
Under review as a conference paper at ICLR 2024

E-MCTS: DEEP EXPLORATION BY PLANNING WITH
EPISTEMIC UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep model-based reinforcement learning (MBRL) is responsible for many of
the greatest achievements of reinforcement learning. At the core of two of the
approaches responsible for those successes, Alpha/MuZero, is a modified version
of the Monte-Carlo Tree Search (MCTS) planning algorithm, replacing compo-
nents of MCTS with learned models (of value and/or environment dynamics).
Dedicated deep exploration, however, is a remaining challenge of Alpha/MuZero
and by extension MCTS-based methods with learned models. To overcome this
challenge, we develop Epistemic-MCTS. E-MCTS extends MCTS with estimation
and propagation of epistemic uncertainty, and leverages the propagated uncertainty
for a novel deep exploration algorithm by explicitly planning to explore. We incor-
porate E-MCTS into variations of MCTS-based MBRL approaches with learned
(MuZero) and provided (AlphaZero) dynamics models. We compare E-MCTS
to non-planning based deep-exploration baselines and demonstrate that E-MCTS
significantly outperforms them in the investigated deep exploration benchmark.

1 INTRODUCTION

Deep model-based reinforcement learning (MBRL) has shown tremendous achievements in recent
years, from super-human performance in games (Silver et al., 2018; Schrittwieser et al., 2020),
through outperforming human designers in tasks that previously relied on intricate human engineering
(Mandhane et al., 2022), to the design of novel algorithms (Mankowitz et al., 2023; Fawzi et al., 2022).
At the heart of two of the best-performing MBRL approaches, Alpha/MuZero (Silver et al., 2018;
Schrittwieser et al., 2020, responsible among others for the successes listed above) is the Monte-Carlo
Tree Search (MCTS) planning algorithm. A remaining challenge in MCTS-based MBRL algorithms
(that extends to Alpha/MuZero) is dedicated deep exploration. Deep exploration refers to the ability
to find interesting states or state-actions, irrespective of how far away they are from the current
state of the agent. This provides the agent with the means to spend its environment-interaction
resources efficiently to gather new information and is critical in sparse-reward domains, providing up
to exponential increases in sample efficiency Osband et al. (2016).

Standard approaches for deep exploration in reinforcement learning (RL) rely on estimates of
epistemic uncertainty to direct the agent to unexplored areas of the state-action space (Osband
et al., 2013; 2018; Bellemare et al., 2016; O’Donoghue et al., 2018). In line with existing literature
(Hüllermeier & Waegeman, 2021) we define epistemic uncertainty as uncertainty that is reducible
with additional observations. Note that this is different from uncertainty that is reducible with
more planning (computation), as in classic MCTS, where the agent plans ahead using only rollouts
of the true dynamics and does therefore not require exploration in the environment, only in the
model. AlphaZero (Silver et al., 2018) replaces those rollouts with value and policy estimates, which
are learned with neural networks and require sufficient exploration of the state-action space to be
accurate. MuZero (Schrittwieser et al., 2020) additionally learns the transition and reward models
from interactions, allowing it to solve model-free environments, but also increasing the demand
for exploration to observe promising rewards in the environment. Our objective is to incorporate
epistemic uncertainty into MCTS with learned value/dynamics models both to enable native deep
exploration with MCTS-based algorithms, as well as to harness the strengths of MCTS for exploration,
in the same way they are harnessed for exploitation.

In this work, we develop methodology to 1) incorporate epistemic uncertainty into MCTS, enabling
agents to estimate the epistemic uncertainty associated with predictions at the root of the MCTS

1

Under review as a conference paper at ICLR 2024

planning tree (Epistemic-MCTS) and 2) leverage the uncertainty for deep exploration that capitalizes
on the strengths of planning, by modifying the MCTS objective to an exploratory objective. We
evaluate our agent on the benchmark hard-exploration task Deep Sea (Osband et al., 2020) against
exploration baselines that do not leverage planning with uncertainty. In our experiments, our agent
demonstrates deep exploration that significantly outperforms both naive and deep exploration base-
lines. The remainder of this paper is organized as follows: Section 2 provides relevant background
for MBRL, MCTS and epistemic uncertainty estimation in deep RL. Section 3 describes our contribu-
tions, starting with distinguishing between epistemic and non-epistemic sources in MCTS, followed
by the framework for uncertainty propagation in MCTS (E-MCTS), our approach for harnessing
E-MCTS to achieve deep exploration and finally a discussion regarding the challenges and limitations
in estimating epistemic uncertainty in planning with an abstracted, learned model of the environment.
Section 4 discusses related work. Section 5 evaluates our method with different dynamics models
against a hard-exploration benchmark and compares to standard exploration baselines. Finally,
Section 6 concludes the paper and discusses future work.

2 BACKGROUND

In RL, an agent learns a behavior policy π(a|s) through interactions with an environment, by
observing states (or observations), executing actions and receiving rewards. The environment
is represented by a Markov Decision Process (MDP, Bellman, 1957), or a partially-observable
MDP (POMDP, Åström, 1965). An MDPM is a tuple: M = ⟨S,A, ρ, P,R⟩, where S is a set
of states, A a set of actions, ρ the initial state distribution, R : S × A × S → R a bounded
reward function, and P : S × A × S → [0, 1] is a transition function, where P (st+1|st, at)
specifies the probability of transitioning from state st to state st+1 after executing action at at
time t. In a POMDP M′ = ⟨S,A, ρ, P,R,Ω, O⟩, the agent observes observations ot ∈ Ω. O :
S × A × Ω→ [0, 1] specifies the probability O(o|st, at) of observing o. In MBRL the agent uses
a model of the environment to optimize its policy, often through planning. The model is either
learned from interactions, or provided. In Deep MBRL (DMBRL) the agent utilizes deep neural
networks as function approximators. Many RL approaches rely on learning a state-action Q-value
function Qπ(s, a) = E[R(s, a, s′) + γV π(s′)| s′∼P (·|s,a)] or the corresponding state value function
V π(s) = E[Qπ(s, a)| a∼π(·|s)], which represents the expected return from starting in state s (and
possibly action a) and then following a policy π(at|st) which specifies the probability of selecting
the action at in state st. The discount factor 0 < γ < 1 is used in infinite-horizon (PO)MDPs to
guarantee that the values remain bounded, and is commonly used in RL for learning stability.

2.1 MONTE CARLO TREE SEARCH

MCTS is a planning algorithm that constructs a planning tree with the current state st at its root
to estimate the objective: argmaxa maxπ Q

π(st, a). The algorithm iteratively performs trajectory
selection, expansion, simulation and backup to arrive at better estimates at the root of the tree. At
each planning step i, starting from the root node sit,0 ≡ ŝ0, the algorithm selects a trajectory in the
existing tree based on the averaged returns q(ŝk, a) experienced in past trajectories selecting the
action a in the same node ŝk, and a search heuristic, such as an Upper Confidence Bound for Trees
(UCT, Kocsis & Szepesvári, 2006):

ak = argmax
a∈A

q(ŝk, a) + C
√

2 log(
∑

a′N(ŝk,a′))

N(ŝk,a)
, (1)

where N(ŝk, a) denotes the number of times action a has been executed in node ŝk, and C > 0 trades
off exploration of new nodes with maximizing observed return. When the the trajectory selection
arrives at a leaf node ŝT MCTS expands the node and estimates its initial value as the average of
Monte-Carlo rollouts using a random policy. Recent DMBRL algorithms that use MCTS such as
Alpha/MuZero (Silver et al., 2016; 2017; 2018; Schrittwieser et al., 2020) replace the rollouts with
a value function v(ŝT) that is approximated by a neural network and use the PUCT (Rosin, 2011)
search heuristic instead of UCT:

ak = argmax
a∈A

q(ŝk, a) + π(a|ŝk)C
√∑

a′N(ŝk,a′)

