by an angle up to α.

3.1 LEARNED DETECTION OF DEFAULT ORIENTATIONS

To validate empirically that molecules in ML datasets exhibit pose bias, we have trained a simple
message passing network to distinguish between molecules in their original (“canonical”) orienta-
tion and ones that have been randomly rotated. If the dataset were truly orientation invariant, such
a classification task would be impossible beyond random guessing. This test is known in the liter-
ature as classifier two-sample test (Lopez-Paz & Oquab, 2017) and has previously been applied to
molecular datasets by Lawrence et al. (2025a).

For each sample in the dataset1, we randomly decide whether to apply a global rotation, sampling
a rotation matrix uniformly from SO(3). To ensure that the learned detection is not just based on a
simple geometric pattern (such as a particular edge being aligned with a coordinate axis, cf. Fig. 2),
we apply Gaussian noise (with standard deviation δ up to 1 Å) to the default atomic positions as well
as random rotations up to a maximum angle α (prior to the uniformly sampled rotation that should
be detected by the network). A noise level of δ = 1 Å is quite substantial, considering that the
length of a carbon-carbon single bond is 1.5 Å, and shorter for a double or triple bond. The network
is then trained to minimize a binary cross-entropy loss, predicting whether the input molecule has
been randomly rotated or is in its (perturbed) default pose. We employ a straightforward point cloud
architecture, consisting of three layers of message passing:

f
(k+1)
i =

⊕
j∈N (i)

MLP(f
(k)
j , emb(xi − xj)), (1)

where f (k)i denotes the feature vector of atom i in layer k, xi its position and N (i) its neighborhood
(defined by a radial cutoff of 10 Å). This network is neither rotation equivariant, nor invariant, but
rotation dependent by design. During message passing the angular and radial part of the relative
distance vectors xi−xj are embedded using Gaussian radial basis functions. Prior to these message
passing layers, we combine a learned embedding of the neighbor geometry of every atom with an
embedding of the atom type to create the initial node features f (0). We use the same architecture for
all three datasets, see App. D for details.

The results, summarized in Fig. 3, reveal that even a simple classifier can discern random and canon-
ical poses with very test high accuracy, even when the default atom positions are substantially per-
turbed. This provides clear evidence that molecules in the considered datasets are not randomly
oriented, and that the canonical poses are highly consistent and detectable.

3.2 QUANTITATIVE ORIENTATION ANALYSIS

To systematically study the orientation of molecules in the respective datasets, we devise a map-
ping Ω from the set of molecular geometries M = {{(za, xa)}a∈A} to the set of orientations SO(3).

1For all our experiments we use the QM9 dataset readily available in PytorchGeometric (Fey &
Lenssen, 2019), QMugs from https://doi.org/10.3929/ethz-b-000482129 and OMol25 avail-
able through the fairchem repository (https://github.com/facebookresearch/fairchem).
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For each molecule, comprised of atoms A with charges za and positions xa, it outputs an orienta-
tion. Clearly, for general molecules no canonical orientation function exists. However, it is very
reasonable to require that orientations predicted for two molecules that differ just by a rotation must
be consistent. Intuitively, the orientation Ω(M) can be thought of as a coordinate frame attached to
the molecule that should rotate along when the molecule is rotated. Formally, we thus demand that
the mapping Ω : M → SO(3) is equivariant under rotations R applied to the molecular geometry:

Ω(RM) := Ω({(za, Rxa)}a∈A) = Ω({(za, xa)}a∈A)R
T = Ω(M)RT. (2)

To understand the constraint imposed by Eq. (2), we view Ω(M) ∈ SO(3) as a collection of three
row vectors ei ∈ R3, i = 1, 2, 3, i.e. Ω(M) = (e1, e2, e3)

T. The ei are precisely the basis vectors
of the reference frame that rotates along with the molecular geometry M , i.e.

M ′ = RM → e′i = Rei or equivalently:

Ω(RM) = (Re1, Re2, Re3)
T = (e1, e2, e3)

TRT = Ω(M)RT ,

as demanded per Eq. (2). A simple such orientation function is obtained by choosing the basis
vectors ei to be the normalized principal components of the centered atom position. To account
for the fact that the sign of eigenvectors is ambiguous, we choose the sign of the first two principal
components such that they point in the direction of the largest absolute projection, that is, we orient
them to satisfy

max
a∈A

|xa · ei| = max
a∈A

xa · ei for i = 1, 2. (3)

The orientation of the third principal component e3 is fixed by the constraint that
det((e1, e2, e3)

T) = 1. While one may also use a weighted covariance matrix based on atomic
masses (yielding the same eigenvectors as the moment of inertia tensor), we opted for the simpler
unweighted version which is robust against exchange of atom types.

To compare the orientations of different molecules we define a distance measure based on the fol-
lowing fact: Any rotation can be described by a rotation axis (vectors pointing along this axis are
left invariant) and the rotation angle, specifying how much to rotate around that axis. This angle is
given by acos((tr(R) − 1)/2), see App. A. Then, for two rotations R1, R2 ∈ SO(3), we use the
rotation angle of the relative rotation matrix RT

1 R2 as a measure of distance:

θ(R1, R2) = acos

(
tr(RT

1 R2)− 1

2

)
. (4)

Intuitively, θ(R1, R2) is the angle of the rotation that changes from reference frame R1 to R2 and
vice versa. The properties of the trace imply that θ(R1, R2) = θ(R2, R1) = θ(RT

1 , R
T
2 ). If the

orientations of molecules in a dataset D were truly random, the set of all orientations would sample
SO(3) uniformly. In that case, for any given reference orientation R̃ the empirical distribution of
distances {θ(R̃,Ω(Mi)) | i ∈ D} should approximate the following distribution (see App. B):

p(θ) =
2

π
sin(θ/2)2, θ ∈ [0, π]. (5)

To characterize the deviation from this distribution, for each dataset, we propose the following: First,
we compute the full distance matrix Θij = θ(Ω(Mi),Ω(Mj)) for all Mi,Mj ∈ D. Afterwards, we
apply a 1D Gaussian kernel2 k(θ|µ, σ2) centered at θ = 0 to each entry in Θ and sum over the rows
(or columns) of the resulting matrix to obtain the following kernel density estimate at θ = 0:

KDE(θ = 0|Mi) =
1

|D|
∑
j∈D

k(0|Θij , σ
2) =

1

|D|
∑
j∈D

k(Θij |0, σ2), (6)

with kernel k(θ|µ, σ2) =
1√
2πσ2

exp

(
− (θ − µ)2

2σ2

)
. (7)

The most prominent orientation in the dataset is then given by

Ω(Mi∗) with i∗ = argmax
i∈D

KDE(θ = 0|Mi). (8)

2Given that we work with small σ, we approximate the von Mises distribution on the circle with a Gaussian
kernel.
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Figure 4: Quantitative comparison of canonical orientations vs. uniform random orientations.
The empirical distribution of relative angles between all orientations in the respective dataset and the
most common reference orientation differs significantly from the same distribution for a randomly
rotated dataset and from the theoretical expectation for uniform random orientations. Histograms
for QMugs and OMol25 are based on 130,000 randomly sampled molecules.

