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ABSTRACT

Graphical user interface visual grounding (GUI-VG)—a core capability for GUI
agents—has primarily relied on supervised fine-tuning (SFT) of multimodal large
language models (MLLMs), demanding extensive data curation and significant
training costs. However, as MLLMs continue to advance and even cover GUI
domains during pretraining, the necessity of exhaustive SFT post-training becomes
increasingly questionable. Meanwhile, the recent successes of rule-based reinforce-
ment fine-tuning (RFT) suggest a more efficient alternative. However, despite its
promise, the optimal manner of RFT for GUI-VG remains unexplored. To bridge
this gap, we introduce GuirlVG, a reinforcement learning–based GUI-VG method
built on a systematic empirical study and a novel stabilization technique. Prelim-
inarily, we find that naive application of RFT underperforms the SFT baseline,
motivating a deeper exploration of RFT. First, we decompose RFT into its core
components and analyze the optimal formulation of each. Second, as part of this
exploration, we propose a novel Adversarial KL Factor that dynamically stabilizes
training to mitigate reward over-optimization. Third, we further explore the training
configurations of RFT to enhance the effectiveness. Extensive experiments show
that GuirlVG, with only 5.2K training samples, outperforms SFT methods trained
on over 10M samples, achieving a +7.7% improvement on ScreenSpot, a +17.2%
improvement on ScreenSpotPro and 91.9% accuracy on ScreenSpotV2.
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Figure 1: Step-by-step exploration of GuirlVG. Starting from trivial RFT, we progressively add Soft
Reward Function, In-Bbox reward with point prediction, β tuning, our Adversarial KL Factor, image
resolution prompting, and extended training. With only 5.2K data, GuirlVG surpasses SFT methods
trained on up to 13.58M data. Circle size reflects data scale used by each method.

1 INTRODUCTION

Graphical user interface (GUI) agents [Gou et al., 2024, Lin et al., 2024, Cheng et al., 2024, Qin et al.,
2025, Xu et al., 2024, Huang et al., 2025b, Lei et al., Wu et al., 2024, Hong et al., 2024], empowered
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by the rapid advancement of foundation models or multimodal large language models (MLLMs) [Liu
et al., 2024b, Wang et al., 2024, Bai et al., 2025a], are increasingly capable of perceiving and acting
within digital environments via screenshots. A core capability underpinning such agents is GUI visual
grounding (GUI-VG)—the task of localizing actionable elements in a screenshot conditioned on a
textual instruction [Gou et al., 2024, Cheng et al., 2024, Lei et al.]. Recent efforts have primarily
approached GUI-VG through post-training of MLLMs via supervised fine-tuning (SFT), a paradigm
that demands large-scale domain-specific data curation and significant training resources [Wu et al.,
2024, Cheng et al., 2024, Qin et al., 2025, Gou et al., 2024, Lei et al.]. These advancements co-evolve
with MLLM’s capabilities, tailoring each generation of MLLMs to GUI-centric benchmarks.

However, SFT raises critical concerns regarding efficiency. As MLLMs continue to improve in general
perception and reasoning—with some already ingesting GUI-related data during pretraining [Wang
et al., 2024, Bai et al., 2025a]—the necessity of extensive post-training becomes increasingly ques-
tionable. Given the persistent training cost incurred with each new MLLM generation, a fundamental
question arises: Does exhaustive SFT remain the most effective post-training strategy?

Meanwhile, the success of rule-based reinforcement fine-tuning (RFT) by Group Relative Policy
Optimization (GRPO) [Shao et al., 2024a] in DeepSeek-R1 [Guo et al., 2025] inspires new directions.
Recent methods transfer GRPO to visual grounding domains [Yuan et al., 2025, Luo et al., 2025, Shen
et al., 2025, Bai et al., 2025b] with notable improvements. Despite these advances, no prior work has
systematically studied RFT for GUI-VG. In fact, our results even reveal that naive application of RFT
to GUI-VG under fair experimental settings underperforms the SFT baseline, prompting a critical
question: What is the optimal formulation of RFT objectives for GUI visual grounding?

In this paper, instead of purely pursuing the best performance, we focus on step-by-step and fair
ablation to obtain rigorous findings that provide insights into how to design RFT for GUI-VG. We do
not compare with other RFT-based GUI-VG methods, since differences in data, training, and models
would yield limited rigorous conclusions in systematic experiments. We elaborate on this point in
section 2.1. We introduce GuirlVG, a RFT-based GUI-VG design built upon our comprehensive em-
pirical study and a novel stabilization technique toward GRPO. ❶ We begin by deconstructing GRPO
into its core components—format reward, accuracy reward, and KL penalty—and systematically
ablate each component to derive an optimal configuration. ❷ To further address over-optimization
caused by reward functions, we introduce a novel Adversarial KL Factor, which dynamically scales
the KL penalty based on rewards to stabilize the learning process. ❸ Additionally, we explore a
wide range of training setups, including hyperparameter tuning, LoRA enablement, and prompt
engineering, to uncover best practices for effective RFT on GUI-VG. ❹ Finally, we conduct extensive
experiments on ScreenSpot [Cheng et al., 2024], ScreenSpotV2 [Wu et al., 2024], and ScreenSpot-
Pro [Li et al., 2025], demonstrating that GuirlVG achieves state-of-the-art results using as few as
2K∼5.2K training examples. Compared to prior SFT baselines trained on hundreds of thousands to
over ten million data, our method achieves superior accuracy with up to +17.2% absolute gains on
ScreenSpotPro, highlighting the data efficiency and strong effectiveness of GuirlVG.

