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ABSTRACT

In context learning (ICL) is an attractive method of solving a wide range of prob-
lems. Inspired by Garg et al. (2022), we look closely at ICL in a variety of train and
test settings for several transformer models of different sizes trained from scratch.
Our study complements prior work by pointing out several systematic failures of
these models to generalize to data not in the training distribution, thereby showing
some limitations of ICL. We find that models adopt a strategy for this task that is
very different from standard solutions.

1 INTRODUCTION

In-context learning (ICL) Brown et al. (2020) promises to make interacting with LLMs easy and
accessible. ICL enables the model to learn a task from a prompt with instructions and a few examples
at inference time, without any adjustment of the model’s parameters from pretraining. While there
have been theoretical reconstructions of ICL, there have been few studies on exactly how ICL works
in practice. However, ICL depends on a model’s pretraining as Garg et al. (2022) have shown; so
doing an in depth analysis of this feature of LLMs is difficult. Hence, most of analysis done on
how ICL works are done on small models and simple tasks. Garg et al. (2022) makes the problem
mathematically precise: the model learns a task/function given in-context examples at inference time
in a next-token-prediction format Brown et al. (2020); given a prompt containing a task input-output
examples (x1, f(x1), .., xn, ?), the model is asked to generate a value approximating f(xn).

Inspired by Garg et al. (2022), we investigated whether smaller LLMs with transformer architectures
ICL the class L of linear functions. While Garg et al. (2022) answer “yes”, we provide a more
nuanced answer based on a deeper analysis. We have studied the 1 dimensional case with functions
for over 30 models, from transformer architectures with 1 attention head (AH) and 1 MLP layer up
12 MLP layers and 8 AH. We also studied small attention-only models Olsson et al. (2022). Since
we are interested in whether transformer models can ICL and if so how, even small transformer
models are relevant, indeed essential since such an investigation requires training from scratch. Our
main findings are these.

1. Several recent papers claim that Transformer based models trained from scratch can ICL
linear functions with performances close to algorithms such as Least Squares, and that a
transformer can implement this algorithm. We show that the models we tested do not do
this; they also failed to generalize and to provide robust predictions beyond their training
data. In particular, all our transformer models failed to ICL the concept of a strictly increas-
ing or strictly decreasing linear function, even over larger intervals in R. We replicated this
behavior for several training and test distributions. We trained transformers on different
distributions various Gaussian, Bimodal and Uniform distributions.

2. Our experiments show that all our models trained from scratch have ‘boundary values”
(B,−B) for prompts xi; when f(xi) > B or < −B, model performance degrades sub-
stantially. Training on uniform distributions makes this particularly clear.

3. All our transformer models solve task of ICL linear function by learning a projection from
“nearby” sequences of points in the training data; Section 5 provides a mathematical for-
mulation of what we think the models are doing. The exact projection depends upon the
training distribution. The models do not implement linear regression or an algorithm like
linear interpolation.
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2 BACKGROUND

Statistical learning examines the application of a learned function over a test domain and the ex-
pected loss over novel applications. The ability to bring the error over test to that over the training
set is typically taken to indicate an ability to generalize.

Neyshabur et al. (2017), Villa et al. (2013) define learnability in statistical learning theory via the
notion of uniform consistency. Let µ be a distribution over H and µn the update of µ after n training
samples zi = (xi, yi). Let Azn be an algorithm for picking out a hypothesis from H based on n
training samples. inf H is the hypothesis in H with the lowest possible error (Shalev-Shwartz et al.,
2010; Kawaguchi et al., 2017).

Definition 1 An algorithm A on a hypothesis space H is uniformly consistent if and only if
∀ϵ > 0 limn→∞supµ

µn({zn : Eµ({Azn − inf HEµ > ϵ}) = 0

In our example, the best hypothesis inf H is a prediction f̂ of some target function f . The best
hypothesis is when f̂ = f with f , which yields 0 expected error. There is of course an algorithm
that gives exactly the target function, linear interpolation, given two data points. Moreover linear
regression is an algorithm that converges to the target function on any data set in our set up.

Definition 2 A class of hypotheses H is uniformly learnable just in case there exists a uniformly
consistent algorithm for H.

The class of linear functions L is clearly uniformly learnable. What is left open here is the choice of
distribution of the data both for train and test and the sampling method (since our class is uncount-
ably large). Garg et al. (2022) take a definition of learning where average expected error goes to 0
when data in train and test are sampled both from the same normal distribution. So for instance this
means that the model will see linear functions with a, b ∈ [−1, 1] around 70% of the time. This can
make a big difference on the error reported for learning a class of mathematical functions like L,
whose definition does not in any way depend on a particular distribution or sampling. Nevertheless,
we would hope the model has found an algorithm such that f̂ = f given a test set of linear functions
with a, b ̸∈ [−1, 1]. We also hope the algorithm will transfer to different distributions. This is what
we investigate below.

