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ABSTRACT

Existing digital sensors capture images at fixed spatial and spectral resolutions (e.g.,
RGB, multispectral, and hyperspectral images), and generating super-resolution
images with different resolution settings requires bespoke machine learning models.
Spatial Implicit Functions (SIFs) partially overcome the spatial resolution challenge
by representing an image in a spatial-resolution-independent way. However, they
still operate at fixed, pre-defined spectral resolutions. To address this challenge,
we propose Spatial-Spectral Implicit Function (SSIF), a neural implicit model
that represents an image as a function of both continuous pixel coordinates in
the spatial domain and continuous wavelengths in the spectral domain. This
continuous representation across spatial and spectral domains enables a single
model to learn from a diverse set of resolution settings, which leads to better
generalizability. This representation also allows the physical principle of spectral
imaging and the spectral response functions of sensors to be easily incorporated
during training and inference. Moreover, SSIF does not have the equal spectral
wavelength interval requirement for both input and output images which leads to
much better applicability. We empirically demonstrate the effectiveness of SSIF on
two challenging spatial-spectral super-resolution benchmarks. We observe that
SSIF consistently outperforms state-of-the-art baselines even when the baselines
are allowed to train separate models at each spatial or spectral resolution. We
show that SSIF generalizes well to both unseen spatial and spectral resolutions.
Moreover, due to its physics-inspired design, SSIF performs significantly better at
low data regime and converges faster during training compared with other strong
neural implicit function-based baselines.

1 INTRODUCTION

While the physical world is continuous, most digital sensors (e.g., cell phone cameras, multispectral
or hyperspectral sensors in satellites) can only capture a discrete representation of continuous signals
in both spatial and spectral domains (i.e., with a fixed number of spectral bands, such as red, green,
and blue). Due to the limited energy of incident photons, fundamental limitations in achievable signal-
to-noise ratios (SNR), and time constraints, there is always a trade-off between spatial and spectral
resolution (Mei et al., 2020; Ma et al., 2021)1. High spatial resolution and high spectral resolution
can not be achieved at the same time, leading to a variety of spatial and spectral resolutions used
in practice for different sensors. However, ML models are typically bespoke to certain resolutions,
and models typically do not generalize to spatial or spectral resolutions they have not been trained
on. This calls for image super-resolution (SR) methods, which are capable of increasing the spatial
or spectral resolution of a given single low-resolution image (Galliani et al., 2017). It has become
increasingly important for a wide range of tasks including object recognition and tracking (Pan et al.,
2003; Uzair et al., 2015; Xiong et al., 2020), medical image processing (Lu & Fei, 2014; Johnson
et al., 2007), remote sensing (He et al., 2021b; Bioucas-Dias et al., 2013; Melgani & Bruzzone, 2004;
Zhong et al., 2018; Wang et al., 2022a; Liu et al., 2023), and astronomy (Ball et al., 2019).

The diversity in input-output image resolutions (both spatial and spectral) significantly increases the
complexity of deep neural network (DNN) based SR model development. Most SR research develops

1Given a fixed overall sensor size and exposure time, higher spatial resolution and higher spectral resolution
require the per pixel sensor to be smaller and bigger at the same time, which are contradicting each other.
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Continuous Spectral Representation

Spatial Super-Resolution

Spectral Signature of Pixel A in Image Ilr-m

A

SSIF

Input LR-MSI
Image Ilr-m

C
p

(a) Spatial-Spectral Implicit Function (SSIF)

Sensor i's Density Value at Pixel 

Radiation Function

Spectral Response Functions           of Sensor i
Integral

(b) The physical principle of spectral imaging

Figure 1: (a) SSIF represents an input low-resolution multispectral (LR-MSI) image Ilr−m as a continuous
function γI(x, λ) on both pixel coordinates x in the spatial domain and wavelengths λ in the spectral domain.
SSIF can perform both spatial (blue arrows) and spectral (red arrows) super-resolution simultaneously (illustrated
with a specific pixel A). (b) An illustration of the physical principle of spectral imaging for MSI and HSI sensors.

separate DNN models for each input-output image resolution pairs with a specific spatial and spectral
resolution (Lim et al., 2017; Zhang et al., 2018b; Ma et al., 2021; Mei et al., 2020; Ma et al., 2022).
For example, convolution-based SR models such as RCAN (Zhang et al., 2018a), SR3(Saharia et al.,
2021), SSJSR (Mei et al., 2020), (He et al., 2021b), and SSFIN (Ma et al., 2022) need to be trained
separately for each input-output image resolution settings2. This practice has three limitations: 1)
For some SR settings with much less training data, these models can yield suboptimal results or lead
to overfitting; 2) It prevents generalizing trained SR models to unseen spatial/spectral resolutions.
3) it is hard to incorporate domain knowledge such as sensor response functions into the model
design. Inspired by the recent progress in 3D reconstruction with implicit neural representation (Park
et al., 2019; Mescheder et al., 2019; Chen & Zhang, 2019; Sitzmann et al., 2020; Mildenhall et al.,
2020), image neural implicit functions (NIF) (Dupont et al., 2021; Chen et al., 2021; Yang et al.,
2021; Zhang, 2021; Cao et al., 2023) partially overcome the aforementioned problems (especially
the second one) by learning a continuous function that maps an arbitrary pixel spatial coordinate to
the corresponding visual signal value and generate images at any spatial resolution. We call them
Spatial Implicit Functions (SIF). However, each SIF model still has to be trained separately to target
a specific spectral resolution (i.e., a fixed number of spectral bands).

Extending SIFs to the spectral domain is a non-trivial task due to the complexities of the spectral
response functions. First, the response functions of different bands might not be simple functions
(e.g., Gaussian or more complicated functions) and can be different types. Second, the bands of
the input/output images might be unequally spaced in the spectral domain. For many RGB or
multispectral images, each band may have different spectral widths (i.e., lengths of wavelength
intervals) and different bands’ wavelength intervals may even overlap with each other. The "Spectral
Signature of Pixel A" of the image Ilr−m in Figure 1a shows one example of such cases. Recent
work like LISSF (Zhang et al., 2024) utilizes 3D CNN in the image encoder to naively generalize
SIFs into a spatial-spectral SR model. However, LISSF relies on a strong assumption that all input
images should have equal-spaced spectral wavelength intervals which most RGB and multispectral
images do not satisfy. This significantly limits its applicability in most spatial-spectral SR problems.
Therefore, effectively incorporating images from various sensors with diverse characteristics is the key
to achieving cost-effectiveness and model generalizability, but poses a great challenge to modeling.