2 BACKGROUND

2.1 RELATED WORK

Why do we need empirical studies? While prior works [Yuan et al., 2025, Luo et al., 2025,
Shen et al., 2025, Bai et al., 2025b] have proposed various modeling choices for RFT-based GUI-VG,
these advances often emphasize reward function novelty or performance improvements without a
systematic examination of underlying design factors. As GUI-VG continues to evolve rapidly, such
one-off comparisons offer limited guidance for practitioners, since conclusions are often confounded
by differences in data, training setups, and model structure. Empirical studies fill this gap by providing
controlled and transparent analyses that isolate the effect of specific design choices. This type of
investigation is essential for moving beyond ad-hoc innovation toward principled understanding,
enabling the community to identify robust practices and avoid misleading interpretations of perfor-
mance gains. There are some pioneer works for empirical studies in Multimodal Large Language
Model, e.g. LLaVA-1.5 [Liu et al., 2024a], Prismatic [Karamcheti et al., 2024], Eagle [Shi et al.,
2024] and Idefics2 [Laurençon et al., 2024]. However, there remains a lack of empirical studies
investigating RFT in the context of GUI-VG.
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GUI Visual Grounding. Visual grounding ability in graphical user interfaces [Cheng et al., 2024,
Gou et al., 2024, Lei et al.] has become one of the main bottlenecks for AI agents [Gou et al., 2024,
Lin et al., 2024, Cheng et al., 2024, Qin et al., 2025, Xu et al., 2024, Huang et al., 2025b, Lei et al.,
Wu et al., 2024, Hong et al., 2024]. To address this, SeeClick [Cheng et al., 2024] introduces a
large-scale pretraining pipeline for GUI-VG and proposes an automated method to generate training
data. Similarly, UGround [Gou et al., 2024] utilizes synthesized web-based data to support grounding
training, and AGG [Lei et al.] builds a dedicated engine to collect extensive GUI images with
annotations. OS-Atlas [Wu et al., 2024] further expands grounding data across multiple operating
systems. UI-TARs [Qin et al., 2025] combines GUI-centric pretraining with task-conditioned fine-
tuning to improve alignment between perception and reasoning. Despite the variety in their data
construction, these methods commonly adopt the supervised fine-tuning (SFT) paradigm, which
relies heavily on large volumes of high-quality labeled training data.

Reinforcement Fine-Tuning. Rule-based Reinforcement Fine-Tuning (RFT) with Group Relative
Policy Optimization (GRPO) [Shao et al., 2024a] has recently demonstrated effectiveness across
different domains [Shao et al., 2024b, Liu & Zhang, 2025, Wang* et al., 2025, Guo et al., 2025].
Unlike supervised fine-tuning (SFT), which enforces token-level supervision strictly corresponding to
the answer, RFT encourages models to freely explore their reasoning process and provides supervision
only at the level of the final output. This more flexible objective incentivizes stronger reasoning
capabilities [Guo et al., 2025]. Furthermore, in the RFT algorithm—GRPO, task-specific rule-
based reward functions are designed to provide supervision signals that are automatically verifiable.
This eliminates the need for training a separate critic model [Schulman et al., 2017, Ouyang et al.,
2022] or relying on human feedback [Kaufmann et al., 2023], thereby mitigating the risk of reward
hacking [Weng, 2024] and making RFT an effective alternative to SFT.

2.2 PRELIMINARIES

Group Relative Policy Optimization (GRPO). Given a task input which additionally specifies a
particular response format in the prompt, i.e. instructing the model to reason within < think ><
think > tags and answer within < answer >< /answer > tags, the model generates a group of N
candidate responses {o1, o2, . . . , oN}. Each candidate is evaluated using a rule-based reward function,
yielding rewards {r1, r2, . . . , rN}. For each response oi, this rule-based reward function scores two
rewards: a format reward, rfi , which assesses whether the response adheres to the instructed tag
structure, and an accuracy reward, rai , which evaluates the correctness of the response, such as
classification accuracy [Chen et al., 2025] or intersection-over-union (IoU) in detection tasks [Huang
et al., 2025a, Liu et al., 2025b]. The total reward for is computed as

ri = rfi + rai . (2.1)

The relative reward (also referred to as the advantage Ai) of the i-th candidate is computed by
normalizing the rewards within the group of candidate responses:

Ai =
ri −Mean({r1, r2, . . . , rN})

Std({r1, r2, . . . , rN})
, (2.2)

where Mean(·) and Std(·) denote the mean and standard deviation, respectively. To stabilize training,
GRPO additionally constrains model update by minimizing the KL divergence between the current
model and a reference model (typically the original model). Thus, the objective Ji to maximize for
each candidate oi becomes

Ji = Ai − β DKL(oi ∥ oorig
i ), (2.3)

where β is a hyperparameter controlling the KL penalty strength, and oorig
i is the corresponding

response from the reference model. We omit details, such as clipping, averaging, etc.