1+N(ŝk,a)
. (2)

Where π(a|ŝk) is either given, or learned by imitating the MCTS policy πMCTS, to incorporate prior
knowledge into the search. MCTS propagates the return (discounted reward for visited nodes plus

2

Under review as a conference paper at ICLR 2024

leaf’s value) back along the planning trajectory. At the root of the tree, the optimal value maxπ V
π(st)

of current state st is estimated based on the averaged returns experienced through every action a, and
averaged over the actions:

max
π

V π(st) ≈
∑
a∈A

N(ŝ0,a)∑
a′∈A N(ŝ0,a′) q(ŝ0, a) =:

∑
a∈A

πMCTS(a|st) q(ŝ0, a) =: vMCTS
t . (3)

2.2 MCTS-BASED MODEL BASED REINFORCEMENT LEARNING

MCTS requires access to three core functions. Those are: (i) a representation function g(st) = ŝ0 ∈ Ŝ
that encodes the current state at the root of the tree into a latent space, in which (ii) a transition
function f(ŝk, ak) = ŝk+1 predicts the next latent state and (iii) a function r(ŝk, ak) = E[rk|ŝk, ak]
that predicts the corresponding average reward. Such models in an latent state space Ŝ ̸= S do
not have to distinguish between different true states s, s′ ∈ S, i.e., g(s) = g(s′), s ̸= s′, if such a
distinction does not benefit value and reward prediction, and are commonly called value-equivalent
or abstracted models. Note that for an identity function g(st) = st all models, functions and policies
would be defined in the true state space S , and that in a POMDP g can encode the current observation
ot or the entire action-observation history ⟨o0, a0, o1, a1, . . . , ot⟩. As in Mu/AlphaZero (Schrittwieser
et al., 2020; Silver et al., 2018), a value function v(ŝT) can be learned for replacing rollouts, and a
policy function π(a|ŝk) imitates the MCTS policy to bias planning towards promising actions based
on prior knowledge. In deep MBRL (DMBRL) these functions are learned with deep neural networks.
Five common learning signals are used to train the transition model f with varying horizons k:
1) A reconstruction loss Lk

re

(
h(ŝk), st+k

)
, training a decoder h to reconstruct true states st+k from

latent representations ŝk that have been predicted from ŝ0 = g(st), shaping both g and f .
2) A consistency loss Lk

co

(
ŝk, g(st+k)

)
, training the model that predicted states should align with

latent representation of states st (or observations/histories in POMDP). Critically, Lk
co is not used to

train g, only f . When the representation function g is an identity, Lk
re and Lk

co can be thought of as
providing the same learning signal. Otherwise, they can be used independently or in combination.
3) A reward loss Lk

r

(
r(ŝk, ak), rt+k

)
, where the model is trained to predict representations that

enable predictions of, and are aligned with, the true rewards observed in the environment rt.
4) A value loss Lk

v

(
v(ŝk), vMCTS

t+k

)
that trains the model to predict states that enable value learning.

5) A policy loss Lk
π

(
π(·|ŝk), πMCTS(·|st+k)

)
that trains prior policy π to predict the MCTS policy.

These losses are described in more detail in Appendix D.2.

2.3 ESTIMATING EPISTEMIC UNCERTAINTY IN DEEP REINFORCEMENT LEARNING

Predictive epistemic uncertainty refers to any uncertainty that is associated with a prediction and
is rooted in lack-of-information. For example, prior to repeated tosses of a coin, there can be high
uncertainty whether the coin is fair or not. The more the coin has been tossed, the more certain we can
be about the coin’s fairness, even if we will always retain uncertainty in the exact prediction of heads
or tails, without access to a precise simulation of the physics of the coin toss (referred to as aleatoric
uncertainty, or the inherent uncertainty in the way we choose to model a coin). Defining, quantifying
and estimating predictive epistemic uncertainty is an active field of research that encompasses many
approaches and many methods (see Hüllermeier & Waegeman, 2021; Lockwood & Si, 2022). In
this work, we take the common approach for quantifying epistemic uncertainty as the variance in a
probability distribution of predictions that are consistent with observations VarX(X|st) = V[X|st].
As for estimating epistemic uncertainty, two standard approaches are the distributional approach and
the proxy-based approach. The distributional approach approximates a probability distribution over
possible predictions with respect to the agent’s experiences, while the proxy-based approach aims
to directly predict a measure for novelty of experiences. Two reliable and lightweight methods for
novelty-based epistemic uncertainty estimation are Random Network Distillation (RND) (Burda et al.,
2019) and state-visitation counting. RND evaluates novelty as the difference between the prediction
of a randomly initialized untrained target network ψ′ and a to-be trained network ψ with a similar
architecture. The network ψ is trained to match the predictions of the target network for the observed
states (or state-action pairs) with MSE loss Lrnd

(
ψ(st, at), ψ

′(st, at)
)
= ||ψ(st, at)− ψ′(st, at)||2.

Novel observations are expected to produce unpredictable outputs from the target network, and
thus the difference between the prediction of the target network and the trained network serves as a
proxy-measure for novelty. These methods encapsulate the epistemic uncertainty in a local prediction:

3

Under review as a conference paper at ICLR 2024

for example, uncertainty in prediction of reward or next state. Estimating epistemic uncertainty in
value predictions that contain the uncertainty that propagates from future decisions made by a policy
is a different matter. One method to estimate value uncertainty is the Uncertainty Bellman Equation
(UBE, O’Donoghue et al., 2018). UBE approximates an upper bound on the epistemic uncertainty in
value (here interpreted as variance of the Q-value) as the sum of local uncertainties σ2(st, at) that
are associated with the decisions at at states st:

Uπ(st) := Eπ

[∞∑
i=0

γ2iσ2(st+i, a
π
t+i)

]
= Eπ

[
n−1∑
i=0

γ2iσ2(st+i, a
π
t+i) + γ2nUπ(st+n)

]
.

In other words, UBE proposes to approximate the value uncertainty as the sum of twice-discounted
local uncertainties and learn it with (possibly n-step) TD targets in a similar manner to value learning.

3 DEEP EXPLORATION WITH EPISTEMIC MCTS
In this work we are concerned with estimating and leveraging epistemic uncertainty in MCTS to
drive exploration in the environment. In classic MCTS, the uncertainty in value prediction at each
node stems from stochasticity in the environment and in the rollout policy (aleatoric). There are
no learned quantities, and as such, there is no epistemic uncertainty in the model used by MCTS.
When a learned value function v(st) is used to replace rollouts (such as in AlphaZero, Silver et al.,
2018) the aleatoric uncertainty from MC rollouts is replaced by uncertainty in the value prediction
v(st). We distinguish between two sources of uncertainty about v(st): 1. Epistemic sources: errors
resulting from evaluating v(st) on unobserved states st. 2. Non-epistemic sources: approximation
errors, TD-errors, stochasticity of the environment and the policy and every other source of error
that will not reduce directly by training on additional unique observations. When a model of the
environment transition f(st, at) and/or reward dynamics r(st, at) are learned from interactions (such
as in MuZero, Schrittwieser et al., 2020) the uncertainty in value of a node in the planning tree will
contain the uncertainty in the learned dynamics f, r, and a similar separation between epistemic and
non-epistemic sources of uncertainty can be made.

MCTS addresses non-epistemic uncertainty by averaging over node values and using UCB-based
exploration in the planning tree, but does not address epistemic uncertainty in the model (there isn’t
any, in classic MCTS). Unlike the uncertainty estimated by the UCB bonus of MCTS, epistemic
uncertainty cannot be expected to reduce directly as a result of additional planning: rather, epistemic
uncertainty will only reduce as a result of 1. new interactions with the environment and 2. planning
in directions where the agent is more epistemically-certain. Distinguishing between epistemic and
non-epistemic uncertainty allows us to concentrate on propagating only epistemic uncertainty for
exploration. In the following section we develop a method to propagate the epistemic uncertainty
in MCTS (Section 3.1). We follow by leveraging the propagated uncertainty into an exploratory
epistemic-UCB planning objective (Section 3.2). To conclude this section, we discuss challenges in
estimating novelty when planning in latent spaces and possible solutions (Section 3.3).

