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Abstract

Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task,
aiming to classify unlabeled samples from both seen and novel classes using par-
tially labeled samples from the seen classes. Previous works typically explore
the relationship of samples as priors on the pre-defined single-granularity labels
to help novel class recognition. In fact, classes follow a taxonomy and samples
can be classified at multiple levels of granularity, which contains more underlying
relationships for supervision. We thus argue that learning with single-granularity
labels results in sub-optimal representation learning and inaccurate pseudo labels,
especially with unknown classes. In this paper, we take the initiative to explore and
propose a uniformed framework, called Taxonomic context prIors Discovering and
Aligning (TIDA), which exploits the relationship of samples under various granu-
larity. It allows us to discover multi-granularity semantic concepts as taxonomic
context priors (i.e., sub-class, target-class, and super-class), and then collabora-
tively leverage them to enhance representation learning and improve the quality
of pseudo labels. Specifically, TIDA comprises two components: i) A taxonomic
context discovery module that constructs a set of hierarchical prototypes in the
latent space to discover the underlying taxonomic context priors; ii) A taxonomic
context-based prediction alignment module that enforces consistency across hi-
erarchical predictions to build the reliable relationship between classes among
various granularity and provide additions supervision. We demonstrate that these
two components are mutually beneficial for an effective OSSL framework, which
is theoretically explained from the perspective of the EM algorithm. Extensive
experiments on seven commonly used datasets show that TIDA can significantly
improve the performance and achieve a new state of the art. The source codes are
publicly available at https://github.com/rain305f/TIDA.

1 Introduction

Deep neural networks have obtained impressive performance on a variety of visual and language
tasks [42, 48, 61, 15, 11, 12, 13, 14, 35, 36, 37, 45, 46]. However, their success is largely dependent
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Figure 1: (a) Previous works (e.g. TRSSL [65]) typically focus on constraining models on the
pre-defined single granularity, resulting in inferior pseudo labels. (b) Our method explicitly explores
the multi-granularity priors for model training, producing more accurate pseudo labels.

on abundant labeled data, where the acquisition is expensive and time-consuming [75]. One popular
solution to this problem is Semi-Supervised Learning (SSL) [69, 34, 63, 54, 62, 44, 56], which aims
to reduce annotation costs by supplementing a small amount of labeled training data with a large
number of unlabeled data.

Despite their significant success in various tasks [68, 77, 21, 75, 69, 53, 78, 38, 73, 59] , most
existing SSL methods are designed under the closed-set assumption, i.e., the training and test data
share the same class set. Recently, several works [64, 26, 54, 31, 74] extend the standard SSL to an
open-world setting, where the unlabeled set contains samples from novel (unknown) classes that
are not present in the labeled set. In Open-world SSL (OSSL), the model is required to identify
samples from both known and novel classes with partial labeled sample from seen classes. Due to the
lack of labeled samples for novel classes, it is vital to exploit some priors as auxiliary supervision
to learn discriminative representations and classifiers for all classes. Existing works either exploit
pairwise similarity prior [64, 5, 25] or class distribution prior [65] to achieve this. However, as
shown in Fig. 1(a), these methods only explore priors at a single granularity, which suffer from
sub-optimization and inaccurate pseudo labels, due to the limited supervision.

In this paper, we argue that leveraging multiple levels of granularity as semantic priors (e.g., sub-
classes, classes, and super-classes, etc.) is a more preferable solution for OSSL [43], which helps
us utilize more underlying relationship to supplement simplex single supervision. As illustrated in
Fig. 1(b), in the super-class granularity, we can treat Couch (seen) and Chair (novel) as belonging
to the same super-class Furniture. This builds a relationship between seen and novel classes and
constraints samples from Chair and Couch be closer [43]. Meanwhile, in the sub-class granularity,
Chairs are over-clustered into different sub-classes according to the materials, helping us to distinguish
some hard negative samples [24]. These motivate us to inject such taxonomic context into OSSL for
producing more discriminative representation learning and accurate pseudo-labeling. To this end,
we propose a novel OSSL framework, named Taxonomic context prIors Discovering and Aligning
(TIDA), to explore the relationship of samples (or classes) under various granularity. Without auxiliary
supervision, TIDA can automatically discover multi-granularity taxonomic context priors, which
are then collaboratively leveraged to improve representation and classifier learning. Meanwhile, the
alignment across granularity ensures consistent taxonomic context and additional supervision.

