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Abstract

This note presents TopoMap [20], a novel dimensionality reduction technique
which provides topological guarantees during the mapping process. In particular,
TopoMap performs the mapping from a high-dimensional space to a visual space,
while preserving the 0-dimensional persistence diagram of the Rips filtration of the
high-dimensional data, ensuring that the filtrations generate the same connected
components when applied to the original as well as projected data. The presented
case studies show that the topological guarantee provided by TopoMap not only
brings confidence to the visual analytic process but also can be used to assist in the
assessment of other projection methods.

1 Introduction

Dimensionality reduction, mapping data points from a d-dimensional to a d′-dimensional Cartesian
space (with d′ << d), is an important tool for visual data analysis. Over the last decades, multi-
dimensional projection (MDP) methods [51, 66] have focused on preserving geometric properties
(such as the Euclidean distance between data points). This note presents TopoMap [20], a novel MDP
technique that is guaranteed to preserve topological structures during the dimensionality reduction
process (specifically, preserving the 0-dimensional persistence diagram of the Rips filtration of the
input data points). The topological guarantee provided by TopoMap allows analysts to confidently
explore high-dimensional data by visualizing which groups of objects are more tightly connected in
the high-dimensional space. The main contributions of this work are:

• A dimensionality reduction technique called TopoMap, which is guaranteed to preserve the
0-dimensional persistence of the Rips filtration of the input high-dimensional point cloud data.

• An optimization procedure that minimizes pairwise distances in the output, while ensuring the
correct mapping of the connected components resulting from the filtration.

• An exhaustive evaluation using both labeled and unlabeled data, showing the potential of TopoMap
to support the analysis of high-dimensional data.
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To the best of our knowledge, TopoMap is the first dimensionality reduction technique to provide
constructive guarantees as to the preservation of the topological properties of the Rips filtration of the
data under analysis. This note briefly presents an overview of TopoMap. Complete technical details,
arguments and experiments are available in the original publication introducing TopoMap [20].

2 Related Work

Multi-dimensional projection (MDP) has been a fundamental analytical tool for a long time, mainly
in the context of data visualization [3, 28, 37, 38, 40, 46, 51]. The extensive literature about MDP
techniques has been organized over several books [10, 43] and surveys [18, 51, 78]. In the following,
we focus on MDP methods which include topological considerations. We refer interested readers to
the above books and surveys for a broader discussion about MDP methods.

In general, topology-based methods [22] have been very popular in the last two decades to support
advanced data analysis and visualization tasks [36]. By providing a concise, structural representation
of the data, these techniques greatly help in the visualization and analysis of the data. They have been
applied successfully to a variety of domains, such as astrophysics [69,73], biological imaging [2,9,14],
chemistry [8, 29, 56], fluid dynamics [39], material sciences [33, 34, 72], or turbulent combustion
[11,31,42]. The Rips filtration [6,22] is often used to analyze the topology of high dimensional point
clouds. In particular, it has been shown that it can reliably capture the homology of the manifold
sampled by the point cloud [15]. Given the increasing popularity of topological methods, several
open source software packages have been made available over the years [1,7,12,24,45,49,50,74,76].