3.1 PROPAGATING UNCERTAINTY IN MCTS

At planning step i, selecting a path of length T through a decision tree is equivalent to choosing a
sequence of T actions ai0:T−1 that start at node ŝi0 = g(st) and end up in a leaf node ŝiT . Deterministic
models f, r predict the transitioned to nodes ŝik and the encountered rewards rik in nodes ŝik, 0 ≤ k <
T , respectively. The value viT at leaf ŝiT is predicted by Monte-Carlo rollouts with f or directly with
a neural network v. The values and rewards are used to update the n-step discounted return νik of
each node ŝik on the selected path:

νik :=
T−1∑
j=k

γj−krij + γT−kviT = rik + γνik+1 , 0 ≤ k < T , νiT = viT , (4)

where γj−k is the discount factor to the power of j − k and the superscript i is indexing the planning
step. Our following analysis is done per planning step i and we will drop the index i for the sake
of readability. If (any of) f, r, v are assumed to be inexact rk and vT can be modelled as random
variables in a Markov chain that is connected by random state-variables. The stochasticity in the chain
captures the uncertainty in f, r, v’s predictions. To clarify notation, we will refer to these as random
states Ŝk, rewards Rk, values Vk and returns Vk. In line with the optimistic exploration literature, we

4

Under review as a conference paper at ICLR 2024

aim to incentivize choosing actions in the environment associated with paths in the planning tree that
have epistemically uncertain returns V0 in order to seek new high-reward interactions. For this we
need to estimate the epistemic variance (variance from epistemic sources) V[V0|st, a0:T−1] ≡ V[V0]
of the return along a selected path a0:T−1, starting with state st. To circumvent having to replace
f, r, v with an explicitly stochastic model to propagate the uncertainty, we instead develop a direct
and computationally efficient approximation for V[V0].
We will begin by deriving the mean and variance of the distribution of state-variables in the Markov
chain for a given sequence of actions a0:T−1. Let us assume we are given a differentiable transition
function f(Ŝk, ak) := EŜk+1

[Ŝk+1|Ŝk, ak] ∈ R|Ŝ|, which predicts the conditional expectation over

the next state, and a differentiable uncertainty function Σ(Ŝk, ak) := VŜk+1
[Ŝk+1|Ŝk, ak] ∈ R|Ŝ|×|Ŝ|

that yields the conditional-covariance matrix of the distribution. In DMBRL the assumption that
models are differentiable is standard (see Section 2.2). We assume that the mean ŝ0 of the first
state-variable Ŝ0 is given as an encoding function ŝ0 = E[Ŝ0|st] = g(st), like in MuZero. The
mean ŝk+1 of a later state-variable Ŝk+1 can be approximated with a first order Taylor expansion
around the previous mean ŝk := E[Ŝk]:

ŝk+1 := E[Ŝk+1] = EŜk
[EŜk+1

[Ŝk+1|Ŝk, ak]] = E[f(Ŝk, ak)] (5)

≈ E[f(ŝk, ak) + (Ŝk − ŝk)⊤∇̂sf(Ŝ, ak)|Ŝ=ŝk
] = f(ŝk, ak) .

In other words, under the assumption that the model f predicts the expected next state we reinterpret
the original latent state ŝk as the mean of the uncertain state E[Ŝk].

To approximate the covariance Σk+1 := V[Ŝk+1] or the total uncertainty associated with state
variable Ŝk+1 we need the law of total variance. The law of total variance states that for two random
variables X and Y holds V[Y] = EX

[
VY [Y |X]

]
+ VX

[
EY [Y |X]

]
(see Appendix A for a proof in

our notation). Using the law of total variance and again a first order Taylor approximation around the
previous mean state ŝk, where Jf (ŝk, ak) denotes the Jacobian matrix of function f at ŝk and ak:

Σk+1 := V[Ŝk+1] = EŜk

[
VŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸ + VŜk

[
EŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸ (6)

≈ Σ(ŝk, ak) + Jf (ŝk, ak)Σk Jf (ŝk, ak)
⊤ .

See Appendix B for the full derivation. Using these state statistics, we can derive the means and
variances of causally connected variables like rewards Rk and values VT . We assume that the
conditional reward distribution has conditional mean r(Ŝk, ak) := ERk

[Rk|Ŝk, ak] and conditional
variance σ2

R(Ŝk, ak) := VRk
[Rk|Ŝk, ak], and that the conditional value distribution has conditional

mean v(ŜT) := EVT
[VT |ŜT] and conditional variance σ2

V (ŜT) := VVT
[VT |ŜT]. Analogous to above

we can derive:
rk := E[Rk] ≈ r(ŝk, ak) , V[Rk] ≈ σ2

R(ŝk, ak) + Jr(ŝk, ak)Σk Jr(ŝk, ak)
⊤ , (7)

vT := E[VT] ≈ v(ŝT) , V[VT] ≈ σ2
V (ŝT) + Jv(ŝT)ΣT Jv(ŝT)

⊤ . (8)
If we assume that Rk and the n-step return Vk+1 from Equation 4 are independent, we can compute

E[Vk] = ERk,Vk+1
[Rk + γVk+1] = E[Rk] + γ E[Vk+1] , E[VT] = E[VT] , (9)

V[Vk] = VRk,Vk+1
[Rk + γVk+1] = V[Rk] + γ2 V[Vk+1] , V[VT] = V[VT] . (10)

We can therefore approximate the variance V[V0|st, a0:T−1] using one (E-)MCTS search, expan-
sion and back-propagation steps through the selected path a0:T−1, similar to the value-estimation
E [V0|st, a0:T−1] that is being done by standard MCTS (see pseudo-code in Algorithm 1). When
applying this approach to model-learning algorithms such as MuZero, we interpret the representa-
tion g, dynamics f , value v and reward r functions as outputting the conditional means ŝ0, ŝk, vT , rk
respectively. When applying this approach to methods that learn only some of f, r, v (for example
AlphaZero, Silver et al., 2018, which learns only v) the predictions from unlearned components will
be associated with epistemic uncertainty = 0. E-MCTS will propagate the epistemic uncertainty in
the learned components according to the remaining nonzero terms in Equations 6, 7, 8, 10. Finally
we note that while E-MCTS is designed with epistemic uncertainty of the learned models in mind,
any source of uncertainty can be propagated with E-MCTS, so long as it is interpreted as the local
variances in state, reward and value predictions (Equations 6, 7 and 8 respectively).