Empirically, we find that Ω(Mi∗) is fairly robust against the choice of σ. Using Ω(Mi∗) as refer-
ence rotation, the distribution of relative rotation angles in row Θi∗ differs strongly from the theo-
retically expected distribution for uniformly sampled orientations given by Eq. (5), see Fig. 4. For
both QMugs and OMol25 the most common principal component directions (using σ = 0.5) in-
deed align closely with the standard Cartesian coordinate frame (e1 = (1, 0, 0)T, e2 = (0, 1, 0)T,
e3 = (0, 0, 1)T), see also Fig. 5. For QM9 the most common principal component direction is more
ambiguous (compare Figs. 1 and 5). Our analysis has identified the most common principal com-
ponent orientation in QM9 to lie around e1 = (−0.34,−0.94, 0)T, e2 = (0.94,−0.34, 0)T, e3 =
(0, 0, 1)T. All three datasets contain significantly more molecules in the most common orientation
than expected for a uniform distribution of orientations as well as significantly more orientations
that differ by a rotation of 180◦, forming the peak at θ = π. The latter likely correspond to the same
principal components, but with orientations flipped relative to the reference.

Measuring the non-uniformity of orientations in a single number. To quantify the deviation of
the empirical distribution of orientations (described by rotation matrices) from the uniform distri-
bution (Haar measure) on SO(3), we estimate the Kullback-Leibler (KL) divergence between the
empirical sample distribution and the uniform reference distribution. As an empirical estimator we
employ a version of the classical Kozachenko-Leonenko estimator (Kozachenko, 1987) adapted to
the curved domain of SO(3) (see App. C for details). Our estimated KL divergences align very
well with the visual impressions from the Mollweide plots: We obtain estimates of 0.90 for the
QM9 dataset, 1.76 for QMugs (from 130k samples), and 1.04 for OMol25 (from 130k samples).
A higher number indicates a stronger non-uniformity of orientations in the dataset. Furthermore,
sorting the OMol25 subsets by this non-uniformity measure yields a visually convincing ordering
(see Fig. 7). Alternative statistical tests for quantifying distributional symmetry are based on ker-
nel methods, such as maximum mean discrepancy (MMD), which base their estimates on empirical
means over distances between individual samples Chiu & Bloem-Reddy (2023); Soleymani et al.
(2025); Lawrence et al. (2025a).

3.3 EXPLOITING THE CANONICAL ORIENTATION FOR PROPERTY PREDICTION

While our previous investigations demonstrate that molecules in QM9, QMugs and OMol25 are not
randomly oriented, it does not yet address possible impact on the performance of machine learning
models. In the following, we will investigate whether neural networks can exploit the “canonical”
orientation of molecules in typical machine learning tasks such as molecular property prediction.

We here consider an extreme scenario: Can a network learn anything about molecular proper-
ties when presented with the orientation of the molecule alone, without any information about the
molecule’s constitution or geometry? In the following, we investigate the regression performance
of a model which receives only normalized principal components of the atom positions as input fea-
tures (cf. Sec. 3.2), once in canonical pose and once after random rotation. For a fair comparison,
we here use a deterministic rotation conditioned on the molecule index so that the same sample will
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Table 1: Molecular property prediction from a molecule’s orientation alone. A simple MLP
trained on the canonical datasets to regress molecular properties given only normalized principal
components of atom positions as input significantly outperforms the test performance achievable
with uninformative input features (averages over 5 runs each).

Dataset Property Random orientation MSE of mean (test) MSE of MLP (test)

QM9 ϵLUMO [eV]
no 1.6355 1.4237 ± 0.0048
yes 1.6355 1.6367 ± 0.0001

QM9 ZPVE [eV]
no 0.8107 0.6204 ± 0.0011
yes 0.8107 0.8111 ± 0.0001

QM9 cV
[

cal
mol K

] no 16.169 13.814 ± 0.083
yes 16.169 16.173 ± 0.001

QMugs URT [Eh]
no 890.54 843.48 ± 0.09
yes 890.54 890.55 ± 0.02

QMugs V̂ee [Eh]
no 4,894.0 × 103 (4,596.6 ± 0.7) × 103

yes 4,894.0 × 103 (4,894.6 ± 0.2) × 103

OMol25 Etot [eV]
no 14,394.3 × 106 (13,689.1 ± 1.7) × 106

yes 14,394.3 × 106 (14,398.7 ± 0.3) × 106

be transformed with the same rotation when revisited during training. This is equivalent to using a
version of the dataset in which each molecule has been rotated once prior to training. For molecules
in random orientations the normalized principal components do not contain any chemically relevant
information. Using MSE (mean squared error) loss, the best performance any model can achieve in
this case is by approximating the mean of the target feature, since

mean({yi}) = argmin
x

∑
i

(x− yi)
2. (9)

Therefore, if the trained model achieves a significantly better MSE on the test set than the mean
of the test targets does, the model has learned a non-trivial pattern from the normalized principal
components. This indicates that chemically similar molecules, by default, tend to have similar
orientations. The results, presented in Tab. 1, reveal precisely that. Indeed, simple MLPs trained
and tested on the canonical datasets significantly outperform the theoretically best possible results,
while models trained on the transformed datasets do not, as expected. The chemical properties used
for regression were chosen based on the amount of structure in the visualization of all molecular
orientations when using the respective features as heat map (see Sec. 3.4).

This is empirical proof that neural networks may learn an unphysical pattern by mapping the canon-
ical orientation alone to the chemical properties of these benchmarks. In that case, the spurious
information contained in the biased orientations could be exploited by non-equivariant models, po-
tentially leading to artificially inflated performance metrics in the absence of a randomly oriented
test set. In an additional experiment we have studied to which degree a (non-equivariant) transformer
architecture trained on property prediction can be influenced by the orientation bias in the selected
datasets (see. App. E.5 for details).