Specifically, we develop two modules: i) Taxonomic Context Discovery (TCD) module, which
discovers the underlying taxonomic context priors by constructing a set of hierarchical prototypes to
cluster samples; ii) Taxonomic Context-based prediction Alignment (TCA) module, which enforces
consistency across hierarchical predictions to build reliable relationships between classes at various
levels of granularity and provide additional supervision. These two modules are mutually beneficial
for learning discriminative representation and accurate pseudo-labeling for OSSL. As shown in

2



Fig. 1(b), our method can largely improve the quality of the pseudo label over the baseline.
To sum up, the main contributions are as follows:

• We identify the importance of multi-granularity priors in the context of OSSL and introduce a
new type of prior knowledge, i.e., taxonomic context priors, for solving the OSSL problem.

• We introduce a uniformed OSSL framework, which can discover taxonomic context priors without
any extra supervision. With the proposed cross-hierarchical prediction alignment, our framework
can effectively enhance the performance of the model.

• Experiments conducted on seven visual benchmarks show that our TIDA achieves new state-of-
the-art results. Additionally, we provide a theoretical analysis with the EM algorithm to better
understand the underlying mechanism of our approach.

2 Related work

Open-world Semi-Supervised Learning (OSSL). Semi-Supervised Learning (SSL) aims to learn
informative semantics from unlabeled data to reduce the dependence on human annotations [10, 2, 1,
39, 7, 60, 33, 3, 9, 30, 49, 67, 16, 6, 76, 4]. However, these methods assume that the unlabeled and
labeled samples come from the same distribution, which is impractical in real-world applications.
To address this limitation, ORCA [5] extends SSL to the more realistic and challenging open world,
which assumes the unlabeled data are from both novel and labeled (seen) classes. NCLPS [25]
proposes to exploit pairwise similarity priors with distribution alignment and applies an adaptive
threshold to synchronize the learning pace between seen/novel classes. OpenLDN [64] optimizes
a pairwise similarity loss by a bi-level way, which exploits the information available in the labeled
set as priors to implicitly cluster samples from novel class. Later, TRSSL [65] proposes a class-
distribution-aware pseudo-label method for OSSL, which utilizes sample uncertainty and class
distribution as priors to generate pseudo-labels. However, they still only focus on priors learned
on single label-hierarchy, which lacks accurate modeling of multi-level semantic relations between
seen/novel category samples. For a new perspective, TIDA applies a more preferable solution, which
subdivide semantic concepts from coarse to fine as taxonomic context (i.e., sub-class, target-class,
and super-class). With taxonomic context to describe seen/novel samples, it enjoys a number of
desirable properties, including flexible encoding of label relations, predictions consistent with label
relations [19]. Our model can significantly improve performance by exploiting the label relations.

Novel Class Discovery (NCD). NCD is a challenging open-world problem, which most closely
relates to OSSL and aims at clustering unlabeled samples of novel classes with the guidance of
knowledge from seen categories [70, 32, 80, 79, 50, 66, 51, 57]. RankStats [28] utilizes rank statistics
to transfer the knowledge of the labeled classes to the problem of clustering the unlabelled images.
UNO [23] first formulates the NCD problem into a transportation problem by Shinkhorn-Knopp
algorithm [17]. Different from OSSL, NCD has a strong assumption that all the unlabeled samples
belong to novel classes, thus NCD methods are not applicable to OSSL problems. In this paper, we
adopt some NCD methods as comparisons, but the results show that they fail to jointly distinguish
seen/novel samples.

3 Methodology

Problem Setup. Similar to standard closed-world SSL, the training data for OSSL consist of labeled
data Dl = {xl

i, y
l
i}

Nl
i=1 ∈ X × Y l and unlabeled data Du = {xu

i , y
u
i }

Nu
i=1 ∈ X × Yu, where xl

i is the
i-th labeled image with the label yli, x

u
i is the i-th unlabeled image belonging to the class yui that

is not available during training, and Nl < Nu. Different from standard SSL, OSSL assumes that
Y l ⊂ Yu. We aims to train encoder and a |Yu|-ways classifiers to classify all classes. We denote Y l

as seen classes and Yu \ Y l as novel classes Yn, i.e., Yn = Yu \ Y l. Following [5], we assume the
number of novel classes |Yn| is known.
Baseline. Different from standard SSL, the pseudo-labeling process is inherently ill-posed in OSSL
since there are no labeled samples for novel classes. To solve this problem, TRSSL [65] and UNO [23]
design a unified self-labeling classification objective based on Shinkhorn-Knopp algorithm [17]. They
view pseudo-labeling as an optimal transport problem that can generate reliable pseudo-labels for
unlabeled data (more details refers to [65, 23]. The objective can be formulated as:

