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ABSTRACT

Large language models (LLMs) have achieved remarkable success while intro-
ducing critical energy bottlenecks that challenge sustainable deployment. Spik-
ing neural networks (SNNs) provide a promising approach for energy-efficient
spiking LLMs via ANN-to-SNN (A2S) conversion. Among various spike cod-
ing methods, time-to-first-spike (TTFS) coding is particularly appealing as it con-
veys information with a single spike, further reducing energy consumption. How-
ever, existing TTFS-based A2S conversion relies on continuous-time assump-
tions, requiring prohibitively large latencies (e.g., 4096 time steps) to approxi-
mate ANN’s continuous values. This dependency leads to unacceptable inference
delay in deep models, particularly LLMs, posing significant challenges for de-
veloping practical temporal-coding spiking LLMs. In this paper, we propose a
discretization-aware theoretical framework that establishes a precise correspon-
dence between discrete TTFS-based SNNs and ANNs. Our key insight reveals
that conversion errors are bounded by latency-dependent terms. Motivated by
these, we introduce the Quantization-Consistent ANN-to-SNN (QC-A2S) conver-
sion, which integrates low-bit quantization with discretization-compatible TTFS
neurons, achieving latency-efficient temporal-coding spiking LLMs. Comprehen-
sive evaluation on LLaMA models demonstrates comparable performance with
dramatically reduced latency.

1 INTRODUCTION

Large Language Models (LLMs) represent a paradigm shift in artificial intelligence, leveraging deep
learning architectures trained on massive text corpora to capture intricate linguistic patterns, syntac-
tic structures, and semantic relationships, thereby achieving remarkable capabilities in natural lan-
guage understanding and generation (Zhang et al., 2022; Touvron et al., 2023; Achiam et al., 2023;
Dubey et al., 2024). Most LLMs are built upon the Transformer architecture, which relies heavily
on multi-head attention mechanisms and dense matrix multiplications, resulting in cubic computa-
tional complexity and substantial energy consumption during both training and inference (Vaswani
et al., 2017; Zhao et al., 2023). Moreover, following the “scaling law”, LLMs have grown from
billions to trillions of parameters to achieve better performance, which further increases computa-
tional and storage demands (Chen et al., 2024a; Hoffmann et al., 2022). Consequently, the critical
challenge facing the LLM community is developing approaches to reduce computational complexity
and energy consumption while preserving model performance capabilities.

Spiking Neural Networks (SNNs) are biologically plausible computational models inspired by
the mechanisms of neurons and synapses in the human brain (Maass, 1997; Roy et al., 2019).
SNNs transmit and compute information asynchronously through discrete spike events rather than
continuous-valued activation functions, demonstrating remarkable energy efficiency when imple-
mented on specialized neuromorphic hardware (Yao et al., 2023; Zhou et al., 2022; Davies et al.,
2018; Merolla et al., 2014). Consequently, developing spiking LLMs has emerged as a promising
solution to address the substantial energy consumption challenges of LLMs. Currently, two primary
approaches are used to develop spiking LLMs: direct training methods that incorporate surrogate
gradients to address non-differentiability (Yao et al., 2023; Mukhoty et al., 2023; Zhou et al., 2024),
and ANN-to-SNN (A2S) conversion methods that transfer pre-trained weights while preserving ap-
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proximate equivalence through carefully designed techniques (Jiang et al., 2024; Chen et al., 2025a;
Hao et al., 2023). Given the enormous computational and storage requirements of direct training
for LLMs, practical spiking LLMs are predominantly achieved through A2S conversion for energy-
efficient intelligent applications in resource-constrained environments (Xing et al., 2024a).

Beyond the rate coding commonly used in A2S conversion methods, recent neuroscience research
has highlighted temporal-based spike coding that offer superiors energy efficiency advantages (Park
et al., 2019; Zhang et al., 2019; Stanojevic et al., 2024). Temporal coding represents continuous val-
ues through precise spike timing rather than spike counts, suggesting that the representation of infor-
mation depends on when the spikes occur (Gütig & Sompolinsky, 2006). Among various temporal
codings, time-to-first-spike (TTFS) coding is particularly noteworthy, as it encodes information in
the latency of a single spike, which substantially reduces energy consumption by minimizing spike
counts (Park et al., 2020; Rueckauer & Liu, 2018).

Receiving  Emiting

Receiving  Emiting

Receiving  Emiting

Time

Inference delay

0

Figure 1: Inference delay across network layers.

Existing TTFS-based conversion methods un-
derlying rely on continuous-time assumptions
that directly approximate the continuous val-
ues of ANNs (Zhao et al., 2025; Stanojevic
et al., 2024). However, practical hardware
implementations impose discrete timing con-
straints through finite latency and clock granu-
larity. Such discretization inevitably introduces
conversion errors that severely compromise
model accuracy. To mitigate the discretization-
induced errors, existing methods require pro-
hibitively large latency (e.g., 4096 time steps),
causing extensive spike latency accumulation across network layers (Figure 1). This creates unac-
ceptable inference delay in deep models, particularly for LLMs, posing significant challenges for
developing practical temporal-coding spiking LLMs.

To address this fundamental challenge, we propose a discretization-aware theoretical framework that
establishes a precise correspondence between discrete TTFS-based SNNs and ANNs. Our key theo-
retical insight reveals that conversion errors are formally bounded by latency-dependent terms, draw-
ing a direct connection to quantization error bounds. Motivated by this equivalence, we introduce
a paradigm shift from traditional continuous-approximation conversions to discrete-equivalent cov-
ersion. Specifically, we present the Quantization-Consistent ANN-to-SNN Conversion (QC-A2S),
which integrates low-bit quantization with discretization-compatible TTFS neurons. QC-A2S lever-
ages pre-quantized LLMs to inherently align with discrete spike dynamics, effectively mitigating
conversion errors while achieving latency-efficient temporal-coding spiking LLMs. Comprehensive
evaluation on LLaMA models demonstrates that our approach maintains comparable accuracy with
dramatically reduced inference latency (Figure 2). The key contributions are summarized as follows:

• We propose a discretization-aware theoretical framework for TTFS-based coding that iden-
tifies the fundamental discrepancy between continuous-time assumptions in prior TTFS
methods and practical hardware constraints, revealing the formal equivalence between con-
version errors and quantization error bounds.

• We present the QC-A2S framework, which represents a paradigm shift from traditional
continuous-approximation conversions to discrete-equivalent transformation, enabling the
first latency-efficient TTFS-based temporal-coding spiking LLMs.

• Extensive experiments on LLaMA models demonstrate that our framework successfully
constructs temporal spiking LLMs with performance comparable to their original counter-
parts while achieving significant latency reduction.

2 RELATED WORKS

2.1 SPIKING LLMS

The success of LLMs has motivated the development of SNN counterparts (spiking LLMs) that
maintain energy efficiency while achieving comparable capabilities. Several approaches have
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Continuous ANNs

Discrete ANNs

Continuous SNNs

Discrete SNNs

Latency

Latency

Precision

Precision

(a) Continuous TTFS-Based Conversion Pipeline

(b) Our Discretization-Aware Conversion Pipeline 

Figure 2: Overview of the QC-A2S framework. By establishing a discretization-aware equivalence
between quantized ANNs and discrete TTFS SNNs, QC-A2S eliminates the latency-dependent con-
version errors inherent in continuous-time pipelines and enables accurate, quantization-consistent
spiking LLMs.

emerged for creating spiking variants of transformer-based models (You et al., 2024; Zhou et al.,
2022; 2023). SpikeGPT replaces traditional self-attention with Spiking RWKV mechanisms (Zhu
et al., 2023). SpikingBERT employs a two-stage knowledge distillation method that utilizes pre-
trained BERT models as teachers to train spiking student architectures (Lv et al., 2023). Simi-
larly, SpikingMiniLM builds upon BERT with parameter initialization and ANN-to-SNN distillation
methods to achieve faster convergence during training. Recent work introduced SpikeLLM, scaling
to 70 billion parameters through spike-driven quantization (Xing et al., 2024b;a). However, existing
spiking LLMs rely exclusively on rate coding, where information is encoded through spike fre-
quency. This leaves unexplored the potential of temporal-based spiking LLMs, which could achieve
substantially lower energy consumption.

2.2 TEMPORAL-BASED A2S CONVERSIONS

While rate-based conversion methods have dominated ANN-to-SNN conversion research, temporal-
based encoding approaches offer compelling advantages in terms of energy efficiency by leveraging
precise spike timing rather than spike frequency. These methods include time-to-first spike (Thorpe
et al., 2001), reverse coding (Zhang et al., 2019; Park et al., 2020), phase coding (Montemurro et al.,
2008) and burst coding (Park et al., 2019). Among temporal coding schemes, time-to-first-spike
(TTFS) coding has emerged as particularly promising, where each neuron emits at most one spike
per time window with information encoded in the spike latency. Early TTFS-based conversion meth-
ods were developed by Rueckauer & Liu (2018) and further improved by Zhang et al. (2019) and
Park et al. (2020), but these approaches introduced conversion errors across layers. A breakthrough
came with Stanojevic et al. (2023; 2024), who demonstrated exact mapping from ReLU-based net-
works to SNNs using TTFS coding through a two-stage neuron activation process, achieving lossless
conversion while maintaining energy benefits. Recently, Zhao et al. (2025) proposed TTFSFormer,
the first TTFS-based conversion framework for Transformer architectures. However, existing TTFS-
based conversion methods require extremely high latency to match continuous-time assumptions,
preventing their implementation on large-scale models.