5

Under review as a conference paper at ICLR 2024

3.2 PLANNING FOR EXPLORATION WITH MCTS

The UCT operator of MCTS takes into account uncertainty about a node’s subtree via the visitation
count (see Equation 1) to drive exploration inside the planning tree and identify the most promising
expected-return-maximizing actions in the model. To drive exploration in the environment we add
the environmental epistemic uncertainty to the selection step, which maximizes an upper confidence
bound on the agent’s knowledge of both the environment (in blue) and the search tree (the original
UCT bonus):

ak := argmax
a

q(ŝk, a) + β
√
σ2
q (ŝk, ak) + C

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,ak)
, (11)

where β ≥ 0 is a constant that can be tuned per task to encourage more or less exploration in the
environment. The term

σ2
q (ŝk, ak) := V[Rk] + γ2 1

N(ŝk,ak)

N(ŝk,ak)∑
i=1

V[Vi
k+1] (12)

sums the variances computed individually at every backup step i through the node that is reached by
executing action ak in latent state ŝk using Equations 7 and 10. At each backup step i, with actions aik,
state means ŝ i

k and covariances Σi
k, the variance V[Vi

k] is approximated based on Equations 10 and 7:

V[Vi
k] ≈ σ2

R(ŝ
i
k, a

i
k) + Jr(ŝ

i
k, a

i
k)Σ

i
kJr(ŝ

i
k, a

i
k)

⊤ + γ2V[Vi
k+1] . (13)

At every backup step we compute the variance at the leaf node (Equation 8), which is then used
to update the parent’s variance along the trajectory iteratively using Equation 13. Pseudo-code can
be found in Algorithm 1, where the modifications introduced to MCTS are marked in blue. When
using other search heuristics such as PUCT or the extension of PUCT used in Gumbel MuZero
(Danihelka et al., 2022) we propose to view the term q(ŝk, a) + β

√
σ2
q (ŝk, ak) as an exploratory-

Q-value-estimate (or epistemically-optimistic-Q-value estimate) and use it in place of q(ŝk, a) to
modify the planning objective into the exploratory objective. Once the MCTS-based search with
respect to the exploratory Q-value has completed, action selection in the environment can be done in
the same manner as for exploitation. For example, by sampling actions with respect to the visitation
counts of each action at the root of the tree as done by the original MuZero.

Algorithm 1 E-MCTS, requires functions g, f, r, v and uncertainty estimators Σ, σ2
R, σ

2
V

1: function EMCTS(state st, β) ▷ β = 0 for unmodified MCTS exploitation episodes
2: while within computation budget do
3: SELECT(g(st), β) ▷ traverses tree from root ŝ0 = g(st) and adds new leaf
4: return action a drawn from π(a|st) = N(ŝ0,a)∑

a′ N(ŝ0,a′) ▷ MCTS action selection

5: function SELECT(node ŝk, β)
6: ak ← argmaxa q(ŝk, a) + β

√
σ2
q (ŝk, a) + C

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,a)
▷ Equation 11

7: if ak already expanded then SELECT(f(ŝk, ak), β) ▷ traverses tree
8: else EXPAND(ŝk, ak) ▷ adds new leaf

9: function EXPAND(node ŝk, not yet expanded action ak)
10: ŝk+1,E[Vk+1]← Execute unmodified MCTS expansion that creates a new leaf ŝk+1

11: Σk+1 ← Σ(ŝk, ak) + Jf (ŝk, ak)Σk Jf (ŝk, ak)
⊤ ▷ node attribute of ŝk+1, Equation 6

12: V[Rk]← σ2
R(ŝk, ak) + Jr(ŝk, ak)Σk Jr(ŝk, ak)

⊤ ▷ node attribute of ŝk+1, Equation 7
13: V[Vk+1]← σ2

V (ŝk+1) + Jv(ŝk+1)Σk+1 Jv(ŝk+1)
⊤ ▷ Equation 8

14: BACKUP(ŝk+1,E[Vk+1],V[Vk+1]) ▷ updates the tree values & variances

15: function BACKUP(node ŝk+1, return-mean E[Vk+1], return-uncertainty V[Vk+1])
16: ŝk, ak,E[Vk]← Execute unmodified MCTS backup step (updates q(ŝk, ak) and N(ŝk, ak))
17: V[Vk]← V[Rk] + γ2V[Vk+1] ▷ uses node-attribute V[Rk], Equation 10

18: σ2
q (ŝk, ak)← σ2

q (ŝk, ak) +
V[Vk]−σ2

q(ŝk,ak)

N(ŝk,ak)
▷ node attribute of ŝk+1, Equation 12

19: if k > 0 then BACKUP(ŝk,E[Vk],V[Vk]) ▷ updates the tree values & variances

6

Under review as a conference paper at ICLR 2024

3.3 ESTIMATING EPISTEMIC UNCERTAINTY IN PLANNING

Epistemic uncertainty estimation techniques in RL are designed to evaluate uncertainty on predictions
in the true observation space of the environment (Osband et al., 2018; Burda et al., 2019). These
methods translate naturally into planning with transition models that operate in the environment’s
observation space, such as AlphaZero where the dynamics are given, or when a learned transition
model predicts environmental observations. However, when the latent state space Ŝ is not identical
to the observation space, novelty estimated in latent space may not reflect the novelty in the true
state space. Specifically, before the first observation of a non-zero reward, value-equivalent models
(such as used by MuZero) may abstract all states in sparse-reward environments into one constant
representation that supports the value prediction of zero. As a result, all states (even unobserved
states) may be associated with the same novelty of zero in the latent space. This problem can
be circumvented by driving reconstruction losses (see Section 2.2) through the transition model,
incentivizing the learned model to distinguish between unique states, or by learning an auxiliary
dynamics model which does not need to be robust but only distinguish between novel and observed
starting-states and action sequences. Variations of these methods have been used successfully by
Henaff (2019) and Sekar et al. (2020).

To estimate the novelty of states in the true state space of the environment (whether the model
is learned or provided) we chose the lightweight novelty estimator RND (see Section 2.3 and
Appendix D.4 for additional details) for its expected reliability in detecting unobserved states. To
evaluate E-MCTS with the value-equivalent dynamics model of MuZero we provide the agent with
reliable (but unrealistic) transition uncertainty in the form of state-action visitation counts in the true
state space S (see Appendix D.5 for additional details). To estimate the value uncertainty at the leaf
σ2
V (ŝT) we use a UBE network-head (see Section 2.3) for all three transition models (given, learned

in the true state space, value-equivalent learned in latent space). We allow the gradients with respect
to the UBE head to pass through and train the value-equivalent learned transition model, similarly to
the gradients of the value, policy and reward functions (see Appendix D.2 for additional details).

4 RELATED WORK

Different faces of the idea of leveraging planning with learned dynamics models for exploration
have been investigated by a range of previous works, such as Yi et al. (2011), Hester & Stone
(2012), Shyam et al. (2019), Sekar et al. (2020), Lambert et al. (2022) and Henaff (2019). Among a
range of differences, these methods are not tailored for MCTS or deterministic dynamics’s models
MCTS algorithms, which are a very strong class of MBRL algorithms. We add to this line of
work E-MCTS: tailored for MCTS (and planning trees in general), lightweight and applicable to
deterministic models by approximating and propagating the variance directly resulting only in a
constant increase in computation cost to MCTS. Moerland et al. (2020) identify that the further a
state is from a terminal state in the MCTS planning tree, the more uncertainty should be associated
with it in planning, and utilizes this uncertainty to bias search in MCTS. POMCP (Silver & Veness,
2010), POMCPOW (Sunberg & Kochenderfer, 2018) and BOMCP (Mern et al., 2021) extend MCTS
to POMDPs with a probabilisticly modelled Bayesian belief state at the nodes using a probabilistic
model, while Stochastic MuZero Antonoglou et al. (2021) extended MuZero to the stochastic
setting by replacing f with a Vector Quantised Variational AutoEncoder (van den Oord et al., 2017).
Epistemic uncertainty is not distinguished explicitly or used for exploration. A common uncertainty /
novelty estimation alternative to RND Burda et al. (2019) are ensembles Lakshminarayanan et al.
(2016); Ramesh et al. (2022). The uncertainty measure is usually the disagreement between the
ensemble’s predictions. Bootstrapped DQN (BDQN, Osband et al., 2016; 2018) is an effective model-
free deep exploration approach that relies on the epistemic uncertainty estimated by an ensemble to
drive exploration. Wasserstein Temporal Difference (WTD, Metelli et al., 2019) offers an alternative
to UBE O’Donoghue et al. (2018) for propagating epistemic uncertainty in TD-learning, using
Wasserstein Barycenters Agueh & Carlier (2011) to update a posterior over Q functions in place of a
standard Bayesian update. UBE was criticized by Janz et al. (2019) for having unnecessary properties
as well as being insufficient for deep exploration with posterior-sampling based RL (PSRL, Osband
et al., 2013). These shortcomings however do not influence UCB-based exploration algorithms
which E-MCTS can be classified as. Pairing with UBE thus enables E-MCTS to benefit from the
strengths of UBE (such as uncertainty propagation, as discussed by Janz et al., 2019) while avoiding
the shortcomings identified in the paper.

