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ABSTRACT

Decentralized learning provides a scalable alternative to parameter-server-based
training, yet its performance is often hindered by limited peer-to-peer communica-
tion. In this paper, we study how communication should be scheduled over time
to improve global generalization, including determining when and how frequently
devices synchronize. Counterintuitive empirical results show that concentrating
communication budgets in the later stages of decentralized training remarkably
improves global generalization. Surprisingly, we uncover that fully connected
communication at the final step, implemented by a single global merging, can
significant improve the generalization performance of decentralized learning under
serve high data heterogeneity. Our theoretical contributions, which explains these
phenomena, are first to establish that the globally merged model of decentralized
SGD can match the convergence rate of parallel SGD. Technically, we reinterpret
part of the discrepancy among local models, which were previously considered as
detrimental noise, as constructive components essential for matching this rate. This
work provides promising results that decentralized learning is able to generalize
under high data heterogeneity and limited communication, while offering broad
new avenues for model merging research. The code will be made publicly available.

1 INTRODUCTION

Decentralized learning offers a promising approach to crowdsource computational workloads across
geographically distributed compute (Yuan et al., 2022; Borzunov et al., 2023b; Jaghouar et al., 2024).
A defining characteristic of this setting is the reliance on peer-to-peer communication during training,
involving the peer-level exchange of model parameters or gradients during training. However, such
communication is often constrained in practice due to limited bandwidth between geographically
distant nodes, making it a scarce resource. These constraints can significantly degrade the performance
of decentralized learning, both theoretically and empirically (Lian et al., 2017; Koloskova et al., 2020;
Vogels et al., 2021). As a result, efficiently allocating limited communication resources becomes a
fundamental challenge in decentralized learning, especially in heterogeneous environments where
varying local data distributions intensify communication demands (Martínez Beltrán et al., 2023).

To date, most efforts addressing this challenge have focused on optimizing communication allocation
at the spatial level, particularly through the design of communication graphs (Ying et al., 2021; Li
et al., 2022b; Takezawa et al., 2023; Kharrat et al., 2024). In contrast, the temporal allocation of
communication, i.e., deciding when and how frequently agents synchronize with others, remains
a significant yet underexplored direction for improving decentralized learning. Although temporal
communication allocation has been studied in federated learning (FL) (Tang et al., 2020), this problem
remains largely untouched in the fully decentralized setting, which is fundamentally different due to
the lack of a central server for global aggregation (see discussions in Section 2 and Remark 1).

Question: How to allocate communication budget in decentralized learning over temporal levels?

To answer this question, we design a series of experiments that allocate communication budgets across
different time windows during training (see Figure 2). Specifically, we divide the training process into
consecutive windows, each consisting of a fixed number of communication rounds. We assign higher
communication budgets to selected windows using global synchronization via AllReduce (Sergeev
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(a) CLIP ViT-B/32 (b) ResNet-18 (w/o pretraining)
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(c) Landscape before final merging

(d) A comparative illustration of federated, decentralized, and local training.

Figure 1: (a, b): Global test accuracy (see Definition 1) of CLIP ViT-B/32 (a) and ResNet-18
(b) trained on Tiny ImageNet using FedAvg (blue), decentralized SGD (orange), and one-shot
FedAvg (green), distributed across 32 agents with high data heterogeneity (Dirichlet α = 0.1).
Decentralized training involves each agent syncing model parameters with a random peer per round
with a probability of 0.2, followed by a global merging at the final round (see details in Appendix C.1).
(c) Loss landscape for 16-agent training with decentralized SGD, prior to the final merging (see
details in Appendix C.1).3(d): An illustration comparing federated, decentralized, and local training.

& Del Balso, 2018), while keeping communication low otherwise by infrequent synchronization with
random peer agents.1 This enables us to gain insights into how the temporal communication allocation
affect the generalization performance under constrained budgets. We observe that allocating higher
communication budgets toward the later stages of training consistently leads to improved final global
test performance (see Definition 1). More surprisingly, we observe the remarkable effect of a single
round of fully-connected communication.2

Surprising Phenomenon: A single global merging of decentralized models, even under severely con-
strained communication and high data heterogeneity, can significantly improve global generalization.

Our Contributions are summarized below.

• Empirical Observations. (1): We highlight the critical role of a single global merging in decentral-
ized training, showing that it can achieve performance close to federated learning, even under severe
communication constraints and data heterogeneity (see Figure 1a, Figure 1b). The results remain
consistent across different hyperparameter setups, datasets, degree of data heterogeneity, model
architectures, optimizers, initialization schemes, and communication topologies (see additional
results in Appendix C.3). (2): We observe that limited but non-zero communication preserves the
“mergeability" of local models throughout training (see Definition 2, Figure 1c, and the blue curve in
Figure 2c), which does not hold under complete local training (green curve in Figure 1a, Figure 1b).

1Agents refer to participants in decentralized learning. “Communication" and “synchronization" are used interchangeably.
2Fully-connected communication refers to global synchronization via AllReduce. In this paper, fully-connected

communication is realized through parameter averaging over the models on all agents, namely global merging.
3We use 16 agents for loss landscape visualization to ensure visual clarity.
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Notably, our work takes the first step towards a systematic study of the global merging strategy in
decentralized learning, revealing its standalone effectiveness in generalization improvement.

• Theoretical Contributions. We investigate the underlying mechanism that enables the mergeability
of local models in decentralized learning. Specifically, we provide the first convergence analysis
showing that the globally merged model of decentralized SGD can match the rate of parallel SGD
(Theorem 1 and Proposition 2). Furthermore, we offer a theoretical explanation for why limited but
nonzero communication can ensure mergeability, and why communication should be concentrated
in the later stages of training (see Proposition 3).

We anticipate that this work will pave the way for principled decentralized training algorithms capable
of generalizing under severe communication constraints and data heterogeneity, while also advancing
model merging research (see discussions in Section 6). We also provide additional insights and
address potential limitations in a Q&A Section (see Appendix A).

2 RELATED WORK

Temporal Communication Allocation in Parallel, Federated, and Decentralized Learning.
Communication allocation is well-studied in both data-centric parallel learning (Li et al., 2014),
and Federated Learning (FL) (McMahan et al., 2017). In parallel learning settings, Gu et al. (2024)
proposed a novel strategy for scheduling local steps through analyzing the implicit bias of Local SGD
(Gu et al., 2023b). FL extends this server-based paradigm to handle not identically and independently
distributed (non-IID) data, but it critically retains a global model. This reliance on a global model has
shaped a broad consensus in the FL literature: frequent, early-stage communication is considered
essential for aligning local models (Wang et al., 2019; Tang et al., 2020).

In contrast, our work addresses fully decentralized learning, a fundamentally different setting that
lacks a central server. Instead of optimizing a generic global model, the goal is to make local models
generalize to the global distribution. Despite extensive work focusing on communication allocation
at the spatial level in decentralized learning (e.g., designing communication topologies) (Ying et al.,
2021; Li et al., 2022b; Takezawa et al., 2023; Kharrat et al., 2024), few studies have examined the
communication allocation problem over temporal levels. Pioneering work by Kong et al. (2021)
demonstrated that in IID scenarios, aligning local models more closely with their global average early
in training modestly improves generalization. However, these findings do not directly translate to non-
IID scenarios, as they are based on the IID assumption where the global population risk L(·) reduces
to the local population risk Lk(·) (see Equation (1) and Definition C.2). Therefore, their results
primarily address local generalization, as opposed to the global generalization (see Definition 1) in
our work. Due to space constraints, we refer readers to Appendix B.2 and Appendix B.3 for related
work on the implicit bias of decentralized learning, and on the topic of model merging.

3 NOTATIONS AND PRELIMINARIES

3.1 NON-IID DECENTRALIZED LEARNING

Decentralized learning formalizes distributed learning as an optimization problem over a connected
graph G = (V, E), where V contains m agents and E denotes the communication links. Each agent
k ∈ V samples data from a local distribution Dk and maintains a local model θk ∈ Rd. The objective
is to learn a consensus model θ that minimize the global population risk (Koloskova et al., 2020):

min
θ∈Rd

[
L(θ) ≜ 1

m

∑
k∈V

Eξk∼Dk
L(θ; ξk)

]
, (1)

where Eξk∼Dk
L(θ; ξk) ≜ Lk(θ) denotes the local population risk of θ on unseen instance ξk ∼ Dk.

In practice, the optimization of Equation (1) is performed under the empirical risk minimization
framework, leveraging m local datasets S ≜

⋃m
k=1 Sk, where Sk = {ξk,1, . . . , ξk,ζ} denotes the

dataset of agent k sampled from Dk. The resulting optimization problem is given by:

min
θ∈Rd

LS(θ) ≜
1

m

∑
k∈V

nk∑
ζ=1

L(θ; ξk,ζ)

 . (2)
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To solve the optimization problem in Equation (2), decentralized algorithms minimize the global
empirical risk with only local computations and peer-to-peer communication (Tsitsiklis et al., 1986;
Nedic & Ozdaglar, 2009). The communication graph is governed by a weighted adjacency matrix
W (t) ∈ [0, 1]m×m, sampled from a distributionW(t), where each entry W

(t)
k,l ≥ 0 reflects the influ-

ence of agent l on agent k.4 Decentralized learning algorithms operate by alternating between local
updates and model aggregation through communication with neighbors, as outlined in Algorithm 1.

Algorithm 1 Decentralized Learning

input Initialize values θ(0)k ∈ Rd on each agent k ∈ V , number of steps T , mixing matrix W

1: in parallel on all agent k ∈ V , for t = 0, . . . , T − 1 do
2: Sample training data ξ

(t)
k from Dk, θ(t+1)

k ← Optimizer(θ(t)k , ξ
(t)
k ) ▷ Local update

3: Send θ
(t)
k to out-neighbor(s) and receive {θ(t)l }l∈Nin(k) from in-neighbor(s) ▷ Communication

4: Sample mixing matrix W (t) ∼ W(t), θ(t+1)
k ←

∑
l∈Nin(k)

W
(t)
k,l θ

(t)
l ▷ Gossip averaging

5: end parallel for

Practical Evaluation Metrics. In decentralized learning, models are often evaluated in the absence
of a full consensus model θ due to data heterogeneity and limited training time. In this paper, we
adopt the average global test accuracy, a proxy of average global population risk, as the primary
evaluation metric, which quantifies how well local models generalize to the global data distribution.
Definition 1 (Average Global Test Accuracy). The average accuracy of agents k ∈ V is defined as:

Acc({θ(t)k }k∈V) =
1

m

∑
k∈V

Acc(θ
(t)
k )︸ ︷︷ ︸

Average Accuracy across agents

, where Acc(·) ≜ 1

m

∑
l∈V

Eξl∼Dl
Acc(·; ξl)︸ ︷︷ ︸

Test accuracy on the global distribution

.

Remark 1 (Metric Justification). This metric is specifically designed to address a core question in
fully decentralized learning: how well do local models {θ(t)k }k∈V , trained with limited peer-to-peer
synchronization, generalize to the global data distribution D? This metric offers a more realistic
evaluation for decentralized settings without a global model. See discussions in Appendix C.2.

