Under review as a conference paper at ICLR 2026

ACHIEVE LATENCY-EFFICIENT TEMPORA-CODING
SPIKING LLMS VIA DISCRETIZATION-AWARE CON-
VERSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success while intro-
ducing critical energy bottlenecks that challenge sustainable deployment. Spik-
ing neural networks (SNNs) provide a promising approach for energy-efficient
spiking LLMs via ANN-to-SNN (A2S) conversion. Among various spike cod-
ing methods, time-to-first-spike (TTFS) coding is particularly appealing as it con-
veys information with a single spike, further reducing energy consumption. How-
ever, existing TTFS-based A2S conversion relies on continuous-time assump-
tions, requiring prohibitively large latencies (e.g., 4096 time steps) to approxi-
mate ANN’s continuous values. This dependency leads to unacceptable inference
delay in deep models, particularly LLMs, posing significant challenges for de-
veloping practical temporal-coding spiking LLMs. In this paper, we propose a
discretization-aware theoretical framework that establishes a precise correspon-
dence between discrete TTFS-based SNNs and ANNs. Our key insight reveals
that conversion errors are bounded by latency-dependent terms. Motivated by
these, we introduce the Quantization-Consistent ANN-to-SNN (QC-A2S) conver-
sion, which integrates low-bit quantization with discretization-compatible TTFS
neurons, achieving latency-efficient temporal-coding spiking LLMs. Comprehen-
sive evaluation on LLaMA models demonstrates comparable performance with
dramatically reduced latency.

1 INTRODUCTION

Large Language Models (LLMs) represent a paradigm shift in artificial intelligence, leveraging deep
learning architectures trained on massive text corpora to capture intricate linguistic patterns, syntac-
tic structures, and semantic relationships, thereby achieving remarkable capabilities in natural lan-
guage understanding and generation (Zhang et al.l 2022; Touvron et al., 2023 |Achiam et al.| 2023;
Dubey et al, |2024). Most LLMs are built upon the Transformer architecture, which relies heavily
on multi-head attention mechanisms and dense matrix multiplications, resulting in cubic computa-
tional complexity and substantial energy consumption during both training and inference (Vaswani
et al., 2017} |Zhao et al, |2023). Moreover, following the “scaling law”, LLMs have grown from
billions to trillions of parameters to achieve better performance, which further increases computa-
tional and storage demands (Chen et al.,|2024a; Hoffmann et al., |2022)). Consequently, the critical
challenge facing the LLM community is developing approaches to reduce computational complexity
and energy consumption while preserving model performance capabilities.

Spiking Neural Networks (SNNs) are biologically plausible computational models inspired by
the mechanisms of neurons and synapses in the human brain (Maass| (1997 Roy et al.l [2019).
SNNs transmit and compute information asynchronously through discrete spike events rather than
continuous-valued activation functions, demonstrating remarkable energy efficiency when imple-
mented on specialized neuromorphic hardware (Yao et all 2023} Zhou et al.| [2022; |Davies et al.,
2018; Merolla et al., [2014). Consequently, developing spiking LLMs has emerged as a promising
solution to address the substantial energy consumption challenges of LLMs. Currently, two primary
approaches are used to develop spiking LLMs: direct training methods that incorporate surrogate
gradients to address non-differentiability (Yao et al., 2023 [Mukhoty et al., 2023} Zhou et al.||2024),
and ANN-to-SNN (A2S) conversion methods that transfer pre-trained weights while preserving ap-

Under review as a conference paper at ICLR 2026

proximate equivalence through carefully designed techniques (Jiang et al., 2024} |Chen et al.| [2025a;
Hao et al., 2023). Given the enormous computational and storage requirements of direct training
for LLMs, practical spiking LLMs are predominantly achieved through A2S conversion for energy-
efficient intelligent applications in resource-constrained environments (Xing et al.,[2024a)).

Beyond the rate coding commonly used in A2S conversion methods, recent neuroscience research
has highlighted temporal-based spike coding that offer superiors energy efficiency advantages (Park
et al.,|2019;|Zhang et al.l 2019; Stanojevic et al.,|2024). Temporal coding represents continuous val-
ues through precise spike timing rather than spike counts, suggesting that the representation of infor-
mation depends on when the spikes occur (Giitig & Sompolinskyl 2006). Among various temporal
codings, time-to-first-spike (TTFS) coding is particularly noteworthy, as it encodes information in
the latency of a single spike, which substantially reduces energy consumption by minimizing spike
counts (Park et al.,[2020; |Rueckauer & Liul, [2018]).

Existing TTFS-based conversion methods un- — -—--rpremmsmmsgseeseeeees O s
derlying rely on continuous-time assumptions ' ; ; ; :

that directly approximate the continuous val- LW(;U Receivingl IRRECI S P
| : :

ues of ANNs (Zhao et al., 2025} [Stanojevic| =iz Y R Rt
et all 2024). However, practical hardware — Z»! | l RSN (e] L
implementations impose discrete timing con- P 1)5 Recefvmg | Emiting

straints through finite latency and clock granu- -t oo : L%—} -------
larity. Such discretization inevitably introduces o i ; ; i Tme
conversion errors that severely compromise 0 (t-nr T (+1yT (@+2T - LS’

model accuracy. To mitigate the discretization- nference delay

induced errors, existing methods require pro- Fjgure 1: Inference delay across network layers.
hibitively large latency (e.g., 4096 time steps),

causing extensive spike latency accumulation across network layers (Figure [T). This creates unac-
ceptable inference delay in deep models, particularly for LLMs, posing significant challenges for
developing practical temporal-coding spiking LL.Ms.

To address this fundamental challenge, we propose a discretization-aware theoretical framework that
establishes a precise correspondence between discrete TTFS-based SNNs and ANNs. Our key theo-
retical insight reveals that conversion errors are formally bounded by latency-dependent terms, draw-
ing a direct connection to quantization error bounds. Motivated by this equivalence, we introduce
a paradigm shift from traditional continuous-approximation conversions to discrete-equivalent cov-
ersion. Specifically, we present the Quantization-Consistent ANN-to-SNN Conversion (QC-A2S),
which integrates low-bit quantization with discretization-compatible TTFS neurons. QC-A2S lever-
ages pre-quantized LLMs to inherently align with discrete spike dynamics, effectively mitigating
conversion errors while achieving latency-efficient temporal-coding spiking LLMs. Comprehensive
evaluation on LLaMA models demonstrates that our approach maintains comparable accuracy with
dramatically reduced inference latency (Figure[2). The key contributions are summarized as follows:

* We propose a discretization-aware theoretical framework for TTFS-based coding that iden-
tifies the fundamental discrepancy between continuous-time assumptions in prior TTFS
methods and practical hardware constraints, revealing the formal equivalence between con-
version errors and quantization error bounds.

* We present the QC-A2S framework, which represents a paradigm shift from traditional
continuous-approximation conversions to discrete-equivalent transformation, enabling the
first latency-efficient TTFS-based temporal-coding spiking LLMs.

» Extensive experiments on LLaMA models demonstrate that our framework successfully
constructs temporal spiking LLMs with performance comparable to their original counter-
parts while achieving significant latency reduction.

2 RELATED WORKS

2.1 SPIKING LLMs

The success of LLMs has motivated the development of SNN counterparts (spiking LLMs) that
maintain energy efficiency while achieving comparable capabilities. Several approaches have

Under review as a conference paper at ICLR 2026

Precision

Continuous ANNs Continuous SNNs

U " » it

(a) Continuous TTFS-Based Conversion Pipeline L |: t £ o E __ Latency
. Precision
Discrete ANNs Discrete SNNs ; /—
i o> l l
(b) Our Discretization-Aware Conversion Pipeline Latency

Figure 2: Overview of the QC-A2S framework. By establishing a discretization-aware equivalence
between quantized ANNs and discrete TTFS SNNs, QC-A2S eliminates the latency-dependent con-
version errors inherent in continuous-time pipelines and enables accurate, quantization-consistent
spiking LLMs.

emerged for creating spiking variants of transformer-based models (You et al., [2024; Zhou et al.,
2022; |2023)). SpikeGPT replaces traditional self-attention with Spiking RWKV mechanisms (Zhu
et al.| [2023). SpikingBERT employs a two-stage knowledge distillation method that utilizes pre-
trained BERT models as teachers to train spiking student architectures (Lv et al.| [2023). Simi-
larly, SpikingMiniLLM builds upon BERT with parameter initialization and ANN-to-SNN distillation
methods to achieve faster convergence during training. Recent work introduced SpikeLLM, scaling
to 70 billion parameters through spike-driven quantization (Xing et al., 2024bza). However, existing
spiking LLMs rely exclusively on rate coding, where information is encoded through spike fre-
quency. This leaves unexplored the potential of temporal-based spiking LLMs, which could achieve
substantially lower energy consumption.