Lce = −
|Yl|+|Yu|∑

j=1

yji log ŷ
j
i , ŷji = p(j;xi) =

exp(S(zi, cj))∑|Yl|+|Yu|
m=1 exp(S(zi, cm))

, (1)
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Figure 2: The overall architecture of TIDA. First, we extract features using an image encoder. Then,
we use the proposed Taxonomic Context Discovery (TCD) to build hierarchical prototypes to cluster
features under various granularity by optimizing TCD losses Ltcd. Given the discovered taxonomic
context (i.e. hierarchical prototypes), the proposed Taxonomic Context-based prediction Alignment
(TCA) estimates taxonomic context-based predictions on target hierarchy by splitting/merging cluster
results on coarse/fine-grained into the target. Last, TCA constrains the estimated predictions to be
consistent with the original one on the target hierarchy with TCA losses Ltca. During inference,
the encoder and target-grained prototypes are applied to classify seen/novel class samples. Colors
indicate different classes for samples or different granularity for prototypes.

where yi ∈ R|Yu|+|Yl| denotes the ground-truth / pseudo-label for labeled / unlabeled sample xi.
ŷji is the output predicted by the model, representing the probability of xi belongs to j-th class. zi
represents the features of sample xi and cj represents the prototype in j-th class. S(·, ·) is cosine
similarity function. Note that to mitigate over-fitting on noisy pseudo-labels, both methods first
obtain pseudo labels for two views of each unlabeled sample by applying various perturbations.
Then, the classification objective in Eq. 1 for unlabeled data is accomplished by optimizing each
view using the pseudo-labels from the other view. For simplify, we do not explicitly display this
pseudo-label exchange process in Eq. 1. In this paper, we use this self-labeling strategy as the
baseline. Differently, we propose to explore underlying taxonomic context priors as a remedy for
single-granularity supervision. As shown in Fig. 2, TIDA consists of two mutually benefited modules:
Taxonomic Context Discovery (TCD) and Taxonomic Context-based prediction Alignment (TCA).
Next, we describe TIDA in detail.

3.1 Taxonomic Context Discovery

The lack of supervision for novel categories in OSSL poses a challenge for models to learn accurate
and discriminative features for classification. Inspired by [58, 27, 43], we argue that the underlying
taxonomic context of data facilitate novel class discovery, which can provide rich relationships
between samples under different category granularity for supervision. To achieve this goal, we
build several learnable hierarchical prototypes C = {{cli}

nl
i=1}Ll=1 upon a shared feature encoder

fθ : X → Z , which are normalized and can be regarded as semantic priors under various category
granularity. L is the number of hierarchies and nl is the number of prototypes of the l-th layer and
n1 < n2 < ... < nL. Note that the number of prototypes nl controls the granularity of classification,
where larger/smaller nl means more fine-/coarse-grained semantic concepts at hierarchy l.

Specifically, TIDA first obtains normalized feature representation zi ∈ RK = fθ(xi) for the i-th
sample xi by image encoder fθ. Then, we use zi and prototypes on each hierarchy to perform
clustering based on the baseline. The combination of loss functions on each hierarchy is written as:

Ltcd = −
L∑

l=1

nl∑
j=1

yj,li log ŷj,li = −
L∑

l=1

nl∑
j=1

yj,li log
exp(S(zi, clj)/τ)∑nl

m=1 exp(S(zi, clm)/τ)
, (2)

where yli ∈ {0, 1}|Yl+Yu| is the pseudo-label of xi on l-th hierarchy generated by Sinkhorn-Knopp
algorithm [17], ŷli denotes the prediction of model for xi and τ = 0.1 is the temperature. In this
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Figure 3: (a) The left part denotes inconsistent taxonomic context, where the relationships between
labels across different hierarchies are unclear and inaccurate. TCA can address this problem by
explicitly building affinity relationships and aligning hierarchical predictions, resulting in a consistent
taxonomic context. (b) The illustration of TCA. Given the taxonomic context and the target-grained
prototype, we first calculate their affinity matrix. Then, we split/merged the prediction on other-
grained into target-grained as Eq. 4. Finally, we apply the loss Ltca constrains them to be consistent.

