
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIRLVG: INCENTIVIZE GUI VISUAL GROUNDING
VIA EMPIRICAL EXPLORATION ON REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical user interface visual grounding (GUI-VG)—a core capability for GUI
agents—has primarily relied on supervised fine-tuning (SFT) of multimodal large
language models (MLLMs), demanding extensive data curation and significant
training costs. However, as MLLMs continue to advance and even cover GUI
domains during pretraining, the necessity of exhaustive SFT post-training becomes
increasingly questionable. Meanwhile, the recent successes of rule-based reinforce-
ment fine-tuning (RFT) suggest a more efficient alternative. However, despite its
promise, the optimal manner of RFT for GUI-VG remains unexplored. To bridge
this gap, we introduce GuirlVG, a reinforcement learning–based GUI-VG method
built on a systematic empirical study and a novel stabilization technique. Prelim-
inarily, we find that naive application of RFT underperforms the SFT baseline,
motivating a deeper exploration of RFT. First, we decompose RFT into its core
components and analyze the optimal formulation of each. Second, as part of this
exploration, we propose a novel Adversarial KL Factor that dynamically stabilizes
training to mitigate reward over-optimization. Third, we further explore the training
configurations of RFT to enhance the effectiveness. Extensive experiments show
that GuirlVG, with only 5.2K training samples, outperforms SFT methods trained
on over 10M samples, achieving a +7.7% improvement on ScreenSpot, a +17.2%
improvement on ScreenSpotPro and 91.9% accuracy on ScreenSpotV2.

RFT
(Trivial)

79.2%

83.4%

+
Tune

β

+
Adv.
KL

+
Img.
Res.

88.0%

+
Train
Steps

88.7%

Exploration Trajectory of GuirlVG

53.4%

73.3%

SeeClick UGround
+

SRF
+

Point &
In-Bbox

81.0%

OS-Atlas

Previous SFT Methods

5.2K Data

364K
Data

1.3M
Data

13.58M
Data

2K Data

79.9%

85.6%
87.4%

Accuracy

(ScreenSpot)

Figure 1: Step-by-step exploration of GuirlVG. Starting from trivial RFT, we progressively add Soft
Reward Function, In-Bbox reward with point prediction, β tuning, our Adversarial KL Factor, image
resolution prompting, and extended training. With only 5.2K data, GuirlVG surpasses SFT methods
trained on up to 13.58M data. Circle size reflects data scale used by each method.

1 INTRODUCTION

Graphical user interface (GUI) agents [Gou et al., 2024, Lin et al., 2024, Cheng et al., 2024, Qin et al.,
2025, Xu et al., 2024, Huang et al., 2025b, Lei et al., Wu et al., 2024, Hong et al., 2024], empowered

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

by the rapid advancement of foundation models or multimodal large language models (MLLMs) [Liu
et al., 2024b, Wang et al., 2024, Bai et al., 2025a], are increasingly capable of perceiving and acting
within digital environments via screenshots. A core capability underpinning such agents is GUI visual
grounding (GUI-VG)—the task of localizing actionable elements in a screenshot conditioned on a
textual instruction [Gou et al., 2024, Cheng et al., 2024, Lei et al.]. Recent efforts have primarily
approached GUI-VG through post-training of MLLMs via supervised fine-tuning (SFT), a paradigm
that demands large-scale domain-specific data curation and significant training resources [Wu et al.,
2024, Cheng et al., 2024, Qin et al., 2025, Gou et al., 2024, Lei et al.]. These advancements co-evolve
with MLLM’s capabilities, tailoring each generation of MLLMs to GUI-centric benchmarks.

However, SFT raises critical concerns regarding efficiency. As MLLMs continue to improve in general
perception and reasoning—with some already ingesting GUI-related data during pretraining [Wang
et al., 2024, Bai et al., 2025a]—the necessity of extensive post-training becomes increasingly ques-
tionable. Given the persistent training cost incurred with each new MLLM generation, a fundamental
question arises: Does exhaustive SFT remain the most effective post-training strategy?

Meanwhile, the success of rule-based reinforcement fine-tuning (RFT) by Group Relative Policy
Optimization (GRPO) [Shao et al., 2024a] in DeepSeek-R1 [Guo et al., 2025] inspires new directions.
Recent methods transfer GRPO to visual grounding domains [Yuan et al., 2025, Luo et al., 2025, Shen
et al., 2025, Bai et al., 2025b] with notable improvements. Despite these advances, no prior work has
systematically studied RFT for GUI-VG. In fact, our results even reveal that naive application of RFT
to GUI-VG under fair experimental settings underperforms the SFT baseline, prompting a critical
question: What is the optimal formulation of RFT objectives for GUI visual grounding?

In this paper, instead of purely pursuing the best performance, we focus on step-by-step and fair
ablation to obtain rigorous findings that provide insights into how to design RFT for GUI-VG. We do
not compare with other RFT-based GUI-VG methods, since differences in data, training, and models
would yield limited rigorous conclusions in systematic experiments. We elaborate on this point in
section 2.1. We introduce GuirlVG, a RFT-based GUI-VG design built upon our comprehensive em-
pirical study and a novel stabilization technique toward GRPO. ❶ We begin by deconstructing GRPO
into its core components—format reward, accuracy reward, and KL penalty—and systematically
ablate each component to derive an optimal configuration. ❷ To further address over-optimization
caused by reward functions, we introduce a novel Adversarial KL Factor, which dynamically scales
the KL penalty based on rewards to stabilize the learning process. ❸ Additionally, we explore a
wide range of training setups, including hyperparameter tuning, LoRA enablement, and prompt
engineering, to uncover best practices for effective RFT on GUI-VG. ❹ Finally, we conduct extensive
experiments on ScreenSpot [Cheng et al., 2024], ScreenSpotV2 [Wu et al., 2024], and ScreenSpot-
Pro [Li et al., 2025], demonstrating that GuirlVG achieves state-of-the-art results using as few as
2K∼5.2K training examples. Compared to prior SFT baselines trained on hundreds of thousands to
over ten million data, our method achieves superior accuracy with up to +17.2% absolute gains on
ScreenSpotPro, highlighting the data efficiency and strong effectiveness of GuirlVG.