7

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We evaluate the following hypotheses: H1 E-MCTS successfully propagates epistemic uncertainty
in planning. H2 Planning in MCTS with an optimistic objective (Equation 11) is able to achieve
deep exploration. H3 Planning can be leveraged for uncertainty estimation that improves over
non-planning-based uncertainty estimation, even with learned dynamics models. We use BSUITE’s
(Osband et al., 2020) hard exploration benchmark Deep Sea. The Deep Sea environment encapsulates
some of the hardest challenges associated with exploration: The probability of finding the unique
optimal action trajectory through random action selection decays exponentially with the size of the
environment. Every transition in the direction of the goal receives a negative reward that is negligible
in comparison to the goal reward, but is otherwise the only reward the agent sees discouraging
exploration in the direction that leads to the goal. Finally, the action mappings are randomized such
that the effect of the same action is not the same in every state, preventing the agent from generalizing
across actions. Three variations of the transition model f are investigated: (i) An AlphaZero model.
(ii) A MuZero model. (iii) An anchored model (dynamics trained exclusively with a reconstruction
loss). The reward r, value v and policy π functions are always trained in the MuZero manner, using
the framework of EfficientZero (Ye et al., 2021). For implementation details see appendices D.3 D.2
and D.5. We compare four exploration methods: (i) E-MCTS (ours). (ii) An Alpha/MuZero agent
that uses UBE predictions post-planning (see Appendix D.8 for details). (iii) The Alpha/MuZero
exploration baseline which is uninformed with respect to epistemic uncertainty. (iv) Model-free
Bootstrapped DQN (BDQN, Osband et al., 2016). The results are presented in Figures 1 and 2.
E-MCTS demonstrates reliable uncertainty propagation through successful deep exploration with all
three transition models, supporting hypotheses H1 & H2, as well as outperforms the UBE baseline in
all three models, demonstrating improvement from planning with propagated uncertainty, supporting
hypotheses H3 (Figure 1). E-MCTS scales very well, sub-exponentially as expected (Figure 2, left).
Since exploitation and exploration episodes alternate, the exploration parameter β need only be
large enough to induce sufficient exploration to solve Deep Sea, resulting in low average regret
across a wide range of values of β (Figure 2, right). Figure 3 demonstrates the reliability of the
uncertainty estimated by E-MCTS by comparing it with inverse-counts as ground-truth. As expected,
the uncertainty diminishes monotonically throughout training for all visited states.

0 10000 20000 30000 40000
Environment steps

0.0

0.5

Ep
iso

di
c

re
tu

rn

0 10000 20000 30000 40000
Environment steps

200
400
600
800

Di
sc

ov
er

ed
 st

at
es

E-MCTS (RND)
UBE (RND)
Uninformed
BDQN ensem. size 10
maximum

AlphaZero Transition Model

0 10000 20000 30000 40000
Environment steps

0.0

0.5

1.0

Ep
iso

di
c

re
tu

rn

0 10000 20000 30000 40000
Environment steps

250

500

750

Di
sc

ov
er

ed
 st

at
es

E-MCTS (counts)
UBE (counts)
Uninformed
BDQN ensem. size 10
maximum

MuZero Transition Model

0 10000 20000 30000 40000
Environment steps

0.0

0.5

1.0

Ep
iso

di
c

re
tu

rn

0 10000 20000 30000 40000
Environment steps

200
400
600
800

Di
sc

ov
er

ed
 st

at
es

E-MCTS (RND)
UBE (RND)
Uninformed
BDQN ensem. size 10
maximum

Anchored Transition Model

Figure 1: Deep Sea 40 by 40, mean and standard error for 20 seeds. Rows: Different transition
models. Left: episodic return in evaluation vs. environment steps. Right: exploration rate (number of
discovered states vs. environment steps).

8

Under review as a conference paper at ICLR 2024

10 20 30 40 50
DeepSea Size

102

103

104

105

Ep
iso

de
s u

nt
il

<
90

%
 a

ve
ra

ge
 re

gr
et

2^(N-1)
E-MCTS, AlphaZero transition model, RND
E-MCTS, anchored transition model, RND
UBE, anchored transition model, RND
BDQN, ensemble size 10

0.0 10 3 10 2 10 1 100 101 102 103

Beta

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

re
gr

et
 o

ve
r 1

00
0

ep
iso

de
s

E-MCTS, AlphaZero transition model, RND

Figure 2: Left: Scaling to growing Deep Sea sizes. Mean of 5 seeds with standard error. Right: The
effect of the exploration perparameter β for Deep Sea 30 by 30. Mean of 3 seeds with standard error.

t = 1000 t = 5000 t = 10000 t = 15000

0.0

10

20

30

40

50

60

Root Uncertainty, AlphaZero model (RND)

0.0

0.5

1.0

1.5

2.0
Inverse Counts

Figure 3: Heat maps over states in DeepSea 40 by 40 (lower triangle) at different times (columns)
during an example training run of E-MCTS with an AlphaZero transition model. Upper row:
value uncertainty at the E-MCTS root node. Lower row: inverse visitation counts as reliable local
uncertainty. Score of 2.0 represents unvisited.

6 CONCLUSIONS AND FUTURE WORK

In this work we present E-MCTS, a novel method for incorporating epistemic uncertainty into
MCTS. We use E-MCTS to modify the planning objective of MCTS to an exploratory objective
to achieve deep exploration with MCTS-based MBRL agents. We evaluate E-MCTS on the Deep
Sea benchmark, which is designed to be a hard exploration challenge, where our method yields
significant improvements in state space exploration and uncertainty estimation. In addition, E-MCTS
demonstrates the benefits of planning for exploration by empirically outperforming non-planning deep
exploration baselines. The framework of E-MCTS provides a backbone for propagating uncertainty
in other tree-based planning methods, as well as for the development of additional approaches
to harnessing epistemic uncertainty. For example: (i) With E-MCTS, it is possible to plan with
a conservative objective by discouraging uncertain decisions to improve reliability in the face of
the unknown, which is paramount in the offline-RL setting. (ii) E-MCTS can be used to avoid
planning into trajectories that increase epistemic uncertainty in value prediction, with the aim of
achieving more reliable planning. (iii) Down-scaling of epistemically-uncertain targets has been
used by Lee et al. (2021) and Wu et al. (2021) to improve the learning process of online and offline
RL agents respectively. Given the advantages in exploration, it stands to reason that the improved
value-uncertainty estimates from E-MCTS can benefit those approaches as well.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Planning
in stochastic environments with a learned model. In International Conference on Learning
Representations, 2021.

Karl Johan Åström. Optimal control of Markov processes with incomplete state information I.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information
Processing Systems, 29, 2016.

Richard Bellman. A Markovian decision process. Journal of mathematics and mechanics, 6(5):
679–684, 1957.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with Gumbel. In International Conference on Learning Representations, 2022.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grze-
gorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. doi:
10.1038/s41586-022-05172-4.

Mikael Henaff. Explicit explore-exploit algorithms in continuous state spaces. Advances in Neural
Information Processing Systems, 32, 2019.

Todd Hester and Peter Stone. Intrinsically motivated model learning for a developing curious agent.
In 2012 IEEE international conference on development and learning and epigenetic robotics
(ICDL), pp. 1–6. IEEE, 2012.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.