2.2 TEMPORAL-BASED A2S CONVERSIONS

While rate-based conversion methods have dominated ANN-to-SNN conversion research, temporal-
based encoding approaches offer compelling advantages in terms of energy efficiency by leveraging
precise spike timing rather than spike frequency. These methods include time-to-first spike (Thorpe
et al.} 2001), reverse coding (Zhang et al., 2019; |Park et al.|[2020), phase coding (Montemurro et al.}
2008) and burst coding (Park et al.l 2019). Among temporal coding schemes, time-to-first-spike
(TTFS) coding has emerged as particularly promising, where each neuron emits at most one spike
per time window with information encoded in the spike latency. Early TTFS-based conversion meth-
ods were developed by [Rueckauer & Liu| (2018)) and further improved by [Zhang et al|(2019) and
Park et al.| (2020), but these approaches introduced conversion errors across layers. A breakthrough
came with Stanojevic et al.| (2023 2024)), who demonstrated exact mapping from ReLU-based net-
works to SNNs using TTFS coding through a two-stage neuron activation process, achieving lossless
conversion while maintaining energy benefits. Recently, Zhao et al.| (2025) proposed TTFSFormer,
the first TTFS-based conversion framework for Transformer architectures. However, existing TTFS-
based conversion methods require extremely high latency to match continuous-time assumptions,
preventing their implementation on large-scale models.

2.3 MODEL QUANTIZATION

Quantization has emerged as a critical technique for reducing model size and memory consump-
tion, enabling efficient deployment of LLMs on resource-constrained devices (Shao et al.| [2024),
falling into two primary categories: quantization-aware training (QAT) (Liu et al.| 2023)) and post-
training quantization (PTQ) (Xiao et all [2023). QAT optimizes quantized weights during training
using techniques like the straight-through estimator (Chen et al.,|2024c}; |Du et al., |2024) but is com-
putationally impractical for LLMs. PTQ has thus become the preferred approach, requiring only
minimal calibration data while using dynamic activation quantization to address outlier-induced ac-

Under review as a conference paper at ICLR 2026

curacy degradation (Frantar et al.;,2023)). Recent PTQ advances address outlier-induced errors using
orthogonal transformations (QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., |2024))) or dual
transformations (DuQuant (Lin et al.} 2024)) to redistribute outliers across channels. However, these
methods require computationally expensive per-token dynamic computation during inference. Pre-
fixQuant (Chen et al.,[2024b) offers an alternative by isolating token-wise outliers to enable efficient
per-tensor static quantization, achieving comparable performance. While these quantization meth-
ods successfully achieve competitive performance with low-bit representations, energy consumption
from dense matrix operations remains a fundamental barrier to edge deployment.

3 REVISITING TTFS-BASED ANN-TO-SNN CONVERSION

3.1 CoNTINUOUS TTFS-BASED NEURONS

The activation process of continuous TTFS-based neurons is generally divided into two stages: the
receiving phase and the firing phase (Zhao et al,, [2025)). At the ¢-th neuron in [-th layer, ¢ =
1,2,..,Tand! = 1,2,..., L. We denote the time range of the receiving phase as [tEQCV, tglit], and

the emitting phase as [tilrzlit, tiln)d]. With the initial membrane potential V(tr(égv) = 0, the continuous

membrane potential dynamics are given by:

INC -1 l l !
d ﬁ (Z] ng)r]l(j) (t — tg»)) + Cz())) te [tge)cva tén)lit)v
SV =" M
PO (6 —1D.), € [tgmier ton)-

The spike time =Y s received from the previous layer of the j-th input, while using the time range
of the receiving phase from the previous layer as the time range for the firing phase of this layer,
e 1l = 053 and (0, = 15 0 0
satisfies 771(][') (u) =0, Yu < 0; Ti(l) > 0 is the time constant; Ci(l) serves as a bias term; the output
transform kernel function wfl) is non-negative. Once the E)otential exceeds the threshold 91@, the

are the weights; the input transform kernel function 7

neuron will emit a spike and record the spike firing time ¢ D The relation between the spike time

¢

i

and the corresponding activation value acz(-l) of ANNS is:

K070 = i, o
where tr(éz is the zero reference time. Therefore, the output range [agl)7 bgl)] can be expressed as:
o_1 o L0 o_1 o L0
a;” = N0} (tref - tend) ’ b1 NO) (tref - temit) : 3)
Ty T
We denote T4 = tg])d — tgr)m as the time window, and dgl) = bgl) — agl).

3.2 PRACTICAL LIMITATIONS OF CONTINUOUS TTFS-BASED CONVERSION

The continuous TTFS-based conversion method (Zhao et al.| [2025) establishes an equivalence be-
tween TTFS-based neurons and ANN neurons by modifying the input and output transform kernel
functions, thereby enabling the mapping of TTFS-based SNNs to continuous ANNS:

Theorems 4.1 and 4.3 in [Zhao et al| (2025): Let f;; : [a(-lfl), bglil)] — R be differentiable

1
functions and h : A — R be a differentiable monotone increasing function, and its inverse h=1lis

well-defined on [a(-l) b(;l)]. If we let
-1
i)

5 ()]

l fL/ (— + Q;)a S 2 07 l

7]1(]’ (s)=9"“\n"" , Ci() = E Wi (-1
0, 5 <0, J d

1

Ti(l)h, (hl (bq(l) _ fl)))

7

Y (s) = L0 =h7t ("))

Under review as a conference paper at ICLR 2026

then the value :cl(-l)

xgl):f(l)(W(l);xglfl),..vx(Il 2) = clip Zw” f”() ,a; ,bil 5)

of ANNSs represented by the output spike is

Although TTFS-based ANN-to-SNN conversion methods under continuous setting have been ex-
plored, their applications to LLMs remain limited in two aspects:

Infinite Clock Precision: For TTFS-based neurons under continuous setting , the spike time can be
any real number (Stanojevic et al.|[2023} Zhao et al.,|2025} |Stanojevic et al.,[2024). At this point, the
required clock precision is theoretically infinitely fine: At,..,; — 0. However, electronic neuromor-
phic chips, which rely on discrete clock cycles, cannot provide infinitely fine clock precision (Deng
et al.|[2023). Consequently, TTFS coding based on continuous assumptions faces significant limita-
tions in hardware implementations.

Latency Overhead of Lossless Conversion: In the continuous setting, TTFS-based lossless conver-
sion methods establish an equivalence between SNNs and continuous ANNSs and directly mapping
the former to the latter. However, this process incurs extremely high latency (e.g., up to 4096 time
steps), which propagates through the network and leads to prohibitively long inference delays.

In continuous settings, TTFS coding requires prohibitively high latency to achieve
lossless conversion, resulting in excessively long inference delays for LLMs.

4 DISCRETIZATION-AWARE CONVERSION

In this section, we first construct discrete TTFS-based neurons to address the challenge of infinite
clock precision. Next, rather than directly mapping TTFS-based SNNs to continuous ANNSs in a
continuous setting, we analyze the relationship between TTFS-based SNNs and discrete ANNs.
We then examine the conversion error of discrete TTFS-based SNNs. Finally, we introduce the
Quantization-Consistent ANN-to-SNN conversion method.

4.1 DISCRETE TTFS-BASED NEURONS

To overcome the challenge posed by infinite clock precision, we constructed a hardware-friendly
discrete TTFS coding neuron model. Under the discrete time-step setting, the differential form of
the original membrane potential equation can be approximated as follows:

dv(P = aV(t) dtyea(t) V(E+1)-V() d
dt dtrear(t) dt " treat(t+ 1) — trear(t) dt

trear(t) =V (t+1) = V(1). (6)

Building on the above discussion, we present a discretized version of TTFS-based neurons. At the
i-th neuron in [-th layer 1=1,2,..,Tandl =1,2,..., L. We denote the time range of the receiving

phase as {tﬁé)cv, cees emlt} and the emitting phase as {t

potential V(tr(égv) = 0, the discrete membrane potential dynamics are given by:

l l -1 l l l
(S (t=107) + C) b (ot - 1),
o0 (t-19,) e (et — 1)

W -t). With the initial membrane

V(it+1)-V(t) = @)

— b0 — g0,

We denote T = t{) — t!). a5 the time window, and d'”

emit
4.2 RELATIONSHIP BETWEEN DISCRETE TTFS-BASED SNNS AND ANNS

We theoretically establish the equivalence between TTFS-based SNNs and discrete ANNSs. First,
we determine the corresponding ANN function using the transform kernel functions and parame-
ters of the TTFS-based neuron. For any TTFS-based neuron with fixed conversion functions and
parameters, the corresponding ANN function can be identified:

Under review as a conference paper at ICLR 2026

Theorem 1 For arbitrary fixed ng-), w(l) C(Z) and 91@ in SNNs with time win-

0
dow TW, if we define S(t) = EZ—%’"" zp(l)() with t € {tgf,zit,...,tgi)d}
then the corresponding activation value of discrete ANNs is given by:
o) = fOW O,) ®)
;T
_ 1o L g0 1 A 0) (-1, (-1 WO
= [ty | +A" 7)2 Z w0 (a! +t -ty V) - 10
i G=1 gD
where W1 = (wl(;)) Ix1 IS the weight matrix; sz D > 0 is a compensation constant, which is

actually the difference between the 92@ and the membrane potential at the spike time.