paper, we apply TIDA with three prototype hierarchies, i.e., C = {{c1i }
n1
i=1, {c2i }

n2
i=1, {c3i }

n3
i=1},

n1 = α ∗ n2, n2 = |Y l|+ |Yu|, n3 = β ∗ |C2| and 0 < α < 1, β > 1, which can achieve consistent
well performance on all settings. More analyses about L are provided in the Appendix.

Discussion. In fact, the objective of Eq. 2 is a hierarchical classification task, where the model
requires distinguishing samples at different granularity. As shown in Fig. 2, the first hierarchy
can be regarded as the super-class or coarse-grained class level; the second hierarchy refers to the
target-class / target-grained level (i.e., |Y l + Yu|-ways classification); and the third can be regarded
as the sub-class or fine-grained class level. We call the learned hierarchical clusters as taxonomic
context priors because they reflect the inter-class or intra-class relationships among various granularity.
However, with unknown class and limited labeled data, training each hierarchy individually cannot
guarantee the taxonomic context consistency among hierarchies (see left part of Fig. 3(a)). That
is, the relationships between labels among hierarchies are unclear and inaccurate, leading to limited
advantages to target-classifier learning. With the consistent taxonomic context priors, we can build a
clear subsumption relationship among classes of adjacent hierarchies and thus infer the predictions of
a sample on a certain hierarchy based on its predictions on other hierarchies. For example, as shown
in the right part of Fig. 3(a), given the affinities between the classes of different hierarchies, if we
know the coarse-grained label of a sample is Furniture, we can infer that its target-grained label is
most likely Chairs or Coach and definitely not Dog. Similarly, if we know the fine-grained label
of a sample is Wooden Chairs, we can infer that its target-grained label is most likely Chairs and
definitely not Coach or Dog. This indicates that the key to taxonomic context consistency is having
reliable affinity relationships between labels of various granularity.

3.2 Taxonomic Context-based Prediction Alignment

To achieve taxonomic context consistency, we propose the Taxonomic Context-based prediction
Alignment (TCA), as shown in Fig. 3(b), which aims to establish reliable affinity relationships across
hierarchies. TCA is inspired by the statement of [19, 8]: given a sample and its label on a certain
hierarchy l, we can treat its unobserved labels on adjacent hierarchies as latent variables and use
them to infer the probability belonging to each class on the hierarchy l. Then, the tree hierarchy
constraint can be achieved by minimizing the cross-entropy loss between the label/pseudo-label
and the inferred prediction of the sample. To this end, we regard coarse/fine-grained predictions as
latent variables and use them to infer target-grained predictions. This allows us to explicitly build
affinity relationships across hierarchies and supervise them with partially labeled samples from seen
classes. In addition to ensuring taxonomic context consistency, TCA also offers two more benefits:
i) coarse-/fine-grained classifications can aid help predict target-grained classes [19, 8, 43]; ii) the
supervision of labeled samples of seen classes can improve discrimination on coarse/fine-grained.

Specifically, given coarse/fine-grained prototypes Cr and target-grained prototypes C2, we first
obtain the affinity matrix Mr,2 ∈ Rnr×n2 , where for each mr,2

i,j ∈ Mr,2 , mr,2
i,j = S(cri , c2j ) , cri is

the i-th prototype in Cr, c2j is the j-th one in C2, and r = 1, 3. Second, we estimate the taxonomic
context-based similarity between the feature of each sample and the target-grained prototypes C2
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with Cr as latent variables, as follows:

S(zi, c2j ) =
nr∑
k=1

S(zi, crk) ·m
r,2
k,j =

nr∑
k=1

S(zi, crk) · S(crk, c2j ). (3)

Then, we can obtain the taxonomic context-based prediction at the target-grained level by:

ŷ
j,2|r
i =

exp(
∑nr

k=1 S(zi, crk)/τ · S(crk, c2j ))∑Cl+Cu

m=1 exp(
∑nr

k=1 S(zi, crk)/τ · S(crk, c2m))
, (4)

where r indicates the hierarchy of Cr. Finally, we can enforce the taxonomic context consis-
tency/alignment learning based on the cross-entropy loss and the pseudo-labels (or ground truth) on
the target level, formulated as:

Ltca =
∑
r=1,3

|Yl|+|Yu|∑
j=1

yj,2i log ŷ
j,2|r
i . (5)

Finally, we jointly perform taxonomic context discovery and taxonomic context-based prediction
alignment during the training process, i.e., optimizing the model with the objective of Ltcd + Ltca.