2.3 MODEL QUANTIZATION

Quantization has emerged as a critical technique for reducing model size and memory consump-
tion, enabling efficient deployment of LLMs on resource-constrained devices (Shao et al., 2024),
falling into two primary categories: quantization-aware training (QAT) (Liu et al., 2023) and post-
training quantization (PTQ) (Xiao et al., 2023). QAT optimizes quantized weights during training
using techniques like the straight-through estimator (Chen et al., 2024c; Du et al., 2024) but is com-
putationally impractical for LLMs. PTQ has thus become the preferred approach, requiring only
minimal calibration data while using dynamic activation quantization to address outlier-induced ac-
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curacy degradation (Frantar et al., 2023). Recent PTQ advances address outlier-induced errors using
orthogonal transformations (QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024)) or dual
transformations (DuQuant (Lin et al., 2024)) to redistribute outliers across channels. However, these
methods require computationally expensive per-token dynamic computation during inference. Pre-
fixQuant (Chen et al., 2024b) offers an alternative by isolating token-wise outliers to enable efficient
per-tensor static quantization, achieving comparable performance. While these quantization meth-
ods successfully achieve competitive performance with low-bit representations, energy consumption
from dense matrix operations remains a fundamental barrier to edge deployment.

3 REVISITING TTFS-BASED ANN-TO-SNN CONVERSION

3.1 CONTINUOUS TTFS-BASED NEURONS

The activation process of continuous TTFS-based neurons is generally divided into two stages: the
receiving phase and the firing phase (Zhao et al., 2025). At the i-th neuron in l-th layer, i =

1, 2, ..., I and l = 1, 2, ..., L. We denote the time range of the receiving phase as [t(l)recv, t
(l)
emit], and

the emitting phase as [t(l)emit, t
(l)
end]. With the initial membrane potential V (t

(l)
recv) = 0, the continuous

membrane potential dynamics are given by:

d

dt
V (t) =


1

τ
(l)
i

(∑
j w

(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

)
, t ∈ [t

(l)
recv, t

(l)
emit),

ψ
(l)
i

(
t− t

(l)
emit

)
, t ∈ [t

(l)
emit, t

(l)
end).

(1)

The spike time t(l−1)
j is received from the previous layer of the j-th input, while using the time range

of the receiving phase from the previous layer as the time range for the firing phase of this layer,
i.e., t(l)recv = t

(l−1)
emit and t(l)emit = t

(l−1)
end ; w(l)

ij are the weights; the input transform kernel function η(l)ij

satisfies η(l)ij (u) = 0, ∀u < 0; τ (l)i > 0 is the time constant; C(l)
i serves as a bias term; the output

transform kernel function ψ(l)
i is non-negative. Once the potential exceeds the threshold θ(l)i , the

neuron will emit a spike and record the spike firing time t(l)i . The relation between the spike time
t
(l)
i and the corresponding activation value x(l)i of ANNs is:

x
(l)
i τ

(l)
i = t

(l)
ref − t

(l)
i , (2)

where t(l)ref is the zero reference time. Therefore, the output range [a
(l)
i , b

(l)
i ] can be expressed as:

a
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − t

(l)
end

)
, b

(l)
i =

1

τ
(l)
i

(
t
(l)
ref − t

(l)
emit

)
. (3)

We denote T (l) = t
(l)
end − t

(l)
emit as the time window, and d(l)i = b

(l)
i − a

(l)
i .

3.2 PRACTICAL LIMITATIONS OF CONTINUOUS TTFS-BASED CONVERSION

The continuous TTFS-based conversion method (Zhao et al., 2025) establishes an equivalence be-
tween TTFS-based neurons and ANN neurons by modifying the input and output transform kernel
functions, thereby enabling the mapping of TTFS-based SNNs to continuous ANNs:

Theorems 4.1 and 4.3 in Zhao et al. (2025): Let fij : [a
(l−1)
i , b

(l−1)
i ] → R be differentiable

functions and h : A → R be a differentiable monotone increasing function, and its inverse h−1 is
well-defined on [a

(l)
i , b

(l)
i ]. If we let

η
(l)
ij (s) =

f ′ij
(

s

τ
(l−1)
i

+ a
(l−1)
i

)
, s ≥ 0,

0, s < 0,
, C

(l)
i =

∑
j

wij

fij

(
a
(l−1)
i

)
d
(l−1)
i

,

ψ
(l)
i (s) =

1

τ
(l)
i h′

(
h−1

(
b
(l)
i − s

τ
(l)
i

)) , θ(l)i = h−1(b
(l)
i ) (4)
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then the value x(l)i of ANNs represented by the output spike is

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I ) = clip

h
∑

j

w
(l)
ij fij

(
x
(l−1)
j

) , a
(l)
i , b

(l)
i

 (5)

Although TTFS-based ANN-to-SNN conversion methods under continuous setting have been ex-
plored, their applications to LLMs remain limited in two aspects:

Infinite Clock Precision: For TTFS-based neurons under continuous setting , the spike time can be
any real number (Stanojevic et al., 2023; Zhao et al., 2025; Stanojevic et al., 2024). At this point, the
required clock precision is theoretically infinitely fine: ∆treal → 0. However, electronic neuromor-
phic chips, which rely on discrete clock cycles, cannot provide infinitely fine clock precision (Deng
et al., 2023). Consequently, TTFS coding based on continuous assumptions faces significant limita-
tions in hardware implementations.

Latency Overhead of Lossless Conversion: In the continuous setting, TTFS-based lossless conver-
sion methods establish an equivalence between SNNs and continuous ANNs and directly mapping
the former to the latter. However, this process incurs extremely high latency (e.g., up to 4096 time
steps), which propagates through the network and leads to prohibitively long inference delays.

In continuous settings, TTFS coding requires prohibitively high latency to achieve
lossless conversion, resulting in excessively long inference delays for LLMs.

4 DISCRETIZATION-AWARE CONVERSION

In this section, we first construct discrete TTFS-based neurons to address the challenge of infinite
clock precision. Next, rather than directly mapping TTFS-based SNNs to continuous ANNs in a
continuous setting, we analyze the relationship between TTFS-based SNNs and discrete ANNs.
We then examine the conversion error of discrete TTFS-based SNNs. Finally, we introduce the
Quantization-Consistent ANN-to-SNN conversion method.

4.1 DISCRETE TTFS-BASED NEURONS

To overcome the challenge posed by infinite clock precision, we constructed a hardware-friendly
discrete TTFS coding neuron model. Under the discrete time-step setting, the differential form of
the original membrane potential equation can be approximated as follows:

d

dt
V (t) =

dV (t)

dtreal(t)
· dtreal(t)

dt
≈ V (t+ 1)− V (t)

treal(t+ 1)− treal(t)
· d
dt
treal(t) = V (t+ 1)− V (t). (6)

Building on the above discussion, we present a discretized version of TTFS-based neurons. At the
i-th neuron in l-th layer, i = 1, 2, ..., I and l = 1, 2, ..., L. We denote the time range of the receiving
phase as {t(l)recv, . . . , t

(l)
emit}, and the emitting phase as {t(l)emit, . . . , t

(l)
end}. With the initial membrane

potential V (t
(l)
recv) = 0, the discrete membrane potential dynamics are given by:

V (t+ 1)− V (t) =


1

τ
(l)
i

(∑
j w

(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

)
t ∈ {t(l)recv, . . . , t

(l)
emit − 1},

ψ
(l)
i

(
t− t

(l)
emit

)
t ∈ {t(l)emit, . . . , t

(l)
end − 1}.

(7)

We denote T (l) = t
(l)
end − t

(l)
emit as the time window, and d(l)i = b

(l)
i − a

(l)
i .

4.2 RELATIONSHIP BETWEEN DISCRETE TTFS-BASED SNNS AND ANNS

We theoretically establish the equivalence between TTFS-based SNNs and discrete ANNs. First,
we determine the corresponding ANN function using the transform kernel functions and parame-
ters of the TTFS-based neuron. For any TTFS-based neuron with fixed conversion functions and
parameters, the corresponding ANN function can be identified:
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Theorem 1 For arbitrary fixed η
(l)
ij , ψ

(l)
i , C

(l)
i and θ

(l)
i in SNNs with time win-

dow T (l), if we define S(t) =
∑t−t

(l)
emit−1

v=0 ψ
(l)
i (v) with t ∈

{
t
(l)
emit, . . . , t

(l)
end

}
,

then the corresponding activation value of discrete ANNs is given by:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I ) (8)

=
1

τ
(l)
i

t(l)ref − S−1

θ(l)i +∆
(l)
i − 1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
− T (l)C

(l)
i


 ,

where W (l) = (w
(l)
ij )I×I is the weight matrix; ∆

(l)
i ≥ 0 is a compensation constant, which is

actually the difference between the θ(l)i and the membrane potential at the spike time.