Next, we determine the corresponding transform kernel functions and parameters in the TTFS-based
neuron using the ANN function. For any given fixed ANN function, the TTFS-based neuron with
the corresponding transform kernel functions and parameters can be identified:

Theorem 2 Let f;; be a function with input set of discrete points between aEl Y and b(l D , and

h be a monotone increasing function with output set of discrete points between a() and b(l). We

denote u =t — tglil) witht € {tﬁiﬁw e 715225;}’ and v =t — tggn with t € {tﬁfﬁm e ,te(yl;}' To
represent the corresponding activation value of discrete ANNs:
20 = OO, -0 L0y Z ol fi(270)] a0)@

we need to configure the SNN as follows:

(z 1) u+1 (z 1) u (1-1)
l fij +a fii| —=—= +q; u >0,
mij (w) = (((=1) J(ﬁl—n

0 u < 0.

w® fii(al=D
00 =1t (o0 - o) = (60), 00 = B g0 o) 1 A

Furthermore, we demonstrate the equivalence between the discrete TTFS-based neuron and the
quantization function:

Corollary 1 We define the processes of quantization and dequantization as follows:

0

O _ \O . ip(X
XV =AY - elip(| 0 |+

%

200, N) = AP 20, (10)

[©) ; O]
(1) _ max(X;’)—min(X;"’)
where \;’ = N

tively; |- | denotes the floor operation; N = 2™ — 1 denotes the quantization level and n denotes the

X
and 2V = L%J are scale and zero point values, respec-

quantization bits; XEZ) and XZ(.l) are the dequantized and original tensor, respectively.
For a TTFS-based SNN defined in (ﬁ) ‘H is the Heaviside step function, if we set the nl(;), wl(l)’ oW
and GZ@ as follow:

(-1)
) U - 1 l Z a; 1) l
771(])() < (1-1) a’v(i 1)> ’ 7/’7()(’U) l)’ C() d(171 2]7 9(b() (11)
7'

i i @

RO

emit

0, ¢ = N, 10 =

= N 7 = S =t = 0, and X0 = D 4, The

J

output of spiking neural neuron and quantization function are equivalent, i.e, xg) = Xgl).

and we let

Under review as a conference paper at ICLR 2026

4.3 ERROR ANALYSIS FOR DISCRETE TTFS-BASED SNNs

In the continuous setting, although TTFS-based SNNs enable lossless conversion to ANNSs, they
require infinitely fine clock precision for hardware implementation and introduce significantly long
inference delay in the network. We analyze the conversion error of discrete TTFS-based SNNs.

Theorem 3 The error analysis of TTFS-based SNNs: Let TV denotes the time window with the
corresponding clock time constant €, the derivatives of the function h and its inverse are bounded
by G1 and G4, I denotes the number of neurons in each layer of the network, and L denotes the
;YL
number of layers, T' = min {T(l)}lL_l, and T = max{{ri(l)} } , ozl(»l) is the corresponding
B =1)1=1

@ aP+®
R)

output of ANNs and p = maxy; 1} {
SNNs in can be bounded as:

}. The conversion error of the TTFS-based

12)

T LIG1Go82
2T

E<LI- - —,0
< max(p , T

Remark 1 In Theorem[3} The first term captures the clipping error in the TTFS-based SNNs, which
can be eliminated by increasing the time window T'. As T increases, the output range of TTFS-based
SNNs expands. When this range encompasses the output of ANNS, the clipping error is eliminated;
The second term reflects the quantization error, which can only be alleviated by increasing T. As T
increases, the output range of TTFS-based SNNs becomes finer, facilitating better alignment between
the output of ANNs and the discrete points of the SNNs’ output, thereby reducing quantization error.
Thus, achieving high accuracy TTFS-based SNNs necessitates sufficiently long time windows.

4.4 QUANTIZATION-CONSISTENT ANN-TO-SNN CONVERSION

Our goal is to develop high-accuracy, low-latency temporal-coding spiking LLMs. Achieving high
accuracy in temporal-coding spiking LLMs typically requires extending the time window, which
in turn increases latency. This latency propagates through the network, leading to excessive infer-
ence delays. To address this challenge, we propose the Quantization-Consistent ANN-to-SNN (QC-
A2S) conversion method, which leverages the equivalence between TTFS-based SNNs and discrete
ANNSs. Our approach combines low-bit quantization with discretization-compatible TTFS neurons,
enabling low-latency temporal-coding spiking LLMs. Specifically, we first apply established tech-
niques, such as post-training quantization, to minimize clipping and quantization errors, resulting in
a low-bit, high-accuracy baseline model. We then map the quantized LLM to an equivalent spiking
LLM, achieving a low-latency, high-accuracy temporal-coding spiking LLM.

5 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of our proposed method and
compare its performance, computational count, and energy consumption with those of different
approaches. Additionally, we conduct ablation studies on various latency.

5.1 IMPLEMENT DETAILS

Datasets and Underlying Models In the experiments, two types of benchmarks are used. For
accuracy-oriented evaluation, five representative reasoning datasets are adopted, namely PIQA(Bisk
et al.| 2020), HellaSwag (Zellers et al.l 2019), WinoGrande (Sakaguchi et al.l 2021)), ARC-Easy,
and ARC-Challenge (Clark et al.l 2018)). PIQA targets physical commonsense reasoning in ev-
eryday scenarios, ARC-Easy and ARC-Challenge consist of science exam questions with vary-
ing difficulty levels, HellaSwag evaluates contextual understanding through plausible continuation
tasks, and WinoGrande focuses on large-scale pronoun resolution for commonsense reasoning. For
perplexity-oriented evaluation, we additionally use five widely adopted language modeling datasets,
including C4 (Raffel et al., 2020), The Pile (Gao et al.| 2021)), Penn Treebank (PTB) (Marcus et al.,
1993), WikiText-2 (Merity et al., 2017), and RedPajama (Together Computer, [2023)). The datasets
were preprocessed following standard practices, and data augmentation techniques were applied

Under review as a conference paper at ICLR 2026

where appropriate. In our study, all methods are applied to the LLaMA family of LLMs as the com-
mon backbone. We consider a range of representative models, including LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, and LLaMA-2-70B.

Baselines We compare our approach against several representative baselines that adapt large lan-
guage models through either quantization or ANN-to-SNN conversion:

* PrefixQuant (Chen et al.,|2025b) is a weight—activation quantization method that addresses
token-wise outliers in the KV cache and employs lightweight blockwise training, achieving
strong performance across different precision levels.

» SpikeLLM (Xing et al.| |2024a) presents the first spiking LLMs by incorporating bio-
inspired spiking mechanisms with generalized integrate-and-fire neurons, yielding im-
provements in perplexity and reasoning accuracy compared to quantized LLMs.

* TTFSFormer (Zhao et al., |2025) applies time-to-first-spike coding to Transformers, ex-
tending TTFS neurons to handle nonlinear layers and achieving competitive accuracy with
significantly reduced energy consumption.

Experiment Configurations All experiments were conducted on a server equipped with NVIDIA
A100 GPUs (80 GB of memory), Intel Xeon CPUs, and 512 GB of RAM. The models were im-
plemented in PyTorch 2.6 with CUDA 12.4 support. For fair comparison, all baseline methods
were re-implemented or run using their officially released code under the same environment and
hyperparameter settings whenever possible. In addition to the hardware information mentioned in
the main text, we provide further details about the reproduction of baselines here. We adopt 8 bits
for weight, 6 bits for activation quantization, i.e. W8AG6, for SpikeLLM(Xing et al., 2024a)) and
PrefixQuant(Chen et al.,|2025b), and use 8192 time precision for TTFSFormer (Zhao et al.||2025).

5.2 MAIN RESULTS

Tables T)and 2] report the accuracy and PPL metrics of all methods on the LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models. The results indicate that: (i) tempo-
rally encoded spiking LLMs achieve performance comparable to quantized LLMs across all LLaMA
models, providing further empirical evidence for the equivalence between TTFS-based SNNs and
quantized ANNSs; (ii) our method substantially outperforms TTFSFormer under low-latency set-
tings, while TTFSFormer continues to exhibit unsatisfactory performance even at higher latencies,
underscoring the excessive latency demands of continuous TTFS-based SNNs; and (iii) our model
surpasses the state-of-the-art spiking LLM (SpikeLLM), further validating the effectiveness of the
proposed approach.