4 Theoretical Analysis

Assuming that the observed data Dl ∪ Du are related to some latent variables sets which refer to the
hierarchical prototypes C = {{cli}

nl
i=1}Ll=1 above, where nl is the number of latent variables in set

Cl, l = 1, · · · , L and n1 < n2 < · · · < nL. In our TIDA, L = 3, and n2 = |Y l|+ |Yu|.
From the EM [18] perspective, TIDA aims to maximize the likelihood of the observed Nl + Nu

samples based on these hierarchical prototypes C. According to Jensen’s inequality [47], we write
the surrogate objective function as follows:

θ∗, C∗ = argmax
θ,C

Nl+Nu∑
i

∑
Cl∈C

∑
clj∈Cl

Q(clj) log p(xi, c
l
j ; θ) with Q(cli) = p(clj ;xi, θ). (6)

To sum up, TIDA aims to estimate the posterior class probability Q(clj) = p(clj ;xi, θ) on each
hierarchy at the E-steps. Then, TIDA draws each sample to the prototype of its assigned cluster on
each hierarchy at the M-step by optimizing Eq. 6 with known Q(clj).
Theorem 1. By executing EM algorithm iteratively, samples from the same class in the feature space
will be mapped into a d-variate von Mises-Fisher (vMF) distribution whose probabilistic density
is given by g(x|cli, κ; θ) = cd(κ)e

κcl⊤
i fθ(x), where |cli| = 1 and cli represents the mean direction,

κ = 1/τ is the concentration parameter, and cd(κ) is the normalization factor.

E-step. In fact, the posterior class probability Q(cli) = p(cli;xi, θ) = I(xi ∈ clj), which is equivalent
to yli in Eq. 2. In this paper, TIDA uses the Sinkhorn-Knopp algorithm on each hierarchy to assign
the samples to the cluster center, as mentioned in Sec. 3.
M-step. Given Q(clj) = p(clj ;xi, θ), TIDA aims to maximize the surrogate function in Eq. 6 in M-
step. Finally, as Theorem. 1 shown, samples will be mapped into different d-variate von Mises-Fisher
(vMF) distributions under different hierarchies [72].

(a) Separate Objective Functions for Each Hierarchy. Due to Eq. 6 is hard to optimize, follow-
ing [47], we assume that the distribution around each prototype cli satisfy an isotropic Gaussian, i.e.,

p(xi; c
l
i, θ) = exp

(
−(zi − cli)

2/2σl
i
2
)
/
∑nl

j=1 exp
(
−(zi − clj)

2/2σl
j
2
)

. Then Eq. 6 is written as:

θ∗, C∗ = argmax
θ,Cl

Nl+Nu∑
i

∑
Cl∈C

∑
cli∈Cl

−log
exp

(
zi · ci,ls /τ

)∑nl

j=1 exp
(
zi · clj/τ

) , (7)

where ci,ls denotes zi’s assigned prototype (p(ci,ls ;xi, θ) = 1 and ci,ls ∈ Cl) and τ = 1 ∝ σl
i
2, which

plays the role of temperature parameter. As we can see, Eq. 7 is equivalent to Eq. 2.

(b) Constrain the Consistency across Hierarchies in Feature Space. Since only optimizing Eq. 7
results in inconsistencies of these learned vMF distributions across hierarchies, we propose to obtain
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Table 1: Comparison with state-of-the-art methods on generic datasets.