3.4 VISUALIZATION OF MOLECULAR ORIENTATIONS

To further investigate whether chemically similar molecules in molecular datasets tend to be sim-
ilarly oriented, we have devised the following visualization strategy: for every molecule M , we
compute the normalized principal components e1, e2, e3 ∈ R3 and combine them into a rotation
matrix Ω(M) = (e1, e2, e3)

T, as described in Sec. 3.2. The e1, e2, e3 ∈ S2 are projected using the
equal-area Mollweide projection, and are each visualized in a different color (blue ∼ PC1, yellow
∼ PC2, magenta ∼ PC3), such that an orientation frame Ω(M) consist of a triplet of orthogonal
points in the projection, see Figs. 1 and 5. Notably, using an equal-area projection, a perfectly
uniform distribution would also be perceived as uniform distribution. Contrarily, the visualizations
show a clear pattern and illustrate the previous finding (Sec. 3.2) that the most common principal
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(a) QMugs
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(b) OMol25

Figure 5: 2D visualization of normalized principal components of all molecules in QMugs and
106 random samples from OMol25. The equal-area Mollweide projection of the three principal
axes reveals that the most common principal axes orientation aligns with the standard Cartesian
coordinate system. Orientation frames consist of a triplet of points in the 2D projection (blue ∼
PC1, yellow ∼ PC2, magenta ∼ PC3).
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Figure 6: Default orientations of molecules are correlated with chemical properties. Plots are
colored by chemical properties in 2D projections of the three normalized principal components to
reveal substructure within the distributions. Non-equivariant architectures may exploit such correla-
tion to artificially inflate performance.

component orientation in the QMugs and OMol25 dataset aligns with the standard Cartesian co-
ordinate system. Similarly, Fig. 1 reveals the structure in all principal component orientations for
QM9. Based on the distance measure defined in Eq. (4), we have cherry-picked two groups of QM9
molecules of practically identical orientation that arguably have very similar chemical constitution
and geometry. These examples nicely illustrate that, as one of the signatures of the cheminformatics
codes used in the data generating process, chemically similar molecules tend to have similar canon-
ical orientations. In Fig. 6 we show one selected chemical property for each dataset as heat map in
the projections instead of using colors to differentiate the principal components. The three visual-
izations visibly confirm the correlation between chemical properties of molecules and their default
orientations.

Lastly, we show that the orientation distribution in the large collection of OMol25 differ strongly
between different subsets of the dataset (subsets are based on the “data id” field of OMol25 sam-
ples), see Fig. 7. The plots demonstrate that while molecules in some subsets are visibly strongly
aligned with the standard Cartesian axes, for other subsets the distribution of orientation is (almost)
perceptually uniform (e.g. for the SPICE2 dataset (Eastman et al., 2023), Fig. 7(j)). In particular
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small biases as in the Biomolecules subset (Fig. 7(i)) may be easily overlooked, highlighting the
need for random rotations even in the absence of an obvious alignment.

(a) GEOM
(5.613)

(b) ANI-2X
(4.328)

(c) Reactivity
(1.992)

(d) Transition-1X
(1.861)

(e) Orbnet Denali
(1.656)

(f) RGD1
(1.046)

(g) Metal
Complexes (0.243)

(h) Electrolytes
(0.152)

(i) Biomolecules
(0.070)

(j) SPICE2
(0.005)

Figure 7: Visualization of molecular orientation in OMol25 subsets. Molecules in some subsets
display a strong alignment of principal components (PCs) with the standard Cartesian coordinate
system (a,b,c,d,e,f). For others, orientations are more uniformally distributed (g,h,i,j), as indicated
by the estimated KL-divergence to the uniform distribution over rotations (in brackets, see App. C).
PCs are projected using the equal-area Mollweide projection and colored as in Fig. 5.

4 CONCLUSION

We demonstrate in various ways that the default orientations of molecules in some of the most pop-
ular molecular datasets (QM9, QMugs, OMol25) are far from random, and that the alignment of
chemically similar molecules can in principle be exploited by machine learning models. Extending
the work by Lawrence et al. (2025a), this paper presents a systematic analysis of orientations in
the selected datasets. We introduce an interpretable visualization method to jointly plot all molecu-
lar orientations. We summarize the distribution of orientations by pairwise distances to identify the
most common poses and quantify the degree of orientational bias. In addition, we highlight different
scenarios in which ML pipelines may be affected by orientation bias. Given that generally agreed-
upon canonical orientations do not—and probably cannot—exist, the presence of orientational bias
is not a deficit of these important community resources. However, for researchers entering the field
of molecular machine learning the assumption that molecule poses are fully random can be a sig-
nificant source of error. Based on our findings, we thus recommend the following best practices for
rigorous evaluation and development of molecular machine learning models: First, it is essential to
report equivariance errors for equivariant models, and as a sanity check evaluate equivariant models
on randomly oriented test sets. This ensures that any claimed equivariant behavior is genuine and
bug-free. Secondly, for non-equivariant or only approximately equivariant models, it is crucial to
use data augmentation during training to prevent overfitting to any canonical orientations and to pro-
vide a more realistic assessment of model generalization. It is quite likely that other data generating
processes too introduce preferred orientations for geometric data. Therefore, we recommend, when
in doubt, to follow the same best practices also for other geometric datasets.

At the same time, our results highlight the potential benefits of leveraging a well-defined canonical
pose, as explored in recent work (e.g. by Baker et al. (2024)). In scenarios where a meaningful
canonicalization is available and justified by the application, it can be advantageous to incorporate
this information explicitly.
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A DERIVATION OF THE ROTATION ANGLE OF A GIVEN ROTATION MATRIX

Let R ∈ SO(3) be a rotation matrix. Since R is real orthogonal, all its eigenvalues lie on the unit
circle and complex ones occur in conjugate pairs. With detR = 1, the three eigenvalues must be
{ 1, eiφ, e−iφ } for some φ ∈ [0, π]. Let u be a unit eigenvector with Ru = u (the rotation axis).
Now, let us extend u to an orthonormal basis {e1, e2, u} with appropriate basis vectors e1 and e2. In
this basis R leaves span{e1, e2} invariant and acts on the corresponding subspace as a 2× 2 planar
rotation by θ. Hence R is (by change of basis) orthogonally similar to(

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
.