In this work, we propose Spatial-Spectral Implicit Function (SSIF ), which generalizes neural
implicit representations to the spectral domain as a physics-inspired architecture by incorporating
sensors’ physical principles of spectral imaging (Nguyen et al., 2014; Zheng et al., 2020). SSIF
represents an image I as a continuous function γI(x, λ) on both pixel spatial coordinates x in the
spatial domain and wavelengths λ in the spectral domain. As shown in Figure 1a, given an input low-
resolution multispectral (or RGB) image, a single SSIF model can generate images with different
spatial and spectral resolutions. To tackle the problem of modeling response functions ρi(λ) of
sensor i, we predict each spectral band value of each target pixel x as the integral of the radiation
function γI(x, λ) of pixel x and the response function ρi(λ) (see Figure 1b as an illustration). Our
contributions are as follows:

2Figure 9a in Appendix A.1 illustrates this separate training practice.
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1. We propose SSIF which represents an image as a physics-inspired continuous function on both
pixel coordinates in the spatial domain and wavelengths in the spectral domain. Unlike LISSF,
SSIF does not have the equally spaced spectral band requirement for both input and output
images. It can handle SR tasks with different spatial and spectral resolutions simultaneously.

2. We demonstrate the effectiveness of SSIF on two challenging spatial-spectral super-resolution
benchmarks – CAVE (the indoor scenes) and Pavia Centre (Hyperspectral Remote Sensing
images). SSIF consistently outperforms state-of-the-art SR baseline models on spatial SR,
spectral SR, and spatial-spectral SR tasks even when the baselines are trained separately at each
spectral resolution (and spatial resolution). We show that SSIF generalizes well to both unseen
spatial and spectral resolutions.

3. We show that due to the physics-inspired design – explicitly incorporating physical principles of
spectral imaging into SSIF’s model design, SSIF performs significantly better at low data regime
and converges faster during training compared with existing SIF baselines.

2 RELATED WORK

Image Super Resolution As an ill-posed single image-to-image translation problem, super-
resolution (SR) aims at increasing the spatial or spectral resolution of a given image such that
it can be used for different downstream tasks. It has been widely used on natural images(Zhang et al.,
2018a; Hu et al., 2019; Zhang et al., 2020b; Saharia et al., 2021; Chen et al., 2021), screen-shot
images (Yang et al., 2021), omnidirectional images (Deng et al., 2021; Yoon et al., 2021) medical
images (Isaac & Kulkarni, 2015), as well as multispectral (He et al., 2021b; Liu et al., 2023) and
hyperspectral remote sensing images(Mei et al., 2017; Ma et al., 2021; Mei et al., 2020; Wang et al.,
2022b). Traditionally image SR (Ledig et al., 2017; Lim et al., 2017; Zhang et al., 2018b; Haris et al.,
2018; Zhang et al., 2020c; Yao et al., 2020; Mei et al., 2020; Saharia et al., 2021; Ma et al., 2021; He
et al., 2021b; Ma et al., 2022; Cao et al., 2023) has been classified into three tasks according to the
input and output image resolutions:3 Spatial Super-Resolution (spatial SR), Spectral Super-Resolution
(spectral SR) and Spatio-Spectral Super-Resolution (SSSR). Spatial SR (Zhang et al., 2018a; Hu
et al., 2019; Zhang et al., 2020a; Niu et al., 2020; Wu et al., 2021b; Chen et al., 2021; He et al., 2021b)
focuses on increasing the spatial resolution of the input images (e.g., from h× w pixels to H ×W
pixels) while keeping the spectral resolution (i.e., number of spectral bands/channels) unchanged.
In contrast, spectral SR (Galliani et al., 2017; Fu et al., 2018; Arad et al., 2018; Kaya et al., 2019;
Fu et al., 2020; He et al., 2021a; Sun et al., 2021; Zhu et al., 2021; Zhang, 2021; Mei et al., 2022;
Zhang et al., 2022; He et al., 2023) focuses on increasing the spectral resolution of the input images
(e.g., from c to C channels) while keeping the spatial resolution fixed4. SSSR (Mei et al., 2020; Ma
et al., 2021; 2022) focuses on increasing both the spatial and spectral resolution of the input images.
Here, h,w (or H,W ) indicates the height and width of the low-resolution, LR, (or high-resolution,
HR) images while c and C indicate the number of bands/channels of the low/high spectral resolution
images. For video signal, SR can also be done along the time dimension, but we don’t consider it
here and leave it as future work.

Implicit Neural Representation Recently, we have witnessed an increasing amount of work using
implicit neural representations for different tasks such as image regression (Tancik et al., 2020)
and compression(Dupont et al., 2021; Strümpler et al., 2021), 3D shape regression/reconstruction
(Mescheder et al., 2019; Tancik et al., 2020; Chen & Zhang, 2019), 3D shape reconstruction via
image synthesis (Mildenhall et al., 2020), 3D magnetic resonance imaging (MRI) reconstruction
(Tancik et al., 2020), 3D protein reconstruction (Zhong et al., 2020), spatial feature distribution
modeling (Mai et al., 2020b; 2022; 2023b; Cole et al., 2023; Mai et al., 2023a; Rußwurm et al., 2024;
Wu et al., 2024), geographic question answering (Mai et al., 2020a), and etc. The core idea is to
learn a continuous function that maps spatial coordinates (e.g., pixel coordinates, 3D coordinates,
and geographic coordinates) to the corresponding signals (e.g., point cloud intensity, MRI intensity,
visual signals, etc.). A common setup is to input the spatial coordinates in a deterministic or learnable
Fourier feature mapping layer (Tancik et al., 2020) (consisting of sinusoidal functions with different
frequencies), which converts the coordinates into multi-scale features. Then a multi-layer perceptron

3A related task, Multispectral and Hyperspectral Image Fusion (Zhang et al., 2020c; Yao et al., 2020),
takes a high spatial resolution MSI image and a low spatial resolution HSI image as inputs and generates a
high-resolution HSI image. Here, we focus on the single image-to-image problem and leave this as future work.

4See He et al. (2023); Zhang et al. (2022) for comprehensive reviews on different deep-learning-based
spectral SR models.
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further transforms these multi-scale features for downstream tasks. In parallel, neural implicit
functions (NIF) such as LIIF (Chen et al., 2021), ITSRN (Yang et al., 2021), Zhang (2021), and
CiaoSR (Cao et al., 2023) are proposed for image spatial SR which map pixel spatial coordinates
to the visual signals in the high spatial resolution images. One outstanding advantage is that they
can jointly handle spatial SR tasks at an arbitrary spatial scale. Recently, LISSF (Zhang et al.,
2023; 2024) was developed as a NIF-based SSSR model that uses an image encoder with 3D CNN
and generalizes LIIF with 3D coordinates in spatial and spectral space for arbitrary scale SSSR.
However, it adopts a strong assumption that input images’ bands must have equally spaced spectral
wavelength intervals which most RGB and multispectral images do not satisfy. This significantly
limits LISSF’s applicability. In all, to our best knowledge, the existing NIF-based models learn
continuous image representations in the spatial domain while still operating either at fixed pre-defined
spectral resolutions, or on input images with equally spaced wavelength intervals. In comparison,
our SSIF can make predicsions for sensors with arbitrary response functions by leveraging physical
characteristics for the light sources and sensors. Both input and output images of SSIF can have
irregularly spaced wavelength intervals with arbitrary upsampling spectral scales.

