
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACHIEVE LATENCY-EFFICIENT TEMPORA-CODING
SPIKING LLMS VIA DISCRETIZATION-AWARE CON-
VERSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success while intro-
ducing critical energy bottlenecks that challenge sustainable deployment. Spik-
ing neural networks (SNNs) provide a promising approach for energy-efficient
spiking LLMs via ANN-to-SNN (A2S) conversion. Among various spike cod-
ing methods, time-to-first-spike (TTFS) coding is particularly appealing as it con-
veys information with a single spike, further reducing energy consumption. How-
ever, existing TTFS-based A2S conversion relies on continuous-time assump-
tions, requiring prohibitively large latencies (e.g., 4096 time steps) to approxi-
mate ANN’s continuous values. This dependency leads to unacceptable inference
delay in deep models, particularly LLMs, posing significant challenges for de-
veloping practical temporal-coding spiking LLMs. In this paper, we propose a
discretization-aware theoretical framework that establishes a precise correspon-
dence between discrete TTFS-based SNNs and ANNs. Our key insight reveals
that conversion errors are bounded by latency-dependent terms. Motivated by
these, we introduce the Quantization-Consistent ANN-to-SNN (QC-A2S) conver-
sion, which integrates low-bit quantization with discretization-compatible TTFS
neurons, achieving latency-efficient temporal-coding spiking LLMs. Comprehen-
sive evaluation on LLaMA models demonstrates comparable performance with
dramatically reduced latency.

1 INTRODUCTION

Large Language Models (LLMs) represent a paradigm shift in artificial intelligence, leveraging deep
learning architectures trained on massive text corpora to capture intricate linguistic patterns, syntac-
tic structures, and semantic relationships, thereby achieving remarkable capabilities in natural lan-
guage understanding and generation (Zhang et al., 2022; Touvron et al., 2023; Achiam et al., 2023;
Dubey et al., 2024). Most LLMs are built upon the Transformer architecture, which relies heavily
on multi-head attention mechanisms and dense matrix multiplications, resulting in cubic computa-
tional complexity and substantial energy consumption during both training and inference (Vaswani
et al., 2017; Zhao et al., 2023). Moreover, following the “scaling law”, LLMs have grown from
billions to trillions of parameters to achieve better performance, which further increases computa-
tional and storage demands (Chen et al., 2024a; Hoffmann et al., 2022). Consequently, the critical
challenge facing the LLM community is developing approaches to reduce computational complexity
and energy consumption while preserving model performance capabilities.

Spiking Neural Networks (SNNs) are biologically plausible computational models inspired by
the mechanisms of neurons and synapses in the human brain (Maass, 1997; Roy et al., 2019).
SNNs transmit and compute information asynchronously through discrete spike events rather than
continuous-valued activation functions, demonstrating remarkable energy efficiency when imple-
mented on specialized neuromorphic hardware (Yao et al., 2023; Zhou et al., 2022; Davies et al.,
2018; Merolla et al., 2014). Consequently, developing spiking LLMs has emerged as a promising
solution to address the substantial energy consumption challenges of LLMs. Currently, two primary
approaches are used to develop spiking LLMs: direct training methods that incorporate surrogate
gradients to address non-differentiability (Yao et al., 2023; Mukhoty et al., 2023; Zhou et al., 2024),
and ANN-to-SNN (A2S) conversion methods that transfer pre-trained weights while preserving ap-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proximate equivalence through carefully designed techniques (Jiang et al., 2024; Chen et al., 2025a;
Hao et al., 2023). Given the enormous computational and storage requirements of direct training
for LLMs, practical spiking LLMs are predominantly achieved through A2S conversion for energy-
efficient intelligent applications in resource-constrained environments (Xing et al., 2024a).

Beyond the rate coding commonly used in A2S conversion methods, recent neuroscience research
has highlighted temporal-based spike coding that offer superiors energy efficiency advantages (Park
et al., 2019; Zhang et al., 2019; Stanojevic et al., 2024). Temporal coding represents continuous val-
ues through precise spike timing rather than spike counts, suggesting that the representation of infor-
mation depends on when the spikes occur (Gütig & Sompolinsky, 2006). Among various temporal
codings, time-to-first-spike (TTFS) coding is particularly noteworthy, as it encodes information in
the latency of a single spike, which substantially reduces energy consumption by minimizing spike
counts (Park et al., 2020; Rueckauer & Liu, 2018).

Receiving Emiting

Receiving Emiting

Receiving Emiting

Time

Inference delay

0

Figure 1: Inference delay across network layers.

Existing TTFS-based conversion methods un-
derlying rely on continuous-time assumptions
that directly approximate the continuous val-
ues of ANNs (Zhao et al., 2025; Stanojevic
et al., 2024). However, practical hardware
implementations impose discrete timing con-
straints through finite latency and clock granu-
larity. Such discretization inevitably introduces
conversion errors that severely compromise
model accuracy. To mitigate the discretization-
induced errors, existing methods require pro-
hibitively large latency (e.g., 4096 time steps),
causing extensive spike latency accumulation across network layers (Figure 1). This creates unac-
ceptable inference delay in deep models, particularly for LLMs, posing significant challenges for
developing practical temporal-coding spiking LLMs.

To address this fundamental challenge, we propose a discretization-aware theoretical framework that
establishes a precise correspondence between discrete TTFS-based SNNs and ANNs. Our key theo-
retical insight reveals that conversion errors are formally bounded by latency-dependent terms, draw-
ing a direct connection to quantization error bounds. Motivated by this equivalence, we introduce
a paradigm shift from traditional continuous-approximation conversions to discrete-equivalent cov-
ersion. Specifically, we present the Quantization-Consistent ANN-to-SNN Conversion (QC-A2S),
which integrates low-bit quantization with discretization-compatible TTFS neurons. QC-A2S lever-
ages pre-quantized LLMs to inherently align with discrete spike dynamics, effectively mitigating
conversion errors while achieving latency-efficient temporal-coding spiking LLMs. Comprehensive
evaluation on LLaMA models demonstrates that our approach maintains comparable accuracy with
dramatically reduced inference latency (Figure 2). The key contributions are summarized as follows:

• We propose a discretization-aware theoretical framework for TTFS-based coding that iden-
tifies the fundamental discrepancy between continuous-time assumptions in prior TTFS
methods and practical hardware constraints, revealing the formal equivalence between con-
version errors and quantization error bounds.

• We present the QC-A2S framework, which represents a paradigm shift from traditional
continuous-approximation conversions to discrete-equivalent transformation, enabling the
first latency-efficient TTFS-based temporal-coding spiking LLMs.

• Extensive experiments on LLaMA models demonstrate that our framework successfully
constructs temporal spiking LLMs with performance comparable to their original counter-
parts while achieving significant latency reduction.

2 RELATED WORKS

2.1 SPIKING LLMS

The success of LLMs has motivated the development of SNN counterparts (spiking LLMs) that
maintain energy efficiency while achieving comparable capabilities. Several approaches have

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Continuous ANNs

Discrete ANNs

Continuous SNNs

Discrete SNNs

Latency

Latency

Precision

Precision

(a) Continuous TTFS-Based Conversion Pipeline

(b) Our Discretization-Aware Conversion Pipeline

Figure 2: Overview of the QC-A2S framework. By establishing a discretization-aware equivalence
between quantized ANNs and discrete TTFS SNNs, QC-A2S eliminates the latency-dependent con-
version errors inherent in continuous-time pipelines and enables accurate, quantization-consistent
spiking LLMs.

emerged for creating spiking variants of transformer-based models (You et al., 2024; Zhou et al.,
2022; 2023). SpikeGPT replaces traditional self-attention with Spiking RWKV mechanisms (Zhu
et al., 2023). SpikingBERT employs a two-stage knowledge distillation method that utilizes pre-
trained BERT models as teachers to train spiking student architectures (Lv et al., 2023). Simi-
larly, SpikingMiniLM builds upon BERT with parameter initialization and ANN-to-SNN distillation
methods to achieve faster convergence during training. Recent work introduced SpikeLLM, scaling
to 70 billion parameters through spike-driven quantization (Xing et al., 2024b;a). However, existing
spiking LLMs rely exclusively on rate coding, where information is encoded through spike fre-
quency. This leaves unexplored the potential of temporal-based spiking LLMs, which could achieve
substantially lower energy consumption.

2.2 TEMPORAL-BASED A2S CONVERSIONS

While rate-based conversion methods have dominated ANN-to-SNN conversion research, temporal-
based encoding approaches offer compelling advantages in terms of energy efficiency by leveraging
precise spike timing rather than spike frequency. These methods include time-to-first spike (Thorpe
et al., 2001), reverse coding (Zhang et al., 2019; Park et al., 2020), phase coding (Montemurro et al.,
2008) and burst coding (Park et al., 2019). Among temporal coding schemes, time-to-first-spike
(TTFS) coding has emerged as particularly promising, where each neuron emits at most one spike
per time window with information encoded in the spike latency. Early TTFS-based conversion meth-
ods were developed by Rueckauer & Liu (2018) and further improved by Zhang et al. (2019) and
Park et al. (2020), but these approaches introduced conversion errors across layers. A breakthrough
came with Stanojevic et al. (2023; 2024), who demonstrated exact mapping from ReLU-based net-
works to SNNs using TTFS coding through a two-stage neuron activation process, achieving lossless
conversion while maintaining energy benefits. Recently, Zhao et al. (2025) proposed TTFSFormer,
the first TTFS-based conversion framework for Transformer architectures. However, existing TTFS-
based conversion methods require extremely high latency to match continuous-time assumptions,
preventing their implementation on large-scale models.