Implementation. Unless specified otherwise, we fine-tune Qwen2.5-VL [Bai et al., 2025a] using
LoRA [Hu et al., 2022] with a rank of 64 and an alpha of 128, while keeping the vision module frozen.
Training data are randomly sampled from ShowUI [Lin et al., 2024], which crawls visually rich
website data and augments desktop data from OmniAct [Kapoor et al., 2024] using GPT-4o [Hurst
et al., 2024]. The group size of candidate responses, N , is set to 6, and the batch size is set to 4. The
KL divergence coefficient (β) is set to 0.04 by default. The learning rate is set to 1× 10−5, with two

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

training epochs, AdamW optimizer, and a linear decay schedule. We use 6×NVIDIA A100-80G
GPUs for training. For the SFT baseline, we adopt LLaMA Factory [Zheng et al., 2024] with the
same training configurations for a fair comparison. For the efficiency and fairness of experiments,
we report performances at step 500 for both RFT and SFT, where convergence is typically observed.
Training beyond 500 steps yields only marginal improvements, with our final version reaching peak
performance around step 1,300. Accordingly, our final version is only trained on 5,200 samples.

Evaluation Suite. We evaluate on three widely-used GUI-VG benchmarks across different plat-
forms: ScreenSpot [Cheng et al., 2024], ScreenSpot v2 [Wu et al., 2024], and ScreenSpot-Pro [Li
et al., 2025]. ScreenSpot evaluates GUI grounding capabilities across mobile, desktop, and web
environments, while ScreenSpot v2 improves evaluation reliability by correcting annotation errors.
ScreenSpot-Pro focuses on high-resolution professional scenarios, featuring expert-annotated tasks
spanning 23 applications, five industries, and three operating systems. All benchmarks report the
accuracy of whether the predicted point coordinate falls inside the ground truth bounding box of the
corresponding element in the screenshot.

3 METHODOLOGY

3.1 CAN TRIVIAL ADOPTION OF RFT BEATS SFT?

We begin by comparing the SFT baseline with a trivial adoption of RFT for GUI-VG. Specifically,
we adopt the commonly used implementation from HuggingFace [2025], Shen et al. [2025], using
the following prompt for a given description of the target element:

Table 1: Comparison of zero-shot, SFT, and trivial
RFT on ScreenSpot (Qwen2.5-VL, 500 training steps).

Method Backbone Step Acc (%)

Zero-Shot Qwen2.5-VL 500 72.6
SFT Qwen2.5-VL 500 82.6
RFT (trivial) Qwen2.5-VL 500 79.2

Please provide the bounding box coordi-
nates [x1, y1, x2, y2] of a specific element
based on this sentence: <description>.
First, think through the reasoning process
within <think> < /think> tags. Then, out-
put the bounding box coordinates in JSON
format within <answer> < /answer> tags.

For the format reward, a value of 1 is assigned if the output exactly matches the pattern “<think>...<
/think>...<answer>...< /answer>”, and 0 otherwise. The accuracy reward assigns 1 if a bounding
box (bbox) array enclosed in a square bracket is detected and the IoU between the predicted and
ground-truth bboxes exceeds 0.5, and 0 otherwise. During inference, the center of the predicted
bbox is used as final prediction. Due to space limitations, we provide the detailed pseudo-code of
RFT (trivial), along with the implementation details of the SFT baseline and the zero-shot setup for
Qwen2.5-VL, in section A.1. As shown in table 1, both SFT and trivial RFT lead to improvements
over the zero-shot baseline, but RFT (trivial) does not outperform SFT.

Finding 1. Careful design of rule-based reinforcement fine-tuning, beyond common practice, is

necessary for effectively improving GUI visual grounding performance.

3.2 HOW TO DESIGN REWARD FUNCTIONS IN GRPO?

As defined earlier, the default format reward enforces exact tag matching, while the accuracy reward
relies strict JSON-style output consistent with the model’s pretraining. The model is sharply penalized
(rewarded 0) if any part of the expected structure is missing—such as an omitted </answer> tag—or
it has a minor style deviation, e.g., outputting coordinates as a tuple instead of a JSON list. This
rigid design introduces training noise and instability, even when the model successfully performs
reasoning and answering.

Table 2: Compare the default reward function and our SRF
on ScreenSpot (Qwen2.5-VL, 500 training steps).

Method Backbone Step Acc (%)

Default Qwen2.5-VL 500 79.2
SRF (Ours) Qwen2.5-VL 500 79.9

To address this, we propose the Soft
Reward Function (SRF), which pro-
vides partial credit to the presence
of each tag and relaxes output style.
Specifically, SRF removes the JSON
requirement from the prompt. For the
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format reward, SRF assigns +0.5 for each of <think> and </think>, +1/3 for each of <answer>
and </answer>, and +1/3 if the content inside the answer tags contains the correct number of
coordinates. The total score is normalized to [0, 1]. For the accuracy reward, SRF ignores style and
simply extracts numeric values present in the output. Detailed prompts and pseudo-code are provided
in section A.2 due to space constraints. As shown in table 2, SRF provides +0.7% improvement over
the default reward function.
Finding 2. Looser reward functions in RFT with fractional reward better support stable RFT training,

and strict adherence to pretraining-style output is not necessary.