Several MDP approaches aimed at preserving some topological information during the projection
[4]. Topological concepts have also been used to evaluate the quality of dimensionality reduction
techniques [58,63,64]. Sharing motivations with previous work on skeletonization [41], Yan et al. [80]
introduce a variant of Landmark Isomap [70, 75], which exploits the Mapper [71] (an approximation
of the Reeb graph [17, 30, 57, 62]), to identify potential handles in the data and to preserve them
as much as possible by enforcing landmark constraints in 2D. Gerber et al. [26, 27] introduce
projection methods driven by the cells of maximum dimension (called crystals) of the Morse-Smale
complex [25, 32, 65, 68] of high dimensional scalar functions. In a similar context, Weber et al. [79]
introduce a terrain metaphor to provide an intuitive visualization of the topological features present
in a volume scalar field. The concept has been extended to high-dimensional point clouds in a series
of papers [35, 52–55], which present techniques generating 2D terrains admitting the same contour
tree (loop-free Reeb graph) as the input high dimensional point cloud (with regard to a kernel density
estimation function for instance). More recently, McInnes et al. introduce UMAP [47], an MDP
approach based on category theory, which is now often considered as a more modern and scalable
alternative to t-SNE [77]. Moor et al. [48] introduce a numerical framework aiming at minimizing
a distance between the persistence diagrams of the input and projected point clouds. In contrast,
TopoMap specifically focuses on the preservation of the 0-dimensional persistence diagram, which is
strictly enforced constructively (and not approximated via numerical optimization). Shieh et al. [67]
introduce a method (with cubic time complexity) aiming at preserving the single-linkage dendrogram
produced by hierarchical clustering, which, as discussed in section 3, has some connection to our work.
However, their approach is also based on numerical optimization (extended from multi-dimensional
scaling by the introduction of topological constraints) and the documented greedy approximation
scheme tries to satisfy the topological constraints as much as possible (as discussed by the authors).
In contrast, TopoMap provides strong guarantees as the preservation of the 0-dimensional persistence
diagram is strictly enforced constructively (i.e. from a combinatorial point of view).

3 Topology Preserving Projection

Let P = {p1, p2, . . . , pn} be a set of points in Rd . Given a distance threshold δ , the Vietoris–Rips
complex [22] is the collection of all k-simplexes K obtained from P (k ≥ 0), such that d(pi, p j)≤ δ ,
∀pi, p j ∈ K. Here, d(·, ·) is the Euclidean distance (Figure 1). Consider the growth as defined by
the Rips filtration, wherein the simplexes are added one at a time. That is, the ith iteration in this
growth yields a complex Ki

P = {K0,K1, . . . ,Ki−1}. The addition of each new simplex can change the
topology of Ki

P, where the topology is captured by the set of k-cycles (i.e. formal sums with empty
boundary of k simplices [22]) in Ki

P. Given a k-cycle (k ≥ 0), let δc be the threshold at which this
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Figure 1: Different stages of the Rips filtration of a 3D point cloud P (a), with increasing diameter
δ (b)–(f). These stages correspond to the instants in the filtration when two components (0-cycles)
merge into one. The edge from the Rips filtration responsible for this merge is also shown. Note that
this collection of edges correspond to the minimum spanning tree of the input point cloud.

cycle is created, and δd the threshold at which it is destroyed. Then the topological persistence [23]
of this k-cycle is defined as δd −δc, and intuitively captures the lifetime of this cycle in the given
filtration. The k-dimensional persistence diagram [16], noted PDk

P, plots each persistent k-cycle in
2D as a point at coordinates (δc,δd). Our goal is to construct a set of points P′ = {p′1, p′2, . . . , p′n} in
R2 such that PD0

P = PD0
P′ .

Given a Rips filtration defined over a set of n points, there is exactly (n− 1) topology changing
edges that result in reducing the number of 0-cycles. Specifically, the set of topology changing edges
ordered by increasing length En−1

P = {e1,e2, . . . ,en−1} is precisely the minimum spanning tree (MST)
of P [20] (see Figure 1). Let Ci

P be the set of connected components (i.e. set of connected vertex sets)
of Ki

P and PD0
P(i) the 0-dimensional persistence diagram of Ki

P. It follows that there exists at least
one mapping M : Rd → Rd′ with M (P) = P′, such that (see [20] for more details):

(a) |e′i|= |ei|, ∀i ∈ [0,n−1], ei ∈Ki
P, e′i ∈Ki

P′

(b) Ci
P′ =Ci

P, ∀i ∈ [0,n−1]

(c) and thus PD0
P′(i) = PD0

P(i), ∀i ∈ [0,n−1]

The existence of M can be shown constructively [20]. In particular, TopoMap projects P to R2 (i.e.,
d′ = 2), while enforcing the above conditions (a) and (b) by iteratively placing the points of P′ while
guaranteeing that the lengths of the edges of both minimum spanning trees (E i

P and E i
P′) exactly

coincide for each i. As illustrated in Figure 2, TopoMap iteratively introduces the edges of E i
P′ . In

particular let C1 and C2 be two connected components of Ki
P merged by the edge ei ∈ E i