Next, we determine the corresponding transform kernel functions and parameters in the TTFS-based
neuron using the ANN function. For any given fixed ANN function, the TTFS-based neuron with
the corresponding transform kernel functions and parameters can be identified:

Theorem 2 Let fij be a function with input set of discrete points between a(l−1)
i and b(l−1)

i , and
h be a monotone increasing function with output set of discrete points between a(l)i and b(l)i . We

denote u = t − t
(l−1)
j with t ∈

{
t
(l)
recv, . . . , t

(l)
emit

}
, and v = t − t

(l)
emit with t ∈

{
t
(l)
emit, . . . , t

(l)
end

}
. To

represent the corresponding activation value of discrete ANNs:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I ) = clip

h
∑

j

w
(l)
ij fij

(
x
(l−1)
j

) , a
(l)
i , b

(l)
i

 . (9)

we need to configure the SNN as follows:

η
(l)
ij (u) =

τ
(l−1)
i

(
fij

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− fij

(
u

τ
(l−1)
i

+ a
(l−1)
i

))
u ≥ 0,

0 u < 0.

ψ
(l)
i (v) = h−1

(
b
(l)
i − v

τ
(l)
i

)
− h−1

(
b
(l)
i − v+1

τ
(l)
i

)
, C

(l)
i =

∑
j w

(l)
ij fij

(
a
(l−1)
i

)
d
(l−1)
i

, θ
(l)
i = h−1(b

(l)
i ) + ∆

(l)
i .

Furthermore, we demonstrate the equivalence between the discrete TTFS-based neuron and the
quantization function:

Corollary 1 We define the processes of quantization and dequantization as follows:

X̂
(l)
i = λ

(l)
i · clip(⌊X

(l)
i

λ
(l)
i

⌋+ z(l), 0, N)− λ
(l)
i · z(l), (10)

where λ(l)i =
max(X

(l)
i )−min(X

(l)
i )

N and z(l) = −⌊min(X
(l)
i )

λ
(l)
i

⌋ are scale and zero point values, respec-

tively; ⌊·⌋ denotes the floor operation; N = 2n − 1 denotes the quantization level and n denotes the
quantization bits; X̂(l)

i and X
(l)
i are the dequantized and original tensor, respectively.

For a TTFS-based SNN defined in (7), H is the Heaviside step function, if we set the η(l)ij , ψ(l)
i , C(l)

i

and θ(l)i as follow:

η
(l)
ij (u) = H

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
, ψ

(l)
i (v) =

1

τ
(l)
i

, C
(l)
i =

∑
j

a
(l−1)
i

d
(l−1)
i

wij , θ
(l)
i = b

(l)
i (11)

and we let t(l)emit = 0, t
(l)
end = N, τ

(l)
i = 1

λ
(l)
i

, t
(l)
end − t

(l)
ref = z(l), and X

(l)
i =

∑I
j=1 w

(l)
ij x

(l−1)
j . The

output of spiking neural neuron and quantization function are equivalent, i.e, x(l)i = X̂
(l)
i .
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4.3 ERROR ANALYSIS FOR DISCRETE TTFS-BASED SNNS

In the continuous setting, although TTFS-based SNNs enable lossless conversion to ANNs, they
require infinitely fine clock precision for hardware implementation and introduce significantly long
inference delay in the network. We analyze the conversion error of discrete TTFS-based SNNs.

Theorem 3 The error analysis of TTFS-based SNNs: Let T (l) denotes the time window with the
corresponding clock time constant Ω, the derivatives of the function h and its inverse are bounded
by G1 and G2, I denotes the number of neurons in each layer of the network, and L denotes the

number of layers, T = min
{
T (l)

}L
l=1

, and τ = max

{{
τ
(l)
i

}I

i=1

}L

l=1

, α(l)
i is the corresponding

output of ANNs and ρ = max{i,l}

{∣∣∣∣α(l)
i − a

(l)
i +b

(l)
i

2

∣∣∣∣}. The conversion error of the TTFS-based

SNNs in can be bounded as:

E ≤ LI ·max

(
ρ− T

2τ
, 0

)
+
LIG1G2Ω

T
(12)

Remark 1 In Theorem 3: The first term captures the clipping error in the TTFS-based SNNs, which
can be eliminated by increasing the time window T . As T increases, the output range of TTFS-based
SNNs expands. When this range encompasses the output of ANNs, the clipping error is eliminated;
The second term reflects the quantization error, which can only be alleviated by increasing T . As T
increases, the output range of TTFS-based SNNs becomes finer, facilitating better alignment between
the output of ANNs and the discrete points of the SNNs’ output, thereby reducing quantization error.
Thus, achieving high accuracy TTFS-based SNNs necessitates sufficiently long time windows.

4.4 QUANTIZATION-CONSISTENT ANN-TO-SNN CONVERSION

Our goal is to develop high-accuracy, low-latency temporal-coding spiking LLMs. Achieving high
accuracy in temporal-coding spiking LLMs typically requires extending the time window, which
in turn increases latency. This latency propagates through the network, leading to excessive infer-
ence delays. To address this challenge, we propose the Quantization-Consistent ANN-to-SNN (QC-
A2S) conversion method, which leverages the equivalence between TTFS-based SNNs and discrete
ANNs. Our approach combines low-bit quantization with discretization-compatible TTFS neurons,
enabling low-latency temporal-coding spiking LLMs. Specifically, we first apply established tech-
niques, such as post-training quantization, to minimize clipping and quantization errors, resulting in
a low-bit, high-accuracy baseline model. We then map the quantized LLM to an equivalent spiking
LLM, achieving a low-latency, high-accuracy temporal-coding spiking LLM.

5 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of our proposed method and
compare its performance, computational count, and energy consumption with those of different
approaches. Additionally, we conduct ablation studies on various latency.

5.1 IMPLEMENT DETAILS

Datasets and Underlying Models In the experiments, two types of benchmarks are used. For
accuracy-oriented evaluation, five representative reasoning datasets are adopted, namely PIQA(Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy,
and ARC-Challenge (Clark et al., 2018). PIQA targets physical commonsense reasoning in ev-
eryday scenarios, ARC-Easy and ARC-Challenge consist of science exam questions with vary-
ing difficulty levels, HellaSwag evaluates contextual understanding through plausible continuation
tasks, and WinoGrande focuses on large-scale pronoun resolution for commonsense reasoning. For
perplexity-oriented evaluation, we additionally use five widely adopted language modeling datasets,
including C4 (Raffel et al., 2020), The Pile (Gao et al., 2021), Penn Treebank (PTB) (Marcus et al.,
1993), WikiText-2 (Merity et al., 2017), and RedPajama (Together Computer, 2023). The datasets
were preprocessed following standard practices, and data augmentation techniques were applied
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where appropriate. In our study, all methods are applied to the LLaMA family of LLMs as the com-
mon backbone. We consider a range of representative models, including LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, and LLaMA-2-70B.

Baselines We compare our approach against several representative baselines that adapt large lan-
guage models through either quantization or ANN-to-SNN conversion:

• PrefixQuant (Chen et al., 2025b) is a weight–activation quantization method that addresses
token-wise outliers in the KV cache and employs lightweight blockwise training, achieving
strong performance across different precision levels.

• SpikeLLM (Xing et al., 2024a) presents the first spiking LLMs by incorporating bio-
inspired spiking mechanisms with generalized integrate-and-fire neurons, yielding im-
provements in perplexity and reasoning accuracy compared to quantized LLMs.

• TTFSFormer (Zhao et al., 2025) applies time-to-first-spike coding to Transformers, ex-
tending TTFS neurons to handle nonlinear layers and achieving competitive accuracy with
significantly reduced energy consumption.

Experiment Configurations All experiments were conducted on a server equipped with NVIDIA
A100 GPUs (80 GB of memory), Intel Xeon CPUs, and 512 GB of RAM. The models were im-
plemented in PyTorch 2.6 with CUDA 12.4 support. For fair comparison, all baseline methods
were re-implemented or run using their officially released code under the same environment and
hyperparameter settings whenever possible. In addition to the hardware information mentioned in
the main text, we provide further details about the reproduction of baselines here. We adopt 8 bits
for weight, 6 bits for activation quantization, i.e. W8A6, for SpikeLLM(Xing et al., 2024a) and
PrefixQuant(Chen et al., 2025b), and use 8192 time precision for TTFSFormer (Zhao et al., 2025).

5.2 MAIN RESULTS

Tables 1 and 2 report the accuracy and PPL metrics of all methods on the LLaMA-2-7B, LLaMA-2-
13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models. The results indicate that: (i) tempo-
rally encoded spiking LLMs achieve performance comparable to quantized LLMs across all LLaMA
models, providing further empirical evidence for the equivalence between TTFS-based SNNs and
quantized ANNs; (ii) our method substantially outperforms TTFSFormer under low-latency set-
tings, while TTFSFormer continues to exhibit unsatisfactory performance even at higher latencies,
underscoring the excessive latency demands of continuous TTFS-based SNNs; and (iii) our model
surpasses the state-of-the-art spiking LLM (SpikeLLM), further validating the effectiveness of the
proposed approach.