3.3 HOW TO DESIGN MODEL PREDICTION FORMAT ALONG WITH ITS ACCURACY REWARD
FUNCTION?

The goal of GUI visual grounding is to predict a point that falls within the target element to enable
the downstream action. To support this functionality, the most direct design is to predict a point and
assign a binary reward based on whether it lies within the ground-truth bounding box [Shen et al.,
2025] (In-Bbox). Alternatively, one can define reward based on a distance threshold k [Liu et al.,
2025a], where the point prediction is rewarded with 1 if it falls within k pixels of the target center
(denoted as Distance@k). Another option is to output a bounding box and derive a point prediction
from its center, evaluating it via IoU with the ground truth. This can be used as a continuous reward
or a thresholded one (e.g., IoU@0.5 gives a reward of 1 if IoU > 0.5, and 0 otherwise, as in our
default format).

Table 3: Comparison of different prediction formats and accuracy reward functions under SRF on
ScreenSpot (Qwen2.5-VL, 500 training steps).

Prediction Reward Backbone Step Acc (%)

Bbox IoU@0.5 Qwen2.5-VL 500 79.9
Bbox IoU Qwen2.5-VL 500 81.6
Point Distance@80 Qwen2.5-VL 500 82.7
Point In-Bbox Qwen2.5-VL 500 83.4

Building on our Soft Reward Function, we evaluate four configurations. The threshold of 80 for
Distance@k is empirically selected for best performance. As shown in table 3, Point prediction with
In-Bbox performs best.

Finding 3. The most effective RFT design is one that aligns directly with the task’s functional goal—

specifically, point prediction with in-bounding-box reward for GUI-VG.

3.4 HOW TO BALANCE THE KL PENALTY IN GRPO?

In GRPO, the KL penalty term enforces the current model to stay close to the original model,
mitigating reward-driven over-optimization [Shao et al., 2024a, Guo et al., 2025]. The hyperparameter
β plays a critical role in determining the strength of this regularization. In our experiments, we
observed that model performance is highly sensitive to this parameter.

We first empirically explore the effect of different values for β, then introduce a novel strategy we
call Adversarial KL Factor, which dynamically scales the KL penalty based on reward strength. The
intuition is that high-reward responses are more likely to cause over-optimization in GRPO. However,
the KL penalty with the original model does not necessarily increase proportionally, especially when
the original model itself assigns high probability to such responses. Therefore, a static KL term may
fail to counterbalance the effect of reward. To address this, we define the Adversarial KL Factor as
the ratio of the reward to its theoretical maximum m, and use it as a multiplicative modifier to β to
scale the KL penalty proportionally. This dynamic formulation ensures that as reward increases, the
regularization also strengthens adaptively. The modified GRPO objective is:

Ji = Ai − αiβ DKL(oi ∥ oorig
i ), Ai =

ri −Mean({r1, r2, . . . , rN})
Std({r1, r2, . . . , rN})

, αi =
ri
m
, (3.1)

where m = 2 is the maximum possible reward under our setup.

5
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Table 4: Comparison of different KL settings under SRF, point prediction, and In-Bbox reward on
ScreenSpot (Qwen2.5-VL, 500 training steps).

Adversarial β Backbone Step Acc (%)

✗ 4e-2 Qwen2.5-VL 500 83.4
✗ 0 Qwen2.5-VL 500 84.7
✗ 1e-4 Qwen2.5-VL 500 85.6
✓ 1e-4 Qwen2.5-VL 500 87.4
✓ 1e-6 Qwen2.5-VL 500 77.5

Results are shown in table 4. Simply tuning β provides clear performance improvements, demonstrat-
ing the importance of empirically calibrating the KL penalty. Notably, our Adversarial KL Factor
strategy (row 4) achieves a substantial +1.8% gain over the best β baseline (row 3), validating the
advantage of dynamically adjusting KL strength in response to reward magnitude. Row 5 further
indicates that setting β too small results in degraded performance.

Finding 4. GRPO is sensitive to the strength of the KL penalty, which requires empirical exploration.

Our Adversarial KL Factor dynamically balances this penalty, leading to optimal performance.

3.5 SHOULD WE FULLY FINE-TUNE THE MODEL OR USE LORA?

We further investigate the impact of fine-tuning strategies by comparing full model fine-tuning (Full-
FT) with LoRA [Hu et al., 2021] fine-tuning (LoRA-FT) applied to the LLM component. In practice,
we observe that full fine-tuning tends to destabilize training unless a much smaller learning rate is
used. Therefore, we reduce the learning rate for full fine-tuning to 1× 10−6, while keeping other
hyperparameters consistent. We also report the training time per iteration using 6×A6000 GPUs.

Table 5: Comparison of Full-FT and LoRA-FT under SRF, point prediction, In-Bbox reward, β =
1 × 10−4, and Adversarial KL Factor on ScreenSpot (Qwen2.5-VL, 500 training steps). Training
time is reported per iteration over 6×A6000 GPUs.

Config Backbone Step Time Acc (%)

Full-FT Qwen2.5-VL 500 749.4 s 87.5
LoRA-FT Qwen2.5-VL 500 28.4 s 87.4

As shown in table 5, Full-FT requires over 25 times more training time per iteration compared to
LoRA-FT, while yielding only a marginal improvement of +0.1%. Given this modest performance
gain relative to the substantial increase in computational cost, we adopt LoRA-FT as a more efficient
strategy for GUI-VG reinforcement fine-tuning in our study.