David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato, and
Sebastian Tschiatschek. Successor uncertainties: exploration and uncertainty in temporal difference
learning. Advances in Neural Information Processing Systems, 32, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Nathan Lambert, Markus Wulfmeier, William Whitney, Arunkumar Byravan, Michael Bloesch,
Vibhavari Dasagi, Tim Hertweck, and Martin Riedmiller. The challenges of exploration for offline
reinforcement learning. arXiv preprint arXiv:2201.11861, 2022.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR, 2021.

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2024

Owen Lockwood and Mei Si. A review of uncertainty for deep reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 18,
pp. 155–162, 2022.

Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen Wang, Flora Xue, Wendy
Shang, Derek Pang, Rene Claus, Ching-Han Chiang, Cheng Chen, Jingning Han, Angie Chen,
Daniel J. Mankowitz, Jackson Broshear, Julian Schrittwieser, Thomas Hubert, Oriol Vinyals, and
Timothy A. Mann. MuZero with self-competition for rate control in VP9 video compression. arXiv
preprint arXiv:2202.06626, 2022.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Koppe, Kevin Millikin,
Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert Tung,
Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas
Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals,
and David Silver. Faster sorting algorithms discovered using deep reinforcement learning. Nature,
618(7964):257–263, 2023. doi: 10.1038/s41586-023-06004-9.

John Mern, Anil Yildiz, Zachary Sunberg, Tapan Mukerji, and Mykel J Kochenderfer. Bayesian
optimized Monte-Carlo planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11880–11887, 2021.

Alberto Maria Metelli, Amarildo Likmeta, and Marcello Restelli. Propagating uncertainty in re-
inforcement learning via Wasserstein barycenters. Advances in Neural Information Processing
Systems, 32, 2019.

Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. The second type of
uncertainty in Monte-Carlo tree search. arXiv preprint arXiv:2005.09645, 2020.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty Bellman
equation and exploration. In International Conference on Machine Learning, pp. 3836–3845,
2018.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in Neural Information Processing Systems, 29:4026–4034, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rygf-kSYwH.

Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Exploring through
random curiosity with general value functions. Advances in Neural Information Processing Systems,
35:18733–18748, 2022.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203–230, 2011.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, Chess and Shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

11

https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH

Under review as a conference paper at ICLR 2024

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pp. 5779–5788. PMLR, 2019.

David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. Advances in Neural
Information Processing Systems, 23, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters Chess, Shogi, and Go through
self-play. Science, 362(6419):1140–1144, 2018.

Zachary N Sunberg and Mykel J Kochenderfer. Online algorithms for POMDPs with continuous
state, action, and observation spaces. In Twenty-Eighth International Conference on Automated
Planning and Scheduling, 2018.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhutdi-
nov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In
International Conference on Machine Learning, pp. 11319–11328. PMLR, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Sun Yi, F Gomez, and J Schmidhuber. Planning to be surprised: Optimal Bayesian exploration
in dynamic environments. In Proc. Fourth Conference on Artificial General Intelligence (AGI),
Google, Mountain View, CA, 2011.

12

Under review as a conference paper at ICLR 2024

A LAW OF TOTAL VARIANCE

The law of total variance for two continuous random variables X and Y can be derived as follows:

VY [Y] =

∫
(Y − EY [Y])2 p(Y) dY =

∫∫
(Y − EY [Y])2 p(X,Y) dX dY

=

∫∫
(Y − EY [Y])2 p(Y |X) p(X) dX dY = EX

[
EY

[
(Y − EY [Y])2

∣∣X]]
= EX

[
EY

[
(Y − EY [Y |X] + EY [Y |X]− EY [Y])2

∣∣X]]
= EX

[
EY

[
(Y − EY [Y |X])2

∣∣X]︸ ︷︷ ︸
VY [Y |X]

]
+ 2EX

[(
EY [Y |X]− EY [Y |X]︸ ︷︷ ︸

0

)(
EY [Y |X]− EY [Y]

)]

+EX

[
(EY [Y |X]− EY [Y])2

]
︸ ︷︷ ︸

VX [EY [Y |X]]

= VX
[
EY [Y |X]

]
+ EX

[
VY [Y |X]

]

B FIRST ORDER TAYLOR APPROXIMATION OF VARIANCE OF NEXT STATE

This appendix derives Equation 6:

Σk+1 := V[Ŝk+1] = EŜk

[
VŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸ + VŜk

[
EŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸

≈ Σ(ŝk, ak) + Jf (ŝk, ak)Σk Jf (ŝk, ak)
⊤ .

First note that E[Ŝk] = ŝk, E[Ŝk+1|Ŝk, ak] = f(Ŝk, ak) and V[Ŝk+1|Ŝk, ak] = Σ(Ŝk, ak) by
definition. The first term is approximated using first order Taylor approximation as follows:

E[V[Ŝk+1|Ŝk, ak]] = E[Σ(Ŝk, ak)] ≈ E[Σ(ŝk, ak) + (Ŝk − ŝk)⊤JΣ(ŝk, ak)
⊤] = Σ(ŝk, ak) .

The second term is approximated in a similar manner:

V[E[Ŝk+1|Ŝk, ak]] = V[f(Ŝk, ak)] ≈ E
[(

(Ŝk − ŝk)⊤Jf (ŝk, ak)
⊤︸ ︷︷ ︸

|

)2]
= Jf (ŝk, ak)ΣkJf (ŝk, ak)

⊤,

due to

f(Ŝk, ak)− E[f(Ŝk, ak)] ≈
︷ ︸︸ ︷
(Ŝk − ŝk)⊤Jf (ŝk, ak)

⊤−

0︷ ︸︸ ︷
E[(Ŝk − ŝk)⊤]Jf (ŝk, ak)

⊤

C ADDITIONAL RESULTS

We include a table evaluating interactions-to-goal on deep-sea 40 by 40 for all investigated transition
models and the three MCTS agents: E-MCTS (ours), UBE and the uninformed baseline. The results
demonstrate that even when the learned dynamics model is not designed for planning (anchored
model, third block, Table 1), E-MCTS is able to find the goal much faster. Not due to faster-
exploration per-se (1, third row, the exploration rate is very similar across baselines), but due to
apparent higher reliability of the uncertainty prediction, resulting in reliable exploration throughout
the entire state-action space.

Table 1: Number of environment steps until the first visitation to the goal transition.

Exploration Average steps to goal transition for
seeds that discovered goal ± STD % seeds that discovered goal

AlphaZero
Model
+ RND

E-MCTS 10539± 9006 94% of 35 seeds
UBE 22801± 7514 91% of 35 seeds

Uninformed - 0% of 20 seeds
MuZero
Model
+ Counts

E-MCTS 14339± 6845 100% of 23 seeds
UBE 29945± 8113 57% of 21 seeds

Uninformed - 0% of 20 seeds
Anchored
Model
+ RND

E-MCTS 15241± 3236 95% of 20 seeds
UBE 22497± 6645 85% of 20 seeds

Uninformed - 0% of 20 seeds

13

Under review as a conference paper at ICLR 2024

D IMPLEMENTATION DETAILS

D.1 TARGETS

In MuZero, the value targets vMCTS
t+k for the prediction of value of latent state ŝkt that matches true

state st+k are computed as an n-step TD target:

vMCTS
t+k =

n−1∑
i=0

γirt+k+i + γnvMCTS
t+k+n

Where vMCTS
t+k+n can be computed in one of two ways:

(i) The value of the root of an MCTS tree computed for state st+k+n.

(ii) A prediction of the value network v for latent state ŝ0t+k+n.

Method (i) is expected to result in better value targets, but is more expensive computationally. Method
(ii) is significantly cheaper computationally, but might hinder learning through the lack of value
improvement (a max operator) on the value bootstrap. We refer to (i) as root-based targets.