Methods
CIFAR10 CIFAR100 ImageNet-100 Tiny ImageNet

Seen Novel All Seen Novel All Seen Novel All Seen Novel All

DTC [29] 42.7 31.8 32.4 22.1 10.5 13.7 24.5 17.8 19.3 13.5 12.7 11.5
RankStats [28] 71.4 63.9 66.7 20.4 16.7 17.8 41.2 26.8 37.4 9.6 8.9 6.4

UNO [23] 86.5 71.2 78.9 53.7 33.6 42.7 66.0 42.2 53.3 28.4 14.4 20.4
ORCA [5] 82.8 85.5 84.1 52.5 31.8 38.6 83.9 60.5 69.7 – – –

OpenNCD [50] 83.5 86.7 85.3 53.6 33.0 41.2 84.0 65.8 73.2 – – –
TRSSL [65] 94.9 89.6 92.2 68.5 52.1 60.3 82.6 67.8 75.4 39.5 20.5 30.3

OpenLDN [64] 92.4 93.2 92.8 55.0 40.0 47.7 – – – – – –
TIDA (Ours) 94.2 93.4 93.8 73.3 56.6 65.3 83.4 71.2 77.6 45.7 28.4 37.2

Table 2: Comparison with state-of-the-art methods on fine-grained datasets.

Methods
Oxford-IIIT Pet FGVC Aircraft Stanford-Cars

Seen Novel All Seen Novel All Seen Novel All

DTC [29] 20.7 16.0 13.5 16.3 16.5 11.8 12.3 10.0 7.7
RankStats [28] 12.6 11.9 11.1 13.4 13.6 11.1 10.4 9.1 6.6

UNO [23] 49.8 22.7 34.9 44.4 24.7 31.8 49.0 15.7 30.7
TRSSL [65] 70.9 36.1 53.9 69.5 41.2 55.4 83.5 37.1 60.4

OpenLDN [64] 66.8 33.1 50.4 – – 45.7 – – 38.7
TIDA (Ours) 75.7 39.2 59.9 71.1 43.7 57.4 85.9 43.5 66.0

the aggregated latent variables C̃2|r with variables set Cr, then constrain the distribution around C̃2|r

be consistent with the original one around C2, where r = 1, 3.
First, we establish the similarity relationship across adjacent hierarchy, i.e., the mapping ma-
trix Mr,2 = S(Cr⊤, C2), where for mr,2[j, k] ∈ Mr,2, m2,r[j, k] = S(crj , c2k). Then we ob-

tained its aggregated variables set C̃2|r with latent variables Cr as C̃2|r = {c̃2|rk }n2

k=1, c̃
2|r
k =∑n2

j=1 c
r
jm

r,2[j, k]. Note, the variables set C̃2|r dynamically aggregates semantics from r-th hi-
erarchy and builds communication among clusters across hierarchies, which facilitates aligning
hierarchical semantics with target tasks.
Given aggregated variables, we then apply consistent constraints on the sample’s distribution around
C̃2|r and the original ones in the target hierarchy, where r = 1, 3. Specifically, we use aggregated
variables C̃2|r to calculate the objective function in Eq. 7, as follows:

θ∗, C∗ = argmax
θ,C

Nl+Nu∑
i

∑
r=1,3

−log
exp

(
zi · c̃i,2|rs /τ

)
∑n2

k=1 exp
(
zi · c̃2|rk /τ

) , (8)

where the index s in c̃
i,2|r
s corresponds to the assigned target-grained prototype ci,2s for feature zi

(p(c2s;xi, θ) = 1). As we can see, Eq. 8 is equivalent to Eq. 5. More details are in Appendix.

5 Experiment

5.1 Experiment Setup

Datasets. We evaluate TIDA on four commonly used generic image classification datasets (i.e.
CIFAR10 [41], CIFAR100 [41], TinyImageNet [20] and ImageNet-100 [20]) and three fine-grained
datasets (i.e. Oxford-IIT Pet [52], Standford-Cars [40] and Aircraft [55]). Following [5, 65], we use
the first half of classes as seen classes and the remaining as novel. More details are in the Appendix.

Implementation Details. Following [65, 5, 64], we use ResNet-50 [22] for ImageNet-100 and
ResNet-18 [22] for the other datasets. For all datasets, we set the length of prototypes set L as 3, in
which C = {C1, C2, C3} and |C2| = |Y l ∪ Yu|. For the number of prototypes C1 and C3, we set
|C1| = α∗ |C2| and |C3| = β ∗ |C2|. We set α = 0.2 / 0.4 and β = 2 / 2.5 for generic / fine-grained
datasets. We use a cosine annealing-based learning rate scheduler accompanied by a linear warmup,
where we set the base learning rate to 0.5 / 1.5 for generic / fine-grained datasets. The warmup length
is set to 10 epochs and the weight decay is set to 1e-4. More details are in the Appendix.
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Table 3: The ablation study. C-TCP: Coarse-grained Taxonomic Context Priors; F-TCP: Fine-
grained Taxonomic Context Priors; TCA: Taxonomic Context-based prediction Alignment. When
using TCA only, the model is equipped with three target-grained classifiers that are aligned by TCA.