5.3 COMPARISON OF ACCURACY UNDER DIFFERENT LATENCY CONFIGURATIONS

In Table [3] we conduct a detailed study of how latency influences the performance of temporally
coded spiking LLMs using the LLaMA-2-7B and LLaMA-2-13B model. The results reveal a clear
trend: increasing latency consistently improves accuracy across all evaluated benchmarks. This
indicates that longer time windows allow TTFS-based SNNs to better approximate the activations
of ANNS, thereby reducing discretization-induced errors and enhancing representational fidelity.
Moreover, deeper/larger models do not necessarily yield monotonically higher accuracy. While
additional layers increase model capacity, Theorem [3] shows that the approximation error bound
grows with the number of layers L. As L becomes large, the accumulated discretization error
can counteract the gains from the increased capacity, which explains why scaling from 7B to 13B
to 70B does not produce consistent accuracy improvements in our experiments (Table [T] and [2).
Such evidences provide strong empirical support for our theoretical analysis in Theorem [3] (£ <
LT -max (p — £,0) + £L91822) which establishes that achieving high accuracy in TTFS-based

— 57,

SNNss is inherently dependent on sufficiently long latency (7°).

Under review as a conference paper at ICLR 2026

Table 1: We report accuracy for WinoGrande and acc_norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision WinoGrande HellaSwag ArcC ArcE PiQA Avg.

Baseline FP16 69.22 76.00 4633 74.62 79.11 69.06
"TTFSFormer ~ T=32" ~ ~ " 3007~~~ 7 26.327 T 28384 25.84” 48917 3620
TTFSFormer ~ T=64 48.86 2640 28.67 26.09 49.24 35.85
TTFSFormer T=8192 50.04 2549 26.88 26.81 50.82 36.01
SpikeLLM WB8A6 65.51 73.61 4249 70.16 75.41 6544

2-7B PrefixQ W4AS 66.77 73.62 42.83 70.88 76.93 66.21

PrefixQ WSAS 69.06 7553 43.94 73.06 77.86 67.89

PrefixQ W6A6 70.48 7622 4548 73.86 7835 68.88

Ours T=16 66.77 73.08 4121 7045 77.64 65.83

Ours T=32 69.38 7549 4428 72.85 78.02 68.00

Ours T=64 69.38 7623 4599 73.57 78.13 68.66

Baseline FP16 72.69 79.19 5341 77.69 80.79 72.75
"TTFSFormer T=32 4988 26.40 ~ 26.54 24771 51.58 35.82°
TTESFormer — T=64 50.59 26.19 26.11 2449 50.16 35.51
TTESFormer T=8192 52.41 26.86 25.77 24.75 51.09 36.18
SpikeLLM WS8A6 58.25 5928 32.34 53.37 68.66 54.38

3-8B PrefixQ W4AS 71.03 7451 4872 75.88 77.80 69.59

PrefixQ W5A5 71.74 7759 5341 7845 79.11 72.06

PrefixQ W6A6 72.77 7852 53.07 78.58 79.22 72.43

Ours T=16 70.09 7436 4829 7597 77.86 69.31

Ours T=32 70.01 77.64 5350 78.07 79.71 71.79

Ours T=64 72.06 7826 54.95 77.90 79.43 72.52

Baseline FP16 72.38 7938 49.06 77.53 80.52 71.77
"TTFSFormer T=32 48.15 26.40 28.24 25.00 49.02 35.36
TTFSFormer ~ T=64 48.54 26.15 30.03 2630 51.03 36.41
TTFSFormer T=8192 48.70 2629 26.11 25.72 5125 35.61
SpikeLLM WS8A6 68.03 76.76 44.88 7332 77.48 68.09

2-13B PrefixQ W4A4 69.69 7576 47.53 73.78 78.62 69.08

PrefixQ WSAS 72.38 7830 4991 7626 79.76 71.32

PrefixQ W6A6 72.53 79.07 4923 75.76 79.71 71.26

Ours T=16 70.32 75.62 4642 7395 77.97 68.86
Ours T=32 71.35 7824 4923 75.00 79.87 70.74
Ours T=64 72.53 7907 4923 7576 79.71 71.26

Baseline FP16 77.98 83.82 5742 8098 82.70 76.58

"TTFSFormer =~ T=32 ~ 48.15 26.40 ~ 28.24 25.00 49.02 35.36

2-70B SpikeLLM WS8AG6 75.06 8142 52.82 7529 80.58 73.03
PrefixQ W4A4 75.45 7432 46.08 7247 77.53 68.40

Ours T=16 73.95 7922 5196 76.94 80.09 72.43

Baseline FP16 80.35 84.88 64.33 85.86 84.55 79.99

"TTFSFormer = T=32 4901 2632 26.88 25.25 50.05 35.50

3-70B SpikeLLM WS8AG6 52.09 2840 2645 3136 53.59 38.38
PrefixQ W4AS 77.98 82.84 59.98 81.73 8335 77.18

Ours T=16 77.27 82.67 59.04 82.15 83.13 76.85

Under review as a conference paper at ICLR 2026

Table 2: We report Perplexity for C4, Pile, PTB, WikiText2, and RedPajama on LLaMA-2-7B,
LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision C4 Pile PTB WikiText2 RedPajama Avg.

Baseline FP16 697 463 3791 5.47 5.61 12.12
" TTESFormer ~ T=32 ~ >100 >100 >100 >I00 =~ = >1000 ~ >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.89 514 57.27 6.43 6.21 16.59
2-7B PrefixQ W4A4 772 5.00 33.01 6.12 6.28 11.63
PrefixQ WS5AS5 7.20 474 32.16 5.67 5.82 11.12
PrefixQ W6A6 7.06 467 67.30 5.54 5.70 18.06
Ours T=16 773 5.00 33.00 6.12 6.29 11.63
Ours T=32 720 474 32.00 5.67 5.82 11.09
Ours T=64 707 4.67 6737 5.54 5.70 18.07
Baseline FP16 8.88 552 11.18 6.14 7.44 7.83
“ TTESFormer ~ T=32 ~ >100 >100 >I100 ~ >I00 =~ = >1000 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM WS8A6 >100 >100 >100 >100 >100 >100
3-8B PrefixQ W4A4 1122 6.62 13.38 7.82 9.69 9.74
PrefixQ WS5AS 975 594 11.97 6.79 8.30 8.55
PrefixQ WO6A6 929 574 11.57 6.47 7.85 8.18
Ours T=16 1123 6.61 13.37 7.82 9.69 9.75
Ours T=32 9.75 594 1197 6.79 8.29 8.55
Ours T=64 928 574 11.57 6.47 7.86 8.18
Baseline FP16 6.47 434 50.94 4.88 5.19 14.36
" TTESFormer ~ T=32 ~ >100 >100 >100 >I00 =~ = >100 >100 -
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.16 474 62.07 5.81 5.53 17.06
2-13B PrefixQ W4A4 8.46 5.33 724.00 6.38 7.05 150.24
PrefixQ WS5AS 10.89 6.99 101.41 7.28 8.66 27.05
PrefixQ W6A6 6.62 444 36.49 5.03 5.32 11.58
Ours =G 836 529 734.17 6.36 7.02 152.24
Ours T=32 11.09 7.13 101.73 7.39 8.82 27.23
Ours T=64 6.63 445 36.61 5.04 5.33 11.61
Baseline FP16 552 374 2425 3.32 4.31 8.23
" TTESFormer ~ T=32 ~ >100 >100 >I00 >I00 =~ = >100 >100 -
2-70B SpikeLLM W8A6 6.28 4.18 24.15 4.97 4.11 8.74
PrefixQ W4A4 731 476 31.31 5.02 5.85 10.85
Ours T=16 731 476 3134 5.03 5.85 10.86
Baseline FP16 6.73 4.38 8.52 2.85 5.32 5.56
“ TTESFormer ~ >I00 ~ >100 >100 >I00 >I00 =~ = >100 >100 -
3-70B SpikeLLM WS8A6 >100 >100 >100 >100 >100 >100
PrefixQ W4A4 8.18 5.16 9.71 4.66 6.92 6.92
Ours T=16 8.16 5.15 9.65 4.64 6.90 6.90

10

Under review as a conference paper at ICLR 2026

Table 3: We report accuracy for WinoGrande and acc_norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B for ablation analysis

Model Latency WinoGrande HellaSwag ArcC ArcE PIQA Avg.

T=16 66.77 73.08 4121 7045 77.64 65.83

T=32 69.38 75.49 4428 72.85 78.02 68.00

2-7B T=64 69.38 76.23 4599 73,57 78.13 68.66
T=256 70.56 76.69 76.69 7357 78.40 69.13

T=1024 70.32 76.62 46.16 73.78 78.18 69.01

T=16 70.32 75.62 46.42 7395 7797 68.86

T=32 71.35 78.24 49.23 75.00 79.87 70.74

2-13B T=64 72.53 79.07 49.23 75776 79.71 71.26
T=256 72.85 79.71 4932 76.64 80.36 71.78

T=1024 72.38 79.75 48.72 7643 80.52 71.56

6 CONCLUSION

LLMs have achieved remarkable success, but they also introduce severe energy bottlenecks that hin-
der their sustainable deployment. SNNs provide a promising pathway toward energy-efficient spik-
ing LLMs through ANN-to-SNN conversion. Among various spike-coding schemes, TTFS coding
is particularly appealing, as it conveys information with a single spike, thereby further reducing
energy consumption. Existing TTFS-based A2S conversions depend on continuous-time assump-
tions and require prohibitively large latencies to approximate the continuous values of ANNs. This
reliance results in unacceptable inference delays in deep models, particularly LLMs, creating signif-
icant obstacles to the development of practical temporal-coding spiking LLMs.