3.2 MERGEABILITY

Definition 2 (Mergeability under Global Population Risk). A set of local models {θk}k∈V is globally
mergeable if there exist combination weights {wk}k∈V ∈ [0, 1] such that:

L

(∑
k∈V

wkθk

)
≤
∑
k∈V

wkL(θk), (3)

where L(·) denotes the global population risk.

Definition 2 formalizes the intuition that a linearly interpolated model perform no worse than the
original local models. The Definition is inherently non-trivial due to the non-convexity of L.

4 EMPIRICAL OBSERVATIONS

4.1 INCREASING IMPACT OF COMMUNICATION IN THE LATER STAGES OF TRAINING

The primary objective of this paper is to design a temporal communication strategy for decentralized
learning that enables local models to generalize effectively to the global data distribution (see Re-
mark 1). To investigate potential solutions, we explore a direct strategy: Concentrate communication

4Our framework incorporates randomized decentralized learning setting where the weighted adjacency matrix W (t) can
change during training (Boyd et al., 2006; Koloskova et al., 2020; Vos et al., 2023).
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(a) (b) (c)

Figure 2: (a, b): Comparisons of global test accuracy (see Definition 1) in decentralized training
of ResNet-18 on CIFAR-100 with AdamW, distributed across 16 agents with Dirichlet α = 0.1
(see details in Appendix C.1). Fully-connected communication (i.e., AllReduce) is activated only
in specific windows, while low communication with one random peer with a probability of 0.2 is
used elsewhere. (a): Fully-connected communication in 1/10 of total rounds. (b): Fully-connected
communication in 1/20 of total rounds. In both, lighter bars show peak accuracy, darker bars show
final accuracy. (c): Global test accuracy curves for local models and the globally averaged model
(counterfactual) under persistent low communication (blue) and no communication (orange).6

in a small subset of communication rounds. To this end, we divide the training process into consecutive
windows, each consisting of a fixed length of communication rounds. Specifically, the communica-
tion scheme is as follows: (1) fully-connected communication (see Figure 1d (b)) is activated only
within specific communication windows (i.e., global synchronization via AllReduce (Sergeev &
Del Balso, 2018)5); (2) while in all other rounds, each agent communicates only with one random
peer with a probability of 0.2 (see “Communication Graph" in Appendix C.1).

As shown in Figure 2, training is divided into 10 (a) and 20 (b) communication windows, respectively.
The bars in Figure 2 show both the best global test accuracy achieved during training (lighter-colored
bars) and the final test accuracy at the end of training (darker-colored bars). Each bar corresponds
to one communication window, where fully connected communication is applied only to the rounds
within that window, while random peer communication is used in all other rounds. For instance, the
inset in Figure 2a presents the complete test accuracy trajectory when fully-connected communication
is applied during rounds 150 to 180. A consistent trend emerges: allocating communication budgets
toward the later stages of training yields substantial improvements, particularly in final test accuracy.

4.2 A SINGLE GLOBAL MERGING SIGNIFICANTLY IMPROVES GLOBAL GENERALIZATION

In Figure 2b, we reduce the fully-connected communication window length to 10 rounds, yet still
observe substantial improvements in global generalization. This observation naturally raises the
question: What happens if the fully-connected window is reduced to a single round?

To investigate this, we conduct experiments where fully-connected communication is applied only
once, implemented by a single global merging. As shown in Figure 1a and Figure 1b, a single
global merging is sufficient to significantly improve global generalization. Consistent gains by a
single global merging are observed across a wide range of settings, including different datasets,
model architectures, optimizers, initialization schemes, and communication topologies (see additional
experimental results in Appendix C.3). The significant increase in performance suggests that the
global generalization potential of decentralized learning might be considerably underestimated.

Comparisons. D-PSGD (Lian et al., 2017) introduced the idea of final global merging under IID
settings, yet the performance gain before and after merging was not analyzed. In contrast, we provide
the first systematic study of this performance recovery in challenging non-IID scenarios. Further,
Chen et al. (2021) demonstrated the benefits of periodic global averaging. However, their method

5We note that AllReduce can be efficiently realized in a decentralized manner such as Ring-ALLReduce.
6The term “counterfactual” refers to the fact that no global merging occurs during decentralized training. Instead, we

manually compute the test accuracy of the hypothetical globally averaged model to quantify the “mergeability” of local models.
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requires frequent global communication every H = 48 steps; in contrast, we achieve recovery
with only a single merging. We also note that Aketi et al. (2021) proposed Skew-Compensated
Sparse Push (SCSP), an effective strategy to improve the communication efficiency of decentralized
learning, which also includes a final global merging step. While both works share the goal of reducing
communication, our approaches differ in methodology and experimental setting: (1) Methodology.
SCSP proposes a gradient sparsification algorithm (top-k gradients) over a fixed topology. In contrast,
we investigate the phenomenon of mergeability under topological sparsification (i.e., sparse gossip).
(2) Experimental setting. Their analysis focuses on settings with a single local step (H = 1). In
contrast, we demonstrate that mergeability is remarkably robust even with a large number of local
update steps (e.g., H = 100) and high data heterogeneity. While these works share the broader
goal of improving communication efficiency, our work offers a new perspective by investigating the
mergeability itself: Why local models retain this property despite extremely limited communication
and high data heterogeneity.

Cost Comparison and the Practical Feasibility of Global Merging. Let P be the model size, m
the number of agents, and T the number of training rounds. A standard AllReduce-based protocol
incurs a total communication cost of O(m2PT ) throughout training. In contrast, our decentralized
setup has a cost of O(mRPT +m2P ), where R ≪ m denotes the expected number of peers per
round, and theO(m2P ) term arises from final merging. We also note that while a global merging may
appear impractical in some decentralized settings due to the lack of AllReduce communication, it
can be effectively approximated via multiple rounds of local synchronization (i.e, gossip).

4.3 MERGEABILITY PERSISTS UNDER LIMITED BUT NONZERO COMMUNICATION

A follow-up question is whether the effectiveness of the global merging is specific to the end of
training. To investigate this, we assess the counterfactual performance of the globally averaged
model at each training round, as depicted by the light-blue curve in Figure 2c. The experiments are
conducted under a lower-communication setting, where each agent communicates with one random
peer at each round with probability 0.2 (see “Communication Graph” in Subsection C.1). A consistent
superiority of the merged model (light-blue curve) over the local models (dark-blue curve) is observed
throughout training, suggesting that local models remain mergeable at all stages (see Definition 2).

As an ablation, we conduct an experiment in which all models are trained entirely locally without
any communication (see Figure 2c). In this case, the counterfactual test performance of the globally
averaged model remains close to zero (light-orange curve), indicating that without communication,
local models are not mergeable. This suggests that mergeability does not arise inherently from the
local models themselves. Interestingly, under the low-communication setting, the test performance
of local models before merging (dark-blue curve) remains similar to that in the no-communication
case (dark-orange curve). However, after global merging, the resulting model shows shows signif-
icant generalization improvement. This clear contrast implies that extremely limited but nonzero
communication plays a pivotal role in enabling mergeability.

Mergeability without Consensus. Prior work on gossip algorithms has suggested that local models
may converge to a similar state even in minimal communication regimes (Jelasity et al., 2005). In
contrast, our work addresses a more challenging heterogeneous data setting where we find that local
models do not reach a single consensus point, yet remain mergeable. Specifically, we identify an
emergent geometric structure where decentralized training guides local models to a ring-like high-loss
region surrounding a central low-loss basin (see Figure 1c).

5 THEORETICAL ANALYSIS

In this section, we examine the underlying mechanisms that enable the mergeability of local models
in decentralized learning. As an initial step, we conduct a fine-grained convergence analysis of the
globally merged models trained by Decentralized SGD (DSGD).7 To substantiate the mergeability
of local models, we compare the convergence rate of the merged model of DSGD model to that of
parallel SGD. Remarkably, we prove that the merged model in decentralized learning can match the
rate of parallel SGD (Dekel et al., 2012; Li et al., 2014). This supports the empirical findings that the
merged model can preserve the performance of individual local models (see Definition 2).

7DSGD refers to standard decentralized SGD where the optimizer in Algorithm 1 is replaced with SGD.
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5.1 ASSUMPTIONS

We start by introducing the commonly used assumptions (Kong et al., 2021; Koloskova et al., 2020).
Assumption 1 (Mixing matrix). Each sample of the (randomized) mixing matrix W ∈ Rm×m is
doubly stochastic. Moreover, there exists p > 0 such that

EW ∥ΘW − Θ̄∥2F ≤ (1− p)∥Θ− Θ̄∥2F , ∀Θ ∈ Rd×m. (4)

Here Θ = [θ1, . . . , θm], Θ̄ = [θ̄, . . . , θ̄] ≡ Θ 1
m11⊤ where θ̄ = 1

m

∑m
k=1 θk.

Assumption 2 (Regularity). The objective function L is four-times continuously differentiable (i.e.,
L ∈ C4) and there exist constants Lq ≥ 0 for q ∈ {1, . . . , 4} such that:

∥∇qL(θ)∥ ≤ Lq, ∀ θ ∈ Rd. (5)

We note that given L ∈ C2, the boundedness of the Hessian norm (i.e., the case q = 2) implies that L
is L2-smooth, thereby recovering Assumption D.1 with (L = L2).
Assumption 3 (Bounded noise and diversity). There exist σ2, ζ2 ≥ 0 such that for any θk ∈ {θk}mk=1:

1

m

m∑
k=1

Eξk∥∇Lk(θk; ξk)−∇Lk(θk)∥22 ≤ σ2,
1

m

m∑
k=1

∥∇Lk(θk)−∇L(θk)∥22 ≤ ζ2, (6)

where L(θ) = 1
m

∑m
k=1 Lk(θ).

Here σ measures the local noise level and ζ is measure of the heterogeneity among agents.

5.2 CONVERGENCE ANALYSIS

Theorem 1 (Non-convex Convergence Rate of DSGD). Suppose Assumption 2 and Assumption 3
hold. Consider decentralized SGD (DSGD) with initializations θ(0)k = θ(0) for all k ∈ V , and a
constant learning rate satisfying η ≤ 1

L2
. Let θ̄(t) = 1

m

∑m
k=1 θ

(t)
k denote the averaged model

at the t-th step. To achieve an ε-stationary point such that 1
T

∑T−1
t=0 E

[
∥∇L(θ̄(t))∥22

]
≤ ε, the

total number of steps T satisfies:

T = O
(

σ2

mε2 + 1
ε + 1

ε

(
[
∑T−1

t=0 A(t)]+
)1/2 ) · L2

(
L(θ(0))− L⋆

)
,

where [·]+ ≜ max(0, ·) and A(t) is defined as:

A(t) ≜ ηL2

(
2T2 + L2

3Ξ
4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

)
,

with T2 and the consensus distance Ξ2
t given by:

T2 ≜ (∇L(θ̄(t)))⊤∇Tr
(
∇2L(θ̄(t)) Γ(t)

)
, Ξ2

t ≜ 1
m

m∑
k=1

(θ
(t)
k − θ̄(t))⊤(θ

(t)
k − θ̄(t)).

Remark 2. We note that Theorem 1 gives an implicit bound depending on A(t), t ∈ {1, 2, . . . , T −
1}, rather than a closed-form expression. It primarily serves to bridge convergence with the per-
iteration dynamics of A(t), facilitating the subsequent derivation of the conditions on consensus and
communication required to recover the parallel SGD rate (see Proposition 2 and Proposition 3).