Since the trace is invariant under similarity, we have

tr(R) = cos θ + cos θ + 1 = 1 + 2 cos θ, (10)

which yields the rotation angle of R

θ = arccos

(
tr(R)− 1

2

)
∈ [0, π]. (11)

Furthermore, the fact that the trace of R is also given by the sum its eigenvalues tr(R) = 1 + eiφ +
e−iφ = 1 + 2 cos(φ) reveals that φ = θ.

B DERIVATION OF ANGLE DISTRIBUTION FOR UNIFORMLY SAMPLED
ROTATIONS

Let R ∈ SO(3) be Haar–uniform, i.e. drawn from the unique probability measure on the rotation
group that is invariant under multiplying by any fixed rotation on the left or right. Further, we
identify each R ∈ SO(3) with a unit quaternion q = (w, v⃗) ∈ S3 ⊂ R4 modulo the antipodal map
q ∼ −q. The rotation angle θ ∈ [0, π] of R is related to q by

θ = 2arccos
(
|w|
)
. (12)

Further, the rotation axis n⃗ of R is related to v⃗ by n⃗ = v⃗/∥v⃗∥2. Now, if we parametrize the 3-sphere
by q = (cosχ, sinχ n⃗) with n⃗ ∈ S2 and χ ∈ [0, π] the polar angle as measured from the “north
pole” in the w-direction, the uniform surface element on S3 factorizes as

dσS3 = sin2 χdχdΩ2, (13)

where dΩ2 is the uniform measure on S2. Since w is directly related to the rotation angle θ by
Eq. (12), we are interested in the marginal distribution of w. To get the marginal of w, we compute
the area (hence the probability mass for the uniform measure) of the “spherical band” between χ
and χ+ dχ. This area is proportional to

sin2 χdχ = sin2 χ

∣∣∣∣ dχdw
∣∣∣∣dw = sin2 χ

1

sinχ
dw = sinχdw =

√
1− w2 dw, (14)

where we have used that w = cosχ and that dw = − sinχdχ, the marginal density of w is given
by

fw(w) ∝
√
1− w2, w ∈ [−1, 1]. (15)

Normalizing with
∫ 1

−1

√
1− w2 dw = π/2 gives

fw(w) =
2

π

√
1− w2, w ∈ [−1, 1]. (16)

Now , since q and −q represent the same rotation, let us consider the density of |w|:

f|w|(u) = 2fW (u) =
4

π

√
1− u2, u ∈ [0, 1]. (17)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Using that u = |w| = cos(θ/2) (cf. Eq. (12)) and thus du/dθ = − 1
2 sin(θ/2), the density of

θ ∈ [0, π] follows by change of variables:

p(θ) = f|w|
(
cos(θ/2)

) ∣∣∣ d
dθ

cos(θ/2)
∣∣∣

=
4

π

√
1− cos2(θ/2) · 1

2
sin(θ/2)

=
2

π
sin2

(
θ/2
)
, θ ∈ [0, π]. (18)

Hence, the principal rotation angle of a Haar–uniform R ∈ SO(3) has density p(θ) = 2
π sin2(θ/2)

on [0, π].

C MEASURING THE NON-UNIFORMITY OF ORIENTATIONS IN A SINGLE
NUMBER

To quantify the deviation of the empirical distribution of orientations (described by rotation matrices)
from the uniform distribution (Haar measure) on SO(3), we estimate the Kullback-Leibler (KL)
divergence between the empirical sample distribution, denoted by P , and the uniform reference
distribution U .

Given that SO(3) is a compact manifold with finite volume, the KL divergence can be expressed
solely in terms of the differential entropy H(P ):

DKL(P∥U) = log(8π2)−H(P ), (19)

where 8π2 is the total volume of SO(3) under the standard bi-invariant metric, and H(P ) is the
geometric differential entropy. A KL divergence of 0 indicates perfect uniformity, while higher
values indicate clustering or anisotropy in the rotational distribution.

To estimate H(P ) from a finite set of samples {Ri}Ni=1, we employ a non-parametric k-Nearest
Neighbor (k-NN) estimator. We follow the manifold-corrected approach described by Singh &
Póczos (2016); Heinz & Grubmüller (2019), which extends the classical Kozachenko-Leonenko es-
timator (Kozachenko, 1987) to the curved geometry of the rotation group. Unlike standard Euclidean
estimators for Rd which assume that local volumes scale as rd, this method explicitly corrects for
the manifold’s curvature by using the exact volume of a geodesic ball on SO(3). The estimator is
defined as:

Ĥ(P ) = ψ(N)− ψ(k) +
1

N

N∑
i=1

log (V (θik)) , (20)

where ψ is the digamma function (defined as the logarithmic derivative of the gamma function).
Further,N is the number of samples, k is the number of neighbors (set to k = 5 for all experiments),
θik is the geodesic distance from sample Ri to its k-th nearest neighbor and V (θik) is the volume of
a geodesic ball with radius θik.

The geodesic distance θij between two rotation matrices Ri and Rj is defined as the angle of the
relative rotation (as in Eq. (4))

θij := θ(Ri, Rj) = arccos

(
Tr(RT

i Rj)− 1

2

)
, θ ∈ [0, π]. (21)

Crucially, the volume V (θ) of a geodesic ball with radius θ on SO(3) deviates from the Euclidean
approximation ( 43πθ

3) due to the positive curvature of the manifold. We utilize the exact volume
formula derived from the integration of the Haar measure (Chirikjian, 2011):

V (θ) = 8π(θ − sin θ). (22)

Substituting Eq. (22) into Eq. (20) yields a statistically consistent, coordinate-free estimate of the
entropy.
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Figure 8: Estimated Non-Uniformity of pose distributions of OMol25 subsets. Estimates are
based on 19000 samples from each subset. The estimates imply an ordering that is compatible with
the visual impressions the distributions in Fig. 7.