3 PROBLEM STATEMENT

The spatial-spectral image super-resolution (SSSR) problem over various spatial and spectral reso-
lutions can be conceptualized as follows. Given an input low spatial/spectral resolution (LR-MSI)
image Ilr−m ∈ Rh×w×c, we want to generate a high spatial and spectral resolution (HR-HSI) image
Ihr−h ∈ RH×W×C . Here, h,w, c and H,W,C are the height, width and channel dimension of
image Ilr−m and Ihr−h, and H > h, W > w, C > c. The spatial upsampling scale p is defined
as p = H/h = W/w. Without loss of generality, let Λhr−h = [ΛT

0 ,Λ
T
1 , ...,Λ

T
C ] ∈ RC×2 be the

wavelength interval matrix, which defines the spectral bands in the target HR-HSI image Ihr−h. Here,
Λi = [λi,s, λi,e] ∈ R2 is the wavelength interval for the ith band of Ihr−h where λi,s, λi,e are the
start and end wavelength of this band. Λhr−h can be used to fully express the spectral resolution of
the target HR-HSI image Ihr−h. In this work, we do not use C/c to represent the spectral upsampling
scale because bands/channels of image Ilr−m and Ihr−h might not be equally spaced (See Figure
1a). So Λhr−h is a very flexible representation for the spectral resolution, capable of representing
situations when different bands have different spectral widths or their wavelength intervals overlap
with each other. When Ihr−h has equally spaced wavelength intervals, such as those of most of the
hyperspectral images, we use its band number C to represent the spectral scale.

The spatial-spectral super-resolution (SSSR) can be represented as a function

Ihr−h = Hsr(Ilr−m, p,Λhr−h) (1)

where Hsr(·) takes as input the image Ilr−m, the desired spatial upsampling scale p, and the target
sensor wavelength interval matrix Λhr−h, and generates the HR-HSI image Ihr−h ∈ RH×W×C . In
other words, we aim at learning one single function Hsr(·) that can take any input images Ilr−m

with a fixed spatial and spectral resolution, and generate images Ihr−h with diverse spatial and
spectral resolutions specified by different p and Λhr−h.

Note that none of the existing SR models can achieve this. Most classic SR models have to learn
separate Hsr(·) for different pairs of p and Λhr−h such as EDSR Lim et al. (2017), RCAN (Zhang
et al., 2018a), SR3(Saharia et al., 2021), SSJSR (Mei et al., 2020), He et al. (2021b), SwinIR (Liang
et al., 2021), and SSFIN (Ma et al., 2022). For SIF models such as LIIF(Chen et al., 2021), SADN
(Wu et al., 2021a), ITSRN (Yang et al., 2021), Zhang (2021), CiaoSR (Cao et al., 2023), they can learn
one Hsr(·) for different p but with a fixed Λhr−h (see Figure 9). LISSF (Zhang et al., 2024) can learn
one Hsr(·) for different p and Λhr−h but it requires the wavelength interval matrix Λlr−m ∈ Rc×2

of Ilr−m equally spaced while SSIF allows arbitrary Λlr−m.

4 SPATIAL-SPECTRAL IMPLICIT FUNCTION

In order to achieve generalizability we design SSIF based on light sensor and light source principles.

4.1 LIGHT SENSOR PRINCIPLE

On the sensor side, the SSIF model design follows the physical principle that the pixel density value
of a sensor can be computed by an integral of the radiance function γI(x, λ) and the response function
ρ(λ) of a sensor. More specifically, let sx,i be the pixel density value of a pixel x at the spectral band

4
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(b) SSIF Training

Figure 2: Data preparation (a) and training (b) for SSIF . In Figure (b), we use Gaussian distributions as the
response functions for different wavelength intervals {Λ1,Λ2, ..,ΛC} while the response function ρi(λi,k) for
Λi is highlighted in red. The green dots are K wavelengths {λi,1, λi,2, ..., λi,K} sampled from a wavelength
interval Λi = [λi,s, λi,e] ∈ Λhr−h and {ρi,1, ρi,2, ..., ρi,K} are their corresponding response function values.
{bi,1,bi,2, ...,bi,K} are their encoded spectral embeddings.

⊗
represents the weighted sum in Equation 6.

bi with wavelength interval Λi. It can be computed by an integral of the radiance function γI(x, λ)
and response function ρi(λ) of a sensor at band bi (see Figure 1b as an illustration).

sx,i =

∫
Λi

ρi(λ)γ
I(x, λ) dλ (2)

where λ is wavelength. So for each pixel x, the radiance function is a neural field that describes
the radiance curve as a function of the wavelength. Note that, unlike recent NeRF where only three
discrete wavelength intervals (i.e., RGB) are considered, we aim to learn a continuous radiance curve
over wavelength for each pixel. The spectral response function (Zheng et al., 2020) describes the
sensitivity of the sensor to different wavelengths and is usually sensor-specific. For example, the red
sensor in commercial RGB cameras has a strong response (i.e., high pixel density) to red light. The
spectral response functions of many commercial hyperspectral sensors (e.g., AVIRIS’s ROSIS-035,
EO-1 Hyperion) are very complex due to atmospheric absorption. A common practice adopted by
many studies (Barry et al., 2002; Brazile et al., 2008; Cundill et al., 2015; Crawford et al., 2019;
Chi et al., 2021) is to approximate the response functions of individual spectral bands as a Gaussian
distribution or a uniform distribution. In this work, we adopt this practice and show that this inductive
bias enforced via physical laws improves generalization.

4.2 LIGHT SOURCE PRINCIPLE

On the light source side, SSIF model design leverages the “spectral signature” principle that
the spectral intensity curve (radiation as a function of wavelength) of any pixel γI(x, λ) can be
decomposed as a weighted sum of k pretrained spectral signature functions. This constraint enforces
a useful regularity that different surface types such as water, bare ground, and vegetation reflect
radiation differently in various wavelengths and have their unique spectral signatures6. With the
decomposition of the pixel spectral intensity curve as a weighted sum of learnable spectral signature
functions, it is possible to learn them from raw data, which often contains mixed surface types.

4.3 SSIF ARCHITECTURE

In the following, we will discuss the design of our SSIF which allows us to train a single SR model
for different p and Λhr−h. The whole model architecture of SSIF is illustrated in Figure 2b.