Comparison. As summarized in Table 1, unified analysis by Koloskova et al. (2020) showed that
DSGD suffers from additional terms of order O

(
1−p
pε +

√
p σ+ζ

p ε3/2

)
in the convergence rate compared

to parallel SGD. The core idea behind their analysis is to separate the effects of three key factors:
the descent force (i.e., the squared gradient norm), gradient noise, and parameter discrepancy
among agents. Each of these components is then analyzed and controlled separately. Among them,
both the gradient noise and the model discrepancy are treated as detrimental to convergence. In

7
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Table 1: Comparison of non-convex convergence rates for parallel SGD and DSGD, both run with m
agents under non-iid data.

Algorithm Parallel SGD DSGD (Koloskova et al., 2020) DSGD (ours)

Rate O
(

σ2

mε2 + 1
ε

)
O
(

σ2

mε2 + 1
pε +

√
p σ+ζ

p ε3/2

)
O
(

σ2

mε2 + 1
ε + 1

ε

(
[
∑T−1

t=0 A(t)]+
)1/2 )

contrast, we adopt a new proof framework that leverages the implicit bias of decentralized learning
(see Proposition D.3 (Zhu et al., 2023b) and Appendix B.2). Rather than treating the discrepancy
among agents purely as noise, we partially incorporate it as a constructive component essential for
matching the rate of paralle SGD. This intuition is formalized through the convergence guarantee
provided in Theorem 1, which introduces an additional term of O

(
1
ε2

(
[
∑T−1

t=0 A(t)]+
)1/2)

, where

[·]+ ≜ max(0, ·). In what follows, we conduct a fine-grained analysis on the sign of A(t).

Remark 3 (Reduction to Standard Rates). We consider two special cases where the term A(t)

vanishes because the consensus error is identically zero (Ξt ≡ 0):

• The single-agent case (m = 1);

• The fully synchronous Parallel SGD case, where perfect synchronization ensures identical local
models (θ(t)k ≡ θ̄(t) for all k).

In both settings, the auxiliary term A(t) in Theorem 1 strictly equals zero. Consequently, Theo-
rem 1 naturally recovers the convergence rate of standard (Parallel) SGD, which is of the order
O
(

σ2

mε2 + 1
ε

)
. This confirms that the comparison in Table 1 is fair, as our unified bound applies to

both settings without requiring any additional assumptions for the decentralized setting.

To better characterize how the high-order loss landscape affects the dynamics of A(t) , we introduce
a new assumption that is theoretically novel yet empirically supported by prior literature.
Assumption 4 (Progressive sharpening). For any positive semi-definite matrix Σ, the gradient of
population risk negatively aligns with the gradient of sharpness. Formally, ∀θ ∈ Rd,

∇L(θ)⊤∇Tr(∇2L(θ)Σ) < 0. (7)

Remark 4. Intuitively, Tr(∇2L(θ)Σ) can be interpreted as an “average sharpness" around θ; see
similar metrics in (Gu et al., 2023a; Zhu et al., 2023b). Assumption 4 reflects a widely observed
phenomenon in deep learning: The loss gradient exhibits a negative correlation with the gradient of
sharpness (Wang et al., 2022; Damian et al., 2023; Cohen et al., 2025).

Assumption 4 ensures that T2 in A(t) remains negative. In the following, we formally establish that
T2 can dominate the other terms in A(t), thereby ensuring that A(t) remains non-positive.

Proposition 2. Suppose Assumption 2 and Assumption 4 hold, and assume ∥∇L(θ̄(t))∥ ≥ µt > 0

for all t. Consider the matrix Γ(t) = 1
m

∑m
k=1(θ

(t)
k − θ̄(t))(θ

(t)
k − θ̄(t))⊤ and its trace Ξ2

t =

Tr(Γ(t)). Then, for any fixed m > 0, there exists a Ξ2
t > 0 such that

A(t) ≜ ηL
(
2T2 + L2

3Ξ
4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

)
≤ 0, (8)

where T2 = (∇L(θ̄(t)))⊤∇Tr(∇2L(θ̄(t)) Γ(t)).

Explanations for Assumptions.

• We assume a lower bound on the global gradient norm evaluated at the averaged parameters θ̄(t),
i.e., ∥∇L(θ̄(t))∥ ≥ µt > 0. We note that this applies to the gradient on the global data set, which
can remain significant even if individual local gradients vanish. The assumption is motivated by the
Polyak-Lojasiewicz (PL) condition (Polyak, 1963), 1

2∥∇L(θ)∥
2 ≥ µ(L(θ)− L∗), which ensures

the gradient is bounded from zero before reaching the optimum. Our new assumption formalizes
this property for the pre-convergence phase by denoting this lower bound at iteration t as 1

2µ
2
t .
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• We note that Assumption 2 requires that the norm of the loss derivatives are bounded up to the
fourth order, ∥∇qL(θ)∥ ≤ Lq for q = 1, 2, 3, 4. These higher-order bounds are necessary to
analyze the the interaction between the consensus error Ξt and higher-order landscape geometry.

Proposition 2 highlights the critical role of the consensus violation term Ξt =
√
Tr(Γ(t)). In

conjunction with Theorem 1, Proposition 2 implies that DSGD can match the parallel SGD rate if
Ξt (∀t ∈ [T ]) is properly controlled. According to Corollary D.2, E

[
Ξ2
t

]
is bounded by

E
[
Ξ2
t

]
≤ O

(
(1− p) η2

p2

)
. (9)

The parameter p ∈ (0, 1] reflects the level of connectivity in the communication graph (see Assump-
tion 1). A larger p indicates better connectivity and faster consensus, while a smaller p implies a
sparse communication graph (i.e., lower communication) and slower information propagation. For
example, p = 1 corresponds to a fully connected topology, enabling perfect communication, whereas
p = 0 represents the extreme case of complete local training with no communication.

Remark 5. For the fully-connected case where p = 1, we observe that A(t) ≡ 0 as Ξt ≡ 0. In this
case, Theorem 1 recovers the rate of standard SGD.

Why Limited but Nonzero Communication Enables Mergeability. Notably, random commu-
nication graphs can achieve p = Θ(1), striking a favorable trade-off: they require relatively low
communication overhead while still maintaining efficient information mixing due to randomized
edge sampling, which ensures a rapid decrease of Ξt (Vos et al., 2023). This is why we adopt random
topologies as the primary setup in our experiments: They can satisfy the condition in Proposition 2
even under extremely limited communication, thereby ensuring that mergeability (see Figure 1).

However, in the case of full local training where p = 0 (see Figure 1d), the right-hand side of
Equation (9) increases to infinity, indicating that Ξt may diverge. As a consequence, the condition of
Ξt in Proposition 2 can no longer be satisfied, which explains why local models after complete local
training may not be reliably merged (see the green curve in Figure 1b).

5.3 A THEORETICAL EXPLANATION FOR COMMUNICATION ALLOCATION

Recall that Proposition 2 shows there exists a threshold of consensus violation Ξ2
t for which Inequal-

ity (8) holds. This motivates the question of how small Ξ2
t (or how large p) should be, which we

answer by providing the following sufficient condition.

Proposition 3 (Critical Consensus Edge). Suppose Assumption 1 and Assumption 2 hold. Assume
the averaged squared gradient norm is bounded by 1

m

∑m
k=1 ∥∇Lk(θ

(t)
k )∥2 ≤ ϕ2 for all t. Then

the following condition ensures that the critical Inequality (8) is satisfied:

12(1− p)η2

p2
(
ϕ2 + σ2

)
< min


√

γµt

2L2
3

,
γµt(

2L1 +
γµt

L3
+

mL2
4

242

)√
m

 , (10)

where γ denotes the degree of progressive sharpening (see Assumption 4), and µt is the lower
bound on the gradient norm (i.e., ∥∇L(θ̄(t))∥ ≥ µt > 0 for all t).

Practical Guidance. Proposition 3 provides a guide for allocating communication to ensure A(t) ≤ 0,
contributing to the non-positiveness of the cumulative sum

∑T−1
t=0 A(t) in Theorem 1. To derive a

practical strategy from Equation (10), we observe that parameters ϕ, σ2, γ, m, and Lq(q = 1, 3, 4)
are time-independent constants, the only quantity that vary with the iteration t is the gradient norm
lower bound µt. The condition therefore simplifies to how p should be adjusted over time in response
to the changing µt. Crucially, the left-hand side of Equation (10) is a decreasing function of p, while
its right-hand side is an increasing function of µt. This means more communication (i.e., a larger p)
makes the condition easier to satisfy, whereas a smaller µt tightens the bound. Specifically,

• Early, High-Gradient Regime: In the starting phase of training, when models are far from a
minimum, the lower bound on gradient norm µt is large. This corresponds to a relaxed consensus

9
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requirement in Equation (10), which permits low-frequency communication (i.e., smaller p) without
significantly impacting the performance of the globally merged model.

• Late, Low-Gradient Regime: As models approach a solution and training enters a convergence
phase, the gradient norm µt decreases. This tightens the constraint in Equation (10). In this regime,
frequent communication (i.e., larger p) becomes critical.

We note that this theoretically motivated guidance aligns well with our empirical findings in Section 4
that more communication should be concentrated in the later stages of training.

6 IMPLICATIONS AND DISCUSSIONS

Model Merging. The success of a single merging of decentralized models has significant implications
for the broader field of model merging. A recent work showed that pre-trained models occupy a
large, flat "basic capability basin", within which fine-tuning creates smaller "specific capability
basins" (Chen et al., 2025). The observed "mergeability" of local models in our paper implies that
decentralized learning can "guide" each agent into specific capability basins that are inherently
connected. This allows simple merging without permutation to effectively create a new model
that successfully integrates the specialized knowledge. The insight opens a promising new avenue:
introducing lightweight synchronization during local training may promote the connectivity between
specialized models, thus simplifying their subsequent merging into a more capable model.

Decentralized Learning. Our work provides promising empirical and theoretical evidence that
decentralized learning can generalize under high data heterogeneity and limited communication. More
importantly, our findings could directly motivate a new class of adaptive, communication-efficient
decentralized algorithms, which dynamically allocate their communication budget by monitoring
training dynamics to satisfy the critical consensus edge condition in Equation (10).
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LLM USAGE STATEMENT

We use large language models (LLMs) as writing-assistance tools. Their role is confined to proof-
reading and language polishing.

IMPACT STATEMENT

This paper studies the problem of temporal communication allocation in decentralized distributed
learning, a topic of very high significance in the era of communication-intensive large model training.
Specifically, we aim to contribute to the development of communication-efficient decentralized
learning without compromising performance. The potential positive social impact are twofold:

• Democratizing Access. For individuals and organizations with constrained infrastructure, our
work contributes to the democratization of access to large-scale collaborative training. By reducing
communication requirements, we lower the barrier to entry for participating in advanced model
development. Such inclusivity can extend the applicability of distributed learning systems to edge
environments, thereby promoting more equitable contributions to models trained at scale.

• Reducing Training Costs. In data center environments, our approach can alleviate communication
bottlenecks of distributed training. This reduction directly translates to shorter total wall-clock
training time, thereby lowering the overall costs and energy consumption associated with large-scale
distributed training.