3 RELATED WORK

Since Brown et al. (2020) introduced ICL, there has been considerable research indicating that ICL
is possible because of a sort of gradient “ascent” Akyürek et al. (2022); Von Oswald et al. (2023).
Dong et al. (2022) provides an important survey of successes and challenges in ICL and that so far,
only simple problems for ICL have been analyzed, eg the case of linear or simple Boolean functions.

Garg et al. (2022) offered an important advance showing that a Transformer trained from scratch
(GPT-2 with an embedding size of 256) performed in-context learning of n-dimensional linear func-
tions given identical train and test distributions N(0, 1).

Further research then offered several theoretical reconstructions for how ICL for linear functions
might work in Transformers. Von Oswald et al. (2023); Ahn et al. (2023); Mahankali et al. (2023)
provided a construction to show transformers ICL from their doing gradient descent during ICL.
Fu et al. (2023) showed that Transformers could ICL in virtue of using higher-order optimization
techniques. Xie et al. (2021); Wu et al. (2023); Zhang et al. (2023); Panwar et al. (2023) argued
that ICL follows on a Bayesian point of view. Bai et al. (2024) show that transformers can under
certain assumptions implement many algorithms with near-optimal predictive power on various in-
context data distributions. Giannou et al. (2024); Zhang et al. (2024) modify transformers with
linear attention and Zhang et al. (2024) introduce a new training regime to show that modified
transformers can learn linear functions. Given Pérez et al. (2021)’s result that full transformers
with linear attention are Turing complete, however, these theoretical demonstrations are perhaps
not surprising. Xie et al. (2021); Zhang et al. (2024) examine how ICL works despite differences
between training and inference distributions.
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Unlike this prior research, we examine how ICL works in practice under different training and
testing distributions in order to establish what transformers actually do in ICL 1 dimensional linear
functions, whereas most prior research has concentrated on transformer models can or could do on
this task. Even for this simplest case, we show transformers ICL in a different way from any of these
proposed methods.

Bhattamishra et al. (2023) trained small GPT-2 models from scratch to show that Transformers can
ICL simple boolean functions, while their performance deteriorates on more complex tasks. Wu
et al. (2023) studied ICL by pretraining a linearly parameterized single-layer linear attention model
for linear regression with a Gaussian prior proving that the pretrained model closely matches the
Bayes optimal algorithm. Raventós et al. (2024) investigated whether models with ICL can solve
new tasks very different from those seen during pretraining.

Olsson et al. (2022) offer an in depth analysis of ICL across tasks using a general evaluation measure
on prompt length. They propose that a learned copying and comparison mechanism known as an
induction head is at the heart of ICL.

4 EXPERIMENTS

In this section, we show that: (i) models do not implement linear regression; (ii) this performance
holds across different types of distributions; (iii) these distributions all show the presence of bound-
ary values beyond which the models do not perform well; (iv) models with attention layers (AL)
(models with at least two AL only or 1 AL+MLP layer) are needed to give an ICL effect (v) order-
ing and restricting the order of prompts can improve performance. In the last subsection, we put all
of these observations together.

Following Garg et al. (2022) we trained several small decoder only transformer models from scratch
to perform in-context learning of linear functions.1 We set the number of layers (L) from 1 to 6, and
attention heads (AH) from 1 to 4. We also trained a 9L6AH model and the 12L8AH GPT2 with an
embedding size of 256. The task of the model is to predict the next value for f(xi) through a prompt
of type (x1, f(x1), ..., xi). We refer to that prediction as f̂(xi). To train the model L to ICL, we
looked for a θ∗ that optimizes the following auto-regressive objective:

θ∗ = argmin
θ

Exi∈DI ,f∈DF

[
k∑

i=0

l (f (xi+1) ,Lθ ((x1, f(x1), ..., f(xi), xi+1)))

]
where Lθ is a learner, l : (y, ŷ) → ||y − ŷ||2 is squared error and f : x → ax + b is a linear
function with a, b chosen at random according to some training distribution for functions DF and
samples xi picked randomly according to a training distribution for points DI . To simplify, we
will note that f ∈ DF , x ∈ DI . We choose at random a function f ∈ DF and then a sequence
of points xi ∈ DI at random, random prompts, from a distribution DI at each training step. We
update the model through a gradient update. We use a batch size of 64 and train for 500k steps. The
models saw over 1.3 billion training examples for each distribution we studied. For DF and DI we
used several distributions: the normal distribution N(0, 1), “rectangle” or uniform distributions over
given intervals and bimodal distributions.