Following previous SIF works (Chen et al., 2021; Yang et al., 2021; Cao et al., 2023), SSIF first
uses an image encoder EI(·) to convert the input image Ilr−m ∈ Rh×w×c into a 2D feature map
Slr−m = EI(Ilr−m) ∈ Rh×w×dI

which shares the same spatial shape as Ilr−m but with a larger
channel dimension. EI(·) can be any convolution-based image encoder such as EDSR (Lim et al.,
2017), RDN (Zhang et al., 2018b), or SwinIR (Liang et al., 2021). Then we can approximate the
integral of Equation 2 as a weighted sum over the predicted radiance values of K wavelengths
{λi,1, λi,2, ..., λi,K} sampled from a wavelength interval Λi = [λi,s, λi,e] ∈ Λhr−h at location x

5https://crs.hi.is/?page_id=877
6https://www.esa.int/SPECIALS/Eduspace_EN/SEMPNQ3Z2OF_2.html
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sx,i =

K∑
k=1

ρi(λi,k)γ
I(x, λi,k) =

K∑
k=1

ρi(λi,k)G
x,λ(Slr−m,x, λi,k) (3)

Here, ρi(λ) is the response function value, i.e., weight, of wavelength λ given the current response
function for band bi. γI(x, λ) is the radiance value of λ at location x which can be computed by a
neural implicit function Gx,λ, which maps an arbitrary pixel location x ∈ [−1, 1]⊙ [−1, 1] of Ihr−h

and a wavelength λi,k ∈ Λi into the radiance value of the target image Ihr−h at the corresponding
location and wavelength, i.e., γI(x, λi,k) = Gx,λ(Slr−m,x, λi,k). Here, ⊙ is the Cartesian product.

Gx,λ can be decomposed into three neural implicit functions – a pixel feature decoder Fx, a spectral
encoder Eλ, and a spectral decoder Dx,λ. The pixel feature decoder takes the 2D feature map of the
input image Slr−m as well as one arbitrary pixel location x ∈ [−1, 1]⊙ [−1, 1] of Ihr−h and maps
them to a pixel hidden feature hx ∈ Rd where d is the hidden pixel feature dimension (see Equation
4). Here, Fx can be any spatial implicit function such as LIIF Chen et al. (2021), ITSRN (Yang et al.,
2021), and CiaoSR (Cao et al., 2023).

hx = Fx(Slr−m,x) (4)

The spectral encoder Eλencodes a wavelength λi,k sampled from any wavelength interval Λi =
[λi,s, λi,e] ∈ Λhr−h into a spectral embedding bi,k ∈ Rd. We can implement Eλ as any position
encoder (Vaswani et al., 2017; Mai et al., 2020b). Please refer to Appendix A.2 for a detailed
description. Here, we will sample K wavelength from each Λi according to its spectral response
function as shown in Figure 2b.

bi,k = Eλ(λi,k) (5)

Finally, the spectral decoder Dx,λ maps the image feature embedding hx and the spectral embedding
bi,k into a radiance value sx,i,k = Dx,λ(bi,k;hx) for λi,k at location x. So we have the prediction

sx,i =

K∑
k=1

ρi(λi,k)sx,i,k =

K∑
k=1

ρi(λi,k)D
x,λ(bi,k;hx) (6)

Dx,λ can be implemented as different NN architectures. Our ablation study (see Figure 14 in
Appendix A.9.2) shows that a simple dot product function, which satisfies the “spectral signature”
principle, performs very well. The response function ρi(λi,k) can be a learnable function or a
predefined function depending on the target HSI sensor. For this study, we use predefined functions,
e.g. a Gaussian distribution or a uniform distribution, for each band bi by following Chi et al. (2021).

For training, the prediction sx,i ∈ RC is compared with the ground truth s′x,i using a L1 loss:

L =
∑

(Ilr−m,Ihr−h)∈D

∑
(x,shr−h,Λhr−h)∈Ihr−h

∑
Λi∈Λhr−h

∥ sx,i − s′x,i ∥1 (7)

Here the dataset D contains all the low-res and high-res image pairs for the SSSR task. Figure 2a
illustrates the data preparation process of SSIF. Please see Appendix A.3 for a detailed description.

5 EXPERIMENTS
To test the effectiveness of the proposed SSIF, we evaluate it on two challenging spatial-spectral
super-resolution benchmark datasets – the CAVE dataset (Yasuma et al., 2010b) and the Pavia Centre
dataset7. Both datasets are widely used for super-resolution tasks on hyperspectral images. Please
refer to Appendix A.6 and A.7 for a description of both datasets and SSIF’s model training details.
5.1 BASELINES AND SSIF MODEL VARIANTS

Compared with spatial SR and spectral SR, there has been much less work on SSSR. We mainly
compare our model with 10 baselines8: RCAN + AWAN, AWAN + RCAN, AWAN + SSPSR,
RC/AW + MoG-DCN, SSJSR, US3RN, SSFIN, LIIF, CiaoSR, and LISSF. Please refer to Appendix
A.4 for a detailed description of each baseline. For the first 7 baselines, we have to train separate SR
models for different spatial and spectral resolutions of the output images. LIIF and CiaoSR can use
one model to generate output images with different spatial resolutions. However, we still need to
train separate models for Ihr−h with different band numbers C. In contrast, SSIF and LISSF can
handle different spatial and spectral resolutions with one model.

7
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

8We do not pick LISSF as one baseline since it cannot handle RGB or multispectral images as input.
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Based on the response functions we use (Gaussian or Uniform) and the wavelength sampling methods
(Sampled or Fixed), we have 4 SSIF variants: SSIF-RF-GS, SSIF-RF-GF, SSIF-RF-US, and
SSIF-RF-UF. We also consider 1 additional SSIF variant – SSIF-M which only use band middle
point to represent each band. Please refer to Appendix A.5 for a detailed description of them.

5.2 SSSR ON THE CAVE DATASET

Table 1 shows the evaluation result of the SSSR task across different spatial scales p on the original
CAVE dataset with 31 bands. We use three evaluation metrics - PSNR, SSIM, and SAM which
measure the quality of generated images from different perspectives. We evaluate different baselines
as well as SSIF under different spatial scales p = {2, 4, 8, 10, 12, 14}. We can see that:
1. All 4 SSIF-RF-* models can outperform or are comparable to the 10 baselines across all tested

spatial scales even if the first 7 baselines are trained separately on each p.
2. SSIF-RF-GS achieves the best or 2nd best results across all spatial scales and metrics.
3. A general pattern we can see across all spatial scales is that the order of the model performances

is SSIF-RF-* > CiaoSR > LIIF > LISSF and other 7 baselines. For more statistical significance
analysis see the error bar plots shown in Figure 12 in Appendix A.8.2.