2.3 MODEL QUANTIZATION

Quantization has emerged as a critical technique for reducing model size and memory consump-
tion, enabling efficient deployment of LLMs on resource-constrained devices (Shao et al., 2024),
falling into two primary categories: quantization-aware training (QAT) (Liu et al., 2023) and post-
training quantization (PTQ) (Xiao et al., 2023). QAT optimizes quantized weights during training
using techniques like the straight-through estimator (Chen et al., 2024c; Du et al., 2024) but is com-
putationally impractical for LLMs. PTQ has thus become the preferred approach, requiring only
minimal calibration data while using dynamic activation quantization to address outlier-induced ac-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

curacy degradation (Frantar et al., 2023). Recent PTQ advances address outlier-induced errors using
orthogonal transformations (QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024)) or dual
transformations (DuQuant (Lin et al., 2024)) to redistribute outliers across channels. However, these
methods require computationally expensive per-token dynamic computation during inference. Pre-
fixQuant (Chen et al., 2024b) offers an alternative by isolating token-wise outliers to enable efficient
per-tensor static quantization, achieving comparable performance. While these quantization meth-
ods successfully achieve competitive performance with low-bit representations, energy consumption
from dense matrix operations remains a fundamental barrier to edge deployment.

3 REVISITING TTFS-BASED ANN-TO-SNN CONVERSION

3.1 CONTINUOUS TTFS-BASED NEURONS

The activation process of continuous TTFS-based neurons is generally divided into two stages: the
receiving phase and the firing phase (Zhao et al., 2025). At the i-th neuron in l-th layer, i =

1, 2, ..., I and l = 1, 2, ..., L. We denote the time range of the receiving phase as [t(l)recv, t
(l)
emit], and

the emitting phase as [t(l)emit, t
(l)
end]. With the initial membrane potential V (t

(l)
recv) = 0, the continuous

membrane potential dynamics are given by:

d

dt
V (t) =


1

τ
(l)
i

(∑
j w

(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

)
, t ∈ [t

(l)
recv, t

(l)
emit),

ψ
(l)
i

(
t− t

(l)
emit

)
, t ∈ [t

(l)
emit, t

(l)
end).

(1)

The spike time t(l−1)
j is received from the previous layer of the j-th input, while using the time range

of the receiving phase from the previous layer as the time range for the firing phase of this layer,
i.e., t(l)recv = t

(l−1)
emit and t(l)emit = t

(l−1)
end ; w(l)

ij are the weights; the input transform kernel function η(l)ij

satisfies η(l)ij (u) = 0, ∀u < 0; τ (l)i > 0 is the time constant; C(l)
i serves as a bias term; the output

transform kernel function ψ(l)
i is non-negative. Once the potential exceeds the threshold θ(l)i , the

neuron will emit a spike and record the spike firing time t(l)i . The relation between the spike time
t
(l)
i and the corresponding activation value x(l)i of ANNs is:

x
(l)
i τ

(l)
i = t

(l)
ref − t

(l)
i , (2)

where t(l)ref is the zero reference time. Therefore, the output range [a
(l)
i , b

(l)
i] can be expressed as:

a
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − t

(l)
end

)
, b

(l)
i =

1

τ
(l)
i

(
t
(l)
ref − t

(l)
emit

)
. (3)

We denote T (l) = t
(l)
end − t

(l)
emit as the time window, and d(l)i = b

(l)
i − a

(l)
i .

3.2 PRACTICAL LIMITATIONS OF CONTINUOUS TTFS-BASED CONVERSION

The continuous TTFS-based conversion method (Zhao et al., 2025) establishes an equivalence be-
tween TTFS-based neurons and ANN neurons by modifying the input and output transform kernel
functions, thereby enabling the mapping of TTFS-based SNNs to continuous ANNs:

Theorems 4.1 and 4.3 in Zhao et al. (2025): Let fij : [a
(l−1)
i , b

(l−1)
i] → R be differentiable

functions and h : A → R be a differentiable monotone increasing function, and its inverse h−1 is
well-defined on [a

(l)
i , b

(l)
i]. If we let

η
(l)
ij (s) =

f ′ij
(

s

τ
(l−1)
i

+ a
(l−1)
i

)
, s ≥ 0,

0, s < 0,
, C

(l)
i =

∑
j

wij

fij

(
a
(l−1)
i

)
d
(l−1)
i

,

ψ
(l)
i (s) =

1

τ
(l)
i h′

(
h−1

(
b
(l)
i − s

τ
(l)
i

)) , θ(l)i = h−1(b
(l)
i) (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

then the value x(l)i of ANNs represented by the output spike is

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I) = clip

h
∑

j

w
(l)
ij fij

(
x
(l−1)
j

) , a
(l)
i , b

(l)
i

 (5)

Although TTFS-based ANN-to-SNN conversion methods under continuous setting have been ex-
plored, their applications to LLMs remain limited in two aspects:

Infinite Clock Precision: For TTFS-based neurons under continuous setting , the spike time can be
any real number (Stanojevic et al., 2023; Zhao et al., 2025; Stanojevic et al., 2024). At this point, the
required clock precision is theoretically infinitely fine: ∆treal → 0. However, electronic neuromor-
phic chips, which rely on discrete clock cycles, cannot provide infinitely fine clock precision (Deng
et al., 2023). Consequently, TTFS coding based on continuous assumptions faces significant limita-
tions in hardware implementations.

Latency Overhead of Lossless Conversion: In the continuous setting, TTFS-based lossless conver-
sion methods establish an equivalence between SNNs and continuous ANNs and directly mapping
the former to the latter. However, this process incurs extremely high latency (e.g., up to 4096 time
steps), which propagates through the network and leads to prohibitively long inference delays.

In continuous settings, TTFS coding requires prohibitively high latency to achieve
lossless conversion, resulting in excessively long inference delays for LLMs.

4 DISCRETIZATION-AWARE CONVERSION

In this section, we first construct discrete TTFS-based neurons to address the challenge of infinite
clock precision. Next, rather than directly mapping TTFS-based SNNs to continuous ANNs in a
continuous setting, we analyze the relationship between TTFS-based SNNs and discrete ANNs.
We then examine the conversion error of discrete TTFS-based SNNs. Finally, we introduce the
Quantization-Consistent ANN-to-SNN conversion method.

4.1 DISCRETE TTFS-BASED NEURONS

To overcome the challenge posed by infinite clock precision, we constructed a hardware-friendly
discrete TTFS coding neuron model. Under the discrete time-step setting, the differential form of
the original membrane potential equation can be approximated as follows:

d

dt
V (t) =

dV (t)

dtreal(t)
· dtreal(t)

dt
≈ V (t+ 1)− V (t)

treal(t+ 1)− treal(t)
· d
dt
treal(t) = V (t+ 1)− V (t). (6)

Building on the above discussion, we present a discretized version of TTFS-based neurons. At the
i-th neuron in l-th layer, i = 1, 2, ..., I and l = 1, 2, ..., L. We denote the time range of the receiving
phase as {t(l)recv, . . . , t

(l)
emit}, and the emitting phase as {t(l)emit, . . . , t

(l)
end}. With the initial membrane

potential V (t
(l)
recv) = 0, the discrete membrane potential dynamics are given by:

V (t+ 1)− V (t) =


1

τ
(l)
i

(∑
j w

(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

)
t ∈ {t(l)recv, . . . , t

(l)
emit − 1},

ψ
(l)
i

(
t− t

(l)
emit

)
t ∈ {t(l)emit, . . . , t

(l)
end − 1}.

(7)

We denote T (l) = t
(l)
end − t

(l)
emit as the time window, and d(l)i = b

(l)
i − a

(l)
i .

4.2 RELATIONSHIP BETWEEN DISCRETE TTFS-BASED SNNS AND ANNS

We theoretically establish the equivalence between TTFS-based SNNs and discrete ANNs. First,
we determine the corresponding ANN function using the transform kernel functions and parame-
ters of the TTFS-based neuron. For any TTFS-based neuron with fixed conversion functions and
parameters, the corresponding ANN function can be identified:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1 For arbitrary fixed η
(l)
ij , ψ

(l)
i , C

(l)
i and θ

(l)
i in SNNs with time win-

dow T (l), if we define S(t) =
∑t−t

(l)
emit−1

v=0 ψ
(l)
i (v) with t ∈

{
t
(l)
emit, . . . , t

(l)
end

}
,

then the corresponding activation value of discrete ANNs is given by:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I) (8)

=
1

τ
(l)
i

t(l)ref − S−1

θ(l)i +∆
(l)
i − 1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
− T (l)C

(l)
i


 ,

where W (l) = (w
(l)
ij)I×I is the weight matrix; ∆

(l)
i ≥ 0 is a compensation constant, which is

actually the difference between the θ(l)i and the membrane potential at the spike time.

Next, we determine the corresponding transform kernel functions and parameters in the TTFS-based
neuron using the ANN function. For any given fixed ANN function, the TTFS-based neuron with
the corresponding transform kernel functions and parameters can be identified:

Theorem 2 Let fij be a function with input set of discrete points between a(l−1)
i and b(l−1)

i , and
h be a monotone increasing function with output set of discrete points between a(l)i and b(l)i . We

denote u = t − t
(l−1)
j with t ∈

{
t
(l)
recv, . . . , t

(l)
emit

}
, and v = t − t

(l)
emit with t ∈

{
t
(l)
emit, . . . , t

(l)
end

}
. To

represent the corresponding activation value of discrete ANNs:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I) = clip

h
∑

j

w
(l)
ij fij

(
x
(l−1)
j

) , a
(l)
i , b

(l)
i

 . (9)

we need to configure the SNN as follows:

η
(l)
ij (u) =

τ
(l−1)
i

(
fij

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− fij

(
u

τ
(l−1)
i

+ a
(l−1)
i

))
u ≥ 0,

0 u < 0.