In comparing how model performance evolves with parameters like the number of layers of the
model or number of attention heads, we tested the models on a variety of test distributions for both
functions Dt

F and data points or prompts Dt
I . But while in train we always take the same distribution

(DF = DI ), in test, we sometimes take Dt
F ̸= Dt

I . To see how the model performs in ICL relative
to (Dt

I , D
t
F ), we generate a set of N = 100 functions in Dt

F ; and our data samples for test are
composed of Nb = 64 batches, each containing Np = 41 points in Dt

I . In each batch b, for all
points, we predict for each xb

k, k ≥ 2, f(xb
k) given the prompt (xb

1, f(x
b
1), ..., x

b
k−1, f(x

b
k−1), x

b
k).

We calculate for each function the mean average over all the points Np of all batches Nb, then do a
mean average over all functions. Formally this is:

ϵσ =
1

N
ΣN

i=1Σ
Nb

b=1

1

Nb
(
1

Np
Σ

Np

i=3(pred
b
i − ybi )

2)

1Our code can be found in https://anonymous.4open.science/r/incontext-learning-556D/
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In all our error calculations, we exclude the first two predictions of each batch from the squared
error calculation, since we need at least two points to be able to find a linear function and the first
two predictions by the model are hence almost always wrong.

4.1 MODELS DO NOT IMPLEMENT LINEAR REGRESSION

When trained on DF = DI = N(0, 1) and the target functions had values in [-1, 1], even small
models were able to converge to a 0 average error. The error was not always identical to 0 at least in
some batches but rather similar to Liu et al.’s finding on MSE estimation by transformers.

On the other hand, all the models had systematic and non 0 average error once we chose the target
f ∈ Dt

F = N(0, σ) for σ > 2. Figure 1 shows that the error rate increases substantially and
non-linearly as Dt

F = N(0, σ) and σ increases. To ensure that comparisons between models are
meaningful, for each N(0, σ), we set a seed when generating the 100 random linear functions,
ensuring that each model sees the same randomly chosen functions and the same set of prompting
points xi. The table 2 in the Appendix contains the full figures for average error.

Figure 1: Evolution of error rates for various models with DF , DI = Dt
I = N(0, 1) and Dt

F for
various N(0, σ). The black curve illustrates a model that predicts f(xn) = 0,∀f and ∀xn. The cyan
line LS represents linear or ridge regression, which is trivially a perfect estimator given our totally
clean input data.

The results in Figure 1 and Table 2 (Table 2 is in Appendix B) confirm that at least the larger models
are able to generalize somewhat to unseen examples, given that all the curves in Figure 1 have lower
error rates than the baseline that predicts f̂(xn) = 0 everywhere. But their generalizing ability
was far from perfect; and contrary to what Akyürek et al. (2022); Von Oswald et al. (2023) have
suggested, the models did not use linear regression to ICL the target function. If they had, we would
not see the error patterns we do.

Our models’ performance depends on how often it has seen examples “similar” to the target function
value it is trying to predict. When DF = N(0, σ) there is an over 68% chance that a function chosen
for train f(a, b) will have a, b ∈ [−σ, σ] and over a 95% chance it will have a, b ∈ [−2σ, 2σ]. So
a model with DF = DI = N(0, 1) has seen sequences of values for f(a, b) with a, b ∈ [−2, 2]
more than 95% of the time. Given a pretraining with over a billion examples, models will have
seen prompts for functions with a, b ̸∈ [−2, 2], just not many of them. As the models are tested
with Dt

F = N(0, σ) and so confronted with more sequences representing functions f(a, b) for
a, b ̸∈ [−2, 2], all the models do less and less well.
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4.2 REPLICATING SECTION 4.1 RESULTS FOR MODELS TRAINED ON OTHER DISTRIBUTIONS

We’ve just seen that when the distribution of training data follows a simple Gaussian N(0, 1), the
models, for any number of layers and attention head, give good results when Dt

F = Dt
I = N(0, 1),

but offer degraded performance as we test on distributions N(0, σ) for larger σ. We now show that
same sort of behavior with different training distributions but all tested on N(0, σ).

Training on bimodal distributions We tested how our models fared with a bimodal distribution
of training data. Our strategy was to increase the values the model can see during training, by
extending the distribution seen during training. We trained our GPT2 on the bimodal distribution
0.5N(−1, 1)+0.5N(1, 1). With this training, the model was more likely to see wider values during
training and therefore work better on larger values.

Most of the models we tested had more robust performance with a bimodal distribution for DF =
0.5N(−1, 1) + 0.5N(1, 1) than they did with DF = N(0, 1) at least with Dt

F = Dt
I = N(0, σ)

and n ≥ 6. The best models had almost equally good performance on Dt
F = N(0, σ) for σ ≤ 3 and

superior performance with Dt
F = N(0, σ) for σ ≥ 3, as can be seen from Table 1. For the values

of the table, we took Dt
I = U(−1, 1), the uniform distribution over [−1, 1], but the results remain

similar when taking Dt
I = N(0, 1). The fact that performance varies with the distribution should

not happen, if the models were using gradient descent to compute linear regression in ICL.