Table 1: Results for the image SSSR task across different spatial scales p on the original CAVE (Yasuma et al.,
2010a) dataset with 31 bands. “In-distribution” and “Out-of-distribution” indicate whether the model has seen
this spatial scale p during training. “Out-of-distribution” prediction is only applicable to LIIF (Chen et al., 2021),
CiaoSR (Cao et al., 2023), LISSF (Zhang et al., 2024), and SSIF models. The performance of these models
across different p are obtained from the same model while for other 7 baselines, we trained separated SR models
for each spatial scale p. Except for LIIF, CiaoSR, and LISSF (Zhang et al., 2024), the performances of all the
other 7 baselines are from (Ma et al., 2022)*. We highlight the best model for each setting in bold and underline
the second-best model.

Model In-distribution
Spatial Scale p 2 4 8
Metric PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓
RCAN + AWAN(Ma et al., 2021)* 36.22 0.971 8.81 32.69 0.935 9.82 28.25 0.834 11.73
AWAN + RCAN(Ma et al., 2021)* 36.09 0.969 8.42 31.44 0.916 9.24 27.77 0.837 12.39
AWAN + SSPSR(Ma et al., 2021)* 36.16 0.969 8.49 32.34 0.928 9.25 28.19 0.860 10.97
RC/AW+MoG-DCN(Dong et al., 2021)* 36.12 0.969 8.53 32.68 0.923 9.44 28.33 0.853 13.20
SSJSR(Mei et al., 2020)* 35.51 0.970 7.67 30.90 0.916 9.30 27.30 0.844 9.28
US3RN(Ma et al., 2021)* 36.18 0.972 7.43 32.90 0.942 7.91 28.81 0.887 9.02
SSFIN(Ma et al., 2022)* 37.36 0.977 6.49 33.41 0.947 7.11 29.21 0.896 8.07
LIIF(Chen et al., 2021) 36.82 0.977 6.85 34.36 0.956 7.31 31.26 0.900 8.32
CiaoSR(Cao et al., 2023) 37.09 0.974 8.77 34.75 0.954 9.36 32.05 0.913 7.84
LISSF(Zhang et al., 2024) 35.88 0.962 10.15 34.57 0.936 10.16 32.00 0.908 10.85
SSIF-M 36.08 0.952 10.22 34.45 0.937 10.32 32.27 0.901 10.78
SSIF-RF-GS 38.23 0.979 6.92 36.23 0.965 7.00 33.54 0.931 7.32
SSIF-RF-GF 37.42 0.977 6.85 35.47 0.963 7.09 32.98 0.928 7.68
SSIF-RF-US 37.98 0.977 6.66 35.65 0.963 6.90 33.21 0.930 7.29
SSIF-RF-UF 37.41 0.976 7.04 35.53 0.962 7.41 33.00 0.927 8.09
Model Out-of-distribution
Spatial Scale p 10 12 14
Metric PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓
LIIF(Chen et al., 2021) 29.97 0.867 9.51 29.00 0.844 9.90 28.26 0.827 10.36
CiaoSR(Cao et al., 2023) 30.55 0.877 8.19 29.36 0.851 8.61 28.55 0.832 8.82
LISSF(Zhang et al., 2024) 31.06 0.875 11.27 30.18 0.858 11.40 29.67 0.845 11.51
SSIF-M 31.27 0.880 11.13 30.40 0.860 11.19 29.59 0.844 11.68
SSIF-RF-GS 32.20 0.909 7.87 31.14 0.891 8.19 30.44 0.878 8.57
SSIF-RF-GF 32.03 0.911 8.02 31.20 0.895 8.21 30.38 0.881 8.62
SSIF-RF-US 32.18 0.912 7.70 31.26 0.895 7.90 30.52 0.882 8.23
SSIF-RF-UF 31.82 0.906 8.57 30.83 0.887 8.86 30.19 0.874 9.14

Figure 3(a) and 3(b) compare model performances under different C with a fixed spatial scale (p = 4
and p = 8 respectively). We can see that:
1. Both Figure 3(a) and 3(b) show that SSIF-RF-GS achieves the best performances in two spatial

scales on both "in-distribution" and "out-of-distribution" spectral resolutions.
2. The performance of SSIF with fixed set of wavelengths during training (SSIF-RF-UF, SSIF-RF-

GF, and SSIF-M) drop significantly when C > 31 while SSIF with randomized wavelengths
(SSIF-RF-GS and SSIF-RF-US) generalized well for C > 31.

3. A general pattern can be observed – the order of model performance is SSIF-RF-* > CiaoSR >
LIIF > LISSF >other 7 baselines.

5.3 SSSR ON THE PAVIA CENTRE REMOTE SENSING DATASET

Table 2 shows the evaluation results of the SSSR task across different spatial scales p =
{2, 3, 4, 8, 10, 12, 14, 16} on the original Pavia Centre dataset with 102 bands. We can see that:

7
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Figure 3: Results (PSNR) of different models on the SSSR task across different C on the CAVE (Yasuma et al.,
2010a) dataset. Here, the x axis indicates the number of bands C of Ihr−h. (a) and (b) compare the performances
of different models across different C in two spatial scales p = 4 and p = 8. Since our SSIF can generalize
to different p and C, the evaluation metrics of each SSIF are generated by one trained model. The gray area
in these plots indicates "out-of-distribution" performance in which SSIF are evaluated on Cs which have not
been used for training. Please see Figure 10 in Appendix A.8 for the evaluation results on three metrics.

Figure 4: Evaluations across different C on the Pavia Centre dataset. The setup is the same as Figure 3. Note that
some of the baseline models do not appear in plots because the performances of them are very low and cannot be
shown in the current metric range. Please see Figure 11 in Appendix A.8 for the results on three metrics.

1. All SSIF-RF-* can outperform all baselines on all spatial scales.
2. The performances of 4 SSIF-RF-* models are very similar across different spatial scales, and they

outperform LISSF, CiaoSR, and LIIF in most settings.