ψ
(l)
i (v) = h−1

(
b
(l)
i − v

τ
(l)
i

)
− h−1

(
b
(l)
i − v+1

τ
(l)
i

)
, C

(l)
i =

∑
j w

(l)
ij fij

(
a
(l−1)
i

)
d
(l−1)
i

, θ
(l)
i = h−1(b

(l)
i) + ∆

(l)
i .

Furthermore, we demonstrate the equivalence between the discrete TTFS-based neuron and the
quantization function:

Corollary 1 We define the processes of quantization and dequantization as follows:

X̂
(l)
i = λ

(l)
i · clip(⌊X

(l)
i

λ
(l)
i

⌋+ z(l), 0, N)− λ
(l)
i · z(l), (10)

where λ(l)i =
max(X

(l)
i)−min(X

(l)
i)

N and z(l) = −⌊min(X
(l)
i)

λ
(l)
i

⌋ are scale and zero point values, respec-

tively; ⌊·⌋ denotes the floor operation; N = 2n − 1 denotes the quantization level and n denotes the
quantization bits; X̂(l)

i and X
(l)
i are the dequantized and original tensor, respectively.

For a TTFS-based SNN defined in (7), H is the Heaviside step function, if we set the η(l)ij , ψ(l)
i , C(l)

i

and θ(l)i as follow:

η
(l)
ij (u) = H

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
, ψ

(l)
i (v) =

1

τ
(l)
i

, C
(l)
i =

∑
j

a
(l−1)
i

d
(l−1)
i

wij , θ
(l)
i = b

(l)
i (11)

and we let t(l)emit = 0, t
(l)
end = N, τ

(l)
i = 1

λ
(l)
i

, t
(l)
end − t

(l)
ref = z(l), and X

(l)
i =

∑I
j=1 w

(l)
ij x

(l−1)
j . The

output of spiking neural neuron and quantization function are equivalent, i.e, x(l)i = X̂
(l)
i .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 ERROR ANALYSIS FOR DISCRETE TTFS-BASED SNNS

In the continuous setting, although TTFS-based SNNs enable lossless conversion to ANNs, they
require infinitely fine clock precision for hardware implementation and introduce significantly long
inference delay in the network. We analyze the conversion error of discrete TTFS-based SNNs.

Theorem 3 The error analysis of TTFS-based SNNs: Let T (l) denotes the time window with the
corresponding clock time constant Ω, the derivatives of the function h and its inverse are bounded
by G1 and G2, I denotes the number of neurons in each layer of the network, and L denotes the

number of layers, T = min
{
T (l)

}L
l=1

, and τ = max

{{
τ
(l)
i

}I

i=1

}L

l=1

, α(l)
i is the corresponding

output of ANNs and ρ = max{i,l}

{∣∣∣∣α(l)
i − a

(l)
i +b

(l)
i

2

∣∣∣∣}. The conversion error of the TTFS-based

SNNs in can be bounded as:

E ≤ LI ·max

(
ρ− T

2τ
, 0

)
+
LIG1G2Ω

T
(12)

Remark 1 In Theorem 3: The first term captures the clipping error in the TTFS-based SNNs, which
can be eliminated by increasing the time window T . As T increases, the output range of TTFS-based
SNNs expands. When this range encompasses the output of ANNs, the clipping error is eliminated;
The second term reflects the quantization error, which can only be alleviated by increasing T . As T
increases, the output range of TTFS-based SNNs becomes finer, facilitating better alignment between
the output of ANNs and the discrete points of the SNNs’ output, thereby reducing quantization error.
Thus, achieving high accuracy TTFS-based SNNs necessitates sufficiently long time windows.

4.4 QUANTIZATION-CONSISTENT ANN-TO-SNN CONVERSION

Our goal is to develop high-accuracy, low-latency temporal-coding spiking LLMs. Achieving high
accuracy in temporal-coding spiking LLMs typically requires extending the time window, which
in turn increases latency. This latency propagates through the network, leading to excessive infer-
ence delays. To address this challenge, we propose the Quantization-Consistent ANN-to-SNN (QC-
A2S) conversion method, which leverages the equivalence between TTFS-based SNNs and discrete
ANNs. Our approach combines low-bit quantization with discretization-compatible TTFS neurons,
enabling low-latency temporal-coding spiking LLMs. Specifically, we first apply established tech-
niques, such as post-training quantization, to minimize clipping and quantization errors, resulting in
a low-bit, high-accuracy baseline model. We then map the quantized LLM to an equivalent spiking
LLM, achieving a low-latency, high-accuracy temporal-coding spiking LLM.

5 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of our proposed method and
compare its performance, computational count, and energy consumption with those of different
approaches. Additionally, we conduct ablation studies on various latency.

5.1 IMPLEMENT DETAILS

Datasets and Underlying Models In the experiments, two types of benchmarks are used. For
accuracy-oriented evaluation, five representative reasoning datasets are adopted, namely PIQA(Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy,
and ARC-Challenge (Clark et al., 2018). PIQA targets physical commonsense reasoning in ev-
eryday scenarios, ARC-Easy and ARC-Challenge consist of science exam questions with vary-
ing difficulty levels, HellaSwag evaluates contextual understanding through plausible continuation
tasks, and WinoGrande focuses on large-scale pronoun resolution for commonsense reasoning. For
perplexity-oriented evaluation, we additionally use five widely adopted language modeling datasets,
including C4 (Raffel et al., 2020), The Pile (Gao et al., 2021), Penn Treebank (PTB) (Marcus et al.,
1993), WikiText-2 (Merity et al., 2017), and RedPajama (Together Computer, 2023). The datasets
were preprocessed following standard practices, and data augmentation techniques were applied

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where appropriate. In our study, all methods are applied to the LLaMA family of LLMs as the com-
mon backbone. We consider a range of representative models, including LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, and LLaMA-2-70B.

Baselines We compare our approach against several representative baselines that adapt large lan-
guage models through either quantization or ANN-to-SNN conversion:

• PrefixQuant (Chen et al., 2025b) is a weight–activation quantization method that addresses
token-wise outliers in the KV cache and employs lightweight blockwise training, achieving
strong performance across different precision levels.

• SpikeLLM (Xing et al., 2024a) presents the first spiking LLMs by incorporating bio-
inspired spiking mechanisms with generalized integrate-and-fire neurons, yielding im-
provements in perplexity and reasoning accuracy compared to quantized LLMs.

• TTFSFormer (Zhao et al., 2025) applies time-to-first-spike coding to Transformers, ex-
tending TTFS neurons to handle nonlinear layers and achieving competitive accuracy with
significantly reduced energy consumption.

Experiment Configurations All experiments were conducted on a server equipped with NVIDIA
A100 GPUs (80 GB of memory), Intel Xeon CPUs, and 512 GB of RAM. The models were im-
plemented in PyTorch 2.6 with CUDA 12.4 support. For fair comparison, all baseline methods
were re-implemented or run using their officially released code under the same environment and
hyperparameter settings whenever possible. In addition to the hardware information mentioned in
the main text, we provide further details about the reproduction of baselines here. We adopt 8 bits
for weight, 6 bits for activation quantization, i.e. W8A6, for SpikeLLM(Xing et al., 2024a) and
PrefixQuant(Chen et al., 2025b), and use 8192 time precision for TTFSFormer (Zhao et al., 2025).

5.2 MAIN RESULTS

Tables 1 and 2 report the accuracy and PPL metrics of all methods on the LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models. The results indicate that: (i) tempo-
rally encoded spiking LLMs achieve performance comparable to quantized LLMs across all LLaMA
models, providing further empirical evidence for the equivalence between TTFS-based SNNs and
quantized ANNs; (ii) our method substantially outperforms TTFSFormer under low-latency set-
tings, while TTFSFormer continues to exhibit unsatisfactory performance even at higher latencies,
underscoring the excessive latency demands of continuous TTFS-based SNNs; and (iii) our model
surpasses the state-of-the-art spiking LLM (SpikeLLM), further validating the effectiveness of the
proposed approach.

5.3 COMPARISON OF ACCURACY UNDER DIFFERENT LATENCY CONFIGURATIONS

In Table 3, we conduct a detailed study of how latency influences the performance of temporally
coded spiking LLMs using the LLaMA-2-7B and LLaMA-2-13B model. The results reveal a clear
trend: increasing latency consistently improves accuracy across all evaluated benchmarks. This
indicates that longer time windows allow TTFS-based SNNs to better approximate the activations
of ANNs, thereby reducing discretization-induced errors and enhancing representational fidelity.
Moreover, deeper/larger models do not necessarily yield monotonically higher accuracy. While
additional layers increase model capacity, Theorem 3 shows that the approximation error bound
grows with the number of layers L. As L becomes large, the accumulated discretization error
can counteract the gains from the increased capacity, which explains why scaling from 7B to 13B
to 70B does not produce consistent accuracy improvements in our experiments (Table 1 and 2).
Such evidences provide strong empirical support for our theoretical analysis in Theorem 3 (E ≤
LI ·max

(
ρ− T

2τ , 0
)
+ LIG1G2Ω

T), which establishes that achieving high accuracy in TTFS-based
SNNs is inherently dependent on sufficiently long latency (T).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision WinoGrande HellaSwag ArcC ArcE PiQA Avg.