5.3 COMPARISON OF ACCURACY UNDER DIFFERENT LATENCY CONFIGURATIONS

In Table 3, we conduct a detailed study of how latency influences the performance of temporally
coded spiking LLMs using the LLaMA-2-7B and LLaMA-2-13B model. The results reveal a clear
trend: increasing latency consistently improves accuracy across all evaluated benchmarks. This
indicates that longer time windows allow TTFS-based SNNs to better approximate the activations
of ANNs, thereby reducing discretization-induced errors and enhancing representational fidelity.
Moreover, deeper/larger models do not necessarily yield monotonically higher accuracy. While
additional layers increase model capacity, Theorem 3 shows that the approximation error bound
grows with the number of layers L. As L becomes large, the accumulated discretization error
can counteract the gains from the increased capacity, which explains why scaling from 7B to 13B
to 70B does not produce consistent accuracy improvements in our experiments (Table 1 and 2).
Such evidences provide strong empirical support for our theoretical analysis in Theorem 3 (E ≤
LI ·max

(
ρ− T

2τ , 0
)
+ LIG1G2Ω

T ), which establishes that achieving high accuracy in TTFS-based
SNNs is inherently dependent on sufficiently long latency (T ).
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Table 1: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision WinoGrande HellaSwag ArcC ArcE PiQA Avg.

2-7B

Baseline FP16 69.22 76.00 46.33 74.62 79.11 69.06
TTFSFormer T=32 51.07 26.32 28.84 25.84 48.91 36.20
TTFSFormer T=64 48.86 26.40 28.67 26.09 49.24 35.85
TTFSFormer T=8192 50.04 25.49 26.88 26.81 50.82 36.01
SpikeLLM W8A6 65.51 73.61 42.49 70.16 75.41 65.44

PrefixQ W4A4 66.77 73.62 42.83 70.88 76.93 66.21
PrefixQ W5A5 69.06 75.53 43.94 73.06 77.86 67.89
PrefixQ W6A6 70.48 76.22 45.48 73.86 78.35 68.88

Ours T=16 66.77 73.08 41.21 70.45 77.64 65.83
Ours T=32 69.38 75.49 44.28 72.85 78.02 68.00
Ours T=64 69.38 76.23 45.99 73.57 78.13 68.66

3-8B

Baseline FP16 72.69 79.19 53.41 77.69 80.79 72.75
TTFSFormer T=32 49.88 26.40 26.54 24.71 51.58 35.82
TTFSFormer T=64 50.59 26.19 26.11 24.49 50.16 35.51
TTFSFormer T=8192 52.41 26.86 25.77 24.75 51.09 36.18
SpikeLLM W8A6 58.25 59.28 32.34 53.37 68.66 54.38

PrefixQ W4A4 71.03 74.51 48.72 75.88 77.80 69.59
PrefixQ W5A5 71.74 77.59 53.41 78.45 79.11 72.06
PrefixQ W6A6 72.77 78.52 53.07 78.58 79.22 72.43

Ours T=16 70.09 74.36 48.29 75.97 77.86 69.31
Ours T=32 70.01 77.64 53.50 78.07 79.71 71.79
Ours T=64 72.06 78.26 54.95 77.90 79.43 72.52

2-13B

Baseline FP16 72.38 79.38 49.06 77.53 80.52 71.77
TTFSFormer T=32 48.15 26.40 28.24 25.00 49.02 35.36
TTFSFormer T=64 48.54 26.15 30.03 26.30 51.03 36.41
TTFSFormer T=8192 48.70 26.29 26.11 25.72 51.25 35.61
SpikeLLM W8A6 68.03 76.76 44.88 73.32 77.48 68.09

PrefixQ W4A4 69.69 75.76 47.53 73.78 78.62 69.08
PrefixQ W5A5 72.38 78.30 49.91 76.26 79.76 71.32
PrefixQ W6A6 72.53 79.07 49.23 75.76 79.71 71.26

Ours T=16 70.32 75.62 46.42 73.95 77.97 68.86
Ours T=32 71.35 78.24 49.23 75.00 79.87 70.74
Ours T=64 72.53 79.07 49.23 75.76 79.71 71.26

2-70B

Baseline FP16 77.98 83.82 57.42 80.98 82.70 76.58
TTFSFormer T=32 48.15 26.40 28.24 25.00 49.02 35.36
SpikeLLM W8A6 75.06 81.42 52.82 75.29 80.58 73.03

PrefixQ W4A4 75.45 74.32 46.08 72.47 77.53 68.40
Ours T=16 73.95 79.22 51.96 76.94 80.09 72.43

3-70B

Baseline FP16 80.35 84.88 64.33 85.86 84.55 79.99
TTFSFormer T=32 49.01 26.32 26.88 25.25 50.05 35.50
SpikeLLM W8A6 52.09 28.40 26.45 31.36 53.59 38.38

PrefixQ W4A4 77.98 82.84 59.98 81.73 83.35 77.18
Ours T=16 77.27 82.67 59.04 82.15 83.13 76.85
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Table 2: We report Perplexity for C4, Pile, PTB, WikiText2, and RedPajama on LLaMA-2-7B,
LLaMA-2-13B, LLaMA-3-8B, LLaMA-2-70B and LLaMA-3-70B models

Model Method Precision C4 Pile PTB WikiText2 RedPajama Avg.

2-7B

Baseline FP16 6.97 4.63 37.91 5.47 5.61 12.12
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.89 5.14 57.27 6.43 6.21 16.59

PrefixQ W4A4 7.72 5.00 33.01 6.12 6.28 11.63
PrefixQ W5A5 7.20 4.74 32.16 5.67 5.82 11.12
PrefixQ W6A6 7.06 4.67 67.30 5.54 5.70 18.06

Ours T=16 7.73 5.00 33.00 6.12 6.29 11.63
Ours T=32 7.20 4.74 32.00 5.67 5.82 11.09
Ours T=64 7.07 4.67 67.37 5.54 5.70 18.07

3-8B

Baseline FP16 8.88 5.52 11.18 6.14 7.44 7.83
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 >100 >100 >100 >100 >100 >100

PrefixQ W4A4 11.22 6.62 13.38 7.82 9.69 9.74
PrefixQ W5A5 9.75 5.94 11.97 6.79 8.30 8.55
PrefixQ W6A6 9.29 5.74 11.57 6.47 7.85 8.18

Ours T=16 11.23 6.61 13.37 7.82 9.69 9.75
Ours T=32 9.75 5.94 11.97 6.79 8.29 8.55
Ours T=64 9.28 5.74 11.57 6.47 7.86 8.18

2-13B

Baseline FP16 6.47 4.34 50.94 4.88 5.19 14.36
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
TTFSFormer T=64 >100 >100 >100 >100 >100 >100
TTFSFormer T=8192 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 7.16 4.74 62.07 5.81 5.53 17.06

PrefixQ W4A4 8.46 5.33 724.00 6.38 7.05 150.24
PrefixQ W5A5 10.89 6.99 101.41 7.28 8.66 27.05
PrefixQ W6A6 6.62 4.44 36.49 5.03 5.32 11.58

Ours T=16 8.36 5.29 734.17 6.36 7.02 152.24
Ours T=32 11.09 7.13 101.73 7.39 8.82 27.23
Ours T=64 6.63 4.45 36.61 5.04 5.33 11.61

2-70B

Baseline FP16 5.52 3.74 24.25 3.32 4.31 8.23
TTFSFormer T=32 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 6.28 4.18 24.15 4.97 4.11 8.74

PrefixQ W4A4 7.31 4.76 31.31 5.02 5.85 10.85
Ours T=16 7.31 4.76 31.34 5.03 5.85 10.86

3-70B

Baseline FP16 6.73 4.38 8.52 2.85 5.32 5.56
TTFSFormer >100 >100 >100 >100 >100 >100 >100
SpikeLLM W8A6 >100 >100 >100 >100 >100 >100

PrefixQ W4A4 8.18 5.16 9.71 4.66 6.92 6.92
Ours T=16 8.16 5.15 9.65 4.64 6.90 6.90
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Table 3: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on LLaMA-2-7B, LLaMA-2-13B for ablation analysis

Model Latency WinoGrande HellaSwag ArcC ArcE PIQA Avg.

2-7B

T=16 66.77 73.08 41.21 70.45 77.64 65.83
T=32 69.38 75.49 44.28 72.85 78.02 68.00
T=64 69.38 76.23 45.99 73.57 78.13 68.66

T=256 70.56 76.69 76.69 73.57 78.40 69.13
T=1024 70.32 76.62 46.16 73.78 78.18 69.01

2-13B

T=16 70.32 75.62 46.42 73.95 77.97 68.86
T=32 71.35 78.24 49.23 75.00 79.87 70.74
T=64 72.53 79.07 49.23 75.76 79.71 71.26

T=256 72.85 79.71 49.32 76.64 80.36 71.78
T=1024 72.38 79.75 48.72 76.43 80.52 71.56

6 CONCLUSION

LLMs have achieved remarkable success, but they also introduce severe energy bottlenecks that hin-
der their sustainable deployment. SNNs provide a promising pathway toward energy-efficient spik-
ing LLMs through ANN-to-SNN conversion. Among various spike-coding schemes, TTFS coding
is particularly appealing, as it conveys information with a single spike, thereby further reducing
energy consumption. Existing TTFS-based A2S conversions depend on continuous-time assump-
tions and require prohibitively large latencies to approximate the continuous values of ANNs. This
reliance results in unacceptable inference delays in deep models, particularly LLMs, creating signif-
icant obstacles to the development of practical temporal-coding spiking LLMs.