No negative societal impacts are identified.

ETHICS STATEMENT

Our research strictly adheres to the ICLR Code of Ethics. The work is foundational, focusing on
the algorithmic and theoretical properties of decentralized learning, and does not involve human
subjects or the collection of new sensitive data. All experiments were conducted on publicly available,
standard academic datasets. We foresee no direct negative societal impacts; on the contrary, by
reducing communication overhead, our findings may contribute positively by democratizing access
to large-scale distributed training and lowering the associated resource footprint.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our research. Our theoretical claims, including all
assumptions and their justifications, are presented in Section 5 with complete, step-by-step proofs
provided in Appendix D. Comprehensive details for reproducing our empirical results, including
model architectures, data processing, hyperparameter settings, and communication configurations,
are well documented in Appendix C.1.

A LIMITATIONS AND POTENTIAL QUESTIONS

Q: Why use decentralized AdamW in some experiments when the theory is on decentralized SGD?

A:We use decentralized AdamW in some of our experiments for its superior performance in Non-
IID settings. Crucially, we note that all reported empirical observations are fully consistent when
using decentralized SGD, which directly align with our theoretical analysis (see Figure 1 and
Subsection C.3).

Q: How does theory part explain "local models in decentralized learning are globally mergeable”?

A: The theoretical explanation of the “mergeability” of local models in decentralized learning is
supported by the result that a globally merged model converges faster to the optimum than the
individual local models. Specifically, we provide a fine-grained convergence analysis showing
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that the merged model trained via Decentralized SGD (DSGD) can match the convergence rate to
optimum of parallel SGD, despite using limited communication. Since the rate of m-agent parallel
SGD is superior to that of single local model, the result transitively justifies the merged model’s
superior performance to that of any individual model, thereby providing theoretical support for their
mergeability.

Q (Hyperparameter tunning): How the baselines were tuned in terms of hyperparameter?

A: All hyperparameters were tuned via grid search based on global generalization performance, with
the batch size searched over {64, 128}. For ResNet-18 trained from scratch on Tiny ImageNet, we
searched the learning rate over {1 × 10−4, 5 × 10−4, 1 × 10−3} for AdamW and {1 × 10−3, 5 ×
10−3, 1 × 10−2} for SGD. For CLIP ViT-B/32 on Tiny ImageNet, we searched the learning rate
over {1× 10−4, 5× 10−4, 1× 10−3} for AdamW and {5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2}
for SGD. For the optimal hyperparameters selected for our main experiments, please refer to the
Implementation Details in Appendix C.1 and the additional empirical results in Subsection C.3).

Q (Comparison with Model Soup): How does different or same initialization affect results? The
performance gain from merging has been observed in Model Soup (Wortsman et al., 2022a).

A: We use different initialization schemes and observe consistent performance gains from global
merging whether models start from different random initializations or a pretrained state. The majority
of our experiments use different initializations, demonstrating that local models in decentralized
learning can be effectively merged regardless of their starting points. This is quite surprising as it
contrasts with methods like Model Soup, which require models to be fine-tuned from an identical
pretrained state. Furthermore, our experiments with a shared pretrained state confirm that the
performance gains hold in that setting as well (see Figure 1a and Subsection C.3).

Q (Methodology for Landscape Visualization): Please clarify the methodology for visualizing
the loss landscape in Figure 1c, including the basis for the visualization grid.

A: We adopt the visualization tool from (Crisostomi et al., 2024), positioning 16 trained mod-
els at the vertices of a regular hexadecagon. Any point within this polygon is an interpo-
lated model whose parameters are determined by Wachspress barycentric coordinates; we then
evaluate its cross-entropy loss to generate the contour map. Unlike methods that use ran-
dom directions, our visualization grid is deterministically defined by the models themselves,
allowing a direct investigation of their geometric connectivity. The full implementation is
available in their official code repository https://github.com/crisostomi/cycle-consistent-model-
merging/blob/master/notebooks/plots/plot_loss_contours_n_models.ipynb

Q (Experimental Scope): The empirical findings are restricted to visual tasks.

A: Our empirical findings primarily focus on tasks within the vision domain. We note that this is
consistent with most existing decentralized learning literature (Lin et al., 2021; Kong et al., 2021; Ying
et al., 2021; Vogels et al., 2021; Li et al., 2022b; Zehtabi et al., 2025). Extending the experimental
setup to broader tasks is a meaningful direction for future research.

Q: The findings in Figure 2 (c) that local models eventually converge to a similar state even with
limited communication was observed by prior work on gossip algorithms (Jelasity et al., 2005).

A: In our setting, the local models do not, in fact, converge to a similar state or a single consensus point.
This is because our work addresses a more challenging heterogeneous data regime, which differs
from the setting in the cited prior work. Instead, we identify an emergent geometric structure where
decentralized training guides local models to a shared “high-loss ring” surrounding a central low-loss
basin (see Figure 1c). Although the models do not reach a consensus, they remain surprisingly
mergeable within this region. This geometric arrangement allows their average, i.e., the globally
merged model, to fall directly into the low-loss basin. To the best of our knowledge, we are the first
to identify this emergent phenomenon in decentralized learning.
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B ADDITIONAL BACKGROUND AND RELATED WORK

B.1 DECENTRALIZED LEARNING

Modern large-scale model training and inference are predominantly conducted within centralized,
high-cost data centers. Driven by mounting constraints on computational resources and power
availability (Pilz et al., 2025), both academia and industry are increasingly exploring decentralized
training approaches (OpenAI, 2025; Grand View Research, 2024). This paradigm, drawing inspiration
from swarm intelligence systems (Bonabeau et al., 1999; Mavrovouniotis et al., 2017), offers a more
economical and scalable approach by distributing computational tasks across globally distributed
nodes, rather than relying solely on a single central server (Yuan et al., 2022; Borzunov et al., 2023b;
Jaghouar et al., 2024; Ramasinghe et al., 2025). A notable illustration of the computational potential
through decentralization is the Bitcoin system, which sustains workloads equivalent to a 16 GW
power draw (CCAF, 2023), surpassing by a factor of three the estimated 5 GW consumption of the
largest AI supercluster under development (Gardizy & Efrati, 2024; OpenAI, 2025).

To provide context, we summarize key algorithmic and theoretical advances in decentralized learning.
While our discussion highlights several notable contributions, it is not exhaustive; readers are referred
to recent advances and surveys (Zhu et al., 2025; Martínez Beltrán et al., 2023; Singha et al., 2024;
Yuan et al., 2024; He et al., 2025; Ramasinghe et al., 2025; Kolehmainen et al., 2025).

Algorithmic Progress in Decentralized Learning. The advancement of decentralized learning
algorithms has been primarily driven by the need for communication-efficiency in practical distributed
learning. Decentralized algorithms have been refined to handle a variety of realistic scenarios,
including time-varying communication topologies (Nedi’c & Olshevsky, 2014; Koloskova et al.,
2020; Ying et al., 2021; Takezawa et al., 2023), asynchronous updates (Lian et al., 2018; Xu et al.,
2021; Nadiradze et al., 2021; Bornstein et al., 2023; Even et al., 2024), statistical heterogeneity
(Tang et al., 2018; Vogels et al., 2021; Le Bars et al., 2023), and robustness to Byzantine failures
(He et al., 2022; Ye & Ling, 2025). Moreover, recent works extended beyond standard empirical
risk minimization to more structured problem classes, such as compositional (Gao & Huang, 2021),
minimax (Xian et al., 2021; Zhu et al., 2023a; Chen et al., 2024), and bi-level optimization (Yang
et al., 2022; Gao et al., 2023; Chen et al., 2023). Additionally, privacy concerns in decentralized
learning are also critical, with efforts focusing on differentially privacy (Cyffers et al., 2024; Allouah
et al., 2024) and data reconstruction attacks (Mrini et al., 2024).

Theoretical Progress in Decentralized Learning. Foundational work on decentralized optimization
(Nedic & Ozdaglar, 2009; Sayed, 2014; Yuan et al., 2016; Lian et al., 2017) laid the groundwork for
understanding convergence. Building on this, Lu & De Sa (2021) proposed a hierarchical abstraction
of decentralization, distinguishing it into three layers, providing a unified view across federated
and decentralized paradigms. Koloskova et al. (2020) consolidated synchronous decentralized SGD
algorithms with changing communication topologies and local updates, and Even et al. (2024)
extended the unifying perspective to asynchronous protocols. More recently, Zehtabi et al. (2025)
developed these frameworks further by considering the sporadicity of both communication and
computations. On the generalization front, Richards et al. (2020) derived stability-based bounds for
decentralized SGD in convex settings, while Sun et al. (2021) extended these to non-convex objectives,
revealing a dependency on the spectral gap of the communication graph. This dependency was
subsequently refined by Zhu et al. (2022), who introduced a Gaussian weight difference assumption
to tight the bound. Complementary results showed that in convex regimes, the generalization of
decentralized SGD matches that of centralized SGD (Le Bars et al., 2024), while in non-convex
landscapes, decentralization primarily impacts worst-case generalization behavior. To account for
unexplained generalization behaviors in decentralized training (Kong et al., 2021; Gurbuzbalaban
et al., 2022; Vogels et al., 2023), Zhu et al. (2023b) linked decentralized SGD to random sharpness-
aware minimization (SAM), revealing a bias toward flatter minima. Notably, akin to our finding that
decentralized learning generalizes when allocated high communication late in training, Zhou et al.
(2025) showed that SAM efficiently selects flatter minima when applied in the later stage of training.

Towards Decentralized Training of Foundation Models. Recent advances have shown the feasi-
bility of training large-scale foundation models in decentralized environments. DT-FM (Yuan et al.,
2022) introduced tasklet-based scheduling for Transformer training under bandwidth-constrained
settings, enabling efficient resource allocation. SWARM Parallelism (Ryabinin et al., 2023) scaled
decentralized training through resilient pipeline design and adaptive load balancing. CocktailSGD
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(Wang et al., 2023) further improved efficiency via a combination of decentralization, gradient sparsi-
fication, and quantization for LLM fine-tuning. On the inference side, Petal (Borzunov et al., 2023a)
exploited peer-to-peer networks to amortize computational costs across heterogeneous nodes. Most
recently, Intellect (Jaghouar et al., 2024), building on Diloco (Douillard et al., 2023), leveraged hybrid
parallelism, i.e., both data and model parallelism, to collaboratively train models with billions of
parameters. NoLoCo (Kolehmainen et al., 2025) further extended Diloco to gossip-type decentralized
settings. For a broad survey of large-scale deep learning practice, see Shen et al. (2024; 2025).