# C-TCP F-TCP TCA CIFAR100 Tiny ImageNet Stanford-Cars

Seen Novel All Seen Novel All Seen Novel All

a) 67.0 48.9 57.9 39.7 21.8 31.1 84.8 38.3 61.3
b) " 63.7 47.0 55.5 36.4 19.2 28.0 81.2 41.2 61.1
c) " " 71.3 51.6 61.6 43.7 27.1 35.8 84.9 40.8 62.9
d) " 65.3 45.6 55.3 36.3 20.4 28.8 78.1 31.2 54.8
e) " " 71.5 54.6 63.1 44.6 27.3 36.8 85.3 42.3 64.1
f) " 71.8 49.1 60.5 43.1 21.1 32.5 82.8 39.5 61.9
g) " " 69.9 45.4 57.7 36.3 19.8 29.0 76.4 30.2 53.8
h) " " " 73.3 56.6 65.3 45.7 28.4 37.2 85.9 43.5 66.0

5.2 Comparison with State-of-The-Art

We first compare our TIDA with state-of-the-art methods [5, 23, 28, 29, 64, 65] on four generic
datasets and three fine-grained datasets, where the results are reported in Tab. 1 and Tab. 2, respec-
tively. It is clear that TIDA consistently outperforms all state-of-the-art methods across all datasets
and metrics. Specifically, TIDA surpasses the current best competitor TRSSL [65] by 6.9% on
TinyImageNet for All classes. Importantly, TIDA outperforms previous methods on most datasets
for Novel classes by a large margin, e.g., 7.9% on TinyImageNet and 6.4% on Stanford-Cars. These
results experimentally demonstrate that exploring taxonomic context priors as auxiliary supervision
is a beneficial way for discriminating seen and novel classes under OSSL.

5.3 Ablation Study

Effect of Coarse-grained Taxonomic Context Priors. To verify the effectiveness of Coarse-grained
Taxonomic Context Priors (C-TCP), we conduct a comparison with three variants: a) the baseline that
only clusters samples on target-grained; b) the model that clusters samples on both coarse-grained and
target-grained without using Taxonomic Context-based prediction Alignment (TCA); c) the model
which simultaneously clusters samples both on coarse-grained and target-grained with TCA. As we
can see in Tab. 3, c) outperforms a) and b) but b) worsened a), showing that generic semantics will
improve the performance only when the coarse-grained clustering is consistent with the target task.

Effect of Fine-Grained Taxonomic Context. Similarly, we also conduct a comparison with three
variants to verify the effectiveness of Fine-grained Taxonomic Context Priors (F-TCP), i.e., a) the
baseline, d) the model additionally includes F-TCP learning, and e) the model additionally includes
F-TCP learning and TCA. Results show that F-TCP learning facilitates the target task only when
using ATC. Moreover, the fine-grained semantic works relatively better than the generic semantic
(see the comparison between c) and e)), especially the performance on Novel classes. In addition,
jointly considering C-TCP and F-TCP could further improve the performance, as shown in variant h).

Effect of Taxonomic Context-based Prediction Alignment. As discussed in the previous two
ablation studies, the proposed TCA is indispensable to our TIDA. Specifically, by comparing b) v.s.
c), d) v.s. e), and g) v.s. h), we can observe that only using coarse-grained taxonomic context learning
or fine-grained taxonomic context learning, or both of them fail to achieve improvement over the
baseline. However, after injecting the proposed taxonomic context-based prediction alignment module,
the performance is significantly improved. Because the inconsistency among multi-granularity
classification leads to hard-optimization problem when using TCD alone. Actually, TCD applies
multiple classifiers to cluster samples under different granularity. It can be regarded as multi-task
learning with a shared backbone. However, due to a lack of supervision (e.g., semantic names and
attributes), when using TCD alone, the training objective among classifiers is inconsistent and the
optimization on the sub- and sup-classifiers is completely unsupervised. This may have a negative
impact on model optimization and consequently result in performance degradation. While, the TCA
learn to align the training objectives among classifiers and enable the sub- and sup-classifiers to
benefit from the knowledge of labeled data on the target classifier.
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Figure 4: The hyper-parameters analysis. (a) α: The weight that decides the number of super-classes.
(b) β: The weight that decides the number of sub-classes.
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Figure 5: The t-SNE visualization of features from TRSSL and TIDA on CIFAR100. For clarity, we
randomly select 20 seen and 20 novel classes as examples from CIFAR100.