To overcome this challenge, we propose a discretization-aware theoretical framework that estab-
lishes a precise correspondence between discrete TTFS-based neurons and ANNs. Our key insight
shows that conversion errors are constrained by latency-dependent terms. Building on this, we in-
troduce the QC-A2S conversion method, which combines low-bit quantization with discretization-
compatible TTFS neurons, enabling low-latency temporal-coding spiking LLMs.
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A NOTIONS

Table 4: Symbol Definitions
Symbol Definition Symbol Definition

l Layer index X Inputs of QANN
i, j Neuron index X̂ Output of QANN
W Weight matrix a

(l)
i Output lower bound of TTFS-based neuron

trecv Receiving time step b
(l)
i Output upper bound of TTFS-based neuron

temit Emitting time step I The number of neurons in each layer
tend End time-step θ Threshold
H Heaviside function C Bias term in TTFS-based neuron
t Time step index τ Time constant in TTFS-based neuron
η Input transform kernel N Quantization level
ψ Output transform kernel n Quantization bits

(a) TTFS Coding

Neurons

Activations
(b) Rate Coding

0.2

0.5

0.6

0.9

One Spike Spikes

Time

Time

Time

Time

Time

Time

Time

Time

Figure 3: TTFS Coding vs. Rate Coding.

Time

Time

Time

Figure 4: The process of TTFS-based spiking neural neurons.
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B EXPERIMENTAL SUPPLEMENTARY

B.1 EXPERIMENT CONFIGURATIONS

In addition to the hardware information mentioned in the main text, we provide further details about
the reproduction of baselines here. We adopt 8 bits for weight, 6 bits for activation quantization, i.e.
W8A6, for SpikeLLM(Xing et al., 2024a) and PrefixQuant(Chen et al., 2025b), and use 8192 time
precision for TTFSFormer (Zhao et al., 2025).
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C CONVERSION ERROR

Clipping Error

Quantization Error

Figure 5: Clipping error and quantization error.

In this section, we provide a detailed analysis
of the conversion error between the ANN and
the converted TTFS-based SNN across layers.
We assume that both the ANN and SNN receive
the same input from layer l − 1, i.e., α(l−1) =
x(l−1), and then analyze the error in layer l.

ANN neurons. For ANNs, the output αl of
neurons in layer l is realized by a linear weight-
ing W (l) and nonlinear mappings f(·):

α(l) = f
(
W (l)α(l−1)

)
, (13)

SNN neurons. For TTFS-based SNNs, we con-
sider the relation between the spike time t(l)
of SNN and the corresponding activation value
x(l) of ANN:

x(l) =
1

τ (l)

(
t
(l)
ref − t(l)

)
. (14)

From Eqs.(13) and (14), along with the conditions V
(
t
(l)
emit

)
=W (l) · f

(
x(l−1)

)
and V (t(l) − 1) <

θ(l) ≤ V (t(l)), t(l) ∈ {t(l)emit, . . . , t
(l)
end}, it follows that a transformation between the temporal domain

(relate to t(l)) and the numerical domain (relate to x(l)) enables the activation value a(l) of analog
neurons in the ANN to be mapped onto x(l) in the TTFS-based SNN. Because the output ranges and
types of SNNs and ANNs differ, conversion errors are generally unavoidable. During the ANN-to-
SNN conversion, two primary sources of error, clipping error E(l)

c and quantization error E(l)
q , both

of which contribute to the performance gap between ANNs and SNNs.

For layer l, the total error decomposes as:

E(l) = E(l)
c + E(l)

q (15)

Clipping error. Clipping error denotes the error caused by different value ranges of ANNs and
SNNs. For an temporal coding spiking neural neuron, when the time steps T (l) are fixed, the output

of SNN: x(l) is in the range of
[
a(l), b(l)

]
, where a(l) =

t
(l)
ref −t

(l)
end

τ(l) and b(l) =
t
(l)
ref −t

(l)
emit

τ(l) . We define
the αmax as the maximum value in α(l), αmin is the minimum value in in α(l). Then the output
α ∈

[
αmin, a

(l)
]

of ANNs will be mapped to the same value a(l), the output α ∈
[
b(l), αmax

]
of

ANNs will be mapped to the same value b(l), which will cause conversion error named clipping
error Ec.

Quantization error. The output spike time t(l) is discrete, so the final output x(l) =
1

τ(l)

(
t
(l)
ref − t(l)

)
is also discrete, while the output activation value α of the ANNs is continu-

ous. Therefore, when mapping α(l) to x(l), there will be unavoidable error related to tempo-
ral resolution, named quantization error Eq. For example, when the output of ANNs satisfies

α ∈
[
t(l)d(l)

T (l) , (t
(l)+1)d(l)

T (l)

)
, t(l) = t

(l)
ref − t

(l)
end, t

(l)
ref − t

(l)
end + 1, ..., t

(l)
ref − t

(l)
emit − 1, the correspond-

ing mapped value of SNN will be t(l)d(l)

T (l) .

Lemma 1 Analysis for clipping error. For a target ANN’s output α(l)
i , the clipping error between

the output of ANN and SNN is:

E(l)
c =


∥∥∥α(l)

i − b
(l)
i

∥∥∥ if α(l)
i > b

(l)
i

0 if α(l)
i ∈ [a

(l)
i , b

(l)
i ]∥∥∥a(l)i − α

(l)
i

∥∥∥ if α(l)
i < a

(l)
i ,

(16)
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where a(l)i =
t
(l)
ref −t

(l)
end

τ
(l)
i

and b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

.

Lemma 2 Upper bound for quantization error: In the theoretical analysis under the continuous
setting of Theorem 4.1 and Theorem 4.3 in Zhao et al. (2025), we denote the output under continuous
coding as y(l)i ∈ [a

(l)
i , b

(l)
i ] corresponds to the ANN with continuous outputs, while in the practically

deployable discrete coding scenario, the SNN output is denoted as x(l)i ∈ [a
(l)
i , b

(l)
i ] corresponds to

the ANN with discretized outputs. That is, there exists quantization error E(l)
q between TTFS coding

in the continuous setting and its practical deployment. Let T (l) be the time window and Ω be the
corresponding clock time, and the derivatives of the function h and its inverse are bounded by G1

and G2. Then, the quantization error can be bounded as:

E(l)
q =

∥∥∥x(l)i − y
(l)
i

∥∥∥ ≤ G1G2Ω

T (l)
. (17)

D PROOFS

proof 1 Proof of Theorem 1:
For arbitrary fixed η(l)ij , ψ(l)

i , C(l)
i and θ(l)i in SNNs with time window T (l), in the receiving phase:

V
(
t
(l)
emit

)
=

1

τ
(l)
i

T
(l)
emit−1∑

t=T
(l)
recv

 I∑
j=1

w
(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
− C

(l)
i


=

1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
+ T (l)C

(l)
i . (18)

In the emitting phase, let ∆(l)
i ≥ 0 is a compensation constant, which is actually the difference

between the θ(l)i and the membrane potential at the spike time. We can get:

V
(
t
(l)
emit

)
+

t
(l)
i −t

(l)
emit−1∑

v=0

ψ
(l)
i (v)−∆

(l)
i = θ

(l)
i . (19)

We denote S(t) =
∑t−t

(l)
emit−1

v=0 ψ
(l)
i (v), then:

S(t
(l)
i ) = θ

(l)
i +∆

(l)
i − V

(
t
(l)
emit

)
. (20)

Then:

t
(l)
i = S−1

(
θ
(l)
i +∆

(l)
i − V

(
t
(l)
emit

))
. (21)

According to the relationship between x(l)i and t(l)i , we can get:

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − S−1

(
θ
(l)
i +∆

(l)
i − V

(
t
(l)
emit

)))
. (22)

let W (l) = (w
(l)
ij )I×I is the weight matrix:

x
(l)
i = f (l)(W (l);x

(l−1)
1 , ..., x

(l−1)
I ) (23)

=
1

τ
(l)
i

t(l)ref − S−1

θ(l)i +∆
(l)
i − 1

τ
(l)
i

I∑
j=1

T
(l)
emit−1∑

t=t
(l−1)
j

w
(l)
ij η

(l)
ij

(
x
(l−1)
j τ

(l−1)
j + t− t

(l−1)
ref

)
− T (l)C

(l)
i


 ,
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proof 2 Proof of Theorem 2:
Consider the potential change in the receiving stage.