Training on uniform distributions To have more control on the notion of maximum and min-
imum values the models saw, we next trained our models on uniform distributions. We illustrate
with U(−5, 5). Given the observations of Section 4.1 concerning the errors our models made on
functions with large coefficients, we wanted to study whether these errors arose because the models
hadn’t encountered functions with such large coefficients in pretraining. By keeping DF , DI normal
or bimodal, we can’t control “the largest value the model could see”, because it’s always possible
that it could have generated a large value during training. By training on a uniform distribution,
however, we know exactly what the smallest and largest values that the model could have seen in its
training. For example, setting DF , DI to U(−5, 5), the largest value the model could have seen is
30 = 5∗5+5 and the smallest value it could have seen is −30. Most likely it saw values significantly
> −30 and < 30.

Training with U(−5, 5) gave good results for Dt
F = Dt

I = U(−1, 1). Models were able to find
target functions with coefficients in [-1,1] from only 2 points (see leftmost plot of Figure 6 in Ap-
pendix C); and all our models work well when DF , DI , D

t
F , D

t
I use the same distribution. The

models trained on a uniform distribution sometimes do even better than models trained on N(0,1) or
a bimodal distribution–up to three times better for Dt

F = Dt
I = N(0, 9) as Table 1 shows. Learning

was at times very efficient, requiring just two prompts, as in Figure 6 (Appendix B).

4.3 ERROR ANALYSIS, SIGMOID APPROXIMATIONS AND BOUNDARY VALUES

We wanted to look at what sorts of errors our models made for f(a, b) ∈ L for a, b ̸∈ [−2, 2]– i.e.
the values of f̂(x) outside the interval that includes the vast majority they have seen. Our models
exhibit problematic behavior of 2 kinds. Even our best models, for a, b ̸∈ [−2, 2] but reasonably
close, say in [−9, 9], predict f̂(x) to a sigmoid-like function with correct estimates for the target
function within a certain interval.2 Consider Figure 2 for an illustrative f(x) = 8x + 9. While the
left plot of Figure 2 shows that the model’s prediction f̂(x) diverges dramatically from f(x) outside
of a certain interval, the right plot of Figure 2 shows the model has learned something with ICL
about the function from the prompt and approximates it at least within a certain interval.

For equations with coefficients highly unlikely to be sampled in N(0, 1) (for example f(x) = 30x+

30 in Figure 3), however, the results are catastrophic. Figure 3 shows that the model’s prediction f̂
doesn’t converge to any stable prediction with ICL. This happens across a range of models.

The same pattern holds when DF , DI = U(−5, 5). Consider again as an illustrative example the
target function, f(x) = 9x for our largest trained model. The model approximates f(x) well within

2Giannou et al. (2024) tested a different type of model, with linear attention only, and showed similar
behavior.
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models / σ 1 2 3 4 5 6 7 8 9 10
3L4AHN , demb = 64 0.0 0.0 0.22 0.4 1.73 6.56 8.56 20.44 39.73 53.93
3L4AHB , demb = 64 0.03 0.15 0.53 1.32 2.74 3.91 5.52 10.22 13.86 22.72
3L4AHU , demb = 64 0.02 0.03 0.13 0.36 0.84 1.79 2.54 7.06 11.38 17.75

6L4AHN , demb = 64 0.0 0.0 0.2 0.38 1.58 5.72 7.99 15.53 32.96 50.35
6L4AHB , demb = 64 0.01 0.04 0.23 0.44 1.19 2.15 3.08 4.8 9.98 18.01
6L4AHU , demb = 64 0.02 0.04 0.11 0.24 0.57 1.36 1.82 4.62 10.23 15.07

12L8AHN , demb = 256 0.0 0.0 0.32 1.34 3.14 8.8 12.13 30.14 49.37 73.93
sorted 12L8AHN 0.0 0.01 0.32 1.63 3.69 8.39 10.06 27.11 43.23 58.56
12L8AHB , demb = 256 0.0 0.01 0.08 0.29 0.78 2.23 3.66 9.04 18.68 30.23
sorted 12L8AHB 0.01 0.03 0.18 0.25 0.74 2.27 2.62 6.87 13.73 20.8
12L8AHU , demb = 256 0.0 0.01 0.13 0.71 1.92 6.78 10.92 27.91 38.75 64.39

sorted 12L8AHU 0.01 0.01 0.13 0.75 2.12 6.18 10.5 26.8 36.3 53.48

REFDt
F
,Dt

I
: y=0 1.52 4.43 13.55 19.94 30.81 44.75 52.71 76.11 105.43 128.52

Table 1: Comparison showing the evolution of squared errors for models trained on different distri-
butions; index N: DF = N(0, 1), B DF = 0.5N(−1, 1) + 0.5N(1, 1) and DF = U(−5, 5). We
show error rates for models prompted without and with the natural ordering on the prompts [sorted],
for the large model size. Dt

i = U(−1, 1) and Dt
F = N(0, σ)