D DETAILS REGARDING MODEL TRAINING AND ARCHITECTURES

Details on the message passing architecture used for the detection of default orientations. In
Sec. 3.1, we demonstrate that a simple geometric message passing network accurately discerns
canonical samples from randomly rotated ones. For the model, we employ a straightforward point
cloud architecture, consisting of three layers of message passing:

f
(k+1)
i =

⊕
j∈N (i)

MLP(f
(k)
j , emb(xi − xj)), (23)

where f (k)i denotes the feature vector of atom i in layer k, xi its position and N (i) its neighborhood
(defined by a radial cutoff of 10 Å). As aggregation function

⊕
j∈N (i) we use the component-

wise max operation. The input to these message passing layers consists of a learned embedding of
the neighbor geometry combined with an embedding of the atom type. More specifically, for the
radial embedding of the relative distance rij = ∥xi − xj∥ we use Bessel functions of the first kind
with 32 learnable frequencies. Similarly, we use Bessel functions with 20 learnable frequencies to
separately embed each component of the normalized relative distance vector as angular embedding.
The aggregated (summed) angular and radial embeddings from the local neighborhood are combined
with a one-hot embedding of the atom type to form the input node features f (0)i . During message
passing the angular and radial part of the relative distance vectors xi − xj are embedded using 64
Gaussian radial basis functions (spaced equidistantly between 0 and 10 Å). The network is then
trained to minimize a binary cross-entropy loss, predicting whether the input molecule has been
randomly rotated or is in its (perturbed) default pose. All hyperparameters are summarized in Tab. 2.

MLP used for the molecular property prediction from molecular orientations alone. In
Sec. 3.3, we demonstrate that a simple MLP receiving as input only normalized principal com-
ponents (PCs) of atom positions can successfully regress molecular properties. The MLP receives
the first two normalized PCs as input, uses SiLU activations and four hidden channels with 256 fea-
tures each. It is trained with MSE loss without weight decay. We have trained one separate model
of the same architecture for each property from the different datasets reported in Tab. 1.

Dealing with the dataset size. For QM9 we train all models for 100 epochs on the full dataset
using a train-val-test split of (11000, 10000, ∼20000). For the larger QMugs dataset we use a
train-val-test split of (80%, 10%, 10%). However, in order to keep the train time and learning rate
scheduling comparable to the one in QM9, we train all QMUGS models for 100 epochs with a
different random train subsets of size 110000 for each epoch. For the massive OMol25 dataset we
use a train-val-test split of (99,8%, 0.1%, 0.1%) and train for a total of 200 epochs again on different
random subsets of the training set of size 110000.
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Table 2: Hyperparameters for training our simple message passing network on default orien-
tation detection.

Architecture hyperparameter
Bessel frequencies (radial) 32
Bessel frequencies (angular) 20
Num. message passing layers (Eq. (23)) 3
Aggregation operation in message passing max
Node feature dimension 512
Hidden layers in message MLP [128]
Activation function SiLU
Radial cutoff for message passing 10 Å
Hidden layers in readout MLP [512, 128, 32]

Training hyperparameter

Optimizer AdamW
Weight decay 5e-3
Learning rate 5e-4
Scheduler Cosine-LR
Epochs 200 for OMol25, 100 otherwise
Warm up epochs 5
Gradient clip 0.5
Loss function BCE-loss

E ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

E.1 INVESTIGATING ORIENTATION BIAS IN ADDITIONAL DATASETS

As mentioned in Sec. 2.1, one subtle example where an orientation bias may easily be overlooked is
the field of charge density prediction. In the field, several standard benchmarks exist that store DFT
ground state electron densities on regular Cartesian (axis-aligned) grids as training targets (Brock-
herde et al., 2017; Bogojeski et al., 2020; Jørgensen & Bhowmik, 2022; Li et al., 2025). For the
combined MD dataset Brockherde et al. (2017); Bogojeski et al. (2020), we visualize the distribu-
tion of orientations (as given by the principal components, cf. Sec. 3.2) in a Mollweide projection
(Sec. 3.4) in Fig. 9. Additionally, we show the empirical distribution of relative angles between all
orientations in the respective dataset and the most common orientation (described in Sec. 3.2).

The two other datasets also contain electron densities stored on regular Cartesian (axis-aligned)
grids. They are both based on the standard QM9 datasets, which we have shown to exhibit strong
orientation bias. Indeed, we could confirm that the molecular orientations are exactly the same as
for the QM9 dataset presented in the main text.

Since several of the recently proposed approaches for relaxed equivariance train models on the
molecular dynamics dataset rMD17 (Christensen & Von Lilienfeld, 2020), we have decided to
incorporate it in our analysis (complementing the prior work by Lawrence et al. (2025a)). Fig-
ure 10 shows the plots equivalent to those described above for MD17. We have used the
rMD17 dataset available via https://figshare.com/articles/dataset/Revised_
MD17_dataset_rMD17_/12672038?file=24013628. In particular, for the subsets of the
rMD17 molecular dynamics dataset, it is surprising that the orientation distributions are qualitatively
so different, given that all subsets should be generated in a comparable way.
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Figure 9: Mollweide projections of all molecular orientations (given by principal components) and
distribution of relative rotation angles (relative to the most common orientation) for the MD electron
density datasets of (Brockherde et al., 2017; Bogojeski et al., 2020), containing between 1000 and
2000 conformations for each molecule.
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(c) Uracil (rMD17)
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(d) Malonaldehyde (rMD17)
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(e) Toluene (rMD17)
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(h) Salicylic acid (rMD17)
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(j) Paracetamol (rMD17)

Figure 10: Mollweide projections of all molecular orientations (given by principal components)
and distribution of relative rotation angles (relative to the most common orientation) for the rMD17
dataset (Christensen & Von Lilienfeld, 2020), containing 100,000 conformations for each molecule.
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Figure 11: Much smaller versions of the simple geometric message passing network can still accu-
rately discern canonical samples from randomly rotated ones, even when atom positions are previ-
ously randomly rotated by an angle up to α. For each angle α we train a separate model. The 1-layer
“pico” models only have 238 trainable parameters.

E.2 DETECTING ORIENTATION BIAS WITH EVER SMALLER MESSAGE PASSING MODELS

The results presented in Fig. 3 show that a simple geometric message passing network can accurately
discern canonical samples from randomly rotated ones. It is an interesting and relevant question to
study the effect that shrinking the network size has on the classifier’s accuracy. Reducing the number
of trainable parameters lowers the train times and hardware requirements for probing a dataset for
orientation bias. To that end, we have conducted an ablation study on QM9 by training a 2-layer
and 1-layer message passing model. Both models still accurately discern the canonical dataset from
a randomly rotated one (see Fig. 11). Further, we have drastically reduced the number of learnable
parameters on the 1-layer network from 642,000 to a “tiny” version with 25,000, to a “nano” version
with 2350, and to a “pico” version with only 238 trainable parameters. Very surprisingly, even the
smallest versions only sacrifices a bit of accuracy but still adequately detects the orientation biases
in all three datasets (see Fig. 11). This result seems to illustrate the remarkable inductive bias in the
geometric message passing network and suggests that in practice the classifier test in Sec. 3.1 may
be performed with a much smaller network.