2 BACKGROUND

2.1 RELATED WORK

Why do we need empirical studies? While prior works [Yuan et al., 2025, Luo et al., 2025,
Shen et al., 2025, Bai et al., 2025b] have proposed various modeling choices for RFT-based GUI-VG,
these advances often emphasize reward function novelty or performance improvements without a
systematic examination of underlying design factors. As GUI-VG continues to evolve rapidly, such
one-off comparisons offer limited guidance for practitioners, since conclusions are often confounded
by differences in data, training setups, and model structure. Empirical studies fill this gap by providing
controlled and transparent analyses that isolate the effect of specific design choices. This type of
investigation is essential for moving beyond ad-hoc innovation toward principled understanding,
enabling the community to identify robust practices and avoid misleading interpretations of perfor-
mance gains. There are some pioneer works for empirical studies in Multimodal Large Language
Model, e.g. LLaVA-1.5 [Liu et al., 2024a], Prismatic [Karamcheti et al., 2024], Eagle [Shi et al.,
2024] and Idefics2 [Laurençon et al., 2024]. However, there remains a lack of empirical studies
investigating RFT in the context of GUI-VG.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GUI Visual Grounding. Visual grounding ability in graphical user interfaces [Cheng et al., 2024,
Gou et al., 2024, Lei et al.] has become one of the main bottlenecks for AI agents [Gou et al., 2024,
Lin et al., 2024, Cheng et al., 2024, Qin et al., 2025, Xu et al., 2024, Huang et al., 2025b, Lei et al.,
Wu et al., 2024, Hong et al., 2024]. To address this, SeeClick [Cheng et al., 2024] introduces a
large-scale pretraining pipeline for GUI-VG and proposes an automated method to generate training
data. Similarly, UGround [Gou et al., 2024] utilizes synthesized web-based data to support grounding
training, and AGG [Lei et al.] builds a dedicated engine to collect extensive GUI images with
annotations. OS-Atlas [Wu et al., 2024] further expands grounding data across multiple operating
systems. UI-TARs [Qin et al., 2025] combines GUI-centric pretraining with task-conditioned fine-
tuning to improve alignment between perception and reasoning. Despite the variety in their data
construction, these methods commonly adopt the supervised fine-tuning (SFT) paradigm, which
relies heavily on large volumes of high-quality labeled training data.

Reinforcement Fine-Tuning. Rule-based Reinforcement Fine-Tuning (RFT) with Group Relative
Policy Optimization (GRPO) [Shao et al., 2024a] has recently demonstrated effectiveness across
different domains [Shao et al., 2024b, Liu & Zhang, 2025, Wang* et al., 2025, Guo et al., 2025].
Unlike supervised fine-tuning (SFT), which enforces token-level supervision strictly corresponding to
the answer, RFT encourages models to freely explore their reasoning process and provides supervision
only at the level of the final output. This more flexible objective incentivizes stronger reasoning
capabilities [Guo et al., 2025]. Furthermore, in the RFT algorithm—GRPO, task-specific rule-
based reward functions are designed to provide supervision signals that are automatically verifiable.
This eliminates the need for training a separate critic model [Schulman et al., 2017, Ouyang et al.,
2022] or relying on human feedback [Kaufmann et al., 2023], thereby mitigating the risk of reward
hacking [Weng, 2024] and making RFT an effective alternative to SFT.

2.2 PRELIMINARIES

Group Relative Policy Optimization (GRPO). Given a task input which additionally specifies a
particular response format in the prompt, i.e. instructing the model to reason within < think ><
think > tags and answer within < answer >< /answer > tags, the model generates a group of N
candidate responses {o1, o2, . . . , oN}. Each candidate is evaluated using a rule-based reward function,
yielding rewards {r1, r2, . . . , rN}. For each response oi, this rule-based reward function scores two
rewards: a format reward, rfi , which assesses whether the response adheres to the instructed tag
structure, and an accuracy reward, rai , which evaluates the correctness of the response, such as
classification accuracy [Chen et al., 2025] or intersection-over-union (IoU) in detection tasks [Huang
et al., 2025a, Liu et al., 2025b]. The total reward for is computed as

ri = rfi + rai . (2.1)

The relative reward (also referred to as the advantage Ai) of the i-th candidate is computed by
normalizing the rewards within the group of candidate responses:

Ai =
ri −Mean({r1, r2, . . . , rN})

Std({r1, r2, . . . , rN})
, (2.2)

where Mean(·) and Std(·) denote the mean and standard deviation, respectively. To stabilize training,
GRPO additionally constrains model update by minimizing the KL divergence between the current
model and a reference model (typically the original model). Thus, the objective Ji to maximize for
each candidate oi becomes

Ji = Ai − β DKL(oi ∥ oorig
i), (2.3)

where β is a hyperparameter controlling the KL penalty strength, and oorig
i is the corresponding

response from the reference model. We omit details, such as clipping, averaging, etc.