Figure 2: Plots of predictions of the 12L8AH model trained on N(0, 1) and error evolution over
number of prompts for f(x) = 8x+ 9

a certain range, but it predicts f̂(x) to be a constant function for intervals outside of that range. As
shown in the left plot in Figure 7 in Appendix D, f̂+(v) ≈ 30 for values v for which the ground
truth target function f is such that 30 ≤ f(v), and the model predicts an approximally constant
function f̂−(v) ≈ −30 for values v on which f(v) ≤ −30. We call values like -30 and 30 where
the model starts to predict constant functions f̂(v) and f̂−(v) boundary values. For models trained
on U(−5, 5), 30 and -30, with 30 = 5 ∗ 5 + 5 and −30 = −5 ∗ 5 − 5, are respectively the biggest
and smallest values the model could have seen during training. If such a model hasn’t seen a value
above 30 or below -30, it won’t infer one.

This behavior just noted for our largest model remains true for other models M values f̂(v) < B−α

or f̂(v) > B+α, where α is a constant determined by M . However for functions and data samples
when the values of f(x) in the prompt sequence are such that f(x) > B + α or < −B − α—an
example is f(x) = 40x + 40—the model starts to make a mess of things, assigning f̂(v) random
values for f(v) far away from B (i.e > B +α or < −B −α, as seen in the rightmost plot in Figure
7. The model loses its capacity to model the target function anywhere.

All our models trained on U(−5, 5) estimate the target function more or less well for x with
f(x) ∈ [−B,B] with boundary values −B,B; but once we are outside [−B,B], the estimations

6
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Figure 3: Plots on first line of predictions for the 12L8AH model trained on N(0, 1) and error
evolution over number of prompts for f(x) = 30x + 30. On second line Plots for f(x) = x and
f(x) = 15x for models 2L attention only with 32AH and dembedding = 256

Figure 4: Plots for f(x) = 10x by a 12l8ah model and by a 6l4ah model.

become constant functions or chaotic. Different models trained on different uniform distributions
give different boundary values; for instance see Figures 3 or 6 Appendix F.

Boundary values for models on normal and bimodal distributions will vary, as the largest values
in the sequences the model has seen and the number of times it has seen those values will vary
depending on the sampling. We have found that larger models will have slightly larger boundary
values |B| than smaller ones. For instance, Figure 4 shows the plots for the predictions of two
models (12L8AH, and 6L4AH) with both DF , DI = N(0, 1) for the equation f(x) = 10x. The
larger model has boundary values ≈ -13.7, 13.7, the smaller one boundary values ≈ -12, 12.

Constraints from boundary values hold regardless of model size (for plots see Appendix D and
Figure 8) and also hold for attention only models (See Appendix E, Figure 9). Larger models trained
on the same distribution and the same number of data are able to ICL L functions over a slightly
larger number of intermediate values than smaller models, as Figure 1 suggests.
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4.4 PREDICTIONS FOR MODELS WITH ONLY ATTENTION LAYERS OR WITH ONLY MLP

To understand better which components in the transformer architecture are responsible for ICL, we
tested various components. We found that attention layers (AL) were the important components for
ICL but ICL only worked reasonably well when the model had 2 AL (see also figure 3). Beyond
2 AL what mattered most was the number of attention heads (whether they are summed over all
layers or counted within a layer). A single AL model had only a very limited ICL generalization
capability beyond testing on Dt

F = N(0, 1), but it did better than a 12 layer MLP, which showed
no ICL capability, probably because the method of training on the predict next token format is not
suitable for models without attention heads. The details of various AL models are found in Figure 5
and Table 3.

Figure 5: Evolution of error rates models with attention layers only. We give figures for a model with
only 1 attention layer/1AH (1AL1AH) two 2-attention layer only models (2AL8AH, 2AL32AH) and
two 3 attention layer only model (3AL4AH,3AL8AH). DI = DF = U(−1, 1), Dt

i = U(−1, 1) and
Dt

F = N(0, σ). All models have embeddings of size 64, except 2AL32AH has size 256.