Finding 5. LoRA offers comparable performance to full fine-tuning while being significantly more

efficient, making it a practical choice for GUI-VG with reinforcement fine-tuning.

3.6 HOW TO DECIDE THE GROUP SIZE AND BATCH SIZE IN GRPO?

The hyperparameters group size and batch size play critical roles in GRPO [Shao et al., 2024a].
Specifically, group size affects the normalization of advantage estimates, while batch size determines
how each sample contributes to the final objective function. Therefore, it is necessary to empirically
examine how different configurations of these two hyperparameters impact the final performance.

As shown in table 6, the configuration with group size 6 and batch size 4 achieves the highest accuracy,
which is our default setting. Interestingly, increasing the group size from 6 to 8 leads to a substantial
performance drop, even though larger groups theoretically provide better baseline estimates for
advantage in GRPO to serve as a more stable substitute for the critic model in PPO [Schulman et al.,

6
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2017]. This counterintuitive result suggests that RFT is sensitive to seemingly minor changes in
implementation details and highlights the need for systematic validation of hyperparameter choices.

Table 6: Effect of group size and batch size under SRF, point prediction, In-Bbox reward, β =
1× 10−4, Adversarial KL Factor and LoRA on ScreenSpot (Qwen2.5-VL, 500 training steps).

Group Batch Backbone Step Acc (%)

6 1 Qwen2.5-VL 500 86.5
6 4 Qwen2.5-VL 500 87.4
8 4 Qwen2.5-VL 500 83.9

Finding 6. GRPO performance varies significantly with group and batch size configurations,

highlighting the importance of empirical hyperparameter tuning.

3.7 HOW TO INVOLVE IMAGE RESOLUTION INFORMATION IN THE PROMPT?

Prompting image resolution may provide additionally helpful context, especially for high-resolution
GUI screenshots. We explore when such information should be incorporated into the prompt.
Specifically, we compare three strategies: (1) never provide resolution; (2) provide resolution during
both training and testing; (3) provide resolution only at test time. When resolution is included, we
prepend the prompt with ”The screenshot resolution is {width}×{height}.”

Table 7: Effect of image resolution in the prompt under SRF, point prediction, In-Bbox reward, LoRA,
groupsize = 6, and batchsize = 4 on ScreenSpot (Qwen2.5-VL, 500 training steps).

Train Test Backbone Step Acc (%)

✓ ✓ Qwen2.5-VL 500 83.7
✗ ✗ Qwen2.5-VL 500 87.4
✗ ✓ Qwen2.5-VL 500 88.0

As shown in table 7, the highest accuracy is achieved when resolution information is excluded during
training but added at test time. We hypothesize that withholding resolution during training may
challenge the model to learn a better spatial reasoning ability. At test time, the additional resolution
context then serves as a useful signal to refine predictions.

Finding 7. Withholding the cue of image resolution during training fosters better learning, while

providing it at test time proves beneficial.

3.8 FINAL DESIGN CHOICES FOR RFT ON GUI-VG

Based on the studies above, we finalize a set of design choices for an effective and efficient RFT
pipeline for GUI visual grounding under GRPO. We propose the Soft Reward Function (SRF) to
provide partial credit for format compliance while relaxing output constraints. For the prediction
format, we use direct point prediction with the In-Bbox binary reward. To stabilize training, we
introduce the Adversarial KL Factor with a coefficient of β = 1 × 10−4. We employ LoRA for
efficient fine-tuning and set the group size to 6 and batch size to 4. Image resolution information is
withheld during training and added only at inference. We train 1,300 steps for our final version.

4 COMPARISON WITH PREIVOUS METHODS

We compare our final RFT method against prior approaches across three GUI-VG benchmarks
introduced in section 2.2: ScreenSpot [Cheng et al., 2024], ScreenSpot v2 [Wu et al., 2024], and
ScreenSpot-Pro [Li et al., 2025].
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Table 8: Comparison of various models on ScreenSpot. The optimal result is bolded. “Size” refers to
model size. “#Train” refers to training samples.

Method Size #Train Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

Fuyu [Bavishi et al., 2023] 8B – 41.0 1.3 33.0 3.6 33.9 4.4 19.5
CogAgent [Hong et al., 2023] 18B 400K 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick [Cheng et al., 2024] 9.6B 364K 78.0 52.0 72.2 30.0 55.7 32.5 53.4
AGG [Lei et al.] 0.4B 35M 86.1 62.8 81.8 46.2 74.2 48.4 66.6
OmniParser [Lu et al., 2024] * – 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround [Gou et al., 2024] 7B 1.3M 82.8 60.3 82.5 63.6 80.4 70.4 73.3
ShowUI-G [Lin et al., 2024] 2B 119K 91.6 69.0 81.8 59.0 83.0 65.5 74.9
ShowUI [Lin et al., 2024] 2B 256K 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OS-Atlas [Wu et al., 2024] 4B 13.58M 85.7 58.5 72.2 45.7 82.6 63.1 68.0
OS-Atlas [Wu et al., 2024] 7B 13.58M 93.0 72.9 91.8 62.9 90.9 74.3 81.0