Implementation. Unless specified otherwise, we fine-tune Qwen2.5-VL [Bai et al., 2025a] using
LoRA [Hu et al., 2022] with a rank of 64 and an alpha of 128, while keeping the vision module frozen.
Training data are randomly sampled from ShowUI [Lin et al., 2024], which crawls visually rich
website data and augments desktop data from OmniAct [Kapoor et al., 2024] using GPT-4o [Hurst
et al., 2024]. The group size of candidate responses, N , is set to 6, and the batch size is set to 4. The
KL divergence coefficient (β) is set to 0.04 by default. The learning rate is set to 1× 10−5, with two

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

training epochs, AdamW optimizer, and a linear decay schedule. We use 6×NVIDIA A100-80G
GPUs for training. For the SFT baseline, we adopt LLaMA Factory [Zheng et al., 2024] with the
same training configurations for a fair comparison. For the efficiency and fairness of experiments,
we report performances at step 500 for both RFT and SFT, where convergence is typically observed.
Training beyond 500 steps yields only marginal improvements, with our final version reaching peak
performance around step 1,300. Accordingly, our final version is only trained on 5,200 samples.

Evaluation Suite. We evaluate on three widely-used GUI-VG benchmarks across different plat-
forms: ScreenSpot [Cheng et al., 2024], ScreenSpot v2 [Wu et al., 2024], and ScreenSpot-Pro [Li
et al., 2025]. ScreenSpot evaluates GUI grounding capabilities across mobile, desktop, and web
environments, while ScreenSpot v2 improves evaluation reliability by correcting annotation errors.
ScreenSpot-Pro focuses on high-resolution professional scenarios, featuring expert-annotated tasks
spanning 23 applications, five industries, and three operating systems. All benchmarks report the
accuracy of whether the predicted point coordinate falls inside the ground truth bounding box of the
corresponding element in the screenshot.

3 METHODOLOGY

3.1 CAN TRIVIAL ADOPTION OF RFT BEATS SFT?

We begin by comparing the SFT baseline with a trivial adoption of RFT for GUI-VG. Specifically,
we adopt the commonly used implementation from HuggingFace [2025], Shen et al. [2025], using
the following prompt for a given description of the target element:

Table 1: Comparison of zero-shot, SFT, and trivial
RFT on ScreenSpot (Qwen2.5-VL, 500 training steps).

Method Backbone Step Acc (%)

Zero-Shot Qwen2.5-VL 500 72.6
SFT Qwen2.5-VL 500 82.6
RFT (trivial) Qwen2.5-VL 500 79.2

Please provide the bounding box coordi-
nates [x1, y1, x2, y2] of a specific element
based on this sentence: <description>.
First, think through the reasoning process
within <think> < /think> tags. Then, out-
put the bounding box coordinates in JSON
format within <answer> < /answer> tags.

For the format reward, a value of 1 is assigned if the output exactly matches the pattern “<think>...<
/think>...<answer>...< /answer>”, and 0 otherwise. The accuracy reward assigns 1 if a bounding
box (bbox) array enclosed in a square bracket is detected and the IoU between the predicted and
ground-truth bboxes exceeds 0.5, and 0 otherwise. During inference, the center of the predicted
bbox is used as final prediction. Due to space limitations, we provide the detailed pseudo-code of
RFT (trivial), along with the implementation details of the SFT baseline and the zero-shot setup for
Qwen2.5-VL, in section A.1. As shown in table 1, both SFT and trivial RFT lead to improvements
over the zero-shot baseline, but RFT (trivial) does not outperform SFT.

Finding 1. Careful design of rule-based reinforcement fine-tuning, beyond common practice, is

necessary for effectively improving GUI visual grounding performance.

3.2 HOW TO DESIGN REWARD FUNCTIONS IN GRPO?

As defined earlier, the default format reward enforces exact tag matching, while the accuracy reward
relies strict JSON-style output consistent with the model’s pretraining. The model is sharply penalized
(rewarded 0) if any part of the expected structure is missing—such as an omitted </answer> tag—or
it has a minor style deviation, e.g., outputting coordinates as a tuple instead of a JSON list. This
rigid design introduces training noise and instability, even when the model successfully performs
reasoning and answering.

Table 2: Compare the default reward function and our SRF
on ScreenSpot (Qwen2.5-VL, 500 training steps).

Method Backbone Step Acc (%)

Default Qwen2.5-VL 500 79.2
SRF (Ours) Qwen2.5-VL 500 79.9

To address this, we propose the Soft
Reward Function (SRF), which pro-
vides partial credit to the presence
of each tag and relaxes output style.
Specifically, SRF removes the JSON
requirement from the prompt. For the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

format reward, SRF assigns +0.5 for each of <think> and </think>, +1/3 for each of <answer>
and </answer>, and +1/3 if the content inside the answer tags contains the correct number of
coordinates. The total score is normalized to [0, 1]. For the accuracy reward, SRF ignores style and
simply extracts numeric values present in the output. Detailed prompts and pseudo-code are provided
in section A.2 due to space constraints. As shown in table 2, SRF provides +0.7% improvement over
the default reward function.
Finding 2. Looser reward functions in RFT with fractional reward better support stable RFT training,

and strict adherence to pretraining-style output is not necessary.

3.3 HOW TO DESIGN MODEL PREDICTION FORMAT ALONG WITH ITS ACCURACY REWARD
FUNCTION?

The goal of GUI visual grounding is to predict a point that falls within the target element to enable
the downstream action. To support this functionality, the most direct design is to predict a point and
assign a binary reward based on whether it lies within the ground-truth bounding box [Shen et al.,
2025] (In-Bbox). Alternatively, one can define reward based on a distance threshold k [Liu et al.,
2025a], where the point prediction is rewarded with 1 if it falls within k pixels of the target center
(denoted as Distance@k). Another option is to output a bounding box and derive a point prediction
from its center, evaluating it via IoU with the ground truth. This can be used as a continuous reward
or a thresholded one (e.g., IoU@0.5 gives a reward of 1 if IoU > 0.5, and 0 otherwise, as in our
default format).