4.5 ORDERING AND RESTRICTING THE SIZE OF PROMPTS CAN IMPROVE PERFORMANCE

Our experiments with distributions also showed that a model performance improves when the se-
quence of prompts for the xi follows or are “sorted” to follow the natural order on R, especially for
bigger models. Error rates were comparable to the original models without sorting for small test
values of σ with Dt

F = N(0, σ) and substantially lowered error rate, by up to a third depending on
the training distribution, from the unsorted models. The details concerning the sorted models are in
Table 1.

While at least 2 points are needed to find a linear function, we noticed that model performance
degrades when the size of the prompt during inference is greater than the maximal size of prompts
the model saw during training, as the rightmost plot in Figure 6 shows (Appendix C). This held
over all models and training distributions. This means that the model takes into account the whole
sequence in its calculations, not just the last two or three data points. Had the model only looked at
a small fixed subsequence, large size prompts in inference would not have affected model behavior.

4.6 TAKING STOCK: WHAT ARE THE MODELS LEARNING

To ICL L, we expected a transformer model given (x1, f(x1), ..., xn), ?) to perform a linear re-
gression. The hypothesis and theoretical constructions of Akyürek et al. (2022); Von Oswald et al.
(2023) shows that transformer models can perform linear regression with 1 step of gradient descent.
If that were the case, the models should generalize without difficulty. But this is clearly not what
we observed. Error rates depend on training distributions DF , DI and on the distance of the target
function’s values from the majority of the data points in the model’s training. We’ve also demon-
strated model sensitivity to the entire sequence of ICL prompts. This shows that the models did not
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learn to use linear regression to solve this task. All our models failed to learn the concept of a strictly
monotone increasing or decreasing linear function in L over arbitrarily large or at least many large
intervals of R.3

The lack of generalizability might suggest our models overfit the data. However, the pretraining data
has no noise, and it’s too large to be memorized by our models (our largest models with 256 size
embeddings have < 107 parameters; each parameter would have to encode on average sequences for
over 100 different functions). Moreover, our models performed similarly on several different train-
ing distributions for DF and DI and tested on N(0, σ) for σ ∈ {1, 2}. Given that 100 samplings with
Dt

F = N(0, 1) nets on average 20 functions with coefficients the model with DF = DI = U(−1, 1)
has not seen in training, we would expect the model’s performance to degrade more substantially
than it did. This implies that the models didn’t overfit to their training regimes.

Our error analysis has shown us the existence of boundary values, values for which models do
well on the interval defined by the boundary values but degrade outside of them. These boundary
values fluctuate depending on model training distributions. This is further evidence that the model’s
method for solving the task does not involve a real calculation of a linear function but an adjustment
of values that the model has seen.

5 HOW MIGHT THE MODELS BE LEARNING?

Olsson et al. (2022) argue that a copying and comparison mechanism (induction head) is at the
heart of ICL. They show that induction heads do not exist for 1 layer attention-only models but do
for attention-only models with two or more layers. They empirically establish a strong connection
between the formation of induction heads in models with greater than 2 attention layers and the
model’s ability to ICL. Our experiments with attention-only models showed that multiple attention
layers were needed for ICL. Attention-only models with induction heads could ICL linear functions
reasonably well, at least in when DF = Dt

F ; and in fact the large 2 attention only layer model with
32 AH was more robust than the full transformer model with 1 (attention and MLP layer) and 1
or 2 AH (See Table 2 Appendix B). Olsson et al. (2022) also note that induction head behavior is
possible with 1 attention + MLP layer.

Our induction head hypothesis is that the induction heads predict a value for f(xn) given a prompt
sequence x⃗ = (x1,1, x1,2(= f(x1)), x2,1, x2,2, ...xn,1, ?) by using a projection from similar se-
quences or subsequences in the training, y⃗ = (y1,1, y2,2...yn,1, yn,2), with xi,1 close to yi,1 for some
j and xi,2 close to yj,2. Given the effects of prompt length on performance, we know that the whole
sequence matters with p2 ≤ p1 for optimal predictions. This is evidence for a pointwise compar-
ison like we are proposing (which is more complicated and potentially more accurate than simply
averaging the yn,2 of the three closest yn,1 neighbors of xn,1).

Olsson et al. (2022) report that larger models’ induction heads can exploit sequences y⃗ that are
“more dissimilar” to each other than smaller models can. The fact that the larger models respond
well to prompts ordered according to the natural ordering on R suggests that larger models with more
attention heads can exploit comparing sequences that converge or diverge from the target sequence
x⃗ as the prompts xi,1 near xn,1 increase or decrease. And they can compare in different ways. For
smaller models that did not improve performance with respect to naturally ordered prompts, the
hypothesis suggests they are restricted to simpler operations on the sequences they have seen. This
and our observations about boundary values provide further empirical support for the induction head
hypothesis.