To overcome this challenge, we propose a discretization-aware theoretical framework that estab-
lishes a precise correspondence between discrete TTFS-based neurons and ANNs. Our key insight
shows that conversion errors are constrained by latency-dependent terms. Building on this, we in-
troduce the QC-A2S conversion method, which combines low-bit quantization with discretization-
compatible TTFS neurons, enabling low-latency temporal-coding spiking LLMs.

ETHICS STATEMENT

All participants in this work, as well as the paper submission, adhere to the ICLR Code of Ethics (
https://iclr.cc/public/CodeOfEthics).

REPRODUCIBILITY STATEMENT

We affirm that the results of this work are fully reproducible. Appendix [D]provides the theoretical
proofs. Appendix[B.T|details the experimental implementations, and the source code will be publicly
released after publication of the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated 1lms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

11

 https://iclr.cc/public/CodeOfEthics
 https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2026

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024a.

Long Chen, Xiaotian Song, Andy Song, BaDong Chen, Jiancheng Lv, and Yanan Sun. Fas: Fast
ann-snn conversion for spiking large language models. arXiv preprint arXiv:2502.04405, 2025a.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqgi Shao, and Ping Luo. Prefixquant: Static
quantization beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265,
2024b.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024c.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Eliminating
outliers by prefixed tokens for large language models quantization, 2025b. URL https://
arxiv.org/abs/2410.05265.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922810,

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yonggiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. leee Micro, 38(1):82-99, 2018.

Bin Deng, Yanrong Fan, Jiang Wang, and Shuangming Yang. Auditory perception architecture with
spiking neural network and implementation on fpga. Neural Networks, 165:31-42, 2023.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. Optq: Accurate post-
training quantization for generative pre-trained transformers. In 11th International Conference
on Learning Representations, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2021.

Robert Giitig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing—based
decisions. Nature neuroscience, 9(3):420-428, 2006.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 11-21, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yizhou Jiang, Kunlin Hu, Tianren Zhang, Haichuan Gao, Yuqian Liu, Ying Fang, and Feng Chen.

Spatio-temporal approximation: A training-free snn conversion for transformers. In The twelfth
international conference on learning representations, 2024.

12

https://arxiv.org/abs/2410.05265
https://arxiv.org/abs/2410.05265
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816

Under review as a conference paper at ICLR 2026

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Lingi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. Advances in Neural Information Processing Systems, 37:87766-87800, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer trained with two-stage knowledge distil-
lation from bert. 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659-1671, 1997.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313-330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxel

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668-673, 2014.

Marcelo A Montemurro, Malte J Rasch, Yusuke Murayama, Nikos K Logothetis, and Stefano Panz-
eri. Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current biology, 18
(5):375-380, 2008.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36:18994-19014, 2023.

Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information
transmission with burst spikes in deep spiking neural networks. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1-6, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: deep spiking neural
networks with time-to-first-spike coding. In 2020 57th ACM/IEEE design automation conference
(DAC), pp. 1-6. IEEE, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607-617, 2019.

Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
temporal coding. In 2018 IEEE international symposium on circuits and systems (ISCAS), pp.
1-5. IEEE, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhigian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quanti-
zation for large language models. 2024. URL https://openreview.net/forum?id=
8WuvhhOLYW.

13

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW

Under review as a conference paper at ICLR 2026

Ana Stanojevic, Stanistaw Wozniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Waulfram Gerstner. An exact mapping from relu networks to spiking neural networks. Neural
Networks, 168:74-88, 2023.

Ana Stanojevic, Stanistaw Wozniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Waulfram Gerstner. High-performance deep spiking neural networks with 0.3 spikes per neuron.
Nature Communications, 15(1):6793, 2024.

Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid processing.
Neural networks, 14(6-7):715-725, 2001.

Together Computer. Redpajama: Reproducible pretraining data. https://www.together.
xyz/blog/redpajama, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guogqi Li, and Jiajun
Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
spiking. arXiv preprint arXiv:2407.04752, 2024a.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun
Zhang, and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic
bi-spiking mechanisms. In International Conference on Machine Learning, pp. 54698-54714.
PMLR, 2024b.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36:64043-64058, 2023.

Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-
tf: conversion is all you need for transformer-based snn. In Proceedings of the 41st International
Conference on Machine Learning, pp. 57367-57383, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting of the Association for Computational Lin-
guistics, 2019. URL https://api.semanticscholar.org/CorpusID:159041722,

Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn: From deep neural
networks to deep spike neural networks with temporal-coding. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pp. 1319-1326, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Lusen Zhao, Zihan Huang, Jianhao Ding, and Zhaofei Yu. TTFSFormer: A TTFS-based lossless
conversion of spiking transformer. In Forty-second International Conference on Machine Learn-
ing, 2025. URL https://openreview.net/forum?id=mJAa823xKul

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

14

https://www.together.xyz/blog/redpajama
https://www.together.xyz/blog/redpajama
https://api.semanticscholar.org/CorpusID:159041722
https://openreview.net/forum?id=mJAa823xKu

Under review as a conference paper at ICLR 2026

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Chenlin Zhou, Han Zhang, Liutao Yu, Yumin Ye, Zhaokun Zhou, Liwei Huang, Zhengyu Ma, Xi-
aopeng Fan, Huihui Zhou, and Yonghong Tian. Direct training high-performance deep spiking
neural networks: a review of theories and methods. Frontiers in Neuroscience, 18:1383844, 2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

15

Under review as a conference paper at ICLR 2026

A NOTIONS

Table 4: Symbol Definitions
Symbol Definition Symbol Definition
l Layer index X Inputs of QANN
i,] Neuron index X Output of QANN
W Weight matrix agl) Output lower bound of TTFS-based neuron
trecy Receiving time step bl(»l) Output upper bound of TTFS-based neuron
temit Emitting time step I The number of neurons in each layer
tend End time-step 0 Threshold
H Heaviside function C Bias term in TTFS-based neuron
t Time step index T Time constant in TTFS-based neuron
n Input transform kernel N Quantization level
i Output transform kernel n Quantization bits
Neurons One Spike Spikes
O=
0.2
e — >
O > H t1 Time H H H H H Time
0.5 NG y
> »
: t2 Time Time
O
0.6 R R
rd Ll
@ tr-1 Time Time
—>
0.9 I L1 by b 11y
Activations tr Time Time
(a) TTFS Coding (b) Rate Coding
Figure 3: TTFS Coding vs. Rate Coding.
f Spike ——— Time step 932(_1) Tl(l) = ti)f — til)
Neurons
$ (L) AV
Layer (1+1) > 0(,1)
’ t((ei'nJrit) tlentil) Time '
!_ - T T 7
| i |
1 r -~ - _\— -
Layer t >
I ‘gzlm tgd ! Time
o
I t;l—l) .
Layer (1—-1) > 0 >
zL’,;i? {0=1 Time t% = tg;it) tff,l,it = tii:dl) tend t<elm+it)

Figure 4: The process of TTFS-based spiking neural neurons.

16

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SUPPLEMENTARY

B.1 EXPERIMENT CONFIGURATIONS

In addition to the hardware information mentioned in the main text, we provide further details about
the reproduction of baselines here. We adopt 8 bits for weight, 6 bits for activation quantization, i.e.
W8AG6, for SpikeLLM(Xing et al., 2024a) and PrefixQuant(Chen et al.l 2025b), and use 8192 time
precision for TTFSFormer (Zhao et al., 2025).

17

Under review as a conference paper at ICLR 2026

C CONVERSION ERROR

In this section, we provide a detailed analysis A
of the conversion error between the ANN and | ... ;
the converted TTFS-based SNN across layers. A
We assume that both the ANN and SNN receive I T 4

the same input from layer [— 1, i.e., o= = [Quantization Error
2(=1) and then analyze the error in layer [. . [T I Clipping Error

ANN neurons. For ANNs, the output al of L
neurons in layer [is realized by a linear weight-

240
ing W and nonlinear mappings f(-): R
ol = f (W<1>a(1—1)>7 (13) 4L
SNN neurons. For TTFS-based SNNs, we con- 0 ; P
sider the relation between the spike time t® I | | | | i [o9
of SNN and the corresponding activation value W 40 B k= T ol
(1) of ANN: o
o :

Figure 5: Clipping error and quantization error.