Table 3: Comparison of different prediction formats and accuracy reward functions under SRF on
ScreenSpot (Qwen2.5-VL, 500 training steps).

Prediction Reward Backbone Step Acc (%)

Bbox IoU@0.5 Qwen2.5-VL 500 79.9
Bbox IoU Qwen2.5-VL 500 81.6
Point Distance@80 Qwen2.5-VL 500 82.7
Point In-Bbox Qwen2.5-VL 500 83.4

Building on our Soft Reward Function, we evaluate four configurations. The threshold of 80 for
Distance@k is empirically selected for best performance. As shown in table 3, Point prediction with
In-Bbox performs best.

Finding 3. The most effective RFT design is one that aligns directly with the task’s functional goal—

specifically, point prediction with in-bounding-box reward for GUI-VG.

3.4 HOW TO BALANCE THE KL PENALTY IN GRPO?

In GRPO, the KL penalty term enforces the current model to stay close to the original model,
mitigating reward-driven over-optimization [Shao et al., 2024a, Guo et al., 2025]. The hyperparameter
β plays a critical role in determining the strength of this regularization. In our experiments, we
observed that model performance is highly sensitive to this parameter.

We first empirically explore the effect of different values for β, then introduce a novel strategy we
call Adversarial KL Factor, which dynamically scales the KL penalty based on reward strength. The
intuition is that high-reward responses are more likely to cause over-optimization in GRPO. However,
the KL penalty with the original model does not necessarily increase proportionally, especially when
the original model itself assigns high probability to such responses. Therefore, a static KL term may
fail to counterbalance the effect of reward. To address this, we define the Adversarial KL Factor as
the ratio of the reward to its theoretical maximum m, and use it as a multiplicative modifier to β to
scale the KL penalty proportionally. This dynamic formulation ensures that as reward increases, the
regularization also strengthens adaptively. The modified GRPO objective is:

Ji = Ai − αiβ DKL(oi ∥ oorig
i), Ai =

ri −Mean({r1, r2, . . . , rN})
Std({r1, r2, . . . , rN})

, αi =
ri
m
, (3.1)

where m = 2 is the maximum possible reward under our setup.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 4: Comparison of different KL settings under SRF, point prediction, and In-Bbox reward on
ScreenSpot (Qwen2.5-VL, 500 training steps).

Adversarial β Backbone Step Acc (%)

✗ 4e-2 Qwen2.5-VL 500 83.4
✗ 0 Qwen2.5-VL 500 84.7
✗ 1e-4 Qwen2.5-VL 500 85.6
✓ 1e-4 Qwen2.5-VL 500 87.4
✓ 1e-6 Qwen2.5-VL 500 77.5

Results are shown in table 4. Simply tuning β provides clear performance improvements, demonstrat-
ing the importance of empirically calibrating the KL penalty. Notably, our Adversarial KL Factor
strategy (row 4) achieves a substantial +1.8% gain over the best β baseline (row 3), validating the
advantage of dynamically adjusting KL strength in response to reward magnitude. Row 5 further
indicates that setting β too small results in degraded performance.

Finding 4. GRPO is sensitive to the strength of the KL penalty, which requires empirical exploration.

Our Adversarial KL Factor dynamically balances this penalty, leading to optimal performance.

3.5 SHOULD WE FULLY FINE-TUNE THE MODEL OR USE LORA?

We further investigate the impact of fine-tuning strategies by comparing full model fine-tuning (Full-
FT) with LoRA [Hu et al., 2021] fine-tuning (LoRA-FT) applied to the LLM component. In practice,
we observe that full fine-tuning tends to destabilize training unless a much smaller learning rate is
used. Therefore, we reduce the learning rate for full fine-tuning to 1× 10−6, while keeping other
hyperparameters consistent. We also report the training time per iteration using 6×A6000 GPUs.

Table 5: Comparison of Full-FT and LoRA-FT under SRF, point prediction, In-Bbox reward, β =
1 × 10−4, and Adversarial KL Factor on ScreenSpot (Qwen2.5-VL, 500 training steps). Training
time is reported per iteration over 6×A6000 GPUs.

Config Backbone Step Time Acc (%)

Full-FT Qwen2.5-VL 500 749.4 s 87.5
LoRA-FT Qwen2.5-VL 500 28.4 s 87.4

As shown in table 5, Full-FT requires over 25 times more training time per iteration compared to
LoRA-FT, while yielding only a marginal improvement of +0.1%. Given this modest performance
gain relative to the substantial increase in computational cost, we adopt LoRA-FT as a more efficient
strategy for GUI-VG reinforcement fine-tuning in our study.

Finding 5. LoRA offers comparable performance to full fine-tuning while being significantly more

efficient, making it a practical choice for GUI-VG with reinforcement fine-tuning.

3.6 HOW TO DECIDE THE GROUP SIZE AND BATCH SIZE IN GRPO?

The hyperparameters group size and batch size play critical roles in GRPO [Shao et al., 2024a].
Specifically, group size affects the normalization of advantage estimates, while batch size determines
how each sample contributes to the final objective function. Therefore, it is necessary to empirically
examine how different configurations of these two hyperparameters impact the final performance.

As shown in table 6, the configuration with group size 6 and batch size 4 achieves the highest accuracy,
which is our default setting. Interestingly, increasing the group size from 6 to 8 leads to a substantial
performance drop, even though larger groups theoretically provide better baseline estimates for
advantage in GRPO to serve as a more stable substitute for the critic model in PPO [Schulman et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2017]. This counterintuitive result suggests that RFT is sensitive to seemingly minor changes in
implementation details and highlights the need for systematic validation of hyperparameter choices.