Given boundary values, −B,B, all or the vast majority of the sequences the model has seen have
values zi with −B < zi < B. If the target sequence x⃗ has maximum values −B < xi < B, i.e.
−B < Maxvalxi x⃗ < B, then chances are high that the model will find a weighted set of sequences
Y close to the test sequence x⃗ and compute bounds for xn,2 = f(xn)). Call the sequence y⃗ generated
by a function g = agx+ bg a g-sequence. We assume the standard measure over sequences. Given
a g-sequence y⃗ closest to the f-sequence x⃗ generated by target function f = afx + bf is such that
ag = af , then the model will be able to approximate xn,2 by averaging the distances between yi,2

3This makes sense in terms of Asher et al. (2023)’s characterization of learnability. The concept of a strictly
monotone increasing or decreasing linear function describes a Π0

1 set in the Borel hierarchy which Asher et al.
(2023) show is not learnable using ordinary LLM assumptions.
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and xj,2 for the closest yi,1 to xj,1 for all xj,1. Now suppose that the closest g-sequences Y are not
all such that af = ag . The model must now construct a function h(Yx⃗, x⃗) that computes a distance d
between the values it has seen in Yx⃗ and the targets x⃗ for some optimized set Yx⃗ of sequences close
to x⃗. If h(Yx⃗, x⃗)(xk,1) = zk,2 is the k-th member of h(Yx⃗, x⃗), we optimize h such that |zk,2 − xk,2|
is minimized for all k. The model then averages these distances to yield an ”average” h(Yx⃗, x⃗) to
compute z2,n = f̂(x1,n). The larger the set very close y⃗ ∈ Yx⃗, the better the projection and hence
the prediction.

For prompts outside the boundary values −B,B, the closest y⃗ are those with values near the bound-
ary (yn,2 ≈ B(−B)). So the model will predict xn,2 ≈ B(−B), if it uses this method of projection.
So in sum, we think the model estimates a set Y of closest sequences to the target x⃗ and computes:

f̂(xn) = xn,2 =
1

n

n∑
i=1

h(Yx⃗,xi
)(xn,1), for −B < Maxvalxi

x⃗ < B

and f̂(xn) ≈ B(−B), if Maxvalxi x⃗ < −B − αL, or Maxvalxi x⃗ > B + αL

Otherwisef̂(xn) takes a random value ∈ [−B,B], αL > 0 a characterstic model value

The observations we have made are clearly compatible with this hypothesis (See Table 6 Appendix
F) and the weighted averages are calculable in a 2 layer Attention only model with suitable heads.
This also explains why training the model with smaller sequences in a kind of ”curriculum learning”
may not be helpful. We trained the same 12L8AH model once with curriculum learning which
supposedly helps the model perform better for different types of size prompts and generalize. and
the same without curriculum and found that the model without curriculum performs better. This
is consistent with our hypothesis, since the model without curriculum looks at batch sizes of up
to 41 points in each step, and can therefore see more sequences than the model with curriculum,
which looks at batch sizes of up to 41 points. The induction head hypothesis is less precise then
linear regression but can approximate it given an appropriate set Y . Our induction head hypothesis
predicts that model performance will be sensitive to a choice of training distribution for DF , DI as
well as a choice of test distributions and of course to the presence of boundary values.

6 CONCLUSION

In this paper we have shown a systematic failure case of decoder-only transformer models of various
sizes (up to 9.5 million parameters) and architectures. All models failed to learn robustly the class
of linear functions on non-noisy data, a task which is entirely determined by only two points and
involves a trivial mathematical operation that has been documented to be by construction learnable
by LLMs. However, the models did learn something different that enabled them to approximate
linear functions over intervals where their training gave lots of examples. Rather than learning
a standard algorithm for the task, these models instead perform a kind of projection from close
sequences seen during the training.

Our investigations perforce focus on relatively small models. But our study highlights a broader
issue with ICL: the gap between what LLMs can learn and what they actually learn. Much larger
models also face this limitation. The minimality of our examples and the capacity to easily train the
models from scratch is actually a key strength of our study. We hope this contribution will inspire
further research into what transformer-based models are actually doing on ICL tasks.
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Appendix A: Training details

Additional training information: Like Garg et al. (2022), we use also the Adam
optimizer Diederik (2014) , and a learning rate of 10−4 for all models.
Computational resources: We used 1 GPU Nvidia Volta (V100 - 7,8 Tflops DP)
for every training involved in these experiments.