2-7B

Baseline FP16 69.22 76.00 46.33 74.62 79.11 69.06
TTFSFormer T=32 51.07 26.32 28.84 25.84 48.91 36.20
TTFSFormer T=64 48.86 26.40 28.67 26.09 49.24 35.85
TTFSFormer T=8192 50.04 25.49 26.88 26.81 50.82 36.01
SpikeLLM W8A6 65.51 73.61 42.49 70.16 75.41 65.44

PrefixQ W4A4 66.77 73.62 42.83 70.88 76.93 66.21
PrefixQ W5A5 69.06 75.53 43.94 73.06 77.86 67.89
PrefixQ W6A6 70.48 76.22 45.48 73.86 78.35 68.88

Ours T=16 66.77 73.08 41.21 70.45 77.64 65.83
Ours T=32 69.38 75.49 44.28 72.85 78.02 68.00
Ours T=64 69.38 76.23 45.99 73.57 78.13 68.66

3-8B

Baseline FP16 72.69 79.19 53.41 77.69 80.79 72.75
TTFSFormer T=32 49.88 26.40 26.54 24.71 51.58 35.82
TTFSFormer T=64 50.59 26.19 26.11 24.49 50.16 35.51
TTFSFormer T=8192 52.41 26.86 25.77 24.75 51.09 36.18
SpikeLLM W8A6 58.25 59.28 32.34 53.37 68.66 54.38

PrefixQ W4A4 71.03 74.51 48.72 75.88 77.80 69.59
PrefixQ W5A5 71.74 77.59 53.41 78.45 79.11 72.06
PrefixQ W6A6 72.77 78.52 53.07 78.58 79.22 72.43

Ours T=16 70.09 74.36 48.29 75.97 77.86 69.31
Ours T=32 70.01 77.64 53.50 78.07 79.71 71.79
Ours T=64 72.06 78.26 54.95 77.90 79.43 72.52

2-13B

Baseline FP16 72.38 79.38 49.06 77.53 80.52 71.77
TTFSFormer T=32 48.15 26.40 28.24 25.00 49.02 35.36
TTFSFormer T=64 48.54 26.15 30.03 26.30 51.03 36.41
TTFSFormer T=8192 48.70 26.29 26.11 25.72 51.25 35.61
SpikeLLM W8A6 68.03 76.76 44.88 73.32 77.48 68.09

PrefixQ W4A4 69.69 75.76 47.53 73.78 78.62 69.08
PrefixQ W5A5 72.38 78.30 49.91 76.26 79.76 71.32
PrefixQ W6A6 72.53 79.07 49.23 75.76 79.71 71.26

Ours T=16 70.32 75.62 46.42 73.95 77.97 68.86
Ours T=32 71.35 78.24 49.23 75.00 79.87 70.74
Ours T=64 72.53 79.07 49.23 75.76 79.71 71.26

2-70B

Baseline FP16 77.98 83.82 57.42 80.98 82.70 76.58
TTFSFormer T=32 48.15 26.40 28.24 25.00 49.02 35.36
SpikeLLM W8A6 75.06 81.42 52.82 75.29 80.58 73.03

PrefixQ W4A4 75.45 74.32 46.08 72.47 77.53 68.40
Ours T=16 73.95 79.22 51.96 76.94 80.09 72.43

3-70B

Baseline FP16 80.35 84.88 64.33 85.86 84.55 79.99
TTFSFormer T=32 49.01 26.32 26.88 25.25 50.05 35.50
SpikeLLM W8A6 52.09 28.40 26.45 31.36 53.59 38.38

PrefixQ W4A4 77.98 82.84 59.98 81.73 83.35 77.18
Ours T=16 77.27 82.67 59.04 82.15 83.13 76.85

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: We report Perplexity for C4, Pile, PTB, WikiText2, and RedPajama on LLaMA-2-7B,
LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision C4 Pile PTB WikiText2 RedPajama Avg.

2-7B

Baseline FP16 6.97 4.63 37.91 5.47 5.61 12.12
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.89 5.14 57.27 6.43 6.21 16.59

PrefixQ W4A4 7.72 5.00 33.01 6.12 6.28 11.63
PrefixQ W5A5 7.20 4.74 32.16 5.67 5.82 11.12
PrefixQ W6A6 7.06 4.67 67.30 5.54 5.70 18.06

Ours T=16 7.73 5.00 33.00 6.12 6.29 11.63
Ours T=32 7.20 4.74 32.00 5.67 5.82 11.09
Ours T=64 7.07 4.67 67.37 5.54 5.70 18.07

3-8B

Baseline FP16 8.88 5.52 11.18 6.14 7.44 7.83
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 >100 >100 >100 >100 >100 >100

PrefixQ W4A4 11.22 6.62 13.38 7.82 9.69 9.74
PrefixQ W5A5 9.75 5.94 11.97 6.79 8.30 8.55
PrefixQ W6A6 9.29 5.74 11.57 6.47 7.85 8.18

Ours T=16 11.23 6.61 13.37 7.82 9.69 9.75
Ours T=32 9.75 5.94 11.97 6.79 8.29 8.55
Ours T=64 9.28 5.74 11.57 6.47 7.86 8.18

2-13B

Baseline FP16 6.47 4.34 50.94 4.88 5.19 14.36
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.16 4.74 62.07 5.81 5.53 17.06

PrefixQ W4A4 8.46 5.33 724.00 6.38 7.05 150.24
PrefixQ W5A5 10.89 6.99 101.41 7.28 8.66 27.05
PrefixQ W6A6 6.62 4.44 36.49 5.03 5.32 11.58

Ours T=16 8.36 5.29 734.17 6.36 7.02 152.24
Ours T=32 11.09 7.13 101.73 7.39 8.82 27.23
Ours T=64 6.63 4.45 36.61 5.04 5.33 11.61

2-70B

Baseline FP16 5.52 3.74 24.25 3.32 4.31 8.23
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 6.28 4.18 24.15 4.97 4.11 8.74

PrefixQ W4A4 7.31 4.76 31.31 5.02 5.85 10.85
Ours T=16 7.31 4.76 31.34 5.03 5.85 10.86

3-70B

Baseline FP16 6.73 4.38 8.52 2.85 5.32 5.56
TTFSFormer >100 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 >100 >100 >100 >100 >100 >100

PrefixQ W4A4 8.18 5.16 9.71 4.66 6.92 6.92
Ours T=16 8.16 5.15 9.65 4.64 6.90 6.90

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Table 3: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B for ablation analysis

Model Latency WinoGrande HellaSwag ArcC ArcE PIQA Avg.

2-7B

T=16 66.77 73.08 41.21 70.45 77.64 65.83
T=32 69.38 75.49 44.28 72.85 78.02 68.00
T=64 69.38 76.23 45.99 73.57 78.13 68.66

T=256 70.56 76.69 76.69 73.57 78.40 69.13
T=1024 70.32 76.62 46.16 73.78 78.18 69.01

2-13B

T=16 70.32 75.62 46.42 73.95 77.97 68.86
T=32 71.35 78.24 49.23 75.00 79.87 70.74
T=64 72.53 79.07 49.23 75.76 79.71 71.26

T=256 72.85 79.71 49.32 76.64 80.36 71.78
T=1024 72.38 79.75 48.72 76.43 80.52 71.56

6 CONCLUSION

LLMs have achieved remarkable success, but they also introduce severe energy bottlenecks that hin-
der their sustainable deployment. SNNs provide a promising pathway toward energy-efficient spik-
ing LLMs through ANN-to-SNN conversion. Among various spike-coding schemes, TTFS coding
is particularly appealing, as it conveys information with a single spike, thereby further reducing
energy consumption. Existing TTFS-based A2S conversions depend on continuous-time assump-
tions and require prohibitively large latencies to approximate the continuous values of ANNs. This
reliance results in unacceptable inference delays in deep models, particularly LLMs, creating signif-
icant obstacles to the development of practical temporal-coding spiking LLMs.

To overcome this challenge, we propose a discretization-aware theoretical framework that estab-
lishes a precise correspondence between discrete TTFS-based neurons and ANNs. Our key insight
shows that conversion errors are constrained by latency-dependent terms. Building on this, we in-
troduce the QC-A2S conversion method, which combines low-bit quantization with discretization-
compatible TTFS neurons, enabling low-latency temporal-coding spiking LLMs.

ETHICS STATEMENT

All participants in this work, as well as the paper submission, adhere to the ICLR Code of Ethics (
https://iclr.cc/public/CodeOfEthics).

REPRODUCIBILITY STATEMENT

We affirm that the results of this work are fully reproducible. Appendix D provides the theoretical
proofs. Appendix B.1 details the experimental implementations, and the source code will be publicly
released after publication of the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

11

 https://iclr.cc/public/CodeOfEthics
 https://iclr.cc/public/CodeOfEthics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024a.

Long Chen, Xiaotian Song, Andy Song, BaDong Chen, Jiancheng Lv, and Yanan Sun. Fas: Fast
ann-snn conversion for spiking large language models. arXiv preprint arXiv:2502.04405, 2025a.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static
quantization beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265,
2024b.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024c.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Eliminating
outliers by prefixed tokens for large language models quantization, 2025b. URL https://
arxiv.org/abs/2410.05265.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Bin Deng, Yanrong Fan, Jiang Wang, and Shuangming Yang. Auditory perception architecture with
spiking neural network and implementation on fpga. Neural Networks, 165:31–42, 2023.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. Optq: Accurate post-
training quantization for generative pre-trained transformers. In 11th International Conference
on Learning Representations, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2021.

Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based
decisions. Nature neuroscience, 9(3):420–428, 2006.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 11–21, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yizhou Jiang, Kunlin Hu, Tianren Zhang, Haichuan Gao, Yuqian Liu, Ying Fang, and Feng Chen.
Spatio-temporal approximation: A training-free snn conversion for transformers. In The twelfth
international conference on learning representations, 2024.

12

https://arxiv.org/abs/2410.05265
https://arxiv.org/abs/2410.05265
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. Advances in Neural Information Processing Systems, 37:87766–87800, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer trained with two-stage knowledge distil-
lation from bert. 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Marcelo A Montemurro, Malte J Rasch, Yusuke Murayama, Nikos K Logothetis, and Stefano Panz-
eri. Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current biology, 18
(5):375–380, 2008.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36:18994–19014, 2023.

Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information
transmission with burst spikes in deep spiking neural networks. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: deep spiking neural
networks with time-to-first-spike coding. In 2020 57th ACM/IEEE design automation conference
(DAC), pp. 1–6. IEEE, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
temporal coding. In 2018 IEEE international symposium on circuits and systems (ISCAS), pp.
1–5. IEEE, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quanti-
zation for large language models. 2024. URL https://openreview.net/forum?id=
8Wuvhh0LYW.

13

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Wulfram Gerstner. An exact mapping from relu networks to spiking neural networks. Neural
Networks, 168:74–88, 2023.

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Wulfram Gerstner. High-performance deep spiking neural networks with 0.3 spikes per neuron.
Nature Communications, 15(1):6793, 2024.

Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid processing.
Neural networks, 14(6-7):715–725, 2001.

Together Computer. Redpajama: Reproducible pretraining data. https://www.together.
xyz/blog/redpajama, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
spiking. arXiv preprint arXiv:2407.04752, 2024a.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun
Zhang, and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic
bi-spiking mechanisms. In International Conference on Machine Learning, pp. 54698–54714.
PMLR, 2024b.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36:64043–64058, 2023.

Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-
tf: conversion is all you need for transformer-based snn. In Proceedings of the 41st International
Conference on Machine Learning, pp. 57367–57383, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting of the Association for Computational Lin-
guistics, 2019. URL https://api.semanticscholar.org/CorpusID:159041722.

Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn: From deep neural
networks to deep spike neural networks with temporal-coding. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pp. 1319–1326, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Lusen Zhao, Zihan Huang, Jianhao Ding, and Zhaofei Yu. TTFSFormer: A TTFS-based lossless
conversion of spiking transformer. In Forty-second International Conference on Machine Learn-
ing, 2025. URL https://openreview.net/forum?id=mJAa823xKu.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

14

https://www.together.xyz/blog/redpajama
https://www.together.xyz/blog/redpajama
https://api.semanticscholar.org/CorpusID:159041722
https://openreview.net/forum?id=mJAa823xKu

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Chenlin Zhou, Han Zhang, Liutao Yu, Yumin Ye, Zhaokun Zhou, Liwei Huang, Zhengyu Ma, Xi-
aopeng Fan, Huihui Zhou, and Yonghong Tian. Direct training high-performance deep spiking
neural networks: a review of theories and methods. Frontiers in Neuroscience, 18:1383844, 2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A NOTIONS

Table 4: Symbol Definitions
Symbol Definition Symbol Definition

l Layer index X Inputs of QANN
i, j Neuron index X̂ Output of QANN
W Weight matrix a

(l)
i Output lower bound of TTFS-based neuron

trecv Receiving time step b
(l)
i Output upper bound of TTFS-based neuron

temit Emitting time step I The number of neurons in each layer
tend End time-step θ Threshold
H Heaviside function C Bias term in TTFS-based neuron
t Time step index τ Time constant in TTFS-based neuron
η Input transform kernel N Quantization level
ψ Output transform kernel n Quantization bits

(a) TTFS Coding

Neurons

Activations
(b) Rate Coding

0.2

0.5

0.6

0.9

One Spike Spikes

Time

Time

Time

Time

Time

Time

Time

Time

Figure 3: TTFS Coding vs. Rate Coding.

Time

Time

Time

Figure 4: The process of TTFS-based spiking neural neurons.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SUPPLEMENTARY

B.1 EXPERIMENT CONFIGURATIONS

In addition to the hardware information mentioned in the main text, we provide further details about
the reproduction of baselines here. We adopt 8 bits for weight, 6 bits for activation quantization, i.e.
W8A6, for SpikeLLM(Xing et al., 2024a) and PrefixQuant(Chen et al., 2025b), and use 8192 time
precision for TTFSFormer (Zhao et al., 2025).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C CONVERSION ERROR

Clipping Error

Quantization Error

Figure 5: Clipping error and quantization error.

In this section, we provide a detailed analysis
of the conversion error between the ANN and
the converted TTFS-based SNN across layers.
We assume that both the ANN and SNN receive
the same input from layer l − 1, i.e., α(l−1) =
x(l−1), and then analyze the error in layer l.

ANN neurons. For ANNs, the output αl of
neurons in layer l is realized by a linear weight-
ing W (l) and nonlinear mappings f(·):

α(l) = f
(
W (l)α(l−1)

)
, (13)

SNN neurons. For TTFS-based SNNs, we con-
sider the relation between the spike time t(l)
of SNN and the corresponding activation value
x(l) of ANN:

x(l) =
1

τ (l)

(
t
(l)
ref − t(l)

)
. (14)

From Eqs.(13) and (14), along with the conditions V
(
t
(l)
emit

)
=W (l) · f

(
x(l−1)

)
and V (t(l) − 1) <

θ(l) ≤ V (t(l)), t(l) ∈ {t(l)emit, . . . , t
(l)
end}, it follows that a transformation between the temporal domain

(relate to t(l)) and the numerical domain (relate to x(l)) enables the activation value a(l) of analog
neurons in the ANN to be mapped onto x(l) in the TTFS-based SNN. Because the output ranges and
types of SNNs and ANNs differ, conversion errors are generally unavoidable. During the ANN-to-
SNN conversion, two primary sources of error, clipping error E(l)

c and quantization error E(l)
q , both

of which contribute to the performance gap between ANNs and SNNs.

For layer l, the total error decomposes as:

E(l) = E(l)
c + E(l)

q (15)

Clipping error. Clipping error denotes the error caused by different value ranges of ANNs and
SNNs. For an temporal coding spiking neural neuron, when the time steps T (l) are fixed, the output

of SNN: x(l) is in the range of
[
a(l), b(l)

]
, where a(l) =

t
(l)
ref −t

(l)
end

τ(l) and b(l) =
t
(l)
ref −t

(l)
emit

τ(l) . We define
the αmax as the maximum value in α(l), αmin is the minimum value in in α(l). Then the output
α ∈

[
αmin, a

(l)
]

of ANNs will be mapped to the same value a(l), the output α ∈
[
b(l), αmax

]
of

ANNs will be mapped to the same value b(l), which will cause conversion error named clipping
error Ec.

Quantization error. The output spike time t(l) is discrete, so the final output x(l) =
1

τ(l)

(
t
(l)
ref − t(l)

)
is also discrete, while the output activation value α of the ANNs is continu-

ous. Therefore, when mapping α(l) to x(l), there will be unavoidable error related to tempo-
ral resolution, named quantization error Eq. For example, when the output of ANNs satisfies

α ∈
[
t(l)d(l)

T (l) , (t
(l)+1)d(l)

T (l)

)
, t(l) = t

(l)
ref − t

(l)
end, t

(l)
ref − t

(l)
end + 1, ..., t

(l)
ref − t

(l)
emit − 1, the correspond-

ing mapped value of SNN will be t(l)d(l)

T (l) .

Lemma 1 Analysis for clipping error. For a target ANN’s output α(l)
i , the clipping error between

the output of ANN and SNN is:

E(l)
c =


∥∥∥α(l)

i − b
(l)
i

∥∥∥ if α(l)
i > b

(l)
i

0 if α(l)
i ∈ [a

(l)
i , b

(l)
i]∥∥∥a(l)i − α

(l)
i

∥∥∥ if α(l)
i < a

(l)
i ,

(16)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where a(l)i =
t
(l)
ref −t

(l)
end

τ
(l)
i

and b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

.