Table 6: Effect of group size and batch size under SRF, point prediction, In-Bbox reward, β =
1× 10−4, Adversarial KL Factor and LoRA on ScreenSpot (Qwen2.5-VL, 500 training steps).

Group Batch Backbone Step Acc (%)

6 1 Qwen2.5-VL 500 86.5
6 4 Qwen2.5-VL 500 87.4
8 4 Qwen2.5-VL 500 83.9

Finding 6. GRPO performance varies significantly with group and batch size configurations,

highlighting the importance of empirical hyperparameter tuning.

3.7 HOW TO INVOLVE IMAGE RESOLUTION INFORMATION IN THE PROMPT?

Prompting image resolution may provide additionally helpful context, especially for high-resolution
GUI screenshots. We explore when such information should be incorporated into the prompt.
Specifically, we compare three strategies: (1) never provide resolution; (2) provide resolution during
both training and testing; (3) provide resolution only at test time. When resolution is included, we
prepend the prompt with ”The screenshot resolution is {width}×{height}.”

Table 7: Effect of image resolution in the prompt under SRF, point prediction, In-Bbox reward, LoRA,
groupsize = 6, and batchsize = 4 on ScreenSpot (Qwen2.5-VL, 500 training steps).

Train Test Backbone Step Acc (%)

✓ ✓ Qwen2.5-VL 500 83.7
✗ ✗ Qwen2.5-VL 500 87.4
✗ ✓ Qwen2.5-VL 500 88.0

As shown in table 7, the highest accuracy is achieved when resolution information is excluded during
training but added at test time. We hypothesize that withholding resolution during training may
challenge the model to learn a better spatial reasoning ability. At test time, the additional resolution
context then serves as a useful signal to refine predictions.

Finding 7. Withholding the cue of image resolution during training fosters better learning, while

providing it at test time proves beneficial.

3.8 FINAL DESIGN CHOICES FOR RFT ON GUI-VG

Based on the studies above, we finalize a set of design choices for an effective and efficient RFT
pipeline for GUI visual grounding under GRPO. We propose the Soft Reward Function (SRF) to
provide partial credit for format compliance while relaxing output constraints. For the prediction
format, we use direct point prediction with the In-Bbox binary reward. To stabilize training, we
introduce the Adversarial KL Factor with a coefficient of β = 1 × 10−4. We employ LoRA for
efficient fine-tuning and set the group size to 6 and batch size to 4. Image resolution information is
withheld during training and added only at inference. We train 1,300 steps for our final version.

4 COMPARISON WITH PREIVOUS METHODS

We compare our final RFT method against prior approaches across three GUI-VG benchmarks
introduced in section 2.2: ScreenSpot [Cheng et al., 2024], ScreenSpot v2 [Wu et al., 2024], and
ScreenSpot-Pro [Li et al., 2025].

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 8: Comparison of various models on ScreenSpot. The optimal result is bolded. “Size” refers to
model size. “#Train” refers to training samples.

Method Size #Train Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

Fuyu [Bavishi et al., 2023] 8B – 41.0 1.3 33.0 3.6 33.9 4.4 19.5
CogAgent [Hong et al., 2023] 18B 400K 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick [Cheng et al., 2024] 9.6B 364K 78.0 52.0 72.2 30.0 55.7 32.5 53.4
AGG [Lei et al.] 0.4B 35M 86.1 62.8 81.8 46.2 74.2 48.4 66.6
OmniParser [Lu et al., 2024] * – 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround [Gou et al., 2024] 7B 1.3M 82.8 60.3 82.5 63.6 80.4 70.4 73.3
ShowUI-G [Lin et al., 2024] 2B 119K 91.6 69.0 81.8 59.0 83.0 65.5 74.9
ShowUI [Lin et al., 2024] 2B 256K 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OS-Atlas [Wu et al., 2024] 4B 13.58M 85.7 58.5 72.2 45.7 82.6 63.1 68.0
OS-Atlas [Wu et al., 2024] 7B 13.58M 93.0 72.9 91.8 62.9 90.9 74.3 81.0

GuirlVG 7B 2K 96.3 86.0 93.3 77.1 91.7 83.5 88.0
GuirlVG 7B 5.2K 96.0 84.7 92.8 80.0 92.6 85.9 88.7

Results on the ScreenSpot benchmark are shown in table 8. Our method substantially outperforms
previous methods that rely on supervised fine-tuning (SFT), despite using significantly fewer training
samples. Specifically, while prior SFT methods are trained on hundreds of thousands to over ten
million examples, our RFT method achieves superior performance with just 2K training samples.
For example, we outperform OS-Atlas—which uses 6.79K times more data—by +7.0% in accuracy,
highlighting the efficiency and effectiveness of RFT as a post-training strategy. When increasing
training to 1300 steps using 5.2K training samples, our method achieves further improvements,
outperforming OS-Atlas by +7.7%. Notably, on the Mobile-Icon subset, our method exceeds OS-
Atlas by +11.8%, despite our training data containing no mobile-specific samples. This suggests that
RFT enhances out-of-domain reasoning capabilities, aligning with the claim from Chu et al. [2025]
that “SFT memorizes, RL generalizes.”

Table 9: Comparison of various models on ScreenSpot v2. The optimal result is bolded. “Size” refers
to model size. “#Train” refers to training samples.

Method Size #Train Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

SeeClick [Cheng et al., 2024] 9.6B 364K 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas [Wu et al., 2024] 4B 13.58M 87.2 59.7 72.7 46.4 85.9 63.1 71.9
OS-Atlas [Wu et al., 2024] 7B 13.58M 95.2 75.8 90.7 63.6 90.6 77.3 84.1

GuirlVG 7B 2K 99.3 89.6 94.8 72.9 95.7 83.3 90.9
GuirlVG 7B 5.2K 98.3 89.6 94.3 80.7 95.7 86.2 91.9

Results on ScreenSpot v2 (table 9) mirror the trends observed on ScreenSpot. With only 2K training
examples, our method surpasses all previous methods, and with 5.2K examples, it reaches a new
state-of-the-art of 91.9% average accuracy—+7.8% higher than OS-Atlas (7B). Performance gains
are consistent across all subdomains, reaffirming the generalization strength of our RFT pipeline.