E.3 ADDITIONAL PROPERTY PREDICTION FROM A MOLECULE’S ORIENTATION ALONE

In Tab. 1 we have demonstrated, for a selection of molecular properties, that a simple MLP that
is trained on property prediction on the canonical datasets and ingests only normalized principal
components can significantly outperform the test performance achievable with uninformative in-
put features. We have now additionally trained one separate MLP model to regress each (scalar)
molecular property in the QM9 and QMugs dataset based solely on the principal components of
the molecular geometries. In Tab. 3 and 4 we report the mean squared error (MSE) that the MLP
achieves when trained on the standard datasets and on randomly rotated versions of them. We
compare the MSE against the optimal test performance achievable for uninformative input features
(as in Tab. 1). For (almost) all properties we find that the MLPs trained on the standard datasets
achieve a significantly lower MSE than the mean of the test set. For several properties the rela-
tive improvements are comparable to those of the selected properties shown in Tab. 1. The im-
provement relative to the MSE of the mean of the test set is shown in percent and computed as
(MSE(model)−MSE(test mean))/MSE(test mean). Since the standard deviations in Tab. 1 are
comparatively small, we have conducted only one training for each property in this case.

E.4 TRAINING AN MLP CLASSIFIER TO DISCERN ORIENTATIONS DIRECTLY

The results presented in Fig. 3 and 11 show that a simple geometric message passing network can
accurately discern canonical samples from randomly rotated ones. The trained message passing
networks receive as input the molecular geometry comprised of the atomic coordinates and the atom
types. Since the distribution of orientations (given by the principal components) e.g. in Fig. 1 are
far from uniform and contain non-trivial pattens, it is an interesting question how well a classifier
can detect orientation bias from the principal eigenvectors directly. For that, we have trained vanilla
MLPs ingesting only the molecule’s orientation (in the form of the principal components) to predict
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Table 3: Molecular property prediction on QM9 from a molecule’s orientation alone. A sim-
ple MLP trained on the canonical datasets to regress molecular properties given only normalized
principal components of atom positions as input outperforms the test performance achievable with
uninformative input features on all properties. Shown in percent is the improvement of the MLP
relative to the test mean.

Property MSE of MLP (w/ rot.) MSE of mean (test) MSE of MLP (w/o rot.)

µ [Debye] 2.35 (0.11%) 2.35 2.24 (-4.84%)
α [Bohr3] 66.40 (0.02%) 66.38 63.54 (-4.29%)
ϵHOMO [eV] 0.37 (0.02%) 0.36 0.34 (-8.20%)
ϵLUMO [eV] 1.64 (0.08%) 1.64 1.42 (-12.88%)
Egap [eV] 1.66 (0.10%) 1.66 1.40 (-15.72%)
⟨R2⟩ [Bohr2] 75589.49 (0.02%) 75573.68 67985.68 (-10.04%)
EZPVE [eV] 0.81 (0.10%) 0.81 0.62 (-23.09%)
U0 [eV] 1234359.12 (-0.01%) 1234518.12 1209677.25 (-2.01%)
U [eV] 1234698.00 (0.02%) 1234504.12 1209264.88 (-2.04%)
H [eV] 1234502.12 (-0.00%) 1234504.38 1209401.00 (-2.03%)
G [eV] 1234789.88 (0.02%) 1234547.75 1210481.62 (-1.95%)
Cv [cal mol−1 K−1] 16.17 (0.02%) 16.17 13.79 (-14.71%)
Uatom
0 [eV] 106.79 (0.05%) 106.73 87.31 (-18.20%)

Uatom [eV] 108.68 (0.04%) 108.64 88.33 (-18.69%)
Hatom [eV] 110.23 (0.04%) 110.18 89.26 (-18.99%)
Gatom [eV] 90.41 (0.03%) 90.39 73.87 (-18.28%)
A [GHz] 10.18 (0.02%) 10.18 9.81 (-3.58%)
B [GHz] 8.20 (0.01%) 8.20 8.16 (-0.43%)
C [GHz] 3.56 (0.01%) 3.56 3.54 (-0.46%)

Table 4: Molecular property prediction on QMugs from a molecule’s orientation alone. A
simple MLP trained on the canonical datasets to regress molecular properties given only normalized
principal components of atom positions as input outperforms the test performance achievable with
uninformative input features on most properties. Shown in percent is the improvement of the MLP
relative to the test mean.

Property MSE of MLP (w/ rot.) MSE of mean (test) MSE of MLP (w/o rot.)