1
0= = (4O _®
2= 5 (1) as

From Eqs. and (14), along with the conditions V(tg])m) =W . fzt=D)and V(D — 1) <

o0 <V (W), t0 ¢ {témlt, R tgl)d} it follows that a transformation between the temporal domain
(relate to t()) and the numerical domain (relate to (') enables the activation value a(¥) of analog
neurons in the ANN to be mapped onto () in the TTFS-based SNN. Because the output ranges and
types of SNNs and ANNS differ, conversion errors are generally unavoidable. During the ANN-to-

SNN conversion, two primary sources of error, clipping error Ec(l) and quantization error & (l), both
of which contribute to the performance gap between ANNs and SNNs.
For layer [, the total error decomposes as:

D =gl 4 £ (15)

Clipping error. Clipping error denotes the error caused by different value ranges of ANNs and
SNNs. For an temporal coding spiking neural neuron, when the time steps 7°() are ﬁxed the output

RORMO!
of SNN: z(® is in the range of [a(l), b(l)} where o) = ’EfT Ite"d and b = 77“““ We define
the nq, as the maximum value in o), a,,;,, is the minimum value in in oY), Then the output
a € [amm, a(l)] of ANNSs will be mapped to the same value a®, the output o € [b(l), amam] of

ANNGs will be mapped to the same value b(), which will cause conversion error named clipping
error &.

Quantization error. The output spike time t(!) is discrete, so the final output z() =

5y (tr(g - t(l)) is also discrete, while the output activation value o of the ANNs is continu-

ous. Therefore, when mapping o¥) to (), there will be unavoidable error related to tempo-
ral resolution, named quantization error &. For example, when the output of ANNs satisfies

tOg® (M 41)d® l (l) (l) (1) (1) ())
|: T 7%) 7t() = t - tend’tref - tend + 1 7tref - temlt

a € — 1, the correspond-

e >d<z>

ing mapped value of SNN will be “—&—.

Lemma 1 Analysis for clipping error. For a target ANN’s output al(-l)

the output of ANN and SNN is:

, the clipping error between

H -0 ol >

56(1) if o (l) [(l),b(l)] (16)
H if o (l) < a(l)

18

Under review as a conference paper at ICLR 2026

) _4 @ AONNO]

l brof —ten l brey —Lemi

Whereag): L ndb() Lt
T,

Ti i

Lemma 2 Upper bound for quantization error: In the theoretical analysis under the continuous

setting of Theorem 4.1 and Theorem 4.3 inlZhao et al.|(2025)), we denote the output under continuous

O ¢ € [a; @ b(l)] corresponds to the ANN with continuous outputs, while in the practically

0

coding as y,

deployable discrete coding scenario, the SNN output is denoted as x;’ € [a El), bgl)] corresponds to
the ANN with discretized outputs. That is, there exists quantization error Eq(l) between TTFS coding
in the continuous setting and its practical deployment. Let T") be the time window and Q) be the
corresponding clock time, and the derivatives of the function h and its inverse are bounded by G4

and Go. Then, the quantization error can be bounded as:

G1G2f2
gq(l) — ngl) _ yl(l)H < ilr(l? . 17)

D PROOFS

proof 1 Proof of Theorem|[I}
For arbitrary fixed m(jl‘)) ¢§l), Oi(l) and 01@ in SNNs with time window TV, in the receiving phase:

V(i)

-1\ _ 0
t—1)—q

I
s‘ -
cl
M%j
VR
]~
5
o,
5
.
/_\

i =l =t
T -1
1 emit
= 2wl (o) £ 7O, as)
Ti " j=1,_,0-D
J

(1

In the emitting phase, let A;) > 0 is a compensation constant, which is actually the difference

between the 91(1) and the membrane potential at the spike time. We can get:

#0— —1

emit

V(tiii,f)+ Y) - Al =4, (19)

v=0

We denote S(t) = Z e’"" w(l (v), then:

S =60 + A0 —v (1)) (20)
Then:
10 =57 (00 + AV v (i) @1

According to the relationship between xgl) and tl(.l), we can get:
n_ 1 1 _ 1 l 0}

let WO = (w; «))]><[is the weight matrix:

=0 = f(l)(W(l);a:glfl),...,x§171)) (23)

K2
1 T
1 g 1 0 1 E 1-1) -1 (-1 W A0
= tw 57|80+ a7 ‘TZ:Z w0 («f w1l) 10|],

i s

19

Under review as a conference paper at ICLR 2026

proof 2 Proof of Theorem 2}
Consider the potential change in the receiving stage.

vi(t8)

=Dy

end

(l 5o e (- + el

t=t1=D J

emit

-1 _,0-1)
D =Dy

1 (0 1=1) A1)
- A0=1 Zwij Z i (U (u) +d; -G
7 J

u=0

$(=1) t(l 1)+ (l 1) (l D_1

end

! ! I=1) A
*Zw() (l y)3 i () + -

u=0

(l 1)(15171)7(15171)) 1

! u+1 - - - !
OG> <fw(S 1>) fw(- ”>)+d§ b
7,

u=0 z

*Zw(l)(fz] (G 1)) fij(al ol 1)))+d§l—1),0i(1)

-1
_Zw fij (@ ()) (24)
where the second equation uses u =t — t(l b, ; third equation uses ;v(l 2 -(lil) = tﬁifl) - L‘g-lil);
L= 3
Sfourth equation uses aEl_l) = %

Ti

If the spike is emitted at time t) e {te,l,z”, tgll,z” +1,... 7t£nd} i.e. the corresponding value x(l) €
[a M b(l)] Then:

7, » 7
1) -1
00 = Vi) + > v - AP
v=0
JO_) 0 0y
v, " e @ m v+l 0
V(temzt)+ ZO h (bi 7@)*}1 (bi - .(l)) 7Ai
v= 1 1

OTNOENCNI 1
l ‘ ‘ _ 1 v _ 1 v + 1

v=0

= V(thy) + b1 0) = 7 (@) — AD. (25)

where the first equation uses v = tgl) - tgfzit, the second equation uses xgl) 7'() = 52 - t(l) the
NOBMO!
third equation uses bl(-) = f#ﬁm”
Thus " l .
B) = V()
which indicates that o 0
Ty = h(V(emn))
Ifh(V (tg,zn)) > b() then V(tgg”) > hil(b(l)) = 91@, which means that a spike is emitted once at
W) _ (0

tfmzm representing the value M b(l)

20

Under review as a conference paper at ICLR 2026

Ifh(V(t(l)-) <a (l) , then the potential at time t()d is:

emit

7

V(tl) + Z P (v

T(l)

O) o v 1,0 v+l
temzt + Z (b E) —h (bz - T(l)))
7

i

=vu@>+wwé%—h*w9>

emit
<h My =6, (26)

which means that there will be no spike, representing the value agl).
proof 3 Proof of Lemma 2}
According to Theorem 4.3 in|Zhao et al.| (2025): in the continuous setting, if the spike is emitted at

time tgl) [t(l) t(l)] i.e. the corresponding value y() € la El)7b§l)]. Then

emit’ “endl®
t—t),
0 =V (th) + / vl (v) dv 27)
0
NOBMORONO
ref emit Yi 1 B
=V (tg) + / 5 (h 1)’(b§” - T}’») dv (28)
0 ;
W0 _, W
T (b =y)
= V(1) - 1<bE” - T?U) N 29)
= V() =) + R). (30)
Because 91@ = h_l(bgl)):
W) = V(tom), (31)
which indicates that:
u =n(veh). (32)

In the discrete setting, the spike is emitted at time tgl) € {tg?z”, tggn +1,..., tgl)d} the corresponding
M ¢ €la O p®

value x; l ,b; "] Let Al(.l) > 0 is a compensation constant, which is actually the difference
between the 91(and the membrane potential at the spike time. The following equation satisfies:

NOBMO!