P and C′1 and
C′2 their images by M . TopoMap starts by rotating C′1 and C′2 such that an edge of their convex hull
(for instance the longest) gets aligned with the x-axis. Then C′2 is translated along the y-axis such that
the minimum distance between the vertices of C′1 and C′2 equals |ei| (therefore enforcing |e′i|= |ei|
and maintaining the components C1 and C2 of the Rips filtration). In general, the rotations of C′1 and
C′2 can be chosen arbitrarily and the vertices v′1 and v′2 (respectively belonging to the convex hulls of
C′1 and C′2) linked by the edge e′i can also be chosen arbitrarily. In particular, these variables can be
optimized to minimize the overall sum of pairwise distances in P′, as further described in [20].

Given the equivalence between the 0-dimensional homology of the Rips filtration and hierarchical
clustering using single-linkage criterion [13], it follows that TopoMap also provides 2D layouts for
which the hierarchical clustering will be identical to that computed with the input high-dimensional
data. In other words, TopoMap preserves, constructively, hierarchical clustering with single-linkage.

Figure 2: Iterative placement of the points of P′ in 2D (left to right) given the input P from Figure 1.
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Figure 3: Projecting three-dimensional data to a 2D space using geometry preserving projections:
Classical MDS, Isomap, tSNE, UMAP; and the proposed topology preserving TopoMap method.

4 Experimental Results

TopoMap was implemented in C++ using the mlpack library [19] (for the efficient computation of
the Euclidean distance minimum spanning tree [44], in O

(
nlognα(n)

)
≈O(nlogn) steps, where n

is the number of input points) and the qhull library [5] (for the computation of the convex hulls,
in O(n′logn′), where n′ is the number of points in the considered component, with n′ << n). For
the optimization procedure (further described in [20]), the Algencan [60, 61] library was used. All
experiments were run on a machine with an Intel Xeon CPU E5-2630 v2 running at 2.60GHz
and 64GB of memory. Figure 3 presents some visual comparisons on synthetic three-dimensional
examples between the projections computed by TopoMap (1 color per connected component) and
these computed by state-of-the-art methods (using the scikit-learn [59] and the UMAP authors’
implementations). This figure shows that geometry preserving methods tend either to split connected
components or mix them up, while TopoMap is guaranteed to preserve them, leveraging more reliable
analysis. Figure 4 presents similar comparisons on public labeled data sets [21] (1 color per label).
As shown in Figure 4, TopoMap produces characteristic star-shaped projections, where the centers of
the stars correspond to the clusters which can be identified independently by hierarchical clustering
with single-linkage. In contrast, points located at the tips of long branches correspond to outliers or
boundaries between clusters. To further stress this, a transparent grey color map can be applied to the
output (right side of the TopoMap column) by considering, in the planar projection, a kernel density
estimate with a Gaussian kernel. Overall, TopoMap then produces 2D layouts where important
clusters can be readily identified visually, and where clustering uncertainties can be conveyed via
the grey color map in the less dense regions of the projections. We refer the reader to the original
TopoMap publication [20], for further evaluations, including detailed use cases on unlabeled data,
where TopoMap is shown to nicely preserve meaningful clusters at the centers of its stars.

5 Conclusions

This note presented TopoMap [20], to our knowledge the first planar projection technique that is
guaranteed to preserve the homology of 0-cycles of the Rips filtration. Experiments using a variety
of data sets demonstrated several key properties that are desirable in visual analysis: the layout is
easy to understand while its theoretical guarantees provide confidence to the users. In the future, we
would like to explore ways in which 1-cycles can be preserved as well in the projection. Analyzing
the effectiveness of TopoMap to assist clustering mechanisms is another direction we will pursue.
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Figure 4: Planar projections produced by MDS, Isomap, t-SNE, UMAP and TopoMap when applied
to five labeled data sets (Iris: 150 points in R5, Seeds: 210 points in R8, Heart: 261 points in R11,
Cancer: 699 points in R11, Mfeat: 2,000 points in R64). The right images in the TopoMap column
highlight with a transparent grey color map the denser areas in the left images.
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