Table 10: Comparison of various models on ScreenSpot-Pro. The optimal result is bolded.

Model Development Creative CAD Scientific Office OS Avg
Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

SeeClick [Cheng et al., 2024] 0.6 0.0 1.0 0.0 2.5 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.1
OS-Atlas-4B [Wu et al., 2024] 7.1 0.0 3.0 1.4 2.0 0.0 9.0 5.5 5.1 3.8 5.6 0.0 3.7
ShowUI-2B [Lin et al., 2024] 16.9 1.4 9.1 0.0 2.5 0.0 13.2 7.3 15.3 7.5 10.3 2.2 7.7
CogAgent-18B [Hong et al., 2023] 14.9 0.7 9.6 0.0 7.1 3.1 22.2 1.8 13.0 0.0 5.6 0.0 7.7
Aria-GUI [Yang et al., 2024] 16.2 0.0 23.7 2.1 7.6 1.6 27.1 6.4 20.3 1.9 4.7 0.0 11.3
UGround-7B [Gou et al., 2024] 26.6 2.1 27.3 2.8 14.2 1.6 31.9 2.7 31.6 11.3 17.8 0.0 16.5
OS-Atlas-7B [Wu et al., 2024] 33.1 1.4 28.8 2.8 12.2 4.7 37.5 7.3 33.9 5.7 27.1 4.5 18.9

GuirlVG-2K-7B 57.8 9.0 38.9 10.5 26.9 7.8 44.4 14.5 57.1 22.6 39.3 14.6 31.6
GuirlVG-5.2K-7B 64.9 7.6 42.9 11.2 28.9 9.4 63.9 16.4 63.8 26.4 43.9 13.5 36.1

Finally, results on ScreenSpot-Pro (table 10) demonstrate the strong generalization of our method
to high-resolution, professional GUIs. With only 2K training examples, our approach already

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

outperforms all prior methods by a large margin, achieving 31.6% average accuracy—surpassing
the best SFT baseline OS-Atlas (7B) by +12.7%. Scaling up to 5.2K examples further boosts
performance to 36.1%, an absolute gain of +17.2% over OS-Atlas. This trend is consistent across
all domains, including particularly challenging ones like Creative, CAD and OS, confirming the
robustness of our RFT pipeline in complex real-world scenarios.

“Intel on Instagram”

(Zoom-in around
the Ground Truth)

<think>
To find the point on Instagram, I need to
identify the social media icons typically

associated with Instagram, which is often
the camera icon. On the webpage, there's a

camera icon typically representing the
Instagram or photo sharing feature.

</think>
<answer> The point is [525, 829].</answer>

Input Model Output Processed Grounding Result

<think>
To find the element labeled "The Coolest And
Weirdest Gadgets We Saw At Ifa," I need to

locate where this text appears on the screen.
It typically would be in the titles or

descriptions of content sections. Given the
structure of the web page, the description

might be associated with a visual or
contextual hint like an image or a

subheading. Possible locations could be at
the bottom of a section or in a list of articles.

</think>
<answer> The point is [689, 940].</answer>

“The Coolest And
Weirdest Gadgets We

Saw At Ifa”

Figure 2: Qualitative Result of GuirlVG.

5 QUALITATIVE RESULTS

In this section, we present qualitative results to illustrate the reasoning capabilities of GuirlVG in GUI
visual grounding tasks. fig. 2 shows two representative examples, each consisting of the input (left),
model output with intermediate thinking steps (middle), and the final grounding result (right). The
thinking process is highlighted with green color. In the first example, the task is to locate an icon on a
webpage. GuirlVG begins by reasoning that it needs to identify social media icons, often represented
by a camera icon. Recognizing the webpage context, the model correctly identifies the Instagram
icon and grounds the instruction to the coordinates, as shown in the red dot in the grounding result. In
the second example, the instruction is to find a text. GuirlVG reasons that the target is a text and it is
likely to appear as a contextual hint like a subheading. By analyzing the structure of the webpage, the
model further reasons that the target is at the bottom of a section. These qualitative results underscore
GuirlVG’s textual understanding and advanced reasoning abilities, enabled by our reinforcement
learning-based approach. By explicitly modeling the thinking process, GuirlVG not only achieves
high accuracy but also provides interpretable steps, making it a reliable solution for GUI-VG tasks.

6 CONCLUSION

In this work, we revisit the paradigm of post-training for GUI visual grounding and present the
first comprehensive empirical study of rule-based reinforcement fine-tuning (RFT) in this domain.
Through systematic analysis and a series of targeted innovations—including the decomposition of
GRPO components, introduction of the Adversarial KL Factor, and extensive tuning of training
configurations—we demonstrate that RFT, when properly optimized, decisively outperforms super-
vised fine-tuning (SFT). Using as few as 2K training examples, our method surpasses strong SFT
baselines trained on orders of magnitude more data across three challenging benchmarks, achieving
new state-of-the-art performance. These findings challenge the prevailing reliance on large-scale SFT
and highlight RFT as a more data-efficient and generalizable alternative for GUI-VG.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025a.