Effect of Alignment across Multiple Granularity. It is interesting to see whether the performance
improvement comes from the alignment across multiple granularity or alignment across a number
of classifiers. To evaluate this, we introduce a variant f) with three target-grained clusters learning,
i.e., |C1| = |C2| = |C3| = |Y l| + |Yu|. Compared with f) and h), we obverse that the alignment
across multiple target-granularity is beneficial for Seen classes but there is no improvement or even
reduction for Novel classes. This indicates that the improvement mainly comes from interaction
among different levels of granularity instead of different classifiers of the same granularity.

5.4 Hyper-Parameter Analysis

Impact of the Number of Super-Classes. As shown in Fig. 4(a), it is more suitable to assign a
smaller value for α, which leads to a small number of coarse-grained classes. When α approaches
to 1, TIDA degenerates to the model that ignores the coarse-grained granularity. The best result is
achieved by α = 0.2 / 0.4 for TinyImageNet / Standard Car.
Impact of the Number of Sub-Classes. In contrast, as shown in Fig. 4(b), assigning a larger value
for β leads to a higher performance, which enables us to obtain fine-grained prior. Again, when β
nears 1, TIDA will largely overlook the fined-grained granularity and produce lower results. The best
performance is obtained by β = 2 / 2.5 for Tiny ImageNet / Standard Car.

5.5 Qualitative Analysis

T-SNE Visualization. We use t-SNE [71] to visualize the features learned by TIDA and the base-
line [65]. As shown in Fig. 5(a) and Fig. 5(b), TIDA produces more discriminative features than
TRSSL [65], where the samples are generally better clustered. To better understand our method,
we also visualize the fine-grained and coarse-grained features learned by TIDA, shown in Fig. 5(c)
and Fig. 5(d). At the fine-grained level, samples from the same categories are divided into different
clusters; while, samples belonging to the same super-class are clustered together at the coarse-grained
level. This further verifies that TIDA can learn more semantic priors which are complementary.

Visualization of Affinity Matrix. In Fig. 6, we calculate the affinity matrix by counting the number
of samples belonging to each target class that are classified into each super-class. Results show that
samples of the same target class are commonly classified into the same super-class for TIDA w/ TCA.
In addition, we find that similar target classes are generally mapped into the same super-class. For
example, “bowl, cup, lamp, plate, clock” are assigned with the 18th super-class. In contrast, for TIDA
w/o TCA, samples of the same target class tend to be classified into different super-classes, resulting
in unclear and inconsistent affinity relationships among classes across hierarchies. These results
validate the effectiveness of our TCA in establishing a clear and consistent affinity relationship.
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Figure 6: Affinity matrix that calculates the number of samples of each target class classified into
each super-class on CIFAR100. For clarity, we rearrange the target classes, which belong to the same
super-class being grouped together (see Appendix). Here, (a) and (b) follow the same order.

6 Contribution
In this paper, we propose a novel framework known as TIDA. It can effectively learn discriminative
visual representations and improve pseudo-label accuracy by exploring the underlying taxonomic
context priors. Specifically, TIDA consists of two core components: i) clustering samples hierarchi-
cally to capture the underlying taxonomic context in latent space, and ii) constraining predictions
across hierarchies to be consistent to build reliable affinity relationships to ensure taxonomic context
is consistent. The theoretical analysis and extensive experiments on commonly used benchmarks
with consistent performance gains both justify the superiority of our TIDA.

Limitations. Despite obtaining high performance, TIDA and existing methods still suffer from
several limitations: assuming that i) the domain distribution between labeled and unlabeled data is
the same; ii) the class-distribution is uniform; and iii) the number of novel classes is known. Future
work may focus on exploring more practical OSSL situations that unlock the above constraints.
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