Lemma 2 Upper bound for quantization error: In the theoretical analysis under the continuous
setting of Theorem 4.1 and Theorem 4.3 in Zhao et al. (2025), we denote the output under continuous
coding as y(l)i ∈ [a

(l)
i , b

(l)
i] corresponds to the ANN with continuous outputs, while in the practically

deployable discrete coding scenario, the SNN output is denoted as x(l)i ∈ [a
(l)
i , b

(l)
i] corresponds to

the ANN with discretized outputs. That is, there exists quantization error E(l)
q between TTFS coding

in the continuous setting and its practical deployment. Let T (l) be the time window and Ω be the
corresponding clock time, and the derivatives of the function h and its inverse are bounded by G1

and G2. Then, the quantization error can be bounded as:

E(l)
q =

∥∥∥x(l)i − y
(l)
i

∥∥∥ ≤ G1G2Ω

T (l)
. (17)

D PROOFS

proof 1 Proof of Theorem 1:
For arbitrary fixed η(l)ij , ψ(l)

i , C(l)
i and θ(l)i in SNNs with time window T (l), in the receiving phase:

V
(
t
(l)
emit

)
=

1

τ
(l)
i

T
(l)
emit−1∑

t=T
(l)
recv

 I∑
j=1

w
(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
− C

(l)
i


=

1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
+ T (l)C

(l)
i . (18)

In the emitting phase, let ∆(l)
i ≥ 0 is a compensation constant, which is actually the difference

between the θ(l)i and the membrane potential at the spike time. We can get:

V
(
t
(l)
emit

)
+

t
(l)
i −t

(l)
emit−1∑

v=0

ψ
(l)
i (v)−∆

(l)
i = θ

(l)
i . (19)

We denote S(t) =
∑t−t

(l)
emit−1

v=0 ψ
(l)
i (v), then:

S(t
(l)
i) = θ

(l)
i +∆

(l)
i − V

(
t
(l)
emit

)
. (20)

Then:

t
(l)
i = S−1

(
θ
(l)
i +∆

(l)
i − V

(
t
(l)
emit

))
. (21)

According to the relationship between x(l)i and t(l)i , we can get:

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − S−1

(
θ
(l)
i +∆

(l)
i − V

(
t
(l)
emit

)))
. (22)

let W (l) = (w
(l)
ij)I×I is the weight matrix:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I) (23)

=
1

τ
(l)
i

t(l)ref − S−1

θ(l)i +∆
(l)
i − 1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
− T (l)C

(l)
i


 ,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

proof 2 Proof of Theorem 2:
Consider the potential change in the receiving stage.

Vi

(
t
(l)
emit

)
=

1

τ
(l−1)
i

t
(l−1)
end −1∑
t=t

(l−1)
emit

∑
j

w
(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

=
1

τ
(l−1)
i

∑
j

w
(l)
ij

t
(l−1)
end −t

(l−1)
j −1∑

u=0

η
(l)
ij (u) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

1

τ
(l−1)
i

t
(l−1)
end −t

(l−1)
ref +τ

(l−1)
i x

(l−1)
j −1∑

u=0

η
(l)
ij (u) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

τ
(l−1)
i

(
x
(l−1)
j −a

(l−1)
i

)
−1∑

u=0

(fij

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− fij

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

(
fij(x

(l−1)
j)− fij(a

(l−1)
i)

)
+ d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij fij(x

(l−1)
j). (24)

where the second equation uses u = t− t
(l−1)
j ; third equation uses x(l−1)

j τ
(l−1)
i = t

(l−1)
ref − t

(l−1)
j ;

fourth equation uses a(l−1)
i =

t
(l−1)
ref −t

(l−1)
end

τ
(l−1)
i

.

If the spike is emitted at time t(l)i ∈ {t(l)emit, t
(l)
emit + 1, . . . , t

(l)
end}, i.e. the corresponding value x(l)i ∈

[a
(l)
i , b

(l)
i]. Then:

θ(l) = V (t
(l)
emit) +

t
(l)
i −t

(l)
emit−1∑

v=0

ψ
(l)
i (v)−∆

(l)
i

= V (t
(l)
emit) +

t
(l)
ref −t

(l)
emit−τ

(l)
i x

(l)
i −1∑

v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
−∆

(l)
i

= V (t
(l)
emit) +

τ
(l)
i (b

(l)
i −x

(l)
i)−1∑

v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
−∆

(l)
i

= V (t
(l)
emit) + h−1(b

(l)
i)− h−1(x

(l)
i)−∆

(l)
i . (25)

where the first equation uses v = t
(l)
i − t

(l)
emit, the second equation uses x(l)i τ

(l)
i = t

(l)
ref − t

(l)
i , the

third equation uses b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

.

Thus
h−1(x

(l)
i) = V (t

(l)
emit).

which indicates that
x
(l)
i = h(V (t

(l)
emit)).

If h(V (t
(l)
emit)) > b

(l)
i , then V (t

(l)
emit) > h−1(b

(l)
i) = θ

(l)
i , which means that a spike is emitted once at

t
(l)
emit, representing the value

t
(l)
ref −t

(l)
emit

τ
(l)
i

= b
(l)
i .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

If h(V (t
(l)
emit)) < a

(l)
i , then the potential at time t(l)end is:

V (t
(l)
emit) +

T (l)∑
v=0

ψ
(l)
i (v)

= V (t
(l)
emit) +

T (l)∑
v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
= V (t

(l)
emit) + h−1(b

(l)
i)− h−1(a

(l)
i)

< h−1(b
(l)
i) = θ

(l)
i . (26)

which means that there will be no spike, representing the value a(l)i .

proof 3 Proof of Lemma 2:
According to Theorem 4.3 in Zhao et al. (2025): in the continuous setting, if the spike is emitted at
time t(l)i ∈ [t

(l)
emit, t

(l)
end], i.e. the corresponding value y(l)i ∈ [a

(l)
i , b

(l)
i]. Then

θ
(l)
i = V (t

(l)
emit) +

∫ t
(l)
i −t

(l)
emit

0

ψ
(l)
i (v) dv (27)

= V (t
(l)
emit) +

∫ t
(l)
ref −t

(l)
emit−τ

(l)
i y

(l)
i

0

1

τ
(l)
i

(h−1)′
(
b
(l)
i − v

τ
(l)
i

)
dv (28)

= V (t
(l)
emit)− h−1

(
b
(l)
i − v

τ
(l)
i

) ∣∣∣τ(l)
i (b

(l)
i −y

(l)
i)

0
(29)

= V (t
(l)
emit)− h−1(y

(l)
i) + h−1(b

(l)
i). (30)

Because θ(l)i = h−1(b
(l)
i):

h−1(y
(l)
i) = V (t

(l)
emit), (31)

which indicates that:

y
(l)
i = h

(
V (t

(l)
emit)

)
. (32)

In the discrete setting, the spike is emitted at time t(l)i ∈ {t(l)emit, t
(l)
emit+1, . . . , t

(l)
end}, the corresponding

value x(l)i ∈ [a
(l)
i , b

(l)
i]. Let ∆(l)

i ≥ 0 is a compensation constant, which is actually the difference
between the θ(l)i and the membrane potential at the spike time. The following equation satisfies:

θ
(l)
i = V (t

(l)
emit) +

∫ t
(l)
i −t

(l)
emit

0

ψ
(l)
i (v) dv −∆

(l)
i (33)

= V (t
(l)
emit) +

∫ t
(l)
ref −t

(l)
emit−τ(l)x

(l)
i

0

1

τ
(l)
i

(h−1)′
(
b
(l)
i − v

τ
(l)
i

)
dv −∆

(l)
i (34)

= V (t
(l)
emit)− h−1

(
b
(l)
i − v

τ
(l)
i

) ∣∣∣τ(l)
i (b

(l)
i −x

(l)
i)

0
−∆

(l)
i (35)

= V (t
(l)
emit)− h−1(x

(l)
i) + h−1(b

(l)
i)−∆

(l)
i . (36)

Because θ(l)i = h−1(b
(l)
i):

h−1(x
(l)
i) = V (t

(l)
emit)−∆

(l)
i , (37)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

which indicates that:

x
(l)
i = h

(
V (t

(l)
emit)−∆

(l)
i

)
. (38)

The error of discrete coding in the continuous setting can be expressed as:∥∥∥y(l)i − x
(l)
i

∥∥∥ =
∥∥∥h(V (t

(l)
emit)

)
− h
(
V (t

(l)
emit)−∆

(l)
i

)∥∥∥ (39)

By the mean value theorem, we obtain:∥∥∥y(l)i − x
(l)
i

∥∥∥ =
∥∥∥|h′(ξ)| ·∆(l)

i

∥∥∥ , (40)

where ξ ∈
[
V (t

(l)
emit)−∆

(l)
i , V (t

(l)
emit)

]
.

Furthermore, we examine ∆
(l)
i to provide a more in-depth analysis of the error. We assume that

the spike firing time corresponding precisely to the ANN output is denoted as [t]
(l)
i . Based on the

characteristics of TTFS encoding, it follows that:

t
(l)
i − 1 ≤ [t]

(l)
i ≤ t

(l)
i . (41)

Then ∆
(l)
i can be represented as:

∆
(l)
i =

∫ t
(l)
i −t

(l)
emit

[t]
(l)
i −t

(l)
emit

ψi(s) ds = h−1(t
(l)
i − t

(l)
emit)− h−1([t]

(l)
i − t

(l)
emit). (42)

By the mean value theorem, we obtain:∥∥∥∆(l)
i

∥∥∥ =
∥∥∥∣∣(h−1)′(t̂i)

∣∣ · (t(l)i − [t]
(l)
i)
∥∥∥ , (43)

where t̂i ∈
[
[t]

(l)
i − t

(l)
emit, t

(l)
i − t

(l)
emit

]
.

Then the error ϵ(l)i can be bounded by the following inequality:∥∥∥y(l)i − x
(l)
i

∥∥∥ ≤ |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ · |[t](l)i − t
(l)
i | (44)

By the definition of clock precision: ∆treal = treal(t + 1) − treal(t), where treal(t) = t ·∆treal,
we obtain: ∥∥∥y(l)i − x

(l)
i

∥∥∥ ≤ |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ ·∆treal
= |h′(ξ)| ·

∣∣(h−1)′(t̂i)
∣∣ · Ω

t
(l)
end − t

(l)
emit

= |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ · Ω

T (l)

≤ G1G2Ω

T (l)
(45)

proof 4 Proof of Theorem 3:
For clipping error, according to Lemma 1, we can get:

E(l)
c =


∥∥∥α(l)

i − b
(l)
i

∥∥∥ if α(l)
i > b

(l)
i

0 if α(l)
i ∈ [a

(l)
i , b

(l)
i]∥∥∥a(l)i − α

(l)
i

∥∥∥ if α(l)
i < a

(l)
i ,

(46)

We define the center of the output interval of SNN as:

c
(l)
i =

a
(l)
i + b

(l)
i

2
(47)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The clipping error can then be restated as follows:

E(l)
c (T (l)) = max

(∣∣∣α(l)
i − c

(l)
i

∣∣∣− T (l)

2τ
(l)
i

, 0

)
(48)

We take the derivative of T (l) to get the sensitivity of the error E(l)
c (T (l)) to T (l):

d

dt
E(l)

c (T (l)) =


− 1

2τ
(l)
i

,
∣∣∣α(l)

i − c
(l)
i

∣∣∣ > T (l)

2τ
(l)
i

,

0,
∣∣∣α(l)

i − c
(l)
i

∣∣∣ < T (l)

2τ
(l)
i

.