The UBE target utarget
t+k for the prediction of value-uncertainty from the UBE head u(ŝkt) is computed

a similar manner:

utarget
t+k =

n−1∑
i=0

γ2iσ2(ŝ0t+k+i, at+k+i) + γ2nut+k+n

Analogous to the value target, the bootstrap ut+k+n can be computed in two different ways:

(i) When E-MCTS is used, the target can be computed similarly to the MuZero value target, as
the epistemic uncertainty of the root of an E-MCTS tree computed for state st+k+n. This tree
can plan for an exploitatory objective (equation 1) to estimate the uncertainty of the value
V π(st+k+n), an exploratory objective (equation 11) to estimate the uncertainty of the value
associated with the exploration policy, or even an uncertainty-maximizing objective:

ak := argmax
ak

√
σ2
q (ŝk, ak) + C

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,ak)

Where the q term has been dropped entirely as an optimistic bound over the uncertainty to
encourage exploration. Similarly, we refer to using as target the E-MCTS uncertainty prediction
at the root as a root-based target. In our experiments, when UBE root-based target were used,
we have used the uncertainty-maximizing objective.

(ii) When E-MCTS is not used, the UBE bootstrap ut+k+n is computed as the maximum UBE over
possible actions from state st+k+n:

ut+k+n = max
at+k+n

σ2(ŝ0t+k+n, at+k+n) + γ2u(f(ŝ0t+k+n, at+k+n))

These targets were used for all UBE-only agents, and for the E-MCTS agents that did not use
root-based targets.

In all experiments we have used n = 1 (one-step targets) for the UBE targets.

In MuZero, the reward and value predictions r(ŝkt , at+k), v(ŝ
k
t) are represented as a discrete proba-

bility distribution over a range of discrete values [−M,M], M ∈ N. To transform the scalar value
and reward targets to a categorical representation of the same representation format, a transformation
function ϕ(x) is used, transforming a real number x into a categorical representation through a linear
interpolation between its adjacent integers.

14

Under review as a conference paper at ICLR 2024

D.2 LOSSES

The original MuZero algorithm uses three loss functions:

Lr := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(rt+k)
⊤ log r(ŝkt , at+k)

Lv := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(vMCTS
t+k)⊤ log v(ŝkt)

Lπ := 1
|B|

∑
t∈B

l−1∑
k=0

πMCTS(st+k)
⊤ log π(ŝkt)

Where B ≡ {st, at, rt, st+1, at+1, . . . , st+l}t∈B is a training batch containing b trajectories of
length l sampled from different episodes, rt+k is the true reward observed in the environment,
r(ŝkt , ak), v(ŝ

k
t), π(ŝ

k
t) are respectively the reward value and policy predictions for latent state ŝkt

(and action at+k when appropriate). πMCTS(st+k) is a discrete probability distribution computed
based on the normalized visitation counts to the children of an MCTS root computed at state st+k

(see Equation 3).

In MuZero the gradient from the losses Lr,Lv,Lπ propagates through the transition model f and are
the only learning signal that is used to train the model. For the anchored model (see Section 5) we
use an additional reconstruction loss:

Lre :=
1
|B|

∑
t∈B

l−1∑
k=0

||ŝkt − st+k||2

Which can alternatively be thought of as a consistency loss, where g is the identity function. The
mean squared error loss is denoted with LMSE. To estimate value-uncertainty at the leaves, we train a
UBE function u with a UBE loss Lu:

Lu := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(utarget
t+k)T log ûkt

The final loss is computed as:
L := λrLr + λvLv + λπLπ + λuLu

Where the coefficients λr, λv, λπ, λu are used to weigh the relative effects the individual components
of the loss have on the learned transition model f . When Lre was used (the anchored model in
Section 5), the model parameters of f were affected only by Lre, through a second backwards pass.

D.3 DIFFERENT DYNAMICS MODELS

We describe the three transition models used in 5 in more detail. The AlphaZero dynamics model is a
true model of the dynamics of the environment, in the true state space of the environment. When
planning with this model local uncertainty is estimated with RND and value-uncertainty is estimated
with UBE. The MuZero model is a value-equivalent model in latent space. g, f are learned by the
agent during training from the value, policy, reward and UBE losses. When planning with this model
local uncertainty is estimated with state-visitation-counts (see D.5 and value-uncertainty is estimated
with UBE. The anchored-MuZero transition model trained only to predict the true transition dynamics
of the environment through a reconstruction loss Lk

re (see Appendix D.2). When planning with this
model local uncertainty is estimated with RND and value-uncertainty is estimated with UBE.

D.4 PLANNING WITH RANDOM NETWORK DISTILLATION BASED EPISTEMIC UNCERTAINTY

Many popular novelty-estimators in deep RL (such as RND, or even deep-ensembles Osband et al.,
2018) do not directly provide a reliable variance estimate. Many deep ensemble methods for
example rely on ensemble disagreement (Sekar et al., 2020), but do not assume that the variance
in the ensemble approximates the variance of a distribution, but rather should be high on unknown
and low on known inputs. This problem is exacerbated when a covariance matrix needs to be
approximated (for example, for Equation 6). To circumvent this limitation of standard and popular
uncertainty estimation methods we estimate the uncertainty in latent state Σk and the uncertainty in
the predictions based on latent state σR together into one score. More specifically, we use Σk = 0

15

Under review as a conference paper at ICLR 2024

and σV (ŝk) = max
(
Lrnd(ŝk−1, ak−1), u

(
f(ŝk−1, ak−1)

))
. This choice is sufficient for E-MCTS

to significantly improve over a comparable non-planning deep exploration baselines, see Section 5.

When the planning is done with a true model, the agent has access to the true states st+k and can
use RND to evaluate transition uncertainty over the state action pair (st+k, at+k) directly. When
the planning is done with the anchored model, the latent states outputted by the transition model ŝkt
approximate the true states st+k which allows us to use RND over (ŝkt , at+k). In both cases, RND is
trained only over the observed transitions (st+k, at+k), not latent state representations (ŝkt , at+k), to
achieve the objective of yielding large RND prediction errors the further the latent state prediction ŝkt
is from observed state st+k.

D.5 PLANNING WITH VISITATION-COUNTS BASED EPISTEMIC UNCERTAINTY

When planning with the abstracted model, we provide the agent with access to two additional
mechanisms that are used only for local uncertainty estimation: the true model F (st, at) of the
environment and a state-action visitation counter C(st, at). During planning, the true transition
model follows the planning decisions at:t+k and keeps track of the true state st+k. When the agent
evaluates the local uncertainty with transition (ŝkt , at+k) the true model provides the matching true
state st+k to the visitation counter, which produces the local uncertainty based on the following
formula:

σ2(st+k, at+k) =
1

C(st+k, at+k) + ϵ

Where 0 < ϵ ≤ 1 is a constant and C(st+k, at+k) counts the number of times the state action pair
(st+k, at+k) has been observed in the environment. This allows us to evaluate the abstracted-model
agent in the presence of a reliable source of local uncertainty. The leaf-value uncertainty u(ŝkt)
(which is the dominating factor in visited areas of the state space, as σ2(st+k, at+k)→ 0 quickly in
observed transitions) relies entirely on the learned UBE function u which operates directly on latent
states ŝkt .

D.6 SEPARATING EXPLORATION FROM EXPLOITATION

Acting in the environment with a dedicated exploration policy can be expected to result in samples that
are very off-exploitation-policy. Learning from very off-policy data is known for causing instability
in training even in off-policy agents. To mitigate that, the E-MCTS and only-UBE agents (see section
5) alternate between two types of training episodes: exploratory episodes that follow an exploration
policy throughout the episode (such as a policy generated by E-MCTS with an exploratory planning
objective), and exploitatory episodes that follow the standard MuZero exploitation policy throughout
the episode. This enables us to provide the agent with quality exploitation targets to evaluate and train
the value and policy functions reliably, while also providing a large amount of exploratory samples
that explore the environment much more effectively and are more likely to efficiently search for
high-reward interactions.