Table 2: Image super-resolution on the original Pavia Centre (Yasuma et al., 2010a) dataset with 102 bands. We
evaluate models across different spatial scales p = {2, 3, 4, 8, 10, 12, 14, 16}. "In-distribution" and "Out-of-
distribution" have the same meaning as Table 1. The performance of LIIF, CiaoSR, LISSF, and SSIF across
different p are obtained from the same models while the other 7 baselines need to be trained separately on each
p. Except for LIIF, CiaoSR, and LISSF, the performances of all the other 7 baselines are from Ma et al. (2022)*.
Model In-distribution
Spatial Scale p 2 3 4 8
Metric PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓
RCAN + AWAN(Ma et al., 2021)* 34.23 0.932 4.38 29.67 0.829 5.60 27.60 0.732 6.63 23.91 0.496 8.45
AWAN + RCAN(Ma et al., 2021)* 34.54 0.936 4.38 29.66 0.827 5.70 27.61 0.734 6.69 23.67 0.515 8.87
AWAN + SSPSR(Ma et al., 2021)* 34.24 0.934 4.30 29.60 0.828 5.55 27.71 0.742 6.32 24.21 0.506 8.14
RC/AW+MoG-DCN(Dong et al., 2021)* 34.01 0.929 4.91 29.77 0.833 5.53 27.59 0.734 6.66 23.92 0.528 8.44
SSJSR(Mei et al., 2020)* 31.80 0.894 4.80 29.05 0.810 6.14 27.06 0.703 6.93 20.61 0.347 18.30
US3RN(Ma et al., 2021)* 35.86 0.951 3.71 30.38 0.857 4.88 28.23 0.775 5.80 24.26 0.548 7.96
SSFIN(Ma et al., 2022)* 35.75 0.950 3.65 30.79 0.880 4.95 27.75 0.762 5.70 24.18 0.535 8.15
LIIF(Chen et al., 2021) 36.08 0.957 3.99 32.12 0.909 4.86 30.16 0.849 5.31 26.09 0.608 7.01
CiaoSR(Cao et al., 2023) 36.46 0.960 3.83 30.96 0.884 5.26 30.18 0.851 5.12 26.08 0.618 6.82
LISSF(Zhang et al., 2024) 35.79 0.954 4.55 30.17 0.875 5.17 29.88 0.825 5.79 25.12 0.598 7.12
SSIF-M 35.87 0.956 4.33 29.82 0.851 5.80 30.07 0.848 5.48 26.06 0.610 7.03
SSIF-RF-GS 36.84 0.962 3.71 32.31 0.910 4.61 30.42 0.858 4.99 26.03 0.619 6.77
SSIF-RF-GF 36.71 0.962 3.74 32.28 0.910 4.62 30.36 0.857 5.02 26.14 0.628 6.75
SSIF-RF-US 36.46 0.960 3.97 31.64 0.897 4.95 30.30 0.855 5.17 26.09 0.622 6.85
SSIF-RF-UF 36.79 0.962 3.73 32.27 0.909 4.64 30.43 0.858 5.00 26.17 0.629 6.71
Model Out-of-distribution
Spatial Scale p 10 12 14 16
Metric PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓
LIIF(Chen et al., 2021) 24.87 0.512 7.85 24.20 0.447 8.25 23.77 0.401 8.53 23.60 0.376 8.54
CiaoSR(Cao et al., 2023) 23.50 0.453 8.53 22.86 0.407 9.14 22.30 0.359 9.78 22.10 0.345 9.91
LISSF(Zhang et al., 2024) 24.58 0.505 8.12 23.64 0.451 8.59 23.44 0.373 8.88 23.41 0.377 8.84
SSIF-M 24.82 0.518 7.78 23.71 0.408 8.53 23.46 0.374 8.78 23.34 0.354 8.91
SSIF-RF-GS 24.86 0.523 7.52 24.05 0.443 8.05 23.66 0.401 8.37 23.52 0.382 8.50
SSIF-RF-GF 24.81 0.523 7.53 24.21 0.451 7.98 23.70 0.402 8.37 23.51 0.375 8.50
SSIF-RF-US 24.89 0.525 7.59 24.03 0.441 8.17 23.67 0.397 8.40 23.52 0.378 8.55
SSIF-RF-UF 24.88 0.521 7.53 24.15 0.447 8.02 23.65 0.400 8.40 23.44 0.373 8.58

Figure 4(a) and 4(b) compare different models across different spectral resolutions under two fixed
spatial scales (p = 4 and 8 respectively). We can see that:
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1. 4 SSIF-RF-* models can outperform all 10 baselines across different C when p = 4. When p = 8,
they outperform or are on the bar with CiaoSR and LIIF while outperforming other 8 baselines.

2. All 4 SSIF-RF-* show good generalization for “out-of-distribution” spectral scales, especially
when C > 102 while SSIF-M suffers from performance degradation.

5.4 SPECTRAL SR, SPATIAL SR EXPERIMENTS AND ABLATION STUDIES

In addition to those 10 baselines, three specialized spectral SR models – HDNet (Hu et al., 2022),
MST++ (Cai et al., 2022), and SSRNet (Dian et al., 2023) – were used for benchmarking on the
spectral SR task using the CAVE and Pavia Centre datasets. The results, detailed in Appendix A.11,
show that SSIF either outperforms or is on par with these task-specific baselines. Notably, SSIF also
possesses the flexibility to handle both spatial and spectral SR simultaneously. We also compare
CiaoSR and SSIF on spatial SR task. Results in Appendix A.12 show that SSIF can outperform or be
on bar with CiaoSR even without the multiple spectral scale training process. Table 7 in Appendix
A.13 compares the computational complexity of different models which shows that SSIF can achieve
the SOTA performance without significantly increasing the model complexity.

Ablation studies on different designs of image encoder EI , pixel feature decoder Fx, and spectral
decoder Dx,λ on the CAVE dataset can be seen in Appendix A.9.1 and A.9.2. We find that using
SwinIR as EI , CiaoSR as Fx, and dot product function as Dx,λ leads to the best performance of
SSIF. We also conduct an ablation study for K on Pavia Centre dataset (see Figure 15 in Appendix
A.9.3) and find out that a larger K usually leads to better performance and better generalizability on
unseen C. It shows that SSIF-RF-GF models with small Ks also suffer from performance drop when
C > 102 just like what we see in the CAVE experiments while bigger Ks will mitigate this problem.

5.5 ANALYSIS

Qualitative Results In Figure 5, we provide qualitative comparisons of SSSR results from different
methods. We can see that SSIF is much better at synthesizing sharp textures than other methods.
Figure 6 shows the SSIF has superior performance on spectral reconstruction with extreme band
numbers and significantly outperforms other methods. More results can be seen in Appendix A.16.

What the Spectral Encoder Learned? To understand how the spectral encoder represents a given
wavelength λ we plot each dimension of spectral embedding against λ (Figure 7). We find that
they generally resemble piecewise-linear PL basis functions (Paul & Koch, 1974) or the continuous
PK basis functions (Melal, 1976). This makes sense because PL and PK are classical methods to
represent a scalar function – i.e., Gx,λ(Slr−m,x, · ) in our case. We can think that the weights of
these bases are provided by the EI and Fx given Ilr−m and x. Having a spectral encoder with
learnable parameters can potentially provide better representations than fixed basis functions.

The Advantages of Physics-Inspired Design of SSIF We find out that due to the incorporation of
physical principles of spectral imaging in SSIF’s model design, compared with other SIFs, SSIF is
more data efficient, parameter efficient, and training efficient. Figure 8a shows that SSIF-RF-GS is
more data efficient and can consistently outperform CiaoSR and SSIF-M across different training
data sampling ratios. Figure 8b shows SSIF-RF-GS is more training efficient since it can converge
faster. See Appendix A.10 for detailed explanations.