(49)

Once clipping occurs, increasing T (l) will reduce the error linearly with a constant slope of − 1

2τ
(l)
i

;

within the valid interval, the error is unaffected by T (l).

For quantization error, according to Lemma 2, we can get:

E(l)
q ≤ G1G2Ω

T (l)
. (50)

For an L-layer network with I neurons in each layer, we can get:

E =

I∑
i=1

L∑
l=1

(
E(l)

c + E(l)
q

)
≤

I∑
i=1

L∑
l=1

(
max

(∣∣∣∣∣α(l)
i − c

(l)
i | − T (l)

2τ
(l)
i

∣∣∣∣∣ , 0
)

+
G1G2Ω

T (l)

)
(51)

Let T = min
{
T (l)

}L
l=1

and τ = max

{{
τ
(l)
i

}I

i=1

}L

l=1

:

E ≤ LI ·max

(∣∣∣∣∣α(l)
i − a

(l)
i + b

(l)
i

2

∣∣∣∣∣− T (l)

2τ
(l)
i

, 0

)
+
LIG1G2Ω

T
(52)

proof 5 Proof of Corollary 1:
Input transform: The input of QANN at i-th neuron of l-th layer is X

(l)
i =

∑
j w

(l)
ij x

(l−1)
j ∈

[a
(l−1)
i , b

(l−1)
i]. In order to approximate the input of QANN, based on Theorem 2, we set the kernel

function η(l)ij and C(l)
i as follows:

η
(l)
ij (u) = H

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
,

C
(l)
i =

∑
j

a
(l−1)
i

d
(l−1)
i

wij ,

Then, the membrane potential after reception is completed can be expressed as:

V (Temit) =
∑
j

w
(l)
ij x

(l−1)
j = X

(l)
i . (53)

Output transform: In order to approximate the output of QANN at l-th layer of i-th neuron: X̂(l) ∈
[a

(l)
i , b

(l)
i], based on Theorem 2, we set the kernel function ψ(l)

i and threshold as follows:

ψ
(l)
i (v) =

1

τ
(l)
i

, θ
(l)
i = b

(l)
i (54)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

If the spike is emitted at time t ∈ {t(l)emit, t
(l)
emit + 1, . . . , t

(l)
end}:

X
(l−1)
i +

1

τ
(l)
i

· t ≥ θ
(l)
i . (55)

According to the definition of t, we can get:

t =
⌈
(θ

(l)
i −X

(l)
i)τ

(l)
i

⌉
(56)

According to the rounding range of t, we add the clip function to get:

t = clip
(⌈

(θ
(l)
i −X

(l)
i)τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end

)
(57)

According to the relation between spike time and corresponding activation value and θ(l)i = b
(l)
i :

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − clip(

⌈
(b

(l)
i −X

(l)
i)τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end)
)

(58)

According to b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

, we can get:

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − clip(

⌈
t
(l)
ref − t

(l)
emit −X

(l)
i τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end)
)

(59)

Based on the relationship between the ceiling function and the floor function, we can derive the
following:

x
(l)
i =

1

τ
(l)
i

clip(
⌊
X

(l)
i τ

(l)
i

⌋
− t

(l)
ref + t

(l)
emit,−t

(l)
end,−t

(l)
emit) +

1

τ
(l)
i

t
(l)
ref (60)

Based on the properties of the floor function, we can conclude that:

x
(l)
i =

1

τ
(l)
i

clip(
⌊
X

(l)
i τ

(l)
i

⌋
+ t

(l)
end − t

(l)
ref + t

(l)
emit, 0, t

(l)
end − t

(l)
emit) +

1

τ
(l)
i

(
t
(l)
ref − t

(l)
end

)
(61)

Let t(l)emit = 0, t(l)end = N , τ (l)i = 1

λ
(l−1)
i

, t(l)end − t
(l)
ref = z(l), we can get:

x
(l)
i = λ

(l)
i · clip(

⌊
X

(l)
i

λ
(l)
i

⌋
+ z(l), 0, N)− λ

(l)
i z(l) = X̂(l) (62)

E NONLINEAR OPERATIONS IN QC-A2S

Corollary 2 (Construction of SiLU) A TTFS-based neuron can be made equivalent to a discrete
SiLU function with through the following configuration:

η
(l)
ij (u) = I[u ≥ 0] · τ (l−1)

i ·
((

u+1

τ
(l−1)
i

+ a
(l−1)
i

)
· σ
(

u+1

τ
(l−1)
i

++a
(l−1)
i

)
−
(

u

τ
(l−1)
i

++a
(l−1)
i

)
· σ
(

u

τ
(l−1)
i

+ a
(l−1)
i

))

C
(l)
i =

∑
j

w
(l)
ij

a
(l−1)
i · σ(a(l−1)

i)

d
(l−1)
i

, ψ
(l)
i (v) =

1

τ
(l)
i

, σ(x) =
1

1 + e−x
. (63)

Corollary 3 (Construction of GELU) A TTFS-based neuron can be made equivalent to a discrete
GELU function with

η
(l)
ij (u) = I[u ≥ 0] · τ (l−1)

i ·
((

u+1

τ
(l−1)
i

+ a
(l−1)
i

)
· Φ
(

u+1

τ
(l−1)
i

++a
(l−1)
i

)
−
(

u

τ
(l−1)
i

++a
(l−1)
i

)
· Φ
(

u

τ
(l−1)
i

+ a
(l−1)
i

))

ψ
(l)
i (v) = 1

τ
(l)
i

, θ
(l)
i = b

(l)
i , C

(l)
i =

∑
j w

(l)
ij

a
(l)
i Φ(a

(l)
i)

d
(l−1)
i

,Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
erf(x) = 2√

π

∫ x

0
e−t2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Corollary 4 (Construction of Softmax) The log-sum-exp of I inputs x1, x2, · · · , xI , i.e.,

log

I∑
j=1

exj , (64)

can be calculated in a single neuron with

η
(l)
ij (u) = τ

(l−1)
i ·

(
exp

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− exp

(
u

τ
(l−1)
i

+ a
(l−1)
i

))
. (65)

C
(l)
i =

I

d
(l−1)
i

ea
(l−1)
i , ψ

(l)
i (v) =

1

τ
(l)
i

exp

(
b
(l)
i − v

τ
(l)
i

)
. (66)

With the log-sum-exp neuron, we can obtain the softmax operator. We can calculate the logarithm
of softmax, i.e.

log

(
exi∑I
j=1 e

xj

)
= xi − log

I∑
j=1

exj , (67)

by subtracting the log-sum-exp from xi. Finally, we can obtain the output after an exponential layer.

Corollary 5 (Construction of RMSNorm) RMSNorm is a normalization method widely used in
LLaMA architecture, which is a linear operation. RMSNorm is defined as:

RMSNorm(xi) =
xi√

1
I

∑I
i=1 x

2
i

· γ + β. (68)

We first can obtain the 1
I

∑I
i=1 x

2
i by a single neuron with

η
(1)
ij (u) = τ

(0)
ij

(u+ 1

τ
(0)
i

+ a
(0)
i

)2

−

(
u

τ
(0)
i

+ a
(0)
i

)2
 , C(1)

i =
(a

(0)
i)2

Id
(0)
i

, w(1) =
1

I
(69)

ψ
(1)
i (v) =

1

τ
(1)
i

, θ
(1)
i = b

(1)
i . (70)

Then, we can get 1√
1
I

∑I
i=1 x2

i

with:

η
(2)
ij (u) = τ

(1)
ij

(u+ 1

τ
(1)
i

+ a
(1)
i

)− 1
2

−

(
u

τ
(1)
i

+ a
(1)
i

)− 1
2

 , C(2)
i =

1

Id
(1)
i (a

(1)
i)

1
2

, (71)

w(2) = 1 ψ
(l)
i (v) =

1

τ
(l)
i

, θ
(l)
i = b

(l)
i . (72)

Finally, multiply xi with 1√
1
I

∑I
i=1 x2

i

.

F USE OF LLMS

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G SUPPLEMENTARY MATERIALS FOR THE REBUTTAL

G.1 SUPPLEMENTARY ALGORITHM FOR THE REBUTTAL

Algorithm 1 outlines the proposed QC-A2S pipeline for converting a vanilla LLM into a temporal-
coding spiking LLM. The procedure begins by applying post-training quantization to obtain a
well-quantized model. For each layer and each neuron, we retrieve its quantization parame-
ters—including the quantization level, scaling factor, and zero-point—and use them to construct
the corresponding TTFS-based spiking neuron with the emission time, ending time, and time con-
stant defined accordingly. This mapping transforms all quantized linear computations into temporal
spike representations. For layers containing nonlinear operators such as SwiGLU, Softmax, or Lay-
erNorm, their original activations are replaced with the spiking counterparts derived in Appendix
E, ensuring full compatibility with the temporal-coding SNN formulation. Through this layer-wise
conversion, the entire LLM is transformed into a TTFS-based spiking model suitable for neuromor-
phic.