Sule Bai, Mingxing Li, Yong Liu, Jing Tang, Haoji Zhang, Lei Sun, Xiangxiang Chu, and Yansong
Tang. Univg-r1: Reasoning guided universal visual grounding with reinforcement learning. arXiv
preprint arXiv:2505.14231, 2025b.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. Introducing our multimodal models, 2023. URL https://www.adept.ai/
blog/fuyu-8b.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
ability in vision-language models with less than $3. https://github.com/Deep-Agent/
R1-V, 2025. Accessed: 2025-02-02.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui
Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv
preprint arXiv:2503.06749, 2025a.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent:
Advanced gui agent with one look. arXiv preprint arXiv:2503.03196, 2025b.

HuggingFace. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

10

https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web, 2024.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
arXiv preprint arXiv:2402.07865, 2024.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 10, 2023.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models? arXiv preprint arXiv:2405.02246, 2024.

Weixian Lei, Difei Gao, and Mike Zheng Shou. Grounding multimodal large language model in gui
world. In The Thirteenth International Conference on Learning Representations.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent. arXiv preprint arXiv:2411.17465, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26296–26306, 2024b.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
zero: Reasoning-chain guided segmentation via cognitive reinforcement. arXiv preprint
arXiv:2503.06520, 2025a.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025b.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Min Shi, Fuxiao Liu, Shihao Wang, Shijia Liao, Subhashree Radhakrishnan, De-An Huang, Hongxu
Yin, Karan Sapra, Yaser Yacoob, Humphrey Shi, et al. Eagle: Exploring the design space for
multimodal llms with mixture of encoders. arXiv preprint arXiv:2408.15998, 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Zihan Wang*, Kangrui Wang*, Qineng Wang*, Pingyue Zhang*, Linjie Li*, Zhengyuan Yang, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho,
Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Training agents by reinforcing
reasoning, 2025. URL https://github.com/ZihanWang314/ragen.

Lilian Weng. Reward hacking in reinforcement learning. https://lilianweng.github.io/
posts/2024-11-28-reward-hacking/, 2024.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin Hou,
Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-evolutionary
reinforcement learning. arXiv preprint arXiv:2505.12370, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

12

https://github.com/ZihanWang314/ragen
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
http://arxiv.org/abs/2403.13372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL DETAILS FOR SECTION 3.1

We provide additional details of the trivial adoption of RFT (RFT-trivial) and the implementation of
SFT, which contributes to the reproducibility of the results of this paper.

Algorithm 1 Format Reward Calculation

1: function FORMATREWARD(completion)
2: pattern← regex "<think>.*?</think>\s*<answer>.*?</answer>"
3: return 1.0 if completion matches pattern else 0.0
4: end function

Algorithm 2 Accuracy Reward Calculation

1: function ACCURACYREWARD(completion, GT box)
2: answer pattern← regex <answer>(.*?)</answer>
3: bbox pattern← regex [(\d+),\s*(\d+),\s*(\d+),\s*(\d+)]
4: reward← 0.0
5: if completion matches answer pattern then
6: pred bbox← find the match in completion
7: if length of pred bbox is 4 and IoU(pred bbox, GT box) > 0.5 then
8: reward← 1.0
9: end if

10: end if
11: return reward
12: end function

The format reward function of RFT-trivial is shown in algorithm 1 and the corresponding accuracy
reward function is shown in algorithm 2.

For the SFT baseline, we use the following prompt:

Please provide the bounding box coordinates of the region described by this sentence: <description>.

The answer format is:

json \n [bbox 2d: <ground-truth bounding box>, label: <description>] \n.

We adopt the official evaluation code of Qwen2.5-VL1 to obtain the zero-shot baseline performance.

A.2 ADDITIONAL DETAILS FOR SECTION 3.2

We provide details of our Soft Format Reward in algorithm 3 to help readers better understand it.

The prompt we use in section 3.2 is as follow:

Please provide the bounding box coordinates [x1, y1, x2, y2] of a specific element based on this
sentence: <description>. First, think about the reasoning process in the mind within <think>
< /think> tags. Then, output the bounding box coordinates within <answer> < /answer> tags.

1https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/computer_use.
ipynb

13

https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/computer_use.ipynb
https://github.com/QwenLM/Qwen2.5-VL/blob/main/cookbooks/computer_use.ipynb

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3 Soft Format Reward Calculation

1: function SOFTFORMATREWARD(completion)
2: score← 0
3: if “<think>” in completion then
4: score← score+ 0.5
5: end if
6: if “< /think>” in completion then
7: score← score+ 0.5
8: end if
9: if full “<answer>...< /answer>” block detected then

10: score← score+ 2/3
11: if exactly two numbers found inside the block then
12: score← score+ 1/3
13: end if
14: else if “<answer>” or “< /answer>” detected then
15: score← score+ 1/3
16: end if
17: return score/2 ▷ normalized by the maximum possible reward
18: end function

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at IC L R 2026

“Intel on Instagram” <think> To find the point on
Instagram, I need to

iden6fy the social media
icons typically associated
with Instagram, which is

o<en the camera icon. On
the webpage, there's a
camera icon typically

represen6ng the Instagram
or photo sharing feature.
</think> <answer> The

point is [525,
829].</answer>

So# Reward Func/on
(Format Reward)Mul$ple

Responses
Check:
1. <think>
2. </think>
3. <answer>
4. </answer>
5. 4 numbers inside answer
6. IoU > 0.5

Point & In-Bbox
(Accuracy Reward)

Model
! Lora

Reference
Model

❄

Adversarial KL
Factor Train Config

1e-4 beta
6 Groups
4 Batches
1.3K steps
5.2K data

Provibe Image resolution?
❌Train ✅test

F igure 3: The overview of Guirl V G.

- - - Contents below are added based on Rebuttal. This line will be removed in the final revision - - -

A .3 M A T H E M A T I C A L F O R M U L A T I O N O F R E WA R D F U N C T I O N S

We provide the formal mathematical definitions for the reward functions and design choices discussed
in the main methodology sections.