6 CONCLUSION

In this work, we propose Spatial-Spectral Implicit Function (SSIF), a physics-inspired neural implicit
model that represents an image as a continuous function of both pixel coordinates in the spatial
domain and wavelengths in the spectral domain. This enables SSIF to handle SSSR tasks with
different output spatial and spectral resolutions simultaneously with one model. In contrast, all
previous works have to train separate SR models for different spectral resolutions. We demonstrate
the effectiveness of SSIF on the SSSR task with two datasets – CAVE and Pavia Centre. We show
that SSIF can outperform all baselines across different spatial and spectral scales even when the
baselines are allowed to be trained separately at each spectral resolution, thus solving an easier task.
We demonstrate that SSIF generalizes well to unseen spatial and spectral resolutions. Moreover, we
show that compared with other SIFs, due to its physics-inspired nature, SSIF is much more data
efficient, parameter efficient, and training efficient.

In this study, the effectiveness of SSIF is mainly shown on hyperspectral image SR, while SSIF is
flexible enough to handle multispectral images with irregular wavelength intervals. This will be
studied in future work. Moreover, the data limitation of the hyperspectral images poses a significant
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challenge to SR model training. We also plan to construct a large dataset for hyperspectral image SR.
SSIF also has the risk of generating Deepfakes. Therefore, a holistic evaluation of SSIF on various
downstream tasks is one of our future works.

Figure 5: Visual comparison of spatial SR results using different methods on the CAVE (Yasuma et al., 2010a)
(×4) and Pavia Centre dataset (×8). We zoom in the red box region from the ground truth image.

Figure 6: Visualization of the error maps of different methods of spectral reconstruction from MSI images on the
CAVE (Yasuma et al., 2010a) (×4) and Pavia Centre dataset (×8). Mean Absolute Error across all reconstructed
bands is used for error calculation. We also compare the reconstructed spectral signatures (spectral intensity) of
selected pixels from different methods and mark them with red rectangles in the RGB image.

(a) Spectral embedding d = 5 (b) Spectral embedding d = 10

Figure 7: Visualizations of the spectral embeddings with small spectral embedding dimensions d = {5, 10}.
Here we draw a curve for each dimension of the embedding, derived from the spectral encoders Eλ of two
learned SSIF-RF-GS. The x-axis indicates the wavelength and each curve Eλ(λ)[j] corresponds to the values of
a specific spectral embedding dimension j.

(a) Data Efficiency (b) Training Efficiency

Figure 8: Evaluation results of data efficiency and training efficiency on SSSR task in CAVE dataset (Yasuma
et al., 2010a). (a) We randomly sample 25%, 50% and 75% of the CAVE train set to train CiaoSR (Cao et al.,
2023) and our SSIF model (SSIF-RF-GS, SSIF-M), respectively. Here we report the test result on spatial scale
p = 12. (b) The training loss curve of three models in 500 epochs, gray circle indicates SSIF converges faster in
the early training stage.
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Ethics Statement All datasets we use in this work including the CAVE and Pavia Centra datasets
are publicly available datasets. Please refer to Appendix A.6 for a detailed description of both datasets.
No human subject study is conducted in this work. We do not find specific negative societal impacts
of this work. SSIF might have the risk of generating Deepfakes. A holistic evaluation of SSIF on
various downstream tasks such as semantic segmentation and land use classification will be one of
our future works.

Reproducibility Statement Our source code has been uploaded as a supplementary file to reproduce
our experimental results. The implementation details of the spectral encoder are described in Appendix
A.2 and the dataset preparation details are discussed in Appendix A.3. All baselines used in the
main experiments are described in Appendix A.4. The SSIF model training details are described in
Appendix A.7.
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Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin:
Compression with implicit neural representations. arXiv preprint arXiv:2103.03123, 2021.

Ying Fu, Yongrong Zheng, Lin Zhang, and Hua Huang. Spectral reflectance recovery from a single
rgb image. IEEE Transactions on Computational Imaging, 4(3):382–394, 2018.

Ying Fu, Tao Zhang, Yinqiang Zheng, Debing Zhang, and Hua Huang. Joint camera spectral response
selection and hyperspectral image recovery. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(1):256–272, 2020.

Silvano Galliani, Charis Lanaras, Dimitrios Marmanis, Emmanuel Baltsavias, and Konrad Schindler.
Learned spectral super-resolution. arXiv preprint arXiv:1703.09470, 2017.

Xiaolin Han, Huan Zhang, Jing-Hao Xue, and Weidong Sun. A spectral–spatial jointed spectral
super-resolution and its application to hj-1a satellite images. IEEE Geoscience and Remote Sensing
Letters, 19:1–5, 2021.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Deep back-projection networks
for super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1664–1673, 2018.

Jiang He, Jie Li, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang. Spectral response function-
guided deep optimization-driven network for spectral super-resolution. IEEE Transactions on
Neural Networks and Learning Systems, 33(9):4213–4227, 2021a.

Jiang He, Qiangqiang Yuan, Jie Li, Yi Xiao, Denghong Liu, Huanfeng Shen, and Liangpei Zhang.
Spectral super-resolution meets deep learning: Achievements and challenges. Information Fusion,
pp. 101812, 2023.

Yutong He, Dingjie Wang, Nicholas Lai, William Zhang, Chenlin Meng, Marshall Burke, David
Lobell, and Stefano Ermon. Spatial-temporal super-resolution of satellite imagery via conditional
pixel synthesis. Advances in Neural Information Processing Systems, 34, 2021b.

Xiaowan Hu, Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and
Luc Van Gool. Hdnet: High-resolution dual-domain learning for spectral compressive imaging.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17542–17551, 2022.

Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu Tan, and Jian Sun. Meta-sr: A
magnification-arbitrary network for super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1575–1584, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jithin Saji Isaac and Ramesh Kulkarni. Super resolution techniques for medical image processing. In
2015 International Conference on Technologies for Sustainable Development (ICTSD), pp. 1–6.
IEEE, 2015.

William R. Johnson, Daniel W. Wilson, Wolfgang Fink, Mark S. Humayun, and Gregory H. Bearman.
Snapshot hyperspectral imaging in ophthalmology. Journal of biomedical optics, 12 1, 2007.

Berk Kaya, Yigit Baran Can, and Radu Timofte. Towards spectral estimation from a single rgb image
in the wild. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
pp. 3546–3555. IEEE, 2019.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681–4690, 2017.

Jiaojiao Li, Chaoxiong Wu, Rui Song, Yunsong Li, and Fei Liu. Adaptive weighted attention network
with camera spectral sensitivity prior for spectral reconstruction from rgb images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 462–463,
2020.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
age restoration using swin transformer. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1833–1844, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 136–144, 2017.