Algorithm 1 Converting Vanilla LLM into Temporal-coding Spiking LLM with QC-A2S pipeline
1: Input: Vanilla LLM
2: Output: Temporal-coding Spiking LLM
3: Obtaining well-quantized LLM by post-training quantization
4: Mapping from Quantized LLMs to Temporal-coding Spiking LLMs:
5: for layer l = 1, 2, ..., L do
6: for neuron i = 1, 2, ..., I do
7: Get quantization parameters quantization level N , scale λ(l)i and zero point z(l)
8: Construct TTFS-based spiking neural neurons as:
9: t

(l)
emit = 0, t

(l)
end = N, τ

(l)
i = 1

λ
(l)
i

, t
(l)
end − t

(l)
ref = z(l)

10: end for
11: if l is SwiGLU, Softmax or RMSNorm then
12: Replace the original nonlinear activation with spiking counterpart in the Appendix E.
13: end if
14: end for

G.2 SUPPLEMENTARY EXPERIMENTS FOR THE REBUTTAL

Figure 6 reports the layer-wise cumulative conversion error of the temporal-coding spiking LLM
obtained with the QC-A2S framework on LLaMA-2-7B. The blue bars denote the conversion error
at each layer, while the pink dashed curve shows the corresponding log-scaled error. The conversion
error clearly accumulates as the layer index increases, which is consistent with Theorem 3, where
the approximation error bound grows with the network depth L.

Tables 5 and 6 evaluate the generalization ability of our QC-A2S framework on non-LLaMA models.
Table 5 reports accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA on
Qwen2-7B and Mistral-7B v0.3. Table 6 reports perplexity on C4, Pile, PTB, WikiText2, and Red-
Pajama for the same models. The entries highlighted in gray correspond to the temporally encoded
spiking LLM obtained with QC-A2S, while the non-shaded entries correspond to the equivalent
quantized LLM. Across all benchmarks, the QC-A2S spiking models achieve accuracy and perplex-
ity that are comparable to, and sometimes even better than, their quantized counterparts under the
same precision configurations. These results demonstrate that our QC-A2S framework generalizes
well across different LLM architectures and datasets.

Table 7 reports the performance of TTFS-Former on LLaMA models, where we measure accuracy
on WinoGrande and acc norm on HellaSwag, ArcC, ArcE, and PIQA. Across all model scales,
TTFS-Former performs significantly worse than the FP16 baselines and our QC-A2S models, and
the average accuracy further degrades as the time window T increases. This indicates that directly
applying TTFS-Former to LLMs is not effective. We attribute this poor performance to two inherent
limitations of TTFS-Former. First, TTFS-Former is built on a continuous-time TTFS assumption,
where spike times are treated as real-valued variables. This formulation inherently requires a large

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 6: The layer-wise conversion error of temporal-coding spiking LLM (LLaMA-2-7B).

time window to approximate continuous dynamics, making medium-latency settings theoretically
incompatible with its design. Second, TTFS-Former directly converts an ANN into an SNN without
handling outliers, which are prevalent in LLM activations. These extreme values skew the spike-
time distribution during conversion and lead to severe accuracy degradation—an intrinsic weakness
of continuous-time ANN→SNN conversion pipelines. The results in Table 7 therefore highlight the
necessity of our QC-A2S framework, which explicitly addresses these issues.

Table 5: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on Qwen2-7B, and Mistral-7B v0.3 for demonstrating the generalization of our method. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.

Qwen-2-7B

FP16 72.45 78.78 49.91 74.71 81.23 71.42
W4A4 68.19 74.67 49.66 76.05 79.00 69.51
T=16 68.59 74.56 48.12 75.13 78.13 68.91
W5A5 71.51 77.60 48.46 73.74 79.87 70.24
T=32 71.51 77.51 49.40 72.94 80.20 70.31
W6A6 71.51 78.68 51.19 75.51 80.36 71.45
T=64 71.82 78.41 51.45 76.09 81.18 71.79

Mistral-7B v0.3

T=16 73.88 80.44 52.30 78.20 82.26 73.42
W4A4 71.90 77.55 49.91 76.35 79.54 71.05
T=16 71.59 77.38 50.77 76.18 80.36 71.26
W5A5 72.53 79.74 52.90 79.25 80.85 73.05
T=32 73.09 79.63 52.82 78.79 81.23 73.11
W6A6 72.14 80.41 53.24 79.76 82.37 73.58
T=64 73.56 80.32 53.67 79.34 81.66 73.71

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 6: We report perplexity for C4, Pile, PTB, WikiText2, and RedPajama on Qwen2-7B, and
Mistral-7B v0.3 for demonstrating the generation quality of our method on other models. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision C4 Pile PTB WikiText2 RedPajama Avg.

Qwen-2-7B

FP16 9.90 5.53 12.22 7.14 8.51 8.66
W4A4 11.44 6.24 14.10 8.26 9.90 9.99
T=16 11.43 6.24 14.13 8.26 9.89 9.99
W5A5 10.34 5.73 12.71 7.44 8.91 9.02
T=32 10.34 5.74 12.71 7.43 8.90 9.02
W6A6 10.05 5.60 12.35 7.23 8.64 8.78
T=64 10.05 5.60 12.36 7.23 8.64 8.78

Mistral-7B v0.3

T=16 7.84 4.46 37.28 5.32 6.00 12.18
W4A4 8.58 4.84 1353.43 5.93 6.65 275.89
T=16 8.58 4.84 1386.34 5.93 6.65 282.47
W5A5 8.12 4.61 1443.37 5.54 6.24 293.57
T=32 8.12 4.61 1416.23 5.54 6.24 288.15
W6A6 7.99 4.55 270.79 5.45 6.12 58.98
T=64 7.99 4.55 293.46 5.46 6.13 63.52

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 7: We report extra accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and
PIQA on LLaMA models with TTFS-Former method.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.

2-7B

FP16 69.22 76.00 46.33 74.62 79.11 69.06
T=32 51.07 26.32 28.84 25.84 48.91 36.20
T= 64 48.86 26.40 28.67 26.09 49.24 35.85

T= 128 47.83 26.12 28.07 26.77 48.15 35.39
T= 256 48.15 26.35 27.39 25.55 49.08 35.30
T= 512 49.25 26.12 28.33 25.51 50.44 35.93

T= 1024 49.88 26.07 29.52 25.84 49.46 36.15
T= 2048 47.04 25.82 27.82 28.20 47.06 35.19

3-8B

FP16 72.69 79.19 53.41 77.69 80.79 72.75
T= 32 49.88 26.40 26.54 24.71 51.58 35.82
T= 64 50.59 26.19 26.11 24.49 50.16 35.51

T= 128 51.78 25.88 26.37 25.08 50.65 35.95
T= 256 50.20 26.48 26.79 25.46 51.80 36.15
T= 512 51.38 26.35 25.17 24.41 51.36 35.73

T= 1024 49.41 26.08 29.27 26.81 49.62 36.24
T= 2048 48.78 26.73 26.96 25.88 51.85 36.04

2-13B

FP16 72.38 79.38 49.06 77.53 80.52 71.77
T= 32 49.96 26.11 29.52 25.38 47.93 35.78
T= 64 50.75 25.75 29.27 26.05 50.65 36.49

T= 128 50.67 26.65 28.33 25.88 49.73 36.25
T= 256 48.15 26.53 27.73 26.77 47.61 35.36
T= 512 49.17 26.63 27.39 25.55 50.05 35.76

T= 1024 51.78 26.16 27.82 26.98 49.35 36.42
T= 2048 49.72 26.79 27.47 28.07 51.03 36.62

2-70B

FP16 77.98 83.82 57.42 80.98 82.70 76.58
T= 32 48.15 26.40 28.24 25.00 49.02 35.36
T= 64 48.54 26.15 30.03 26.30 51.03 36.41

T= 128 50.20 25.85 28.67 26.81 50.44 36.39
T= 256 50.99 25.76 28.84 25.59 50.11 36.26
T= 512 49.64 26.17 28.58 26.39 50.00 36.16

T= 1024 49.88 26.00 28.58 27.57 48.59 36.12
T= 2048 50.12 26.36 28.24 26.30 50.22 36.25

3-70B
FP16 80.35 84.88 64.33 85.86 84.55 79.99
T= 32 49.01 26.32 26.88 25.25 50.05 35.50
T= 64 50.20 26.34 23.89 25.08 50.22 35.15

29

	Introduction
	Related Works
	Spiking LLMs
	Temporal-based A2S conversions
	Model Quantization

	Revisiting TTFS-based ANN-to-SNN Conversion
	Continuous TTFS-based Neurons
	Practical Limitations of Continuous TTFS-Based Conversion

	Discretization-Aware Conversion
	Discrete TTFS-based neurons
	relationship between Discrete TTFS-based SNNs and ANNs
	error analysis for discrete TTFS-based SNNs
	Quantization-Consistent ANN-to-SNN conversion

	Experiment
	Implement Details
	Main Results
	Comparison of accuracy under different latency configurations

	Conclusion
	Notions
	Experimental Supplementary
	Experiment Configurations

	Conversion Error
	Proofs
	Nonlinear Operations in QC-A2S
	Use of LLMs
	supplementary materials for the rebuttal
	Supplementary Algorithm for the rebuttal
	Supplementary experiments for the rebuttal