B.2 IMPLICIT BIAS OF DECENTRALIZED LEARNING

The concept of implicit bias, i.e., the intrinsic preference of learning algorithms for solutions with
certain properties, has emerged as a key concept in explaining the empirical success of modern
deep learning (Li et al., 2022c; Vardi, 2023; Lyu, 2024). Recent studies have highlighted intriguing
distinctions between decentralized stochastic gradient descent (DSGD) and its centralized counterpart
(CSGD). Gurbuzbalaban et al. (2022) demonstrated that under certain conditions, DSGD operating
on large, sparse topologies exhibits heavier-tailed parameter distributions compared to CSGD. Zhang
et al. (2021) showed that decentralization introduces a landscape-dependent noise, which can improve
tolerance to larger learning rates. This observation aligns with findings by Vogels et al. (2023), who
revealed that collaboration in decentralized settings permits the use of larger learning rates. Zhu
et al. (2023b) first explicitly characterized the implicit bias of decentralized SGD by establishing
its connection with random sharpness-aware minimization, proving the existence of flatne bias in
decentralized training. Complementing this, Cao et al. (2024) offered a detailed analysis of the
interplay between flatness and optimization in DSGD, particularly its ability to escape local minima.
More recently, Wu & Sun (2024) investigated the implicit regularization properties of decentralized
optimization in non-convex sparse regression problems, recovering the convergence rates achieved by
gradient descent in centralized settings.

Comparison with Zhu et al. (2023b). We note that Zhu et al. (2023b) has highlighted the gener-
alization benefits of decentralized learning, but key differences exist in terms of the experimental
setup and the insights derived. While Zhu et al. (2023b) focused on IID scenarios and specific
cases involving exceptionally large batch sizes, we consider the more realistic non-IID setting using
standard batch sizes. This shift in focus allows us to uncover phenomena not observed by Zhu et al.
(2023b), including insights into communication allocation strategies.

B.3 MODEL MERGING

Mode Connectivity and Model Merging Techniques. Recent works on (Linear) Mode Connectivity
have advanced our understanding of the complex loss landscape in neural networks. Freeman &
Bruna (2017); Draxler et al. (2018); Garipov et al. (2018); Nagarajan & Kolter (2019); Frankle et al.
(2020) discovered that different solutions of deep neural networks can be merged together by simply
averaging their parameters. Sonthalia et al. (2025) further showed that the solutions may form a star
domain. We note that these phenomenon are observed in the following scenarios:

• Shared initialization (Frankle et al., 2020; Fort et al., 2020; Zhou et al., 2023). Models are
initialized from a pretrained checkpoint.

• Homogeneous data distribution (Wortsman et al., 2022a). Models are trained on homogeneous
data distribution.

• Permutation (Ainsworth et al., 2023; Entezari et al., 2022). Models are independently trained.
The neurons of one model are permuted to match the neurons of the other while maintaining a
functionally equivalent network.

These findings have inspired a range of model merging techniques for various applications. Izmailov
et al. (2018); Matena & Raffel (2022); Rame et al. (2022; 2023); Wortsman et al. (2022a;b) found
that merging the parameters of models that start from the same pretrained model and finetune over
the same task leads to improved generalization and robustness. Furthermore, Ilharco et al. (2022);
Li et al. (2022a); Ilharco et al. (2023); Ortiz-Jimenez et al. (2023); Yadav et al. (2023) showed that
merging models that finetune over different tasks enables multi-task abilities.
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Comparisons with Model Merging Literature. Our results show that mode connectivity, or
mergeability, can still emerge in decentralized learning, even when the local models are initialized
differently, trained on highly heterogeneous data, and merged without any permutation. Our findings
offer new insights into both model merging techniques and the geometry of the neural network loss
landscape, which we anticipate will motivate further advances in both areas.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTAL SETUPS

Computational Resources. The experiments were conducted on a computing facility equipped with
80 GB NVIDIA® A100™ GPUs. All implementations are based on PyTorch, and computations are
distributed across multiple GPUs for efficiency.

Dataset. We use three widely adopted image classification datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015). CIFAR-10 consists of 60,000 RGB
images across 10 classes, while CIFAR-100 contains 60,000 RGB images across 100 classes. The
images in both datasets have a spatial resolution of 32× 32 pixels. Tiny ImageNet is a subset of the
ImageNet dataset, comprising 100,000 images drawn from 200 classes, with each image resized to
64 × 64 pixels. It provides a mid-scale benchmark that is more challenging than CIFAR datasets
but less computationally demanding than training full ImageNet. To incorporate data augmenta-
tion, we employ a combination of RandomCrop with 4-pixel padding, RandomHorizontalFlip, and
RandAugment with num_ops=2 and magnitude=9.

Details of Decentralized Learning. We simulate a heterogeneous decentralized learning environ-
ment. For our main experiments (Figure 1a and Figure 1b), we use m = 32 agents, while for other
experiments, including the sliding window experiments (Figure 2) and the loss landscape visualiza-
tions (Figure 1c), we use m = 16 agents. The number of agents for the visualization was chosen as
16 for clarity, as a plot with 32 models would be visually crowded. In all configurations, we employ
a Dirichlet distribution characterized by α = 0.1 to partition the data among agents. The Dirichlet
distribution is commonly used to partition data in federated learning scenarios, as it allows for the
control of label distribution skew among agents (Yurochkin et al., 2019; Hsu et al., 2019). A smaller
α results in more imbalanced data distributions, where some agents predominantly receive data from
a limited number of classes, while a larger α results in more uniform label distributions across agents.
This configuration effectively captures the realistic non-IID nature of decentralized learning, where
different agents may have access to personalized data reflective of their local environments.

• Communication Graph. We evaluate three decentralized communication topologies: random
graph, ring graph, and exponential graph. In the random graph setting, during each communication
round, each agent selects a random subset of its neighbors for gossip averaging. For "R 1", each
agent selects exactly one random neighbor in each round. For "R 0.2", each agent selects one
neighbor with a probability of 0.2 and continues local training without communication with a
probability of 0.8. The ring graph enforces a fixed cyclic communication structure, while the
exponential graph ensures connectivity by allowing agents to communicate with exponentially
increasing distances in the ring graph.

• Communication Rounds and Local Steps. The decentralized learning process is conducted
over T = 300 communication rounds. We use a local training step size of H = 100 batches per
communication round to balance communication and computation costs.

• Local Data per Agent. Each agent is assigned a subset of the dataset with a fixed size of 4096
samples, drawn according to a Dirichlet distribution to simulate realistic non-IID scenarios.

Model Architecture. To ensure a representative comparison across different model families, we
adopt ResNet-18 (He et al., 2016) and CLIP ViT-B/32 (Radford et al., 2021) as backbone architectures
in our experiments. ResNet-18 is a widely used lightweight convolutional neural network that serves
as a canonical example of traditional CNN-based architectures. In contrast, CLIP ViT-B/32 is a
transformer-based vision model pre-trained on large-scale image–text pairs. For experiments on Tiny
ImageNet, where images are resized to 64×64 pixels, we adjust the CLIP visual encoder to handle
the lower resolution. With a patch size of 32, each image yields 4 visual tokens arranged in a 2×2
grid, plus a [CLS] token, resulting in a 5-token input sequence.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Implementation Details. All hyperparameters are tuned through grid search based on global
generalization performance (see Definition 1). For experiments using decentralized SGD, the optimal
learning rates were found to be 1×10−2 for ResNet-18 (trained from scratch) and 1×10−3 for CLIP
ViT-B/32. When using decentralized AdamW, the optimal learning rate is 5× 10−4 for ResNet-18
(both when trained from scratch and fine-tuned from ImageNet-pretrained weights) and 1× 10−5 for
the pretrained CLIP ViT-B/32 on Tiny ImageNet. For all experiments, weight decay is set to 5×10−4

and the batch size is selected as 128. The key empirical results remain consistent across these
optimizer and hyperparameter choices, indicating that our conclusions are stable and not sensitive to
specific hyperparameter configurations.

Details of Loss Landscape Visualization in Figure 1c. To analyze the geometric connections
among models after decentralized training, we visualize the loss landscape spanning their param-
eter spaces. We adopt the visualization tool from (Crisostomi et al., 2024), which is specifically
designed to analyze the interpolation space within the convex hull formed by a given set of mod-
els. In our implementation, we position the 16 trained models at the vertices of a regular hex-
adecagon. Any point within this polygon represents an interpolated model, whose parameters are a
weighted sum of the parameters of the 16 vertex models; the weights are determined by the point’s
Wachspress barycentric coordinates. We then evaluate the cross-entropy loss of each interpolated
model on the entire test set to generate the final loss contour map, as shown in Figure 1c. The
implementation is available in their notebook https://github.com/crisostomi/cycle-consistent-model-
merging/blob/master/notebooks/plots/plot_loss_contours_n_models.ipynb within the official code
repository for (Crisostomi et al., 2024). We note two key aspects of this visualization approach:

• Focus on Convex Combinations. For points outside the polygon, one or more of their barycentric
coordinates become negative, corresponding to an extrapolation, which is often unstable. This
visualization approach is consistent with Definition 2, focusing on the space of convex combinations
among the models.

• Deterministic Grid vs. Random Directions. Notably, the visualization method differs from
approaches that use random directions to probe the landscape of a single model, as our visualization
grid is defined directly by the 16 models themselves. This allows us to directly investigate the
geometric connectivity and interpolation properties among this predefined set of models.

Computational Resource Requirements and Runtime. To enhance accessibility for researchers
working with diverse computational environments, our code includes a centralized simulation of
decentralized training. This enables the reproduction and extension of our decentralized learning
experiments using fewer GPUs. A single decentralized AdamW training experiment with 16 agents
using ResNet-18 on the Tiny ImageNet dataset requires approximately 15 GB of GPU memory
and can be conducted on a single GPU with sufficient memory, such as an NVIDIA V100, RTX
3090, RTX 4090, or A100. On an A100 GPU, the typical runtime is approximately 8 hours for
300 communication rounds, each comprising 100 local steps. For the CLIP ViT-B/32 model, the
memory demand rises to about 30 GB, yet it remains feasible on a single A100 GPU, with a runtime
of approximately 12 hours under the same configuration of 300 communication rounds and 100 local
steps per round.

C.2 PRACTICAL EVALUATION METRICS

The standard evaluation metric of parallel and federated learning is the accuracy of the global model.
Definition C.1 (Test Accuracy of Global Model). The accuracy of the global model θ is defined as:

Acc(θ) ≜
1

m

∑
k∈V

Eξk∼Dk
Acc(θ; ξk)

if IID
= Eξ∼D Acc(θ; ξ).

In decentralized learning, models are often evaluated in the absence of a full consensus model θ due
to data heterogeneity and limited training time. Two major metrics are adopted in this scenario.
Definition C.2 (Average Local Test Accuracy). The average accuracy of agents k ∈ V is defined as:

Acc({θk}k∈V) ≜
1

m

∑
k∈V

Eξk∼Dk
Acc(θk; ξk)︸ ︷︷ ︸

Average Test accuracy on the local distribution across agents

if IID
=

1

m

∑
k∈V

Eξ∼D Acc(θk; ξ).
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Remark C.1 (Local Generalization). This metric aims to address the following question in decen-
tralized learning: how well do local models {θk}k∈V , with the aid of peer-to-peer communication,
generalize to their local (personalized) data distribution Dl? This is the standard evaluation
metric in personalized decentralized settings, where the goals are to optimize local objectives.

However, in real-world scenarios, local data distributions are often heterogeneous and not guaranteed
to be IID across agents. In such settings, an important goal is to understand how well local models,
trained on limited local data, generalize to the global data distribution. To account for this, we adopt
the following average global test accuracy, a proxy of average global population risk, as the primary
evaluation metric, which quantifies how well local models generalize to the global distribution.
Definition C.3 (Average Global Test Accuracy). The average accuracy of agents k ∈ V is defined as:

Acc({θk}k∈V) =
1

m

∑
k∈V

Acc(θk)︸ ︷︷ ︸
Average Accuracy across agents

, where Acc(·) ≜ 1

m

∑
l∈V

Eξl∼Dl
Acc(·; ξl)︸ ︷︷ ︸

Test accuracy on the global distribution

.