GFN2:TOTAL ENERGY 890.55 (0.01%) 890.48 843.62 (-5.26%)
GFN2:ATOMIC ENERGY 653.21 (0.01%) 653.17 618.43 (-5.32%)
GFN2:FORMATION ENERGY 19.69 (0.01%) 19.69 18.76 (-4.72%)
GFN2:TOTAL ENTHALPY 880.71 (0.01%) 880.66 834.10 (-5.29%)
GFN2:TOTAL FREE ENERGY 882.03 (0.01%) 881.91 835.28 (-5.29%)
GFN2:HOMO ENERGY 0.0003285 (0.0031%) 0.0003285 0.0003285 (-0.0013%)
GFN2:LUMO ENERGY 0.0007593 (0.0068%) 0.0007593 0.0007592 (-0.0034%)
GFN2:HOMO LUMO GAP 0.0007008 (0.0038%) 0.0007007 0.0007006 (-0.0178%)
GFN2:FERMI LEVEL 0.0003687 (0.0099%) 0.0003687 0.0003687 (0.0004%)
GFN2:DISPERSION COEFFICIENT MOLECULAR 1035579456 (0.02%) 1035421632 997401536 (-3.67%)
GFN2:POLARIZABILITY MOLECULAR 8677.71 (0.01%) 8677.08 8224.04 (-5.22%)
DFT:TOTAL ENERGY 618583 (0.01%) 618508 603139 (-2.48%)
DFT:ATOMIC ENERGY 616063 (0.00%) 616037 600839 (-2.47%)
DFT:FORMATION ENERGY 11.37 (0.01%) 11.37 10.85 (-4.59%)
DFT:XC ENERGY 2287.17 (0.01%) 2287.04 2169.66 (-5.13%)
DFT:NUCLEAR REPULSION ENERGY 3938205 (0.01%) 3937772 3695442 (-6.15%)
DFT:ONE ELECTRON ENERGY 22159716 (0.01%) 22157832 20835828 (-5.97%)
DFT:TWO ELECTRON ENERGY 4894430 (0.01%) 4894038 4595915 (-6.09%)
DFT:HOMO ENERGY 0.0003445 (0.0074%) 0.0003445 0.0003438 (-0.2061%)
DFT:LUMO ENERGY 0.0007075 (0.0054%) 0.0007075 0.0007056 (-0.2714%)
DFT:HOMO LUMO GAP 0.0009014 (0.0055%) 0.0009013 0.0008966 (-0.5185%)
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whether the PCs come from a previously rotated molecular geometry or not. Conceptually, this test
is similar to our non-parametric uniformity test (discussed in Sec. 3.2 and App. C). Indeed, the MLP
classifier can still distinguish well between samples from the two distributions (as shown in Fig. 12).
However, since the principal components arguably contain fewer cues about a molecule’s orientation
than the full geometry, it seems plausible that the classifier is overall less accurate than the message
passing network. For instance, in some cases the canoncial orientation may also be detectable from
the orientation of local substructure in the molecule – information which is not contained in the PCs.
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Figure 12: A vanilla MLPs ingesting only the molecule’s orientation (in the form of the principal
components) can still predict whether the PCs come from a previously rotated molecular geome-
try or not (dataset: QM9). Similar to the experiments presented in Fig. 3 and 11 the canonical
orientations where previously randomly rotated by an angle up to α to examine the robustness of
the detection. Overall, the MLP performs worse than a geometric message passing network which
receives the molecular geometry as input. The reason for that may simply be that the molecular
geometry contains more cues about the exact orientation of a molecule.

E.5 STUDYING THE EMPIRICAL EFFECT OF ORIENTATION BIAS ON NNS

Beyond the experiments reported in Tab. 1, 3 and 4, it is an interesting but involved research question
to study which type of architectures and on which tasks (e.g. prediction of scalar quantities vs. tenso-
rial quantities) are how strongly affected by orientational bias. As a first step, we have implemented
an adaptation of the Graphormer architecture (Ying et al., 2021) to study the effect of orientation bias
on a typical transformer model. Indeed, despite its simplicity, the Graphormer is still actively used
in molecular ML Zhang et al. (2024); Remme et al. (2025). Our adaptation uses a geometric embed-
ding similar to the one used for the message passing network (cf. App. D), followed by 4 Graphormer
layers (32 heads, 512 channels) in which a radial (and optionally an angular) embedding are used
as offsets on the attention weights. By default, the Graphormer is rotationally-invariant and only
uses radial embeddings of relative positions in the attention mechanism. However, for comparison,
we optionally modify the architecture to further ingest a simple angular embedding of the normal-
ized relative distance vectors xi−xj

∥xi−xj∥ . Importantly, this naive radial embedding breaks the exact
invariance of the architecture. We have trained the invariant and non-invariant version of this model
on molecular property prediction using a) the canonical QM9 and QMugs dataset and b) dataset
versions in which orientations were previously randomized (see Tab. 5). All models were trained
with L1-loss for 100 epochs (learning rate: 5 × 10−4 and weight decay 5 × 10−3). As molecular
properties we have chosen the ZVPE for QM9 and the DFT:NUCLEAR REPULSION ENERGY
for QMugs, since these showed the strongest relative improvements in Tab. 3 and 4 respectively.

As expected, in all cases, we find that the non-equivariant models trained on the canonical data
strongly rely on the alignment of orientations. When evaluating these models on the datasets with
randomized orientations the error metrics (mean absolute error and mean squared error) increase
significantly. For the QMugs property, it seems that the orientation-randomized and thus more varied
version of the data help the model to learn more informative patterns (comparable to the effect of
data augmentation). Here, the model trained on randomized data achieves a better performance than
the model trained on canonicalized data, even when evaluating on canonicalized data. However,
highlighted in bold (QM9, MSE) we see a scenario in which the opposite is the case and the model
trained on canonicalized data also outperforms the model trained on randomized orientations. This
is the critical case, in which a non-equivariant model leverages the orientation bias in the dataset
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to artificially inflate its performance. Further, we find that for both properties (except in the MAE
metric for the QM9 property) the fully-invariant model performs best. A toy example in which
the canonicalization should show a strong effect is the regression of the first principal component,
given the molecular geometry as input (see Tab. 5c). Indeed, in this scenario, the non-equivariant
Graphormer trained on the canonical dataset leverages the orientation bias in the canonical dataset
to outperform the same model trained on randomized orientations. This experiment is intended to
serve as a proxy for the prediction of vectorial quantities (such as the dipol moment) which could be
highly correlated with the orientation of a molecule.

All in all, it is very reasonable to assume that the effect of the orientation bias on model performance
strongly varies depending on the architecture, the dataset size and the nature of the molecular target.

(a) Regression of ZVPE [eV] on QM9

train
test MAE canonical MAE randomized MSE canonical MSE randomized

canonical 0.0049 0.0051 0.000045 0.000048
randomized 0.0031 0.0031 0.000062 0.000062

invariant model 0.0036 0.0036 0.000027 0.000027

(b) Regression of DFT:NUCLEAR REPULSION ENERGY [Eh] on QMugs

train
test MAE canonical MAE randomized MSE canonical MSE randomized

canonical 107.2 150.8 77127 111421.054688
randomized 85.7 85.8 66544 66800

invariant model 63.6 63.6 51237 51237

(c) Regression of PC1 on QMugs

train
test MAE canonical MAE randomized MSE canonical MSE randomized

canonical 0.3556 0.6296 0.3442 0.6190
randomized 0.3569 0.3565 0.3604 0.3597

Table 5: Invariant and non-invariant Graphormer adaptations trained and evaluated on molecular
property prediction with and without canonicalized molecular orientations.

LLM usage. Large Language Models (LLMs) were used in the preparation of this submission
to polish the writing regarding formulations and wording. In addition, we have used LLM based
auto-completion in the development of our research code.
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Figure 13: Combined Mollweide projections of all molecular orientations (give by principal compo-
nents) and molecular properties. Each orientation consist of a triplet of points in the 2D projection.
In the top row, the triplets are plotted jointly (blue ∼ PC1, yellow ∼ PC2, magenta ∼ PC3). The
plots below show the distribution of each PC separately colored by chemical properties. The sub-
structure reveals the correlation between canoncial orientations and chemical properties.