GuirlVG 7B 2K 96.3 86.0 93.3 77.1 91.7 83.5 88.0
GuirlVG 7B 5.2K 96.0 84.7 92.8 80.0 92.6 85.9 88.7

Results on the ScreenSpot benchmark are shown in table 8. Our method substantially outperforms
previous methods that rely on supervised fine-tuning (SFT), despite using significantly fewer training
samples. Specifically, while prior SFT methods are trained on hundreds of thousands to over ten
million examples, our RFT method achieves superior performance with just 2K training samples.
For example, we outperform OS-Atlas—which uses 6.79K times more data—by +7.0% in accuracy,
highlighting the efficiency and effectiveness of RFT as a post-training strategy. When increasing
training to 1300 steps using 5.2K training samples, our method achieves further improvements,
outperforming OS-Atlas by +7.7%. Notably, on the Mobile-Icon subset, our method exceeds OS-
Atlas by +11.8%, despite our training data containing no mobile-specific samples. This suggests that
RFT enhances out-of-domain reasoning capabilities, aligning with the claim from Chu et al. [2025]
that “SFT memorizes, RL generalizes.”

Table 9: Comparison of various models on ScreenSpot v2. The optimal result is bolded. “Size” refers
to model size. “#Train” refers to training samples.

Method Size #Train Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

SeeClick [Cheng et al., 2024] 9.6B 364K 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas [Wu et al., 2024] 4B 13.58M 87.2 59.7 72.7 46.4 85.9 63.1 71.9
OS-Atlas [Wu et al., 2024] 7B 13.58M 95.2 75.8 90.7 63.6 90.6 77.3 84.1

GuirlVG 7B 2K 99.3 89.6 94.8 72.9 95.7 83.3 90.9
GuirlVG 7B 5.2K 98.3 89.6 94.3 80.7 95.7 86.2 91.9

Results on ScreenSpot v2 (table 9) mirror the trends observed on ScreenSpot. With only 2K training
examples, our method surpasses all previous methods, and with 5.2K examples, it reaches a new
state-of-the-art of 91.9% average accuracy—+7.8% higher than OS-Atlas (7B). Performance gains
are consistent across all subdomains, reaffirming the generalization strength of our RFT pipeline.

Table 10: Comparison of various models on ScreenSpot-Pro. The optimal result is bolded.

Model Development Creative CAD Scientific Office OS Avg
Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

SeeClick [Cheng et al., 2024] 0.6 0.0 1.0 0.0 2.5 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.1
OS-Atlas-4B [Wu et al., 2024] 7.1 0.0 3.0 1.4 2.0 0.0 9.0 5.5 5.1 3.8 5.6 0.0 3.7
ShowUI-2B [Lin et al., 2024] 16.9 1.4 9.1 0.0 2.5 0.0 13.2 7.3 15.3 7.5 10.3 2.2 7.7
CogAgent-18B [Hong et al., 2023] 14.9 0.7 9.6 0.0 7.1 3.1 22.2 1.8 13.0 0.0 5.6 0.0 7.7
Aria-GUI [Yang et al., 2024] 16.2 0.0 23.7 2.1 7.6 1.6 27.1 6.4 20.3 1.9 4.7 0.0 11.3
UGround-7B [Gou et al., 2024] 26.6 2.1 27.3 2.8 14.2 1.6 31.9 2.7 31.6 11.3 17.8 0.0 16.5
OS-Atlas-7B [Wu et al., 2024] 33.1 1.4 28.8 2.8 12.2 4.7 37.5 7.3 33.9 5.7 27.1 4.5 18.9

GuirlVG-2K-7B 57.8 9.0 38.9 10.5 26.9 7.8 44.4 14.5 57.1 22.6 39.3 14.6 31.6
GuirlVG-5.2K-7B 64.9 7.6 42.9 11.2 28.9 9.4 63.9 16.4 63.8 26.4 43.9 13.5 36.1

Finally, results on ScreenSpot-Pro (table 10) demonstrate the strong generalization of our method
to high-resolution, professional GUIs. With only 2K training examples, our approach already
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outperforms all prior methods by a large margin, achieving 31.6% average accuracy—surpassing
the best SFT baseline OS-Atlas (7B) by +12.7%. Scaling up to 5.2K examples further boosts
performance to 36.1%, an absolute gain of +17.2% over OS-Atlas. This trend is consistent across
all domains, including particularly challenging ones like Creative, CAD and OS, confirming the
robustness of our RFT pipeline in complex real-world scenarios.

“Intel on Instagram”

(Zoom-in around 
the Ground Truth)

<think>
To find the point on Instagram, I need to 
identify the social media icons typically 

associated with Instagram, which is often 
the camera icon. On the webpage, there's a 

camera icon typically representing the 
Instagram or photo sharing feature. 

</think>
<answer> The point is [525, 829].</answer>

Input Model Output Processed Grounding Result

<think>
To find the element labeled "The Coolest And 
Weirdest Gadgets We Saw At Ifa," I need to 

locate where this text appears on the screen. 
It typically would be in the titles or 

descriptions of content sections. Given the 
structure of the web page, the description 

might be associated with a visual or 
contextual hint like an image or a 

subheading. Possible locations could be at 
the bottom of a section or in a list of articles.