Vi

(
t
(l)
emit

)
=

1

τ
(l−1)
i

t
(l−1)
end −1∑
t=t

(l−1)
emit

∑
j

w
(l)
ij η

(l)
ij

(
t− t

(l−1)
j

)
+ C

(l)
i

=
1

τ
(l−1)
i

∑
j

w
(l)
ij

t
(l−1)
end −t

(l−1)
j −1∑

u=0

η
(l)
ij (u) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

1

τ
(l−1)
i

t
(l−1)
end −t

(l−1)
ref +τ

(l−1)
i x

(l−1)
j −1∑

u=0

η
(l)
ij (u) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

τ
(l−1)
i

(
x
(l−1)
j −a

(l−1)
i

)
−1∑

u=0

(fij

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− fij

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
) + d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij

(
fij(x

(l−1)
j )− fij(a

(l−1)
i )

)
+ d

(l−1)
i · C(l)

i

=
∑
j

w
(l)
ij fij(x

(l−1)
j ). (24)

where the second equation uses u = t− t
(l−1)
j ; third equation uses x(l−1)

j τ
(l−1)
i = t

(l−1)
ref − t

(l−1)
j ;

fourth equation uses a(l−1)
i =

t
(l−1)
ref −t

(l−1)
end

τ
(l−1)
i

.

If the spike is emitted at time t(l)i ∈ {t(l)emit, t
(l)
emit + 1, . . . , t

(l)
end}, i.e. the corresponding value x(l)i ∈

[a
(l)
i , b

(l)
i ]. Then:

θ(l) = V (t
(l)
emit) +

t
(l)
i −t

(l)
emit−1∑

v=0

ψ
(l)
i (v)−∆

(l)
i

= V (t
(l)
emit) +

t
(l)
ref −t

(l)
emit−τ

(l)
i x

(l)
i −1∑

v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
−∆

(l)
i

= V (t
(l)
emit) +

τ
(l)
i (b

(l)
i −x

(l)
i )−1∑

v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
−∆

(l)
i

= V (t
(l)
emit) + h−1(b

(l)
i )− h−1(x

(l)
i )−∆

(l)
i . (25)

where the first equation uses v = t
(l)
i − t

(l)
emit, the second equation uses x(l)i τ

(l)
i = t

(l)
ref − t

(l)
i , the

third equation uses b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

.

Thus
h−1(x

(l)
i ) = V (t

(l)
emit).

which indicates that
x
(l)
i = h(V (t

(l)
emit)).

If h(V (t
(l)
emit)) > b

(l)
i , then V (t

(l)
emit) > h−1(b

(l)
i ) = θ

(l)
i , which means that a spike is emitted once at

t
(l)
emit, representing the value

t
(l)
ref −t

(l)
emit

τ
(l)
i

= b
(l)
i .
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If h(V (t
(l)
emit)) < a

(l)
i , then the potential at time t(l)end is:

V (t
(l)
emit) +

T (l)∑
v=0

ψ
(l)
i (v)

= V (t
(l)
emit) +

T (l)∑
v=0

(
h−1(b

(l)
i − v

τ
(l)
i

)− h−1(b
(l)
i − v + 1

τ
(l)
i

)

)
= V (t

(l)
emit) + h−1(b

(l)
i )− h−1(a

(l)
i )

< h−1(b
(l)
i ) = θ

(l)
i . (26)

which means that there will be no spike, representing the value a(l)i .

proof 3 Proof of Lemma 2:
According to Theorem 4.3 in Zhao et al. (2025): in the continuous setting, if the spike is emitted at
time t(l)i ∈ [t

(l)
emit, t

(l)
end], i.e. the corresponding value y(l)i ∈ [a

(l)
i , b

(l)
i ]. Then

θ
(l)
i = V (t

(l)
emit) +

∫ t
(l)
i −t

(l)
emit

0

ψ
(l)
i (v) dv (27)

= V (t
(l)
emit) +

∫ t
(l)
ref −t

(l)
emit−τ

(l)
i y

(l)
i

0

1

τ
(l)
i

(h−1)′
(
b
(l)
i − v

τ
(l)
i

)
dv (28)

= V (t
(l)
emit)− h−1

(
b
(l)
i − v

τ
(l)
i

) ∣∣∣τ(l)
i (b

(l)
i −y

(l)
i )

0
(29)

= V (t
(l)
emit)− h−1(y

(l)
i ) + h−1(b

(l)
i ). (30)

Because θ(l)i = h−1(b
(l)
i ):

h−1(y
(l)
i ) = V (t

(l)
emit), (31)

which indicates that:

y
(l)
i = h

(
V (t

(l)
emit)

)
. (32)

In the discrete setting, the spike is emitted at time t(l)i ∈ {t(l)emit, t
(l)
emit+1, . . . , t

(l)
end}, the corresponding

value x(l)i ∈ [a
(l)
i , b

(l)
i ]. Let ∆(l)

i ≥ 0 is a compensation constant, which is actually the difference
between the θ(l)i and the membrane potential at the spike time. The following equation satisfies:

θ
(l)
i = V (t

(l)
emit) +

∫ t
(l)
i −t

(l)
emit

0

ψ
(l)
i (v) dv −∆

(l)
i (33)

= V (t
(l)
emit) +

∫ t
(l)
ref −t

(l)
emit−τ(l)x

(l)
i

0

1

τ
(l)
i

(h−1)′
(
b
(l)
i − v

τ
(l)
i

)
dv −∆

(l)
i (34)

= V (t
(l)
emit)− h−1

(
b
(l)
i − v

τ
(l)
i

) ∣∣∣τ(l)
i (b

(l)
i −x

(l)
i )

0
−∆

(l)
i (35)

= V (t
(l)
emit)− h−1(x

(l)
i ) + h−1(b

(l)
i )−∆

(l)
i . (36)

Because θ(l)i = h−1(b
(l)
i ):

h−1(x
(l)
i ) = V (t

(l)
emit)−∆

(l)
i , (37)
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which indicates that:

x
(l)
i = h

(
V (t

(l)
emit)−∆

(l)
i

)
. (38)

The error of discrete coding in the continuous setting can be expressed as:∥∥∥y(l)i − x
(l)
i

∥∥∥ =
∥∥∥h(V (t

(l)
emit)

)
− h
(
V (t

(l)
emit)−∆

(l)
i

)∥∥∥ (39)

By the mean value theorem, we obtain:∥∥∥y(l)i − x
(l)
i

∥∥∥ =
∥∥∥|h′(ξ)| ·∆(l)

i

∥∥∥ , (40)

where ξ ∈
[
V (t

(l)
emit)−∆

(l)
i , V (t

(l)
emit)

]
.

Furthermore, we examine ∆
(l)
i to provide a more in-depth analysis of the error. We assume that

the spike firing time corresponding precisely to the ANN output is denoted as [t]
(l)
i . Based on the

characteristics of TTFS encoding, it follows that:

t
(l)
i − 1 ≤ [t]

(l)
i ≤ t

(l)
i . (41)

Then ∆
(l)
i can be represented as:

∆
(l)
i =

∫ t
(l)
i −t

(l)
emit

[t]
(l)
i −t

(l)
emit

ψi(s) ds = h−1(t
(l)
i − t

(l)
emit)− h−1([t]

(l)
i − t

(l)
emit). (42)

By the mean value theorem, we obtain:∥∥∥∆(l)
i

∥∥∥ =
∥∥∥∣∣(h−1)′(t̂i)

∣∣ · (t(l)i − [t]
(l)
i )
∥∥∥ , (43)

where t̂i ∈
[
[t]

(l)
i − t

(l)
emit, t

(l)
i − t

(l)
emit

]
.

Then the error ϵ(l)i can be bounded by the following inequality:∥∥∥y(l)i − x
(l)
i

∥∥∥ ≤ |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ · |[t](l)i − t
(l)
i | (44)

By the definition of clock precision: ∆treal = treal(t + 1) − treal(t), where treal(t) = t ·∆treal,
we obtain: ∥∥∥y(l)i − x

(l)
i

∥∥∥ ≤ |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ ·∆treal
= |h′(ξ)| ·

∣∣(h−1)′(t̂i)
∣∣ · Ω

t
(l)
end − t

(l)
emit

= |h′(ξ)| ·
∣∣(h−1)′(t̂i)

∣∣ · Ω

T (l)

≤ G1G2Ω

T (l)
(45)

proof 4 Proof of Theorem 3:
For clipping error, according to Lemma 1, we can get:

E(l)
c =


∥∥∥α(l)

i − b
(l)
i

∥∥∥ if α(l)
i > b

(l)
i

0 if α(l)
i ∈ [a

(l)
i , b

(l)
i ]∥∥∥a(l)i − α

(l)
i

∥∥∥ if α(l)
i < a

(l)
i ,

(46)

We define the center of the output interval of SNN as:

c
(l)
i =

a
(l)
i + b

(l)
i

2
(47)
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The clipping error can then be restated as follows:

E(l)
c (T (l)) = max

(∣∣∣α(l)
i − c

(l)
i

∣∣∣− T (l)

2τ
(l)
i

, 0

)
(48)

We take the derivative of T (l) to get the sensitivity of the error E(l)
c (T (l)) to T (l):

d

dt
E(l)

c (T (l)) =


− 1

2τ
(l)
i

,
∣∣∣α(l)

i − c
(l)
i

∣∣∣ > T (l)

2τ
(l)
i

,

0,
∣∣∣α(l)

i − c
(l)
i

∣∣∣ < T (l)

2τ
(l)
i

.