A .3.1 F O R M U L A T I O N F O R S E C T I O N 3.1 (T R I V I A L R F T)

In the trivial R F T setting, rewards are strictly coupled to exact string matching. Let 1[·] denote the
indicator function.

R format = 1[match � think � ... � / think � ... � answer � ... � / answer �]
R acc = 1[match � answer � ... � / answer �] · 1[match bbox array with 4 numbers] ·

1[IoU (boxpred , boxgt) > 0.5]

A .3.2 F O R M U L A T I O N F O R S E C T I O N 3.2 (S O F T R E WA R D F U N C T I O N)

To mitigate the sparse reward signal caused by strict syntax constraints, the Soft Reward Function
(SR F) decomposes the format reward into partial credits, relaxing output style:

R format =
1
2

�
1
2

1[match � think �] +
1
2

1[match � / think �] +
1
3

1[match � answer �]

+
1
3

1[match � / answer �] +
1
3

1[match 4 numbers inside answer]
�

A .3.3 F O R M U L A T I O N F O R S E C T I O N 3.3 (A C C U R A C Y R E WA R D V A R I A N T S)

We empirically compare different designs for model prediction combined with the corresponding
accuracy reward function. The formulations for the variants are defined as follows:

R IoU @0.5 = 1[IoU (boxpred , boxgt) > 0.5]
R IoU = IoU (boxpred , boxgt)

R D istance@ k = 1
�

� pointpred ⌧ pointgt � 2 ≤ 80
�

R In-Bbox = 1
�
pointpred � boxgt

�

A .3.4 F O R M U L A T I O N F O R O T H E R S E C T I O N S

For Section 3.4, the formulation for the A dversarial K L Factor is provided in Eq. 3.1 of the main
paper. For Sections 3.5, 3.6, and 3.7, the underlying optimization equation remains the G RPO,
consistent with Eqs. 2.1, 2.2, and 2.3 provided in the Preliminaries section.

15

2

Figure 3: The overview of GuirlVG.

- - - Contents below are added based on Rebuttal. This line will be removed in the final revision - - -

A.3 MATHEMATICAL FORMULATION OF REWARD FUNCTIONS

We provide the formal mathematical definitions for the reward functions and design choices discussed
in the main methodology sections.

A.3.1 FORMULATION FOR SECTION 3.1 (TRIVIAL RFT)

In the trivial RFT setting, rewards are strictly coupled to exact string matching. Let 1[·] denote the
indicator function.

Rformat = 1[match ⟨think⟩...⟨/think⟩...⟨answer⟩...⟨/answer⟩]
Racc = 1[match ⟨answer⟩...⟨/answer⟩] · 1[match bbox array with 4 numbers] ·

1[IoU(boxpred, boxgt) > 0.5]

A.3.2 FORMULATION FOR SECTION 3.2 (SOFT REWARD FUNCTION)

To mitigate the sparse reward signal caused by strict syntax constraints, the Soft Reward Function
(SRF) decomposes the format reward into partial credits, relaxing output style:

Rformat =
1

2

(
1

2
1[match ⟨think⟩] + 1

2
1[match ⟨/think⟩] + 1

3
1[match ⟨answer⟩]

+
1

3
1[match ⟨/answer⟩] + 1

3
1[match 4 numbers inside answer]

)

A.3.3 FORMULATION FOR SECTION 3.3 (ACCURACY REWARD VARIANTS)

We empirically compare different designs for model prediction combined with the corresponding
accuracy reward function. The formulations for the variants are defined as follows:

RIoU@0.5 = 1[IoU(boxpred, boxgt) > 0.5]

RIoU = IoU(boxpred, boxgt)

RDistance@k = 1
[
∥pointpred − pointgt∥2 ≤ 80

]
RIn-Bbox = 1

[
pointpred ∈ boxgt

]
A.3.4 FORMULATION FOR OTHER SECTIONS

For Section 3.4, the formulation for the Adversarial KL Factor is provided in Eq. 3.1 of the main
paper. For Sections 3.5, 3.6, and 3.7, the underlying optimization equation remains the GRPO,
consistent with Eqs. 2.1, 2.2, and 2.3 provided in the Preliminaries section.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 OVERVIEW OF GUIRLVG

As shown in fig. 3, we provide the overview of GuirlVG. Based on our empirical results, we finalize
a set of design choices for GUI visual grounding under GRPO. We propose the Soft Reward Function
(SRF) to provide partial credit for format compliance while relaxing output constraints. For the
prediction format, we use direct point prediction with the In-Bbox binary reward. To stabilize training,
we introduce the Adversarial KL Factor with a coefficient of β = 1× 10−4. We employ LoRA for
efficient fine-tuning and set the group size to 6 and batch size to 4. Image resolution information is
withheld during training and added only at inference. We train 1,300 steps for our final version.

16

	Introduction
	Background
	Related Work
	Preliminaries

	Methodology
	Can trivial adoption of RFT beats SFT?
	How to design reward functions in GRPO?
	How to design model prediction format along with its accuracy reward function?
	How to balance the KL Penalty in GRPO?
	Should we fully fine-tune the model or use LoRA?
	How to decide the group size and batch size in GRPO?
	How to involve image resolution information in the prompt?
	Final Design Choices for RFT on GUI-VG

	Comparison with preivous methods
	Qualitative Results
	Conclusion
	Appendix
	Additional details for rftvssft
	Additional details for rewardgrpo
	Mathematical Formulation of Reward Functions
	Formulation for Section 3.1 (Trivial RFT)
	Formulation for Section 3.2 (Soft Reward Function)
	Formulation for Section 3.3 (Accuracy Reward Variants)
	Formulation for Other Sections

	Overview of GuirlVG