F ADDITIONAL MATERIAL TO BE INCLUDED IN THE NEXT REVISION

F.1 COMBINED VISUALIZATION OF MOLECULAR ORIENTATIONS AND MOLECULAR
PROPERTIES

Figure 13 combines the visualizations of all molecular orientations with the visualizations in which
orientations are colored by molecular properties to reveal correlation between the two.

F.2 KOLMOGOROV–SMIRNOV TEST FOR NON-UNIFORMITY OF ORIENTATIONS

In Sec. 3.2, we describe how to characterize the distribution of all orientations in a molecular dataset
in terms of all pairwise distances between the associated rotation matrices. The quadratic distance
matrix Θij ∈ Rn×n (for n orientations) holds the geodesic distance between any two orientations
Ri, Rj ∈ SO(3) given by the rotation angle of the relative rotation (cf. Eq. (4)):

Θij = θ(Ri, Rj) = acos

(
tr(RT

1 R2)− 1

2

)
. (24)

Each row (or column) of Θij may be interpreted as samples from the empirical marginal “radial”
distribution of the full distribution of orientations relative to the respective reference orientation.

Furthermore, we show in App. B that, given a sample from the Haar-uniform distribution on SO(3),
the distribution of distances relative to any reference orientation should approximate

p(θ) =
2

π
sin(θ/2)2, θ ∈ [0, π]. (25)

We can therefore compare the each empirical distribution of distances (given by a row of Θij) to
the expected marginal of the uniform distribution to quantify the deviation from SO(3)-uniformity.
Since the radial distance distributions are 1D, it is straightforward to compute their empirical cu-
mulative distribution functions (CDFs) and compare them in a (one-sample) Kolmogorov–Smirnov
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(KS) test against the known theoretical reference given by

F (θ) =

∫ θ

0

2

π
sin(θ′/2)2dθ′ =

1

π
(θ − sin(θ)), θ ∈ [0, π]. (26)

The empirical CDF F̃i of the i-th row of Θ is given by

F̃i(θ) =
number of entries in Θi,: with Θij < θ

n
=

1

n

n∑
j=1

1[0,θ](Θij), (27)

where 1[0,θ](Θij) is the indicator function, equal to 1 if Θij ≤ θ and equal to 0 otherwise.

The Kolmogorov–Smirnov test statistic is then given by

Di = sup
θ

|F̃i(θ)− F (θ)|. (28)

In Sec. 3.2 we describe how to obtain an estimate for the most common pose in a dataset using a
kernel density estimate. We plot the distance distribution relative to the most common orientation
and compare it against the reference distribution (Fig. 4). Here, we want to leverage the Di from
all empirical CDFs to obtain an estimate that is not sensitive to a selected reference orientation. A
natural way to combine all Di is the average:

D =
1

n

n∑
i

Di. (29)

Higher values for D indicate a larger discrepancy from the uniform distribution. We have applied
this test to the subsets of the OMol25 dataset (as is done in Fig. 7 for the KL divergence). The
ranking obtained from both methods is consistent, except for one transposition in the ordering of the
“Metal complexes” and the “Electrolytes” subset (cf. Fig. 14), whose relative ordering is arguably
also difficult to judge visually (Fig. 7g,h).

For the KS test, it is standard procedure to determine the significance of the test in terms of p-
values, e.g. from scipy.stats.kstest. In our case, the null hypothesis is that a sample is
distributed according to the reference distribution, and hence for p-values below the threshold of
0.05 the null hypothesis can be rejected and we can say with statistical significance that the sample
is not uniformly distributed. We have tested the significance of the non-uniformity in the OMol25
subsets in the following way: first, we split each subset (we use 19,000 samples) in two halves, (a)
and (b). With split (a) we determine an independent estimate of the most common orientation in
the subset (as described in Sec. 3.2). Secondly, we compare the distribution of distances in split
(b) relative to the determined reference orientation via a single (one-sample) KS-test and determine
the p-value. The independence of the reference orientation is important to not artificially bias the
KS-test towards a non-uniform distribution. The p-values and KS test statistics for each subset are
shown in Tab. 6.

In App. F.3, we test the robustness of the Kolmogorov–Smirnov test presented here and the empirical
estimate of the KL divergence presented in App. C across different sample sizes.

F.3 ROBUSTNESS OF SO(3)-UNIFORMITY TESTS

In App. F.2 we describe a Kolmogorov–Smirnov (KS) test to quantify the (non-)uniformity of
molecular orientations. This method provides an alternative for the KL divergence presented as
(non-)uniformity measure in App. C. For that, we have subdivided ∼ 130,000 samples from each
dataset (QM9, QMugs, OMol25, uniformly sampled rotations) into k (between 4 and 50) disjoint
sets for various sizes n and computed the KL divergences and KS test statistics on each subset. Box
plots that illustrate the spread and biases for the different dataset sizes are shown in Fig. 15.

The KS test statistic seems to be a bit more robust, i.e. converges faster to a stable value with growing
subset size. The reason that the QM9 dataset shows the strongest variation of the datasets is most
likely due to the fact the the orientation distribution has substructure (non-uniformity) on a finer
resolution which can only be resolved with sufficiently large sample size.
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Figure 14: Comparison of estimated non-uniformity of orientation distributions of OMol25
subsets. Estimates (KL divergence and KS test statistic) are based on 19000 samples from each
subset. The estimates imply an ordering that is compatible with the visual impressions the distribu-
tions in Fig. 7.

Table 6: Significance of non-uniformity in OMol25 subsets. Standard orientations in all but the
SPICE subset differ significantly from the uniform distribution of rotations.

Data Subset KS Statistic p-value
geom orca6 0.5325 0.0000e+00
ani2x 0.4106 0.0000e+00
reactivity 0.3010 0.0000e+00
trans1x 0.2162 0.0000e+00
rgd 0.2158 0.0000e+00
orbnet denali 0.1711 1.2694e-243
elytes 0.0641 2.1944e-34
metal complexes 0.0406 5.1420e-14
biomolecules 0.0183 3.4879e-03
spice 0.0078 6.0437e-01
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Figure 15: Robustness of KL divergence and Kolmogorov–Smirnov (KS) test as measure of
(non-)uniformity for the orientations in selected molecular datasets. Higher values indicate a larger
discrepancy to the Haar-uniform distribution on SO(3).
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