(49)

Once clipping occurs, increasing T (l) will reduce the error linearly with a constant slope of − 1

2τ
(l)
i

;

within the valid interval, the error is unaffected by T (l).

For quantization error, according to Lemma 2, we can get:

E(l)
q ≤ G1G2Ω

T (l)
. (50)

For an L-layer network with I neurons in each layer, we can get:

E =

I∑
i=1

L∑
l=1

(
E(l)

c + E(l)
q

)
≤

I∑
i=1

L∑
l=1

(
max

(∣∣∣∣∣α(l)
i − c

(l)
i | − T (l)

2τ
(l)
i

∣∣∣∣∣ , 0
)

+
G1G2Ω

T (l)

)
(51)

Let T = min
{
T (l)

}L
l=1

and τ = max

{{
τ
(l)
i

}I

i=1

}L

l=1

:

E ≤ LI ·max

(∣∣∣∣∣α(l)
i − a

(l)
i + b

(l)
i

2

∣∣∣∣∣− T (l)

2τ
(l)
i

, 0

)
+
LIG1G2Ω

T
(52)

proof 5 Proof of Corollary 1:
Input transform: The input of QANN at i-th neuron of l-th layer is X

(l)
i =

∑
j w

(l)
ij x

(l−1)
j ∈

[a
(l−1)
i , b

(l−1)
i ]. In order to approximate the input of QANN, based on Theorem 2, we set the kernel

function η(l)ij and C(l)
i as follows:

η
(l)
ij (u) = H

(
u

τ
(l−1)
i

+ a
(l−1)
i

)
,

C
(l)
i =

∑
j

a
(l−1)
i

d
(l−1)
i

wij ,

Then, the membrane potential after reception is completed can be expressed as:

V (Temit) =
∑
j

w
(l)
ij x

(l−1)
j = X

(l)
i . (53)

Output transform: In order to approximate the output of QANN at l-th layer of i-th neuron: X̂(l) ∈
[a

(l)
i , b

(l)
i ], based on Theorem 2, we set the kernel function ψ(l)

i and threshold as follows:

ψ
(l)
i (v) =

1

τ
(l)
i

, θ
(l)
i = b

(l)
i (54)
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If the spike is emitted at time t ∈ {t(l)emit, t
(l)
emit + 1, . . . , t

(l)
end}:

X
(l−1)
i +

1

τ
(l)
i

· t ≥ θ
(l)
i . (55)

According to the definition of t, we can get:

t =
⌈
(θ

(l)
i −X

(l)
i )τ

(l)
i

⌉
(56)

According to the rounding range of t, we add the clip function to get:

t = clip
(⌈

(θ
(l)
i −X

(l)
i )τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end

)
(57)

According to the relation between spike time and corresponding activation value and θ(l)i = b
(l)
i :

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − clip(

⌈
(b

(l)
i −X

(l)
i )τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end)
)

(58)

According to b(l)i =
t
(l)
ref −t

(l)
emit

τ
(l)
i

, we can get:

x
(l)
i =

1

τ
(l)
i

(
t
(l)
ref − clip(

⌈
t
(l)
ref − t

(l)
emit −X

(l)
i τ

(l)
i

⌉
, t

(l)
emit, t

(l)
end)
)

(59)

Based on the relationship between the ceiling function and the floor function, we can derive the
following:

x
(l)
i =

1

τ
(l)
i

clip(
⌊
X

(l)
i τ

(l)
i

⌋
− t

(l)
ref + t

(l)
emit,−t

(l)
end,−t

(l)
emit) +

1

τ
(l)
i

t
(l)
ref (60)

Based on the properties of the floor function, we can conclude that:

x
(l)
i =

1

τ
(l)
i

clip(
⌊
X

(l)
i τ

(l)
i

⌋
+ t

(l)
end − t

(l)
ref + t

(l)
emit, 0, t

(l)
end − t

(l)
emit) +

1

τ
(l)
i

(
t
(l)
ref − t

(l)
end

)
(61)

Let t(l)emit = 0, t(l)end = N , τ (l)i = 1

λ
(l−1)
i

, t(l)end − t
(l)
ref = z(l), we can get:

x
(l)
i = λ

(l)
i · clip(

⌊
X

(l)
i

λ
(l)
i

⌋
+ z(l), 0, N)− λ

(l)
i z(l) = X̂(l) (62)

E NONLINEAR OPERATIONS IN QC-A2S

Corollary 2 (Construction of SiLU) A TTFS-based neuron can be made equivalent to a discrete
SiLU function with through the following configuration:

η
(l)
ij (u) = I[u ≥ 0] · τ (l−1)

i ·
((

u+1

τ
(l−1)
i

+ a
(l−1)
i

)
· σ
(

u+1

τ
(l−1)
i

++a
(l−1)
i

)
−
(

u

τ
(l−1)
i

++a
(l−1)
i

)
· σ
(

u

τ
(l−1)
i

+ a
(l−1)
i

))

C
(l)
i =

∑
j

w
(l)
ij

a
(l−1)
i · σ(a(l−1)

i )

d
(l−1)
i

, ψ
(l)
i (v) =

1

τ
(l)
i

, σ(x) =
1

1 + e−x
. (63)

Corollary 3 (Construction of GELU) A TTFS-based neuron can be made equivalent to a discrete
GELU function with

η
(l)
ij (u) = I[u ≥ 0] · τ (l−1)

i ·
((

u+1

τ
(l−1)
i

+ a
(l−1)
i

)
· Φ
(

u+1

τ
(l−1)
i

++a
(l−1)
i

)
−
(

u

τ
(l−1)
i

++a
(l−1)
i

)
· Φ
(

u

τ
(l−1)
i

+ a
(l−1)
i

))

ψ
(l)
i (v) = 1

τ
(l)
i

, θ
(l)
i = b

(l)
i , C

(l)
i =

∑
j w

(l)
ij

a
(l)
i Φ(a

(l)
i )

d
(l−1)
i

,Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
erf(x) = 2√

π

∫ x

0
e−t2
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Corollary 4 (Construction of Softmax) The log-sum-exp of I inputs x1, x2, · · · , xI , i.e.,

log

I∑
j=1

exj , (64)

can be calculated in a single neuron with

η
(l)
ij (u) = τ

(l−1)
i ·

(
exp

(
u+ 1

τ
(l−1)
i

+ a
(l−1)
i

)
− exp

(
u

τ
(l−1)
i

+ a
(l−1)
i

))
. (65)

C
(l)
i =

I

d
(l−1)
i

ea
(l−1)
i , ψ

(l)
i (v) =

1

τ
(l)
i

exp

(
b
(l)
i − v

τ
(l)
i

)
. (66)

With the log-sum-exp neuron, we can obtain the softmax operator. We can calculate the logarithm
of softmax, i.e.

log

(
exi∑I
j=1 e

xj

)
= xi − log

I∑
j=1

exj , (67)

by subtracting the log-sum-exp from xi. Finally, we can obtain the output after an exponential layer.

Corollary 5 (Construction of RMSNorm) RMSNorm is a normalization method widely used in
LLaMA architecture, which is a linear operation. RMSNorm is defined as:

RMSNorm(xi) =
xi√

1
I

∑I
i=1 x

2
i

· γ + β. (68)

We first can obtain the 1
I

∑I
i=1 x

2
i by a single neuron with

η
(1)
ij (u) = τ

(0)
ij

(u+ 1

τ
(0)
i

+ a
(0)
i

)2

−

(
u

τ
(0)
i

+ a
(0)
i

)2
 , C(1)

i =
(a

(0)
i )2

Id
(0)
i

, w(1) =
1

I
(69)

ψ
(1)
i (v) =

1

τ
(1)
i

, θ
(1)
i = b

(1)
i . (70)

Then, we can get 1√
1
I

∑I
i=1 x2

i

with:

η
(2)
ij (u) = τ

(1)
ij

(u+ 1

τ
(1)
i

+ a
(1)
i

)− 1
2

−

(
u

τ
(1)
i

+ a
(1)
i

)− 1
2

 , C(2)
i =

1

Id
(1)
i (a

(1)
i )

1
2

, (71)

w(2) = 1 ψ
(l)
i (v) =

1

τ
(l)
i

, θ
(l)
i = b

(l)
i . (72)

Finally, multiply xi with 1√
1
I

∑I
i=1 x2

i

.

F USE OF LLMS

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.
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G SUPPLEMENTARY MATERIALS FOR THE REBUTTAL

G.1 SUPPLEMENTARY ALGORITHM FOR THE REBUTTAL

Algorithm 1 outlines the proposed QC-A2S pipeline for converting a vanilla LLM into a temporal-
coding spiking LLM. The procedure begins by applying post-training quantization to obtain a
well-quantized model. For each layer and each neuron, we retrieve its quantization parame-
ters—including the quantization level, scaling factor, and zero-point—and use them to construct
the corresponding TTFS-based spiking neuron with the emission time, ending time, and time con-
stant defined accordingly. This mapping transforms all quantized linear computations into temporal
spike representations. For layers containing nonlinear operators such as SwiGLU, Softmax, or Lay-
erNorm, their original activations are replaced with the spiking counterparts derived in Appendix
E, ensuring full compatibility with the temporal-coding SNN formulation. Through this layer-wise
conversion, the entire LLM is transformed into a TTFS-based spiking model suitable for neuromor-
phic.