</think>
<answer> The point is [689, 940].</answer>

“The Coolest And 
Weirdest Gadgets We 

Saw At Ifa”

Figure 2: Qualitative Result of GuirlVG.

5 QUALITATIVE RESULTS

In this section, we present qualitative results to illustrate the reasoning capabilities of GuirlVG in GUI
visual grounding tasks. fig. 2 shows two representative examples, each consisting of the input (left),
model output with intermediate thinking steps (middle), and the final grounding result (right). The
thinking process is highlighted with green color. In the first example, the task is to locate an icon on a
webpage. GuirlVG begins by reasoning that it needs to identify social media icons, often represented
by a camera icon. Recognizing the webpage context, the model correctly identifies the Instagram
icon and grounds the instruction to the coordinates, as shown in the red dot in the grounding result. In
the second example, the instruction is to find a text. GuirlVG reasons that the target is a text and it is
likely to appear as a contextual hint like a subheading. By analyzing the structure of the webpage, the
model further reasons that the target is at the bottom of a section. These qualitative results underscore
GuirlVG’s textual understanding and advanced reasoning abilities, enabled by our reinforcement
learning-based approach. By explicitly modeling the thinking process, GuirlVG not only achieves
high accuracy but also provides interpretable steps, making it a reliable solution for GUI-VG tasks.

6 CONCLUSION

In this work, we revisit the paradigm of post-training for GUI visual grounding and present the
first comprehensive empirical study of rule-based reinforcement fine-tuning (RFT) in this domain.
Through systematic analysis and a series of targeted innovations—including the decomposition of
GRPO components, introduction of the Adversarial KL Factor, and extensive tuning of training
configurations—we demonstrate that RFT, when properly optimized, decisively outperforms super-
vised fine-tuning (SFT). Using as few as 2K training examples, our method surpasses strong SFT
baselines trained on orders of magnitude more data across three challenging benchmarks, achieving
new state-of-the-art performance. These findings challenge the prevailing reliance on large-scale SFT
and highlight RFT as a more data-efficient and generalizable alternative for GUI-VG.
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A APPENDIX

A.1 ADDITIONAL DETAILS FOR SECTION 3.1

We provide additional details of the trivial adoption of RFT (RFT-trivial) and the implementation of
SFT, which contributes to the reproducibility of the results of this paper.

Algorithm 1 Format Reward Calculation

1: function FORMATREWARD(completion)
2: pattern← regex "<think>.*?</think>\s*<answer>.*?</answer>"
3: return 1.0 if completion matches pattern else 0.0
4: end function

Algorithm 2 Accuracy Reward Calculation

1: function ACCURACYREWARD(completion, GT box)
2: answer pattern← regex <answer>(.*?)</answer>
3: bbox pattern← regex [(\d+),\s*(\d+),\s*(\d+),\s*(\d+)]
4: reward← 0.0
5: if completion matches answer pattern then
6: pred bbox← find the match in completion
7: if length of pred bbox is 4 and IoU(pred bbox, GT box) > 0.5 then
8: reward← 1.0
9: end if

10: end if
11: return reward
12: end function

The format reward function of RFT-trivial is shown in algorithm 1 and the corresponding accuracy
reward function is shown in algorithm 2.

For the SFT baseline, we use the following prompt:

Please provide the bounding box coordinates of the region described by this sentence: <description>.

The answer format is:

json \n [bbox 2d: <ground-truth bounding box>, label: <description>] \n.

We adopt the official evaluation code of Qwen2.5-VL1 to obtain the zero-shot baseline performance.

A.2 ADDITIONAL DETAILS FOR SECTION 3.2

We provide details of our Soft Format Reward in algorithm 3 to help readers better understand it.

The prompt we use in section 3.2 is as follow:

Please provide the bounding box coordinates [x1, y1, x2, y2] of a specific element based on this
sentence: <description>. First, think about the reasoning process in the mind within <think>
< /think> tags. Then, output the bounding box coordinates within <answer> < /answer> tags.

1https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/computer_use.
ipynb
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Algorithm 3 Soft Format Reward Calculation

1: function SOFTFORMATREWARD(completion)
2: score← 0
3: if “<think>” in completion then
4: score← score+ 0.5
5: end if
6: if “< /think>” in completion then
7: score← score+ 0.5
8: end if
9: if full “<answer>...< /answer>” block detected then

10: score← score+ 2/3
11: if exactly two numbers found inside the block then
12: score← score+ 1/3
13: end if
14: else if “<answer>” or “< /answer>” detected then
15: score← score+ 1/3
16: end if
17: return score/2 ▷ normalized by the maximum possible reward
18: end function

14
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“Intel on Instagram” <think> To find the point on 
Instagram, I need to 

iden6fy the social media 
icons typically associated 
with Instagram, which is 

o<en the camera icon. On 
the webpage, there's a 
camera icon typically 

represen6ng the Instagram 
or photo sharing feature. 
</think> <answer> The 

point is [525, 
829].</answer>

So# Reward Func/on
(Format Reward)Mul$ple

Responses
Check:
1. <think>
2. </think>
3. <answer>
4. </answer>
5. 4 numbers inside answer
6. IoU > 0.5

Point & In-Bbox
(Accuracy Reward)

Model
! Lora

Reference
Model

❄

Adversarial KL 
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1e-4 beta
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4 Batches
1.3K steps
5.2K data

Provibe Image resolution?
❌Train ✅test

F igure 3: The overview of Guirl V G.
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A .3 M A T H E M A T I C A L F O R M U L A T I O N O F R E WA R D F U N C T I O N S

We provide the formal mathematical definitions for the reward functions and design choices discussed
in the main methodology sections.