Remark C.2 (Global Generalization). This metric is specifically designed to address a core
research question in fully decentralized learning with non-IID data: how well do local models
{θk}k∈V , trained with limited peer-to-peer synchronization, generalize to the global data distri-
bution D? We note that this objective is particularly critical in the highly non-IID scenarios we
study, where local models drift significantly apart. Unlike federated learning that measures the
performance of a global model, this metric offers a more realistic evaluation for decentralized
settings where no central server is present.

C.3 ADDITIONAL EXPERIMENTS

C.3.1 DIFFERENT NUMBER OF AGENTS AND OPTIMIZERS

We conduct additional experiments by varying the number of agents (from 16 to 32) and comparing
different optimizers (SGD to AdamW). The effect of single merging remains consistent.

(a) CLIP ViT-B/32 (b) ResNet-18 (w/o pretraining)

Figure C.1: (a, b): Global test accuracy (see Definition 1) of CLIP ViT-B/32 (a) and ResNet-18 (b)
trained on Tiny ImageNet using FedAdamW (blue), decentralized AdamW (orange), and one-shot
FedAdamW (green), distributed across 16 agents with high data heterogeneity (Dirichlet α = 0.1).
Decentralized training involves each agent syncing model parameters with a random peer per round
with a probability of 0.2, with a single global merging at the final round (see details in Appendix C.1).

C.3.2 DIFFERENT COMMUNICATION TOPOLOGIES

We also conduct additional experiments with different communication topologies to examine whether
the empirical results remain consistent. New observations are summarized below.

• Models remain mergeable under different number of peers. We evaluate two settings (random
topology with R = 0.2 and R = 1; see “Communication Graph" in Appendix C.1). As shown in
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(a) CLIP ViT-B/32 (b) ResNet-18 (w/o pretraining)

Figure C.2: (a, b): Global test accuracy (see Definition 1) of CLIP ViT-B/32 (a) and ResNet-18 (b)
trained on Tiny ImageNet using FedAdamW (blue), decentralized AdamW (orange), and one-shot
FedAdamW (green), distributed across 32 agents with high data heterogeneity (Dirichlet α = 0.1).
Decentralized training involves each agent syncing model parameters with a random peer per round
with a probability of 0.2, with a single global merging at the final round (see details in Appendix C.1).
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Figure C.3: Global test accuracy (see Definition 1) of training ResNet-18 on Tiny ImageNet, dis-
tributed across 16 agents with high heterogeneity (Dirichlet α = 0.1; see details in Appendix C.1). We
evaluate the effects of different (a) number of peers R, and (b) communication topologies. Pretrained
weights are used only in (a).

Figure C.3a, performance improvements are consistently observed, with more significant gains in the
R = 0.2 case.

• Models remain mergeable across different communication topologies. We evaluate two topolo-
gies: exponential and ring graphs. As shown in Figure C.3b, both topologies preserve the mergeability
of local models, with exponential graphs yielding slightly better generalization for both local and
merged models. The trend of mergeability persists across topologies throughout training, though
performance may vary.

C.3.3 DIFFERENT HYPERPARAMETERS, DATASET, AND HETEROGENEITY LEVEL

We further experiments with different hyperparameters (e.g., learning rate and batch size), dataset,
and degree of data heterogeneity to examine whether the empirical observations remain consistent.

Summary. Consistent generalization improvement of a single global merging across a wide range of
settings are observed, including different hyperparameter setups, datasets, degree of data heterogene-
ity, model architectures, optimizers, initialization schemes, and communication topologies.
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(a) Different Batch Sizes (b) Different Learning Rates (c) Different Initialization Schemes

Figure C.4: Global test accuracy (see Definition 1) of training ResNet-18 on Tiny ImageNet with
decentralized AdamW, distributed across 16 agents with high heterogeneity (Dirichlet α = 0.1; see
details in Appendix C.1). We evaluate the effects of different (a) batch sizes (64 vs. 128), (b) learning
rates (5× 10−4 vs. 1× 10−4), and (c) different initialization schemes.

(a) (b) (c) (d)

Figure C.5: Global test accuracy (see Definition 1) of training ResNet-18 with decentralized AdamW
across 32 agents under different levels of data heterogeneity (Dirichlet α = 0.1 (a, c) vs. α = 1.0 (b,
d); see Appendix C.1). Results are on both CIFAR-100 (a, b) and Tiny ImageNet (c, d).

D THEORY

This section provides the proofs of the main theoretical results presented in this paper. For simplicity,
and following the setup in the existing literature, we assume that the sample size of local agents is
nk = n for all k ∈ V .

Lemma D.1 (Consensus Distance Recursion under Local Updates (Kong et al., 2021)). Suppose
Assumption 1–Assumption 3 hold. Let θ(t)k be the local parameter on client k at t-th step, and
denote their average by θ̄(t) = 1

m

∑m
k=1 θ

(t)
k . Define the consensus distance and the average

gradient norm at round t by Ξ2
t = 1

m

∑m
k=1 ∥θ

(t)
k − θ̄(t)∥2 and ϕ2

t = 1
m

∑m
k=1 ∥∇Lk(θ

(t)
k )∥2,

where Lk(θ) = Eξk∼Dk
[L(θ; ξk)]. Let η > 0 the learning rate, and σ2 the variance bound from

Assumption 3. Then there exists a constant p > 0 (see Assumption 1) such that for all t ≥ 0, the
following inequality holds:

E
[
Ξ2
t+1

]
≤
(
1− p

2

)
Ξ2
t +

12(1− p)

p
η2
(
ϕ2
t + σ2

)
, (D.1)

where the expectation is taken over the stochastic gradients in the t-th update phase.

Proof. For completeness, we provide the proof of Lemma D.1, with minor corrections and additional
details. In decentralized SGD (Algorithm 1 with SGD as the local optimizer), each agent k ∈ V
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performs at each iteration

θ
(t+1)
k =

m∑
l=1

Wk,l

(
θ
(t)
l − η∇Ll(θ

(t)
l ; ξ

(t)
l )
)
.

In matrix form, letting

Θ(t) = [θ
(t)
1 , . . . , θ(t)m ] ∈ Rd×m, ∇L(Θ(t); ξ(t)) = [∇L1(θ

(t)
1 ; ξ

(t)
1 ), . . . ,∇Lm(θ(t)m ; ξ(t)m )],

we have
Θ(t+1) =

(
Θ(t) − η∇L(Θ(t); ξ(t))

)
W.

The consensus matrix after mixing is

Θ̄(t+1) = Θ(t+1) 1
m11⊤ =

(
Θ(t) − η∇L(Θ(t); ξ(t))

)
1
m11⊤,

since 1⊤W = 1⊤.

Thus the consensus distance satisfies
mΞ2

t+1 =
∥∥Θ(t+1) − Θ̄(t+1)

∥∥2
F
=
∥∥(Θ(t) − η∇L(Θ(t); ξ(t))

)
(W − 1

m11⊤)
∥∥2
F
.

By Assumption 1, for any Θ ∈ Rd×m,

EW

∥∥ΘW − Θ̄
∥∥2
F
≤ (1− ρ)

∥∥Θ− Θ̄
∥∥2
F
,

we obtain,

mΞ2
t+1 ≤ (1− p)

∥∥∥Θ(t)(I − 1
m11⊤)− η∇L(Θ(t); ξ(t))(I − 1

m11⊤)
∥∥∥2
F
.

Applying the inequality ∥A+B∥2F ≤ (1 + α)∥A∥2F + (1 + 1/α)∥B∥2F with α = p
2 gives

mΞ2
t+1 ≤ (1− p)

[
(1 + p

2 )
∥∥Θ(t)(I − 1

m11⊤)
∥∥2
F
+ (1 + 2

p ) η
2
∥∥∇L(Θ(t); ξ(t))

∥∥2
F

]
≤
(
1− p

2

)
mΞ2

t +
6(1− p)

p
η2
∥∥∇L(Θ(t); ξ(t))

∥∥2
F
,

where we used (1 + p/2) ≤ 1 + p and (1 + 2/p) ≤ 6/p for p ∈ (0, 1).

We now decompose the stochastic gradient as

∇L(Θ(t); ξ(t)) = ∇L(Θ(t)) +
[
∇L(Θ(t); ξ(t))−∇L(Θ(t))

]
,

so by Young’s Inequality, we have∥∥∇L(Θ(t); ξ(t))
∥∥2
F
≤ 2
∥∥∇L(Θ(t))

∥∥2
F
+ 2
∥∥∇L(Θ(t); ξ(t))−∇L(Θ(t))

∥∥2
F
.

Taking expectation over ξ(t) and invoking Assumption 3, we get

E
[
∥∇L(Θ(t); ξ(t))∥2F

]
≤ 2∥∇L(Θ(t))∥2F + 2σ2m.

Substituting back and dividing by m yields

E
[
Ξ2
t+1

]
≤
(
1− p

2

)
Ξ2
t +

12(1− p)

p
η2
(
ϕ2
t + σ2

)
,

which completes the proof.

Corollary D.2 ((Kong et al., 2021)). Define the consensus distance and the average gradient
norm at round t by Ξ2

t = 1
m

∑m
k=1 ∥θ

(t)
k − θ̄(t)∥2 and ϕ2

t = 1
m

∑m
k=1 ∥∇Lk(θ

(t)
k )∥2, where

Lk(θ) = Eξk∼Dk
[L(θ; ξk)]. Under the conditions of Lemma D.1, suppose that for all iterations t,

the gradient norms are uniformly bounded by a constant ϕ, i.e. ϕ2
t ≤ ϕ2, ∀t ∈ {1, . . . , T}. Then

the expected consensus distance satisfies

E
[
Ξ2
t

]
≤ 24 (1− p) η2

p2

(
ϕ2 + σ2

)
.

In the general case where the gradient-norms change slowly, i.e., ϕ2
t ≤ (1 + p

4 )ϕ
2
t+1, we have

E
[
Ξ2
t

]
≤ 48 (1− p)η2

p2
(
ϕ2
t−1 + σ2

)
.

The expectation here is taken over the stochastic gradients in the t-th update phase.
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Proof. Consider the key recursion from Lemma D.1:

E
[
Ξ2
t+1

]
≤
(
1− p

2

)
Ξ2
t +

12 (1− p)

p
η2
(
ϕ2
t + σ2

)
.

(1) Special Case: uniformly bounded gradient norms.

Assume ϕ2
t ≤ ϕ2. Unrolling the above gives

E
[
Ξ2
t+1

]
≤

t−1∑
i=0

(
1− p

2

)i 12 (1− p)

p
η2 (ϕ2 + σ2).

Since
∑t−1

i=0(1−
p
2 )

i ≤ 2
p , we can bound the consensus distance as

E
[
Ξ2
t+1

]
≤ 12 (1− p)

p
η2(ϕ2 + σ2) × 2

p
=

24 (1− p) η2

p2
(ϕ2 + σ2),

which yields the first claim.