Algorithm 1 Converting Vanilla LLM into Temporal-coding Spiking LLM with QC-A2S pipeline
1: Input: Vanilla LLM
2: Output: Temporal-coding Spiking LLM
3: Obtaining well-quantized LLM by post-training quantization
4: Mapping from Quantized LLMs to Temporal-coding Spiking LLMs:
5: for layer l = 1, 2, ..., L do
6: for neuron i = 1, 2, ..., I do
7: Get quantization parameters quantization level N , scale λ(l)i and zero point z(l)
8: Construct TTFS-based spiking neural neurons as:
9: t

(l)
emit = 0, t

(l)
end = N, τ

(l)
i = 1

λ
(l)
i

, t
(l)
end − t

(l)
ref = z(l)

10: end for
11: if l is SwiGLU, Softmax or RMSNorm then
12: Replace the original nonlinear activation with spiking counterpart in the Appendix E.
13: end if
14: end for

G.2 SUPPLEMENTARY EXPERIMENTS FOR THE REBUTTAL

Figure 6 reports the layer-wise cumulative conversion error of the temporal-coding spiking LLM
obtained with the QC-A2S framework on LLaMA-2-7B. The blue bars denote the conversion error
at each layer, while the pink dashed curve shows the corresponding log-scaled error. The conversion
error clearly accumulates as the layer index increases, which is consistent with Theorem 3, where
the approximation error bound grows with the network depth L.

Tables 5 and 6 evaluate the generalization ability of our QC-A2S framework on non-LLaMA models.
Table 5 reports accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA on
Qwen2-7B and Mistral-7B v0.3. Table 6 reports perplexity on C4, Pile, PTB, WikiText2, and Red-
Pajama for the same models. The entries highlighted in gray correspond to the temporally encoded
spiking LLM obtained with QC-A2S, while the non-shaded entries correspond to the equivalent
quantized LLM. Across all benchmarks, the QC-A2S spiking models achieve accuracy and perplex-
ity that are comparable to, and sometimes even better than, their quantized counterparts under the
same precision configurations. These results demonstrate that our QC-A2S framework generalizes
well across different LLM architectures and datasets.

Table 7 reports the performance of TTFS-Former on LLaMA models, where we measure accuracy
on WinoGrande and acc norm on HellaSwag, ArcC, ArcE, and PIQA. Across all model scales,
TTFS-Former performs significantly worse than the FP16 baselines and our QC-A2S models, and
the average accuracy further degrades as the time window T increases. This indicates that directly
applying TTFS-Former to LLMs is not effective. We attribute this poor performance to two inherent
limitations of TTFS-Former. First, TTFS-Former is built on a continuous-time TTFS assumption,
where spike times are treated as real-valued variables. This formulation inherently requires a large
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Figure 6: The layer-wise conversion error of temporal-coding spiking LLM (LLaMA-2-7B).

time window to approximate continuous dynamics, making medium-latency settings theoretically
incompatible with its design. Second, TTFS-Former directly converts an ANN into an SNN without
handling outliers, which are prevalent in LLM activations. These extreme values skew the spike-
time distribution during conversion and lead to severe accuracy degradation—an intrinsic weakness
of continuous-time ANN→SNN conversion pipelines. The results in Table 7 therefore highlight the
necessity of our QC-A2S framework, which explicitly addresses these issues.

Table 5: We report accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and PIQA
on Qwen2-7B, and Mistral-7B v0.3 for demonstrating the generalization of our method. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.

Qwen-2-7B

FP16 72.45 78.78 49.91 74.71 81.23 71.42
W4A4 68.19 74.67 49.66 76.05 79.00 69.51
T=16 68.59 74.56 48.12 75.13 78.13 68.91
W5A5 71.51 77.60 48.46 73.74 79.87 70.24
T=32 71.51 77.51 49.40 72.94 80.20 70.31
W6A6 71.51 78.68 51.19 75.51 80.36 71.45
T=64 71.82 78.41 51.45 76.09 81.18 71.79

Mistral-7B v0.3

T=16 73.88 80.44 52.30 78.20 82.26 73.42
W4A4 71.90 77.55 49.91 76.35 79.54 71.05
T=16 71.59 77.38 50.77 76.18 80.36 71.26
W5A5 72.53 79.74 52.90 79.25 80.85 73.05
T=32 73.09 79.63 52.82 78.79 81.23 73.11
W6A6 72.14 80.41 53.24 79.76 82.37 73.58
T=64 73.56 80.32 53.67 79.34 81.66 73.71
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Table 6: We report perplexity for C4, Pile, PTB, WikiText2, and RedPajama on Qwen2-7B, and
Mistral-7B v0.3 for demonstrating the generation quality of our method on other models. The entries
highlighted in gray correspond to the temporally encoded spiking LLM, while the non-shaded entries
correspond to the equivalent quantized LLM.

Model Precision C4 Pile PTB WikiText2 RedPajama Avg.

Qwen-2-7B

FP16 9.90 5.53 12.22 7.14 8.51 8.66
W4A4 11.44 6.24 14.10 8.26 9.90 9.99
T=16 11.43 6.24 14.13 8.26 9.89 9.99
W5A5 10.34 5.73 12.71 7.44 8.91 9.02
T=32 10.34 5.74 12.71 7.43 8.90 9.02
W6A6 10.05 5.60 12.35 7.23 8.64 8.78
T=64 10.05 5.60 12.36 7.23 8.64 8.78

Mistral-7B v0.3

T=16 7.84 4.46 37.28 5.32 6.00 12.18
W4A4 8.58 4.84 1353.43 5.93 6.65 275.89
T=16 8.58 4.84 1386.34 5.93 6.65 282.47
W5A5 8.12 4.61 1443.37 5.54 6.24 293.57
T=32 8.12 4.61 1416.23 5.54 6.24 288.15
W6A6 7.99 4.55 270.79 5.45 6.12 58.98
T=64 7.99 4.55 293.46 5.46 6.13 63.52
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Table 7: We report extra accuracy for WinoGrande and acc norm for HellaSwag, ArcC, ArcE, and
PIQA on LLaMA models with TTFS-Former method.

Model Precision WinoGrande HellaSwag ArcC ArcE PIQA Avg.

2-7B

FP16 69.22 76.00 46.33 74.62 79.11 69.06
T=32 51.07 26.32 28.84 25.84 48.91 36.20
T= 64 48.86 26.40 28.67 26.09 49.24 35.85

T= 128 47.83 26.12 28.07 26.77 48.15 35.39
T= 256 48.15 26.35 27.39 25.55 49.08 35.30
T= 512 49.25 26.12 28.33 25.51 50.44 35.93

T= 1024 49.88 26.07 29.52 25.84 49.46 36.15
T= 2048 47.04 25.82 27.82 28.20 47.06 35.19

3-8B

FP16 72.69 79.19 53.41 77.69 80.79 72.75
T= 32 49.88 26.40 26.54 24.71 51.58 35.82
T= 64 50.59 26.19 26.11 24.49 50.16 35.51

T= 128 51.78 25.88 26.37 25.08 50.65 35.95
T= 256 50.20 26.48 26.79 25.46 51.80 36.15
T= 512 51.38 26.35 25.17 24.41 51.36 35.73

T= 1024 49.41 26.08 29.27 26.81 49.62 36.24
T= 2048 48.78 26.73 26.96 25.88 51.85 36.04

2-13B

FP16 72.38 79.38 49.06 77.53 80.52 71.77
T= 32 49.96 26.11 29.52 25.38 47.93 35.78
T= 64 50.75 25.75 29.27 26.05 50.65 36.49

T= 128 50.67 26.65 28.33 25.88 49.73 36.25
T= 256 48.15 26.53 27.73 26.77 47.61 35.36
T= 512 49.17 26.63 27.39 25.55 50.05 35.76

T= 1024 51.78 26.16 27.82 26.98 49.35 36.42
T= 2048 49.72 26.79 27.47 28.07 51.03 36.62

2-70B

FP16 77.98 83.82 57.42 80.98 82.70 76.58
T= 32 48.15 26.40 28.24 25.00 49.02 35.36
T= 64 48.54 26.15 30.03 26.30 51.03 36.41

T= 128 50.20 25.85 28.67 26.81 50.44 36.39
T= 256 50.99 25.76 28.84 25.59 50.11 36.26
T= 512 49.64 26.17 28.58 26.39 50.00 36.16

T= 1024 49.88 26.00 28.58 27.57 48.59 36.12
T= 2048 50.12 26.36 28.24 26.30 50.22 36.25

3-70B
FP16 80.35 84.88 64.33 85.86 84.55 79.99
T= 32 49.01 26.32 26.88 25.25 50.05 35.50
T= 64 50.20 26.34 23.89 25.08 50.22 35.15
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