0 =vl)) + / T Py do - AP (33)
0
tO 4 (D) _r®
V(t£2n> +/ ﬁ(h_l)/ (bgl) - T() dv — A('l) (34)
0 T; i
! ! 00 =) !
= v =1 (80 - 5) | -4y @)
= vt —h @) +) — Al (36)
Because 92@ = h_l(bz(-l):
@) = vl — A, (37)

21

Under review as a conference paper at ICLR 2026

which indicates that:

= n(vin) - al). (38)
The error of discrete coding in the continuous setting can be expressed as:
Joi? = = [(Veeam) = (vt - &) 9
By the mean value theorem, we obtain:

‘yi)—x(”

A(l Vit ()‘)]

emit

| =|m@n-af

(40)
where £ € [(t em”)
Furthermore, we examine AE) 1o provide a more in-depth analysis of the error. We assume that

the spike firing time corresponding precisely to the ANN output is denoted as [t]l(.l). Based on the
characteristics of TTFS encoding, it follows that:

1 —1 <" <. (41)
Then AZ(-[) can be represented as:
KOt

Al = bils)ds = h (1) —) — BN — tl). (42)

[t](’)—t(l)

emit

By the mean value theorem, we obtain:

| (@]t =)| (43)
where i, € [0~ 10,40 4]
Then the error egl) can be bounded by the following inequality:
[=20 < w1 Jty @) - 1 - 60 (44)

By the definition of clock precision: Atreqi = treai(t + 1) — trear(t), where treqi(t) = t - Atreal,
we obtain:

o2 = 0 < @1 10 ()] - Atrea
—1sep Q
= [h/(€)] - |(h Y(E)] - ROBEIOR
t, . —1
end emit
N Q
= / . —1y/ . R—
= WO |)] 5
Gng
A0 (45)
proof 4 Proof of Theorem 3}
For clipping error, according to Lemmam we can get:
l) l)H ifozl(-l) > b(l)
‘ a f <Z) < a(l)
We define the center of the output interval of SNN as:
(l) +p®
(l) i 47)

2

22

Under review as a conference paper at ICLR 2026

The clipping error can then be restated as follows:

o _,
3 K3

0
ED(TW) = max | |« - L, 0 (48)
¢ 27

We take the derivative of T") to get the sensitivity of the error SC(Z) (T(Z)) toTH:

B 1 a(l) B c@ T
d PION ! ! oM
ZEN@V)=q pd (49)
0, agl) — cl(-l) —_.
27'1-(”

Once clipping occurs, increasing TY will reduce the error linearly with a constant slope of — ﬁ;
within the valid interval, the error is unaffected by T'V.
For quantization error, according to Lemmal[2} we can get:

G1 G0
0 142
&V < T (50)

For an L-layer network with I neurons in each layer, we can get:

G1GaQ2
,o) - Tm) (51)

o T®) LIG, G2

&

|
™M~

3 (5(1) n g(l))
e[

L
Let T' = min {T(l) }zL:1 and T = max {{ (l)} } :
=1

L

Il
—
—

7

w_ o _ T
G | 0}
27;

M~

3

§1) T bz(z)
2

o _

Ok T (52)

27,

E<LI- max(

proof 5 Proof of Corollary[I}
Input transform: The input of QANN at i-th neuron of l-th layer is X Z w - ¢
[al(l 1), bgl 1)]. In order to approximate the input of QANN, based on Theoreml we set the kernel

function 771(;) and C’Z-(l) as follows:

! u -
”z(y)()H< - o T a U)’

(l 1)

l
Oi() = Z d(l 1)wija

J 7

Then, the membrane potential after reception is completed can be expressed as:

o) Zw =x{. (53)

Output transform: In order to approximate the output of QANN at l-th layer of i-th neuron: X0 e
[a o b(l)] based on Theorem we set the kernel function 1/11@ and threshold as follows:

1
W= 600 =0 (54)
T

23

Under review as a conference paper at ICLR 2026

g . LU !
If the spike is emitted at time t € {t(),, ¢)n +1,... 7t£n)d}"

_ 1
XY 2 >0, (55)
] 7'4(1) ()
According to the definition of t, we can get:
t= 0" - x| (56)

According to the rounding range of t, we add the clip function to get:

t=clip ([0 = X7 0] 0 t0) 57)

» Yemit> “end

According to the relation between spike time and corresponding activation value and 01@ = bl(-l).'

o_ 1 ro
T, = -5 tre
O (1

%

_cnpq(b(”—xg“)fﬂ ¢ t(l))> (58)

[» Yemit? “end

1) _ ()
(l) _ tI’Ef _twml .
= T, we can get.

i

According to b

1
o) = 5 (19— elip([1) — 12, — XO70] 10,1 0)) (59)

)

Based on the relationship between the ceiling function and the floor function, we can derive the
following:

o_ 1 . D] _) 0 Do, L
€Tyt = ﬁChp(LXE T J - tref + tfgnziﬂ 7t§nd’ 7temir) + ﬁtrej)‘ (60)
Ti Ti
Based on the properties of the floor function, we can conclude that:
1 . 1

0 = X0 oo 0000)+ (- 40) e

Let tgf,zit =0, tgfzi =N, Ti(l) = /\Ell,l), tf,i)d - tif,})c =2, we can get:
20 = 2D clip(| +20,0,N) - AL = xO (62)

Ai

E NONLINEAR OPERATIONS IN QC-A2S

Corollary 2 (Construction of SiLU) A TTFS-based neuron can be made equivalent to a discrete
SiLU function with through the following configuration:

7]5;)(u) =I[u > 0] 47'7-,(1_1) . ((% + (Lgl_l)> -0 (% + +(I§l_1)) - <T<,u,1> + +a§l_1)) o (r,“li” + aﬁl‘”))

(1=1) | 0=

W _ wa_colag) w1 1
0 =3 wl) T v) = o) = (©3)
J i

Corollary 3 (Construction of GELU) A TTFS-based neuron can be made equivalent to a discrete
GELU function with

m(;)(u) =1T[u > 0] ~Ti(l*1) . <(;€iﬂ) +a§l’1)> .® <% + +a1(_171)) _ <T<z1i1> + +a§171)> . (ﬁ + %071)))

l l 1 l) aPa@? > 2
W00) =y 00 =80, 0 = 3 0f) 22 0) = 1 +erf(5)] erf@) = & fr et

i

Under review as a conference paper at ICLR 2026

Corollary 4 (Construction of Softmax) The log-sum-exp of I inputs x1,xs,--- , 2y, Le.,
I
log Z e’ (64)
j=1

can be calculated in a single neuron with

_ u+1 _ U _
m(j)(u) _ Tz‘(l D (eXp<7—.(l_1) +al(l 1)) —exp(T(l_l) —|—a§l 1)))) (65)

o_ I o w1 o v
¢, = d(l_l)e ;Y (v) = T-(l) exp (bi)) : (66)
1

{
T

(3

With the log-sum-exp neuron, we can obtain the softmax operator. We can calculate the logarithm

of softmax, i.e.
. I
eTi
log (1) =ux; —log E e (67)
D=1 €% J=1

by subtracting the log-sum-exp from x;. Finally, we can obtain the output after an exponential layer.

Corollary 5 (Construction of RMSNorm) RMSNorm is a normalization method widely used in
LLaMA architecture, which is a linear operation. RMSNorm is defined as:

RMSNorm(z;) = xiz -y + B (68)
V % D1 T
We first can obtain the % Zle x? by a single neuron with
2 2
(0)y2
(1) © [(utl L) m_ (&) a1
N (w) =755 7{—0,1. — 7—|—ai ’Ci = , W = 7 (69)
s ’ (Ti(O) > (Ti(O)) Idz(‘o) I
1
o () = ——, 0 = bV, (70)

mOL

1
Then, we can get ————
V % Z{:l 172

-4 -4

2) o [[fuvtl @ u (1) (2) 1

i (u) = 7 — +a, —| 5 ta , G = ———, (71)
Tij (u) J (ED) (Tu)) Id51)(a§1))§

i

1
w® =190 @) = —, 0V =p®. (72)

Finally, multiply z; with \/ﬁ
F USE OoF LLMs

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.

25

Under review as a conference paper at ICLR 2026

G SUPPLEMENTARY MATERIALS FOR THE REBUTTAL

G.1 SUPPLEMENTARY ALGORITHM FOR THE REBUTTAL

Algorithm] outlines the proposed QC-A2S pipeline for converting a vanilla LLM into a temporal-
coding spiking LLM. The procedure begins by applying post-training quantization to obtain a
well-quantized model. For each layer and each neuron, we retrieve its quantization parame-
ters—including the quantization level, scaling factor, and zero-point—and use them to construct
the corresponding TTFS-based spiking neuron with the emission time, ending time, and time con-
stant defined accordingly. This mapping transforms all quantized linear computations into temporal
spike representations. For layers containing nonlinear operators such as SwiGLU, Softmax, or Lay-
erNorm, their original activations are replaced with the spiking counterparts derived in Appendix
E, ensuring full compatibility with the temporal-coding SNN formulation. Through this layer-wise
conversion, the entire LLM is transformed into a TTFS-based spiking model suitable for neuromor-
phic.

Algorithm 1 Converting Vanilla LLM into Temporal-coding Spiking LLM with QC-A2S pipeline
1: Input: Vanilla LLM

2: Output: Temporal-coding Spiking LLM
3: Obtaining well-quantized LLM by post-training quantization
4: Mapping from Quantized LLMs to Temporal-coding Spiking LLMs:
5: for layer[=1,2,..., L do
6: for neuron: =1,2,.... I do
7: Get quantization parameters quantization level N, scale)\El) and zero point z()
8: Construct TTFS-based spiking neural neurons as:
9: tiﬁgit =0, téflzi =N, Tz‘(l) = A%"” tgl)d - tﬁg =20
10: end for '
11: if [is SwiGLU, Softmax or RMSNorm then
12: Replace the original nonlinear activation with spiking counterpart in the Appendix [E]
13: end if
14: end for

G.2 SUPPLEMENTARY EXPERIMENTS FOR THE REBUTTAL

Figure [6] reports the layer-wise cumulative conversion error of the temporal-coding spiking LLM
obtained with the QC-A2S framework on LLaMA-2-7B. The blue bars denote the conversion error
at each layer, while the pink dashed curve shows the corresponding log-scaled error. The conversion
error clearly accumulates as the layer index increases, which is consistent with Theorem [3] where
the approximation error bound grows with the network depth L.