(2) Special Case: slowly changing gradient norms.

If ϕ2
t ≤ (1 + p

4 )ϕ
2
t+1, and since(

1− p
2

)i(
1 + p

4

)i
≤
(
1− p

4

)i
,

the consensus distance satisfies

E
[
Ξ2
t+1

]
≤

t−i−1∑
i=0

(
1− p

2

)i 12(1− p)η2
(
ϕ2
t−1 + σ2

)
p

≤
t−1∑
i=0

(
1− p

4

)i 12(1− p)η2(ϕ2
t−1 + σ2)

p
≤ 48(1− p)η2

p2
(
ϕ2
t−1 + σ2

)
. (D.2)

Proposition D.3 (Implicit Bias of Decentralized SGD (Zhu et al., 2023b)). Assume L ∈ C4
(
Rd
)
,

the globally averaged model of decentralized SGD (DSGD), defined by θ̄(t) = 1
m

∑m
k=1 θ

(t)
k ,

follows the following gradient descent direction:

Eξ(t) [θ̄
(t+1)] = θ̄(t) − η · Eϵ(t)∼N (0,Γ(t))

[
∇L(θ̄(t) + ϵ(t))

]
+ δ(t),

where Γ(t) = 1
m

∑m
k=1(θ

(t)
k − θ̄(t))(θ

(t)
k − θ̄(t))⊤ ∈ Rm×m denotes the consensus distance matrix,

and δ(t) = Θ
(

η
m

∑m
k=1 ∥θ

(t)
k − θ̄(t)∥32

)
denotes the high-order terms. The first expectation

eliminates the randomness from sampled data ξ(t) = {ξ(t)k }k∈V at step (t).

We can then control the expected squared distance between two consecutive steps of the globally
averaged model with Corollary D.4.

Corollary D.4. Under the assumptions in Proposition D.3, the expected squared distance between
two consecutive iterates of decentralized SGD can be bounded as follows:

Eξ(t)

∥∥θ̄(t+1) − θ̄(t)
∥∥2 ≤ σ2

m
+ η2

∥∥∥∇L(θ̄(t))+∇ Tr
(
∇2L(θ̄(t))Γ(t)

)
+ δ(t)

∥∥∥2 . (D.3)

Proof. Denote γ(t+1) = Eξ(t) θ̄
(t+1) − θ̄(t). We can expand the expected distance as follows:

Eξ(t)

∥∥θ̄(t+1) − θ̄(t)
∥∥2 = Eξ(t)

∥∥θ̄(t+1)
∥∥2 − ∥∥θ̄(t)∥∥2 − 2(θ̄(t))⊤γ(t+1)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

= Tr
(
Cov(θ̄(t+1))

)
+
∥∥Eξ(t) θ̄

(t+1)
∥∥2 − ∥∥θ̄(t)∥∥2 − 2(θ̄(t))⊤γ(t+1)

= Tr
(
Cov(θ̄(t+1))

)
+
∥∥Eξ(t) [θ̄

(t+1) − θ̄(t)]
∥∥2

= Tr

(
Cov(

1

m

m∑
k=1

∇L(θ(t)k ; ξ
(t)
k ))

)
+
∥∥Eξ(t) [θ̄

(t+1) − θ̄(t)]
∥∥2, (D.4)

where in the second equality we substitute Eξ(t) θ̄
(t+1) with γ(t+1)+ θ̄(t). The final equality is derived

from the update rule:

θ̄(t+1) = θ̄(t) − 1

m

m∑
k=1

∇L(θ(t)k ; ξ
(t)
k ).

According to the convexity of the vector norm and the fact that

Tr

(
Cov(

1

m

m∑
k=1

∇L(θ(t)k ; ξ
(t)
k ))

)
= Eξ(t)

∥∥∥∥∥ 1

m

m∑
k=1

∇L(θ(t)k ; ξ
(t)
k )− 1

m

m∑
k=1

E
ξ
(t)
k

∇L(θ(t)k ; ξ
(t)
k )

∥∥∥∥∥
2

,

(D.5)

we then complete the proof by applying Proposition D.3 and the bounded noise assumption in
Assumption 3.

Corollary D.5. Let Γ(t) = 1
m

∑m
k=1(θ

(t)
k − θ̄(t))(θ

(t)
k − θ̄(t))⊤ ∈ Rd×d, where θ̄(t) =

1
m

∑m
k=1 θ

(t)
k ∈ Rd denotes the globally averaged model across m agents. Assume the loss

function L ∈ C4(Rd), with its fourth derivative∇4L(·) uniformly bounded by a constant L4 > 0,
i.e., ∥∇4L(·)∥ ≤ L4. Then, for ϵ(t) ∼ N (0,Γ(t)), the expected gradient perturbation satisfies:

Eϵ(t)∼N (0,Γ(t))

[
∇L(θ̄(t) + ϵ(t))

]
−∇L(θ̄(t))

= ∇Tr
(
∇2L(θ̄(t))Γ(t)

)
+ Eϵ(t)∼N (0,Γ(t))

[
R3(ϵ

(t))
]
, (D.6)

where ∥R3(ϵ
(t))∥ is bounded by L4

24 ∥ϵ
(t)∥3.

Proof. We apply the third-order Taylor expansion to ∇L around θ̄(t):

∇L(θ̄(t) + ϵ(t)) = ∇L(θ̄(t)) +∇2L(θ̄(t))ϵ(t) + 1

2
∇3L(θ̄(t))[ϵ(t), ϵ(t)] +R3(ϵ

(t)),

with the remainder:

R3(ϵ
(t)) =

∫ 1

0

(1− τ)3

6
∇4L(θ̄(t) + τϵ(t))[ϵ(t), ϵ(t), ϵ(t)]dτ.

Taking expectations over ϵ(t) ∼ N (0,Γ(t)), since E[ϵ(t)] = 0, the linear term vanishes. The quadratic
term E

[
∇3L(θ̄(t))[ϵ(t), ϵ(t)]

]
simplifies to ∇Tr

(
∇2L(θ̄(t))Γ(t)

)
due to properties of the Gaussian

distribution. The remainder bound can be bounded as

∥R3(ϵ
(t))∥ ≤

∫ 1

0

(1− τ)3

6
L4∥ϵ(t)∥3dτ = L4∥ϵ(t)∥3 ·

1

6

∫ 1

0

(1− τ)3dτ.

Since
∫ 1

0
(1− τ)3dτ = 1

4 , we have:

∥R3(ϵ
(t))∥ ≤ L4∥ϵ(t)∥3 ·

1

6
· 1
4
=

L4

24
∥ϵ(t)∥3.

For comparison, we restate the convergence rate of DSGD by Koloskova et al. (2020).
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Assumption D.1 (L-smoothness). Each population risk Lk = Eξk∼Dk
L(θ; ξk) for k ∈ {1, . . . ,m}

is continuously differentiable, and there is a constant L ≥ 0 such that:

∥∇Lk(θ)−∇Lk(ϑ)∥ ≤ L∥θ − ϑ∥, ∀ θ, ϑ ∈ Rd. (D.7)

Theorem D.6 (Non-convex Convergence Rate of DSGD (Koloskova et al., 2020)). Under Assump-
tion 1, Assumption D.1 and Assumption 3, let the learning rate η satisfy η ≤ ηmax = O

(
p
L

)
let

θ̄(t) = 1
m

∑m
k=1 θ

(t)
k denote the averaged model at the t-th step. To achieve an ε-stationary point

such that 1
T

∑T−1
t=0 E

[
∥∇L(θ̄(t))∥22

]
≤ ε, the total number of steps T satisfies:

T = O
( σ2

mε2
+

√
p σ + ζ

p ε3/2
+

1

pε

)
· L
(
L
(
θ0
)
− L⋆

)
.

We then provide our main theoretical results as follows.

Theorem D.7 (Non-convex Convergence Rate of DSGD). Suppose Assumption 2 and Assump-
tion 3 hold. Consider decentralized SGD (DSGD) with initializations θ(0)k = θ(0) for all k ∈ V ,
and a constant learning rate satisfying η ≤ 1

L2
. Let θ̄(t) = 1

m

∑m
k=1 θ

(t)
k denote the averaged

model at the t-th step. To achieve an ε-stationary point such that 1
T

∑T−1
t=0 E

[
∥∇L(θ̄(t))∥22

]
≤ ε,

the total number of steps T satisfies:

T = O
(

σ2

mε2 + 1
ε + 1

ε

(
[
∑T−1

t=0 A(t)]+
)1/2 ) · L2

(
L(θ(0))− L⋆

)
,

where [·]+ ≜ max(0, ·) and A(t) is defined as:

A(t) ≜ ηL2

(
2T2 + L2

3Ξ
4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

)
,

with T2 and the consensus distance Ξ2
t given by:

T2 ≜ (∇L(θ̄(t)))⊤∇Tr
(
∇2L(θ̄(t)) Γ(t)

)
, Ξ2

t ≜ 1
m

m∑
k=1

(θ
(t)
k − θ̄(t))⊤(θ

(t)
k − θ̄(t)).

Proof. We structure the proof into several key steps.

Step (A): Descent Force Decomposition.

Based on the L2-smoothness (Assumption D.1) of the loss function L (as implied by Assumption 2)),
we can apply the first-order Taylor expansion around θ̄(t) to establish an upper bound for L(θ̄(t+1)):

L
(
θ̄(t+1)

)
≤ L

(
θ̄(t)
)
+∇L

(
θ̄(t)
)⊤(

θ̄(t+1) − θ̄(t)
)
+ L2

2

∥∥θ̄(t+1) − θ̄(t)
∥∥2.

According Proposition D.3, we have

Eξ(t) [θ̄
(t+1)] = θ̄(t) − η

(
∇L
(
θ̄(t)
)
+∇ Tr(∇2L(θ̄(t))Γ(t))

)
+ δ(t),

where θ̄(t+
1
2 ) = θ̄(t) + ϵ(t) and ϵ(t) ∼ N (0,Γ(t)).

Substituting this into the previous bound and taking the expectation with respect to random data
sampling yields:

Eξ(t) [L
(
θ̄(t+1)

)
]

≤ L
(
θ̄(t)
)
− η∇L

(
θ̄(t)
)⊤ (∇L(θ̄(t))+∇ Tr(∇2L(θ̄(t))Γ(t))− δ(t)

)
+ Eξ(t)

η2L2

2

∥∥θ̄(t+1) − θ̄(t)
∥∥2.

According to Corollary D.4, we obtain

Eξ(t)

∥∥θ̄(t+1) − θ̄(t)
∥∥2 ≤ σ2

m
+ η2

∥∥∇L(θ̄(t))+∇ Tr(∇2L(θ̄(t))Γ(t)) + δ(t)
∥∥2.
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To further refine the analysis, we decompose the squared norm:∥∥∇L(θ̄(t))+∇ Tr(∇2L(θ̄(t))Γ(t))
∥∥2

=
∥∥∇ Tr(∇2L(θ̄(t))Γ(t))

∥∥2 + ∥∥∇L(θ̄(t))∥∥2 + 2∇ Tr(∇2L(θ̄(t))Γ(t))
⊤
L
(
θ̄(t)
)
.