A .3.1 F O R M U L A T I O N F O R S E C T I O N 3.1 ( T R I V I A L R F T )

In the trivial R F T setting, rewards are strictly coupled to exact string matching. Let 1[·] denote the
indicator function.

R format = 1[match � think � ... � / think � ... � answer � ... � / answer � ]
R acc = 1[match � answer � ... � / answer � ] · 1[match bbox array with 4 numbers] ·

1[IoU (boxpred , boxgt ) > 0.5]

A .3.2 F O R M U L A T I O N F O R S E C T I O N 3.2 (S O F T R E WA R D F U N C T I O N )

To mitigate the sparse reward signal caused by strict syntax constraints, the Soft Reward Function
(SR F) decomposes the format reward into partial credits, relaxing output style:

R format =
1
2

�
1
2

1[match � think � ] +
1
2

1[match � / think � ] +
1
3

1[match � answer � ]

+
1
3

1[match � / answer � ] +
1
3

1[match 4 numbers inside answer]
�

A .3.3 F O R M U L A T I O N F O R S E C T I O N 3.3 ( A C C U R A C Y R E WA R D V A R I A N T S)

We empirically compare different designs for model prediction combined with the corresponding
accuracy reward function. The formulations for the variants are defined as follows:

R IoU @0.5 = 1[IoU (boxpred , boxgt ) > 0.5]
R IoU = IoU (boxpred , boxgt )

R D istance@ k = 1
�

� pointpred ⌧ pointgt � 2 ≤ 80
�

R In-Bbox = 1
�
pointpred � boxgt

�

A .3.4 F O R M U L A T I O N F O R O T H E R S E C T I O N S

For Section 3.4, the formulation for the A dversarial K L Factor is provided in Eq. 3.1 of the main
paper. For Sections 3.5, 3.6, and 3.7, the underlying optimization equation remains the G RPO,
consistent with Eqs. 2.1, 2.2, and 2.3 provided in the Preliminaries section.
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A.3 MATHEMATICAL FORMULATION OF REWARD FUNCTIONS

We provide the formal mathematical definitions for the reward functions and design choices discussed
in the main methodology sections.

A.3.1 FORMULATION FOR SECTION 3.1 (TRIVIAL RFT)

In the trivial RFT setting, rewards are strictly coupled to exact string matching. Let 1[·] denote the
indicator function.

Rformat = 1[match ⟨think⟩...⟨/think⟩...⟨answer⟩...⟨/answer⟩]
Racc = 1[match ⟨answer⟩...⟨/answer⟩] · 1[match bbox array with 4 numbers] ·

1[IoU(boxpred, boxgt) > 0.5]

A.3.2 FORMULATION FOR SECTION 3.2 (SOFT REWARD FUNCTION)

To mitigate the sparse reward signal caused by strict syntax constraints, the Soft Reward Function
(SRF) decomposes the format reward into partial credits, relaxing output style:

Rformat =
1

2

(
1

2
1[match ⟨think⟩] + 1

2
1[match ⟨/think⟩] + 1

3
1[match ⟨answer⟩]

+
1

3
1[match ⟨/answer⟩] + 1

3
1[match 4 numbers inside answer]

)

A.3.3 FORMULATION FOR SECTION 3.3 (ACCURACY REWARD VARIANTS)

We empirically compare different designs for model prediction combined with the corresponding
accuracy reward function. The formulations for the variants are defined as follows:

RIoU@0.5 = 1[IoU(boxpred, boxgt) > 0.5]

RIoU = IoU(boxpred, boxgt)

RDistance@k = 1
[
∥pointpred − pointgt∥2 ≤ 80

]
RIn-Bbox = 1

[
pointpred ∈ boxgt

]
A.3.4 FORMULATION FOR OTHER SECTIONS

For Section 3.4, the formulation for the Adversarial KL Factor is provided in Eq. 3.1 of the main
paper. For Sections 3.5, 3.6, and 3.7, the underlying optimization equation remains the GRPO,
consistent with Eqs. 2.1, 2.2, and 2.3 provided in the Preliminaries section.
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Under review as a conference paper at ICLR 2026

A.4 OVERVIEW OF GUIRLVG

As shown in fig. 3, we provide the overview of GuirlVG. Based on our empirical results, we finalize
a set of design choices for GUI visual grounding under GRPO. We propose the Soft Reward Function
(SRF) to provide partial credit for format compliance while relaxing output constraints. For the
prediction format, we use direct point prediction with the In-Bbox binary reward. To stabilize training,
we introduce the Adversarial KL Factor with a coefficient of β = 1× 10−4. We employ LoRA for
efficient fine-tuning and set the group size to 6 and batch size to 4. Image resolution information is
withheld during training and added only at inference. We train 1,300 steps for our final version.
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