Appendix B: Table of error progression for models trained on N(0, 1) distri-
butions tested on N(0, σ)

models / σ 1 2 3 4 5 6 7 8 9 10
1L1AH dembedding=64 0.1 0.8 5.1 13.1 26.9 39.7 53.0 84.8 120.0 153.2
1L2AH dembedding=64 0.1 0.8 5.3 14.4 29.8 41.1 55.0 93.8 120.4 159.2
1L4AH dembedding=64 0.0 0.2 2.7 8.7 19.9 32.0 42.8 64.5 92.3 131.2
2L1AH dembedding=64 0.0 0.1 2.0 4.9 13.7 27.0 36.1 64.9 99.0 134.0
2L2AH dembedding=64 0.0 0.0 1.6 3.2 9.3 25.5 32.0 61.1 92.9 127.8
2L4AH dembedding=64 0.0 0.0 0.9 2.6 7.5 19.3 27.3 51.8 90.2 119.4
3L1AH dembedding=64 0.0 0.0 0.9 3.0 8.2 16.8 24.4 48.4 76.7 113.2
3L2AH dembedding=64 0.0 0.0 0.7 2.3 6.5 15.9 22.5 43.1 74.0 102.5
3L4AH dembedding=64 0.0 0.0 0.6 1.9 5.5 13.8 20.4 42.2 70.3 100.4
6L4AH dembedding=64 0.0 0.0 0.5 1.6 4.6 11.6 16.8 33.7 58.3 87.9
12L8AH dembedding=256 0.0 0.0 0.3 1.1 2.9 7.9 11.9 28.3 46.9 73.5

REF: y=0 2.19 7.05 19.22 33.94 52.23 73.08 86.02 127.43 165.27 199.31

Table 2: Comparison to show the evolution of squared ϵ type error depending on the distribution
according to which we take the parameters, without taking into account the error of the prediction
of the first and second prompts. Dt

i = N(0, 1)

Appendix C: Failure to generalize to longer prompt sequences

Figure 6: Plot of ICL for f(x) = x with DF = DI = Dt
I = U(−5, 5) for the model 12L8AH; the

one on the left is a zoom in on the first 40 points, where we see that models can often learn from 2
points, the second a view of what happens overall, when models are trained on sequences of length
41 prompts.
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Figure 7: Plots for f(x) = 9x and f(x) = 40x+ 40 for a 12l8ah model trained on U(−5, 5)

Appendix D: Plots for boundary values with U(−5, 5)

Figure 8: Boundary values: Plots for f(x) = 9.4x for models 3L4AH and 6L4AH, DI = DF =
Dt

I = Dt
F = U(−5, 5)

Appendix E: Example of boundary values for attention only models

Figure 9: Boundary values for 2L32ah attention only model, with dembedding = 256 to ICL the
function f(x) = 12x
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models / σ 1 2 3 4 5 6 7 8 9 10
1AL1AHU 0.38 2.29 9.3 14.97 25.25 37.54 45.4 67.0 95.19 117.6

2AL8AHU 0.1 0.62 5.53 10.59 18.62 30.61 36.97 57.79 83.26 103.58

3AL4AHU 0.35 1.42 8.17 15.13 24.15 37.99 45.2 68.73 96.37 118.3
3AL8AHU 0.12 1.16 5.45 9.36 18.22 28.77 35.62 52.44 78.12 100.18

2Al32AHN 0.06 0.91 5.96 10.43 18.96 30.11 36.77 55.59 81.66 103.17
REFDt

F
,Dt

I
: y = 0 1.52 4.43 13.55 19.94 30.81 44.75 52.71 76.11 105.43 128.52

Table 3: Comparison showing the evolution of squared errors for models with attention layers only.
We give figures for a model with only 1 attention layer/1AH (1AL1AH) two 2-attention layer only
models (2AL8AH, 2AL32AH) and two 3 attention layer only model (3AL4AH,3AL8AH). DI =
DF = U(−1, 1), Dt

i = U(−1, 1) and Dt
F = N(0, σ). All models have embeddings of size 64,

except 2Al32AH has size 256.

models / σ 1 2 3 4 5 6 7 8 9 10
1L1AHN dembedding=64 48.8 57.62 73.48 84.51 116.63 129.52 142.34 177.69 191.05 246.43
2L8AHN dembedding=64 2.24 4.81 5.8 7.19 10.01 19.04 30.22 38.03 73.32 118.89
2L32AHN dembedding=256 1.17 2.64 3.47 5.01 7.88 16.85 24.1 40.98 66.04 95.03

REF: y=0 2.19 7.05 19.22 33.94 52.23 73.08 86.02 127.43 165.27 199.31

Table 4: Comparison to show the evolution of squared ϵ type error depending on the distribution
according to which we take the parameters, without taking into account the error of the prediction
of the first and second prompts. DF = DI = Dt

i = N(0, 1) for models with attention ONLY

Appendix F: The model searches for a sequence close to the input sequence.

Figure 10: Plots model 12L8AH, trained on DI = DF = N(0, 1) for f(x) = x for high values of
x and f(x) = 10x for low values of x
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