Combining the previous steps, we obtain:

Eξ(t) L
(
θ̄(t+1)

)
≤ L

(
θ̄(t)
)
− (η − η2L2

2 )
∥∥∥∇L(θ̄(t))∥∥∥2 + η2L2

2

∥∥∇ Tr(∇2L(θ̄(t))Γ(t))
∥∥2︸ ︷︷ ︸

T1

η2L2 ∇L
(
θ̄(t)
)⊤∇ Tr(∇2L(θ̄(t))Γ(t))︸ ︷︷ ︸

T2

+
σ2

m
· η

2L2

2

+ η2L2

(
∇L
(
θ̄(t)
)
+∇ Tr(∇2L(θ̄(t))Γ(t))

)⊤
δ(t)︸ ︷︷ ︸

T3

+
η2L2

2

∥∥δ(t)∥∥2︸ ︷︷ ︸
T4

. (D.8)

We subsequently control terms related to Eϵ(t)∼N (0,Γ(t))∇L
(
θ̄(t+

1
2 ))
)
−∇L

(
θ̄(t)
)

in Equation (D.8).

Step (B): Control Consensus-related Terms

Applying the logic in Corollary D.5 to bound residuals, we can derive∥∥δ(t)∥∥ ≤ L4

24
· 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥3 ≤ L4

24
·
√
m
( 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2) 3

2 ,

and thus by the convexity of square operation,

T4 =
∥∥δ(t)∥∥2 ≤ mL2

4

242
·
( 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2)3.

Given
∥∥∇3L(·)

∥∥ ≤ L3 we can upper-bound T1 as

T1 =
∥∥∇ Tr(∇2L(θ̄(t))Γ(t))

∥∥2 ≤ L2
3 ·
( 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2)2 = L2

3 ·
( 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2)4.

We can also bound T3 as follows:

T3 ≤
∥∥∇ Tr(∇2L(θ̄(t))Γ(t)) +∇L

(
θ̄(t)
)∥∥ · 1

m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥3

≤
(
L3

1

m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2 + L1

) 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥3

≤
(
L3

1

m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2 + L1

)√
m
( 1
m

m∑
k=1

∥∥θ(t)k − θ̄(t)
∥∥2) 3

2 .

Recall the notation Ξ2
t =

(
1
m

∑m
k=1

∥∥θ(t)k − θ̄(t)
∥∥2). Therefore,

A(t) ≜ ηL2

(
2T2 + L2

3 Ξ
4
t +

(
2L1 + 2L3 Ξ

2
t +

mL2
4

242
)√

mΞ3
t

)
.

Then Equation (D.8) becomes

Eξ(t) L
(
θ̄(t+1)

)
≤ L

(
θ̄(t)
)
−
(
η − η2L2

2

)∥∥∇L(θ̄(t))∥∥2 + η2L2A
(t) + σ2

m ·
η2L2

2 , (D.9)

where

A(t) = ηL2

(
2T2 + T1 + 2T3 + T4

)
≤ 2T2 + L2

3 Ξ
4
t +

(
2L1 + 2L3 Ξ

2
t +

mL2
4

242

)√
mΞ3

t .

(D.10)
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Step (C): Derive the Rate

Starting from the descent inequality equation D.9:

Eξ(t)
[
L(θ̄(t+1))

]
≤ L(θ̄(t))−

(
η − η2L2

2

)∥∥∇L(θ̄(t))∥∥2 + η2L2 A
(t) +

σ2

m

η2L2

2
.

Taking full expectation and summing over t = 0, . . . , T − 1, we obtain

T−1∑
t=0

(
η − η2L2

2

)
E
∥∥∇L(θ̄(t))∥∥2 ≤ L(θ(0))− E

[
L(θ̄(T ))

]
+ η2L2

T−1∑
t=0

A(t) +
σ2 η2L2 T

2m
.

Since η ≤ 1/L2 implies η − η2L2

2 ≥ η/2, and denoting ∆ = L(θ̄(0))− L∗, we obtain

1

T

T−1∑
t=0

E
∥∥∇L(θ̄(t))∥∥2 ≤ 2∆

η T
+

2ηL2

T

T−1∑
t=0

A(t) +
σ2 ηL2

m
. (D.11)

To ensure this is at most ε, it suffices to enforce

σ2 ηL2

m
≤ ε

3
,

2ηL2

T

T−1∑
t=0

A(t) ≤ ε

3
, and

2∆

η T
≤ ε

3
.

Regarding the second inequality, we consider two cases for the sign of
∑T−1

t=0 A(t). If this sum is
non-positive, the inequality is trivially satisfied. Otherwise, if the sum is positive, we must choose η
to satisfy the resulting bound. To satisfy all three conditions simultaneously, along with a stability
condition like η ≤ 1/L2, we must select η from the minimum of all applicable upper bounds. This
logic suggests the following choices:

η ≤ min

{
1

L2
,

mε

3σ2L2
,

T ε

6L2

∑T−1
t=0 A(t)

}
, and T ≥ 6∆

η ε
.

To ensure a valid step-size η exists, we substitute these three upper bounds into the condition for T .
This yields three distinct lower bounds on the total number of iterations T that must be satisfied. By
rearranging the inequality Tη ≥ 6∆

ε , we require:

T ≥ max

6∆L2

ε
,
18∆σ2L2

mε2
,
6

ε

√√√√∆L2

T−1∑
t=0

A(t)

 .

The first two bounds are derived directly by substituting the first two terms from the min{·} expression
for η. The third bound arises specifically in the case where

∑T−1
t=0 A(t) > 0.

Therefore, the total number of iterations T should be large enough to satisfy all applicable lower
bounds. This leads to the sufficient condition:

T = O

(
L2 ∆

ε
+

L2 ∆σ2

mε2
+

√
L2 ∆

ε

√√√√[T−1∑
t=0

A(t)

]+)
,

where [·]+ ≜ max(0, ·) is the positive part function. This complexity bound elegantly and directly
reflects the impact of the higher-order term: its contribution to the iteration count only materializes
when its cumulative sum is positive,. This condition is sufficient to guarantee

1

T

T−1∑
t=0

E
∥∥∇L(θ̄(t))∥∥2

2
≤ ε.

The proof is now complete.
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Proposition D.8. Suppose Assumption 4 holds and assume that the gradient norm satisfies
∥∇L(θ̄(t))∥ ≥ µt > 0 for positive constant µt. Then, for any fixed m > 0, there exists a
sufficiently small Ξ2

t > 0, where Ξ2
t = Tr(Γ(t)) with Γ(t) = 1

m

∑m
k=1(θ

(t)
k − θ̄(t))(θ

(t)
k − θ̄(t))⊤,

such that the inequality

A(t) ≜ ηL
(
2T2 + L2

3Ξ
4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

)
≤ 0 (D.12)

holds. Here T2 = (∇L(θ̄(t)))⊤∇Tr
(
∇2L(θ̄(t)) Γ(t)

)
and L1, L3, L4 are the upper bounds for

the first, third, and fourth derivatives of L, respectively.

Remark D.1. We note that Proposition D.8 does not contradict Equation (D.11) when both ∆ and σ
are zero. The condition ∆ = L(θ̄(0))− L∗ = 0 implies that the models are initialized at an optimal
point. In Theorem D.7, we assume that all initializations are identical (θ(0)k = θ(0), ∀k ∈ V), so it
follows that all models begin at the same optimum. Consequently, the consensus error remains zero
throughout all iterations, meaning the model covariance matrix Γ(t) is the zero matrix and its trace
Ξt is also zero. Since every component of the term A(t), defined as

A(t) ≜ ηL
(
2(∇L(θ̄(t)))⊤∇Tr

(
∇2L(θ̄(t)) Γ(t)

)
+ L2

3Ξ
4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

)
,

is a function of either Γ(t) or Ξt, the entire expression becomes A(t) = 0. This causes the inequality
in Equation (D.11) to hold trivially as both sides are zero, thus resolving any apparent inconsistency.

Proof Idea. Assuming a positive lower bound µt on the gradient norm, the term −T2 can be lower
bounded by a positive term of the form γ µt Ξ

2
t , where γ > 0. The terms

L2
3Ξ

4
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
mΞ3

t

is a polynomial in Ξt with leading terms of order Ξ4
t and Ξ3

t , both exceeding the quadratic order of
−2T2 ≥ 2γµtΞ

2
t . As Ξt → 0+, the higher-order terms approaches zero faster than the right side

remains positive, so by continuity and the intermediate value theorem there exists a sufficiently small
Ξt > 0 satisfying the inequality.

Proof. .

Step (A): Derivation of γ. Denote g(t) = ∇L(θ̄(t)). Define

F (δ) =
∇3L(θ̄(t))[δ, δ, g(t)]
∥g(t)∥∥δ∥2

, δ ̸= 0.

Since ∇3L(θ̄(t))[δ, δ, g(t)] < 0, we have F (δ) < 0 by Assumption 4. On the compact unit sphere
S = {δ : ∥δ∥ = 1}, F attains its maximum M < 0. We can then set γ = −M > 0. Then for all δ,

∇3L(θ̄(t))[δ, δ, g(t)] ≤ −γ ∥g(t)∥∥δ∥2,

and in particular for each k,

∇3L(θ̄(t))[δ(t)k , δ
(t)
k , g(t)] ≤ −γ ∥g(t)∥∥δ(t)k ∥

2. (D.13)

The intuition behind the parameter γ is that it reflects the relative degree of progressive sharpening
(Assumption 4) during training.

Step (B): Bound on T2. Denote

Γ(t) =
1

m

m∑
k=1

δ
(t)
k (δ

(t)
k )⊤, Ξ2

t = Tr(Γ(t)) =
1

m

m∑
k=1

∥δ(t)k ∥
2.

Then

T2 = (g(t))⊤∇Tr
(
∇2L(θ̄(t)) Γ(t)

)
=

1

m

m∑
k=1

∇3L(θ̄(t))[δ(t)k , δ
(t)
k , g(t)].
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Using the bound in Equation (D.13),

T2 ≤
1

m

m∑
k=1

(
−γ ∥g(t)∥∥δ(t)k ∥

2
)
= −γ ∥g(t)∥Ξ2

t .

Therefore, we have
−T2 ≥ γ ∥g(t)∥Ξ2

t ≥ γ µt Ξ
2
t .

Step (C): Backward proof. We present a proof by working backwards from the desired result. The
goal is to show that there exists Ξ2

t > 0 with

L2
3(Ξ

2
t )

2 +
(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
m (Ξ2

t )
3/2 ≤ −2T2.

Since −2T2 ≥ 2γµtΞ
2
t , it suffices that

L2
3(Ξ

2
t )

2 +
(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
m (Ξ2

t )
3/2 ≤ 2γµt Ξ

2
t ,

where dividing both sides with Ξ2
t > 0 yields an equivalent form:

L2
3Ξ

2
t +

(
2L1 + 2L3Ξ

2
t +

mL2
4

242

)√
m (Ξ2

t )
1/2 ≤ 2γµt.

We can set
h(u) = L2

3u+
(
2L1 + 2L3u+

mL2
4

242

)√
m
√
u, u > 0.

Then limu→0+ h(u) = 0 < 2γµt. By continuity, there is δ > 0 such that for 0 < u < δ,
h(u) < 2γµt. Hence for sufficiently small Ξ2

t , the desired inequality holds. The proof is now
complete.
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