In practice, rather than alternate between exploration and exploitation episodes we run a certain
number of episodes in parallel, a certain portion of which are exploitatory and the rest are exploratory.
In our experiments the ratio was 50/50. During exploration episodes, we do not wish to bias the search
in the tree with respect to previously tried actions, but rather only with respect to the combination of
value and uncertainty (equation 11). We set the policy prediction π(ŝkt) (see Equation 2) to uniform
over all actions, for all ŝkt during exploration episodes. In addition, Dirichlet noise was not used to
drive exploration in MCTS with the UBE and E-MCTS agents.

D.7 ENVIRONMENT ADAPTATION

To maintain the exploration difficulty of Deep Sea while reducing numerical challenges, we amplify
the goal reward from 1 to 10. To limit the challenge of learning a model that can distinguish between
approximately N2 unique states when learning the true dynamics of the environment, while retaining
the exploration challenge of searching for one trajectory in a total of 2N trajectories, we choose
environment size N = 40, for a (40, 40) grid. To further simplify model learning with the anchored
model, the representation function g that was used for the anchored model transforms the observations

16

Under review as a conference paper at ICLR 2024

from 2 dimensional (N,N) one-hot representations to 1 dimensional (2N) representations where
the first N entries are a 1-hot vector representing the row and following N entries are a 1-hot vector
representing the column. From this perspective, we can view the Lre loss that was used to train the
anchored model as a consistency loss between the representation and the state prediction rather than
a reconstruction loss. The loss itself is the same loss specified in Appendix D.2.

D.8 UBE BASELINE

The UBE baseline agent uses MCTS to evaluate the value of actions using MCTS in the same
manner as Alpha/MuZero, and explores by taking the action at that maximizes the combination of
the Q-values approximated by MCTS q, local uncertainty σ2 and UBE u:

at = argmax
a

q(ŝ0, at) + β
√
σ2(ŝ0, at) + γ2u(f(ŝ0, at)). (14)

D.9 COMPUTE

The experiments were run on the [anonymized for review] computation clusters, using any of the
following GPU architectures: NVIDIA Quadro K2200, Tesla P100, GeForce GTX 1080 Ti, GeForce
RTX 2080 Ti, Tesla V100S and Nvidia A-40. Each seed was ran on one GPU, and was given access
to 100 GB of RAM and 16 CPU cores. Total training time was in the range of 12 to 65 hours per
seed, depending on GPU architecture and whether root-based targets (see Appendix D.1) which
significantly increased training time were used or not.

E NETWORK ARCHITECTURE & HYPERPARAMETERS

E.1 HYPERPARAMETER SEARCH

Due to the large number of hyperparameters in the MuZero framework, our optimization process
consisted of manual modifications to the hyperparameters used by Ye et al. (2021) with the objective
of achieving learning stability on the target environment with the simplest network architectures
possible. Two exceptions to this statement are the RND network architecture and scale, and the
exploration parameter β.

The RND architecture was designed with the objective of reliably achieving small RND predictions
over observed state-action pairs and large predictions over unobserved state-action pairs. The RND
scale was tuned with the objective of achieving local uncertainty measures for unobserved state-action
pairs that are significantly larger than the minimum reward of Deep Sea.

The β parameter was tuned with the objective that the E-MCTS and only-UBE agents will prioritize
exploration of the environment over exploitation until the entire environment has been searched, and
was tuned separately for every model.

E.2 NETWORK ARCHITECTURE

The functions f, g, r, v, u, π, ψ, ψ′ used fully connected DNNs of varying sizes. The sizes of the
hidden layers and output layers are specified in Table 2.

E.3 HYPERPARAMETER CONFIGURATION

We detail the full set of hyperparameters in Tables 3 and 4. For the BDQN baseline, we used the
default implementation in https://github.com/deepmind/bsuite, with ensemble size of
10 and matching batch size to E-MCTS: number of unroll steps times batch size 5 · 256 = 1230.
Otherwise, the default hyper parameters were used.

17

https://github.com/deepmind/bsuite

Under review as a conference paper at ICLR 2024

Table 2: Network architecture hyperparameters
True Model

Function Hidden Layers Sizes Output Layer Size
f - -
g - -
r [256, 256] 21
v [256, 256] 21
u [256, 256] 21
π [256, 256] 2

Anchored Model
Function Hidden Layers Sizes Output Layer Size

f [1024, 1024, 1024] 80
g - -
r [256, 256] 21
v [256, 256] 21
u [256, 256] 21
π [256, 256] 2

Abstracted Model
Function Hidden Layers Sizes Output Layer Size

f [1024, 1024, 1024] 100
g [512, 512] 100
r [128, 128] 21
v [128, 128] 21
u [128, 128, 128] 21
π [128, 128] 2

RND network architecture
Function Hidden Layers Sizes Output Layer Size

ψ [1024, 1024] 512
ψ′ [512] 512

Table 3: Shared across all models and agents
Parameter Setting Comment

Stacked Observations 1
γ 0.995

Number of simulations in MCTS 50
Dirichlet noise ratio (ξ) 0.3

Root exploration fraction 0
Batch size 256

Learning rate 0.0005
Optimizer Adam (Kingma & Ba, 2015)

Unroll steps l 5
Value target TD steps (nv) 5
UBE target TD steps (nu) 1

value support size 21
UBE support size 21

Reward support size 21
Reanalyzed policy ratio 0.99 See (Ye et al., 2021)

Prioritized sampling from the replay True See (Schrittwieser et al., 2020)
Appendix G

Priority exponent (α) 0.6 See (Schrittwieser et al., 2020)
Appendix G

Priority correction (βp) 0.4 → 1
See (Schrittwieser et al., 2020)

Appendix G
Evaluation episodes 8

Min replay size for sampling 300
Self-play network updating inerval 5
Target network updating interval 10

18

Under review as a conference paper at ICLR 2024

Table 4: Specific for models and agents

Parameter
Setting

True Model Abstracted Model Anchored Model
E-MCTS UBE Uninf. E-MCTS UBE Uninf. E-MCTS UBE Uninf.

Training steps /
environment
interactions

45K 45K 45K 35K 35K 35K 45K 45K 45K

Reward loss
weight λr

1 1 1 1 1 1 1 1 1

Value-loss
weight λv

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Policy-loss
weight λπ

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

UBE-loss
weight λu

0.125 0.125 - 0.25 0.25 - 0.125 0.125 -

RND scale 1.0 1.0 - - - - 0.001 0.001 -
Root based

targets False False False True True True False False False

Disabled
policy

in exploration
True True False True True False True True False

Number of
parallel
episodes

2 2 2 2 2 2 2 2 2

Out of are
exploration

episodes
1 1 - 1 1 - 1 1 -

Exploration
coefficient β 10 10 - 1 1 - 10 10 -

Dirichlet noise
magnitude ρ

0 0 0.25 0 0 0.25 0 0 0.25

19

	Introduction
	Background
	Monte Carlo Tree Search
	MCTS-Based Model Based Reinforcement Learning
	Estimating Epistemic Uncertainty in Deep Reinforcement Learning

	Deep Exploration with Epistemic MCTS
	Propagating Uncertainty in MCTS
	Planning for Exploration with MCTS
	Estimating Epistemic Uncertainty in Planning

	Related Work
	Experiments
	Conclusions and Future Work
	Law of Total Variance
	First Order Taylor Approximation of Variance of Next State
	Additional Results
	Implementation Details
	Targets
	Losses
	Different Dynamics Models
	Planning with Random Network Distillation Based Epistemic Uncertainty
	Planning with Visitation-Counts Based Epistemic Uncertainty
	Separating Exploration from Exploitation
	Environment Adaptation
	UBE Baseline
	Compute

	Network Architecture & Hyperparameters
	Hyperparameter Search
	Network Architecture
	Hyperparameter Configuration