Zeping Liu, Hong Tang, Lin Feng, and Siqing Lyu. China building rooftop area: the first multi-annual
(2016–2021) and high-resolution (2.5 m) building rooftop area dataset in china derived with super-
resolution segmentation from sentinel-2 imagery. Earth System Science Data, 15(8):3547–3572,
2023.

Guolan Lu and Baowei Fei. Medical hyperspectral imaging: a review. Journal of Biomedical Optics,
19, 2014.

Qing Ma, Junjun Jiang, Xianming Liu, and Jiayi Ma. Deep unfolding network for spatiospectral
image super-resolution. IEEE Transactions on Computational Imaging, 2021.

Qing Ma, Junjun Jiang, Xianming Liu, and Jiayi Ma. Multi-task interaction learning for spatiospectral
image super-resolution. IEEE Transactions on Image Processing, 31:2950–2961, 2022.

Gengchen Mai, Krzysztof Janowicz, Ling Cai, Rui Zhu, Blake Regalia, Bo Yan, Meilin Shi, and
Ni Lao. Se-kge: A location-aware knowledge graph embedding model for geographic question
answering and spatial semantic lifting. Transactions in GIS, 24(3):623–655, 2020a.

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale represen-
tation learning for spatial feature distributions using grid cells. In International Conference on
Learning Representations, 2020b.

Gengchen Mai, Krzysztof Janowicz, Yingjie Hu, Song Gao, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao.
A review of location encoding for geoai: methods and applications. International Journal of
Geographical Information Science, pp. 1–35, 2022.

Gengchen Mai, Ni Lao, Yutong He, Jiaming Song, and Stefano Ermon. Csp: Self-supervised
contrastive spatial pre-training for geospatial-visual representations. In International Conference
on Machine Learning, pp. 23498–23515. PMLR, 2023a.

Gengchen Mai, Yao Xuan, Wenyun Zuo, Yutong He, Jiaming Song, Stefano Ermon, Krzysztof
Janowicz, and Ni Lao. Sphere2vec: A general-purpose location representation learning over a
spherical surface for large-scale geospatial predictions. ISPRS Journal of Photogrammetry and
Remote Sensing, 202:439–462, 2023b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shaohui Mei, Xin Yuan, Jingyu Ji, Yifan Zhang, Shuai Wan, and Qian Du. Hyperspectral image
spatial super-resolution via 3d full convolutional neural network. Remote Sensing, 9(11):1139,
2017.

Shaohui Mei, Ruituo Jiang, Xu Li, and Qian Du. Spatial and spectral joint super-resolution using
convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(7):
4590–4603, 2020.

Shaohui Mei, Yunhao Geng, Junhui Hou, and Qian Du. Learning hyperspectral images from rgb
images via a coarse-to-fine cnn. Science China Information Sciences, 65:1–14, 2022.

C. Melal. Generalized paul-koch basis functions. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 24(3):263–264, 1976. doi: 10.1109/TASSP.1976.1162804.

F. Melgani and L. Bruzzone. Classification of hyperspectral remote sensing images with support
vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):1778–1790, 2004.
doi: 10.1109/TGRS.2004.831865.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer, 2020.

Rang MH Nguyen, Dilip K Prasad, and Michael S Brown. Training-based spectral reconstruction
from a single rgb image. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VII 13, pp. 186–201. Springer, 2014.

Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang, Kaihao Zhang,
Xiaochun Cao, and Haifeng Shen. Single image super-resolution via a holistic attention network.
In European conference on computer vision, pp. 191–207. Springer, 2020.

Zhihong Pan, G. Healey, M. Prasad, and B. Tromberg. Face recognition in hyperspectral images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1552–1560, 2003. doi:
10.1109/TPAMI.2003.1251148.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

C. Paul and R. Koch. On piecewise-linear basis functions and piecewise-linear signal expansions.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 22(4):263–268, 1974. doi:
10.1109/TASSP.1974.1162585.

Ying Qu, Hairong Qi, Chiman Kwan, Naoto Yokoya, and Jocelyn Chanussot. Unsupervised and
unregistered hyperspectral image super-resolution with mutual dirichlet-net. IEEE Transactions
on Geoscience and Remote Sensing, 60:1–18, 2021.

Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic
location encoding with spherical harmonics and sinusoidal representation networks. In The Twelfth
International Conference on Learning Representations, 2024.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. arXiv preprint arXiv:2104.07636, 2021.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
representations for image compression. arXiv preprint arXiv:2112.04267, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bo Sun, Junchi Yan, Xiao Zhou, and Yinqiang Zheng. Tuning ir-cut filter for illumination-aware
spectral reconstruction from rgb. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 84–93, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Muhammad Uzair, Arif Mahmood, and Ajmal Mian. Hyperspectral face recognition with spa-
tiospectral information fusion and pls regression. IEEE Transactions on Image Processing, 24(3):
1127–1137, 2015. doi: 10.1109/TIP.2015.2393057.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xinya Wang, Jiayi Ma, and Junjun Jiang. Hyperspectral image super-resolution via recurrent feedback
embedding and spatial–spectral consistency regularization. IEEE Transactions on Geoscience and
Remote Sensing, 60:1–13, 2022a. doi: 10.1109/TGRS.2021.3064450.

Xiuheng Wang, Jie Chen, and Cédric Richard. Hyperspectral image super-resolution with deep priors
and degradation model inversion. arXiv preprint arXiv:2201.09851, 2022b.

Hanlin Wu, Ning Ni, and Libao Zhang. Scale-aware dynamic network for continuous-scale super-
resolution. arXiv preprint arXiv:2110.15655, 2021a.

Hanlin Wu, Ning Ni, and Libao Zhang. Scale-aware dynamic network for continuous-scale super-
resolution. arXiv preprint arXiv:2110.15655, 2021b.

Nemin Wu, Qian Cao, Zhangyu Wang, Zeping Liu, Yanlin Qi, Jielu Zhang, Joshua Ni, Xiaobai Yao,
Hongxu Ma, Lan Mu, et al. Torchspatial: A location encoding framework and benchmark for
spatial representation learning. arXiv preprint arXiv:2406.15658, 2024.

Fengchao Xiong, Jun Zhou, and Yuntao Qian. Material based object tracking in hyperspectral videos.
IEEE Transactions on Image Processing, 29:3719–3733, 2020. doi: 10.1109/TIP.2020.2965302.

Jingyu Yang, Sheng Shen, Huanjing Yue, and Kun Li. Implicit transformer network for screen content
image continuous super-resolution. Advances in Neural Information Processing Systems, 34, 2021.

Jing Yao, Danfeng Hong, Jocelyn Chanussot, Deyu Meng, Xiaoxiang Zhu, and Zongben Xu. Cross-
attention in coupled unmixing nets for unsupervised hyperspectral super-resolution. In European
Conference on Computer Vision, pp. 208–224. Springer, 2020.

Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K Nayar. Generalized assorted pixel
camera: postcapture control of resolution, dynamic