Tables§| and|[6|evaluate the generalization ability of our QC-A2S framework on non-LLaMA models.
Table |5|reports accuracy for WinoGrande and acc_norm for HellaSwag, ArcC, ArcE, and PIQA on
Qwen2-7B and Mistral-7B v0.3. Table |§|reports perplexity on C4, Pile, PTB, WikiText2, and Red-
Pajama for the same models. The entries highlighted in gray correspond to the temporally encoded
spiking LLM obtained with QC-A2S, while the non-shaded entries correspond to the equivalent
quantized LLM. Across all benchmarks, the QC-A2S spiking models achieve accuracy and perplex-
ity that are comparable to, and sometimes even better than, their quantized counterparts under the
same precision configurations. These results demonstrate that our QC-A2S framework generalizes
well across different LLM architectures and datasets.

Table /| reports the performance of TTFS-Former on LLaMA models, where we measure accuracy
on WinoGrande and acc_norm on HellaSwag, ArcC, ArcE, and PIQA. Across all model scales,
TTFS-Former performs significantly worse than the FP16 baselines and our QC-A2S models, and
the average accuracy further degrades as the time window T increases. This indicates that directly
applying TTFS-Former to LLMs is not effective. We attribute this poor performance to two inherent
limitations of TTFS-Former. First, TTFS-Former is built on a continuous-time TTFS assumption,
where spike times are treated as real-valued variables. This formulation inherently requires a large

26

Under review as a conference paper at ICLR 2026

Conversion Error

0.05 - Log Scaled Conversion Error
-2
0.04 -
=)
g
3 e
5 0.03- 3
5 5
S &
2 <
43
S 0.02- z
o
o
=5
0.01 -
0.00 - T T T T e e S L I R R B -—6
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layer

Figure 6: The layer-wise conversion error of temporal-coding spiking LLM (LLaMA-2-7B).

time window to approximate continuous dynamics, making medium-latency settings theoretically
incompatible with its design. Second, TTFS-Former directly converts an ANN into an SNN without
handling outliers, which are prevalent in LLM activations. These extreme values skew the spike-
time distribution during conversion and lead to severe accuracy degradation—an intrinsic weakness
of continuous-time ANN—SNN conversion pipelines. The results in Table[7] therefore highlight the
necessity of our QC-A2S framework, which explicitly addresses these issues.

Table 5: We report accuracy for WinoGrande and acc_norm for HellaSwag, ArcC, ArcE, and PIQA
on Qwen2-7B, and Mistral-7B v(.3 for demonstrating the generalization of our method. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.
FP16 72.45 78.78 4991 7471 8123 7142

W4A4 68.19 74.67 49.66 76.05 79.00 69.51

T=16 68.59 74.56 48.12 75.13 78.13 6891

Qwen-2-7B W5AS 71.51 77.60 4846 7374 79.87 70.24
T=32 71.51 77.51 49.40 7294 80.20 70.31

W6A6 71.51 78.68 51.19 7551 8036 71.45

T=64 71.82 78.41 5145 76.09 81.18 71.79

T=16 73.88 80.44 5230 7820 8226 7342

W4A4 71.90 77.55 4991 7635 79.54 71.05

Mistral-7B v0.3 T=16 71.59 77.38 50.77 76.18 80.36 71.26
WS5AS 72.53 79.74 5290 79.25 80.85 73.05

T=32 73.09 79.63 52.82 7879 81.23 73.11

W6A6 72.14 80.41 5324 79.76 82.37 73.58

T=64 73.56 80.32 53.67 7934 81.66 73.71

27

Under review as a conference paper at ICLR 2026

Table 6: We report perplexity for C4, Pile, PTB, WikiText2, and RedPajama on Qwen2-7B, and
Mistral-7B v0.3 for demonstrating the generation quality of our method on other models. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision C4 Pile PTB WikiText2 RedPajama Avg.
FP16 990 553 12.22 7.14 8.51 8.66
W4A4 11.44 6.24 14.10 8.26 9.90 9.99
T=16 1143 6.24 14.13 8.26 9.89 9.99
Qwen-2-7B W5AS5 10.34 5.73 12.71 7.44 8.91 9.02
T=32 1034 5.74 12.71 7.43 8.90 9.02
W6A6 10.05 5.60 12.35 7.23 8.64 8.78
T=64 10.05 5.60 12.36 7.23 8.64 8.78
T=16 7.84 446 37.28 5.32 6.00 12.18
W4A4 8.58 4.84 135343 5.93 6.65 275.89
Mistral-7B v0.3 T=16 8.58 4.84 1386.34 5.93 6.65 282.47
WS5AS 8.12 4.61 1443.37 5.54 6.24 293.57
T=32 8.12 4.61 1416.23 5.54 6.24 288.15
W6A6 7.99 455 270.79 5.45 6.12 58.98
T=64 7.99 455 293.46 5.46 6.13 63.52

28

Under review as a conference paper at ICLR 2026

Table 7: We report extra accuracy for WinoGrande and acc_norm for HellaSwag, ArcC, ArcE, and
PIQA on LLaMA models with TTFS-Former method.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.

FP16 69.22 76.00 4633 74.62 79.11 69.06
CT=32 51.07 2632 28.84 2584 4891 36.20
T=64 48.86 26.40 28.67 26.09 49.24 35385
2-7B T=128 47.83 26.12 28.07 26.77 48.15 35.39
=256 48.15 26.35 27.39 25,55 49.08 35.30
=512 49.25 26.12 28.33 25,51 5044 3593
T=1024 49.88 26.07 29.52 2584 4946 36.15
T=2048 47.04 25.82 27.82 28.20 47.06 35.19
FP16 72.69 79.19 5341 77.69 80.79 72775
- T=32 4988 2640 2654 2471 5158 3582
T=64 50.59 26.19 26.11 2449 50.16 3551
3-8B T=128 51.78 25.88 26.37 25.08 50.65 3595
T=256 50.20 26.48 26.79 2546 51.80 36.15
T=512 51.38 26.35 25.17 2441 5136 35.73
T=1024 49.41 26.08 29.27 26.81 49.62 36.24
T=2048 48.78 26.73 2696 25.88 51.85 36.04
FP16 72.38 79.38 49.06 77.53 80.52 71.77
- T=32 4996 26.11' 2952 2538 4793 3578
T=64 50.75 25.75 29.27 26.05 50.65 3649
2-13B T=128 50.67 26.65 28.33 2588 49.73 36.25
T=256 48.15 26.53 27.73 26.77 47.61 35.36
T=512 49.17 26.63 27.39 2555 50.05 35.76
T=1024 51.78 26.16 27.82 2698 4935 3642
T=2048 49.72 26.79 27.47 28.07 S51.03 36.62
FP16 77.98 83.82 57.42 8098 82770 76.58
- T=32 4815 2640 2824 25.00 49.02 3536
T=64 48.54 26.15 30.03 2630 51.03 3641
2-70B T=128 50.20 25.85 28.67 26.81 50.44 36.39
T=256 50.99 25.76 28.84 2559 50.11 36.26
T=512 49.64 26.17 28.58 26.39 50.00 36.16
T=1024 49.88 26.00 28.58 27.57 4859 36.12
T=2048 50.12 26.36 28.24 2630 50.22 36.25
FP16 80.35 84.88 64.33 85.86 84.55 79.99
3-70B T=32 . 49.01 2632 26.88 2525 50.05 3550
T=64 50.20 26.34 23.80 25.08 50.22 35.15

29

	Introduction
	Related Works
	Spiking LLMs
	Temporal-based A2S conversions
	Model Quantization

	Revisiting TTFS-based ANN-to-SNN Conversion
	Continuous TTFS-based Neurons
	Practical Limitations of Continuous TTFS-Based Conversion

	Discretization-Aware Conversion
	Discrete TTFS-based neurons
	relationship between Discrete TTFS-based SNNs and ANNs
	error analysis for discrete TTFS-based SNNs
	Quantization-Consistent ANN-to-SNN conversion

	Experiment
	Implement Details
	Main Results
	Comparison of accuracy under different latency configurations

	Conclusion
	Notions
	Experimental Supplementary
	Experiment Configurations

	Conversion Error
	Proofs
	Nonlinear Operations in QC-A2S
	Use of LLMs
	supplementary materials for the rebuttal
	Supplementary Algorithm for the rebuttal
	Supplementary experiments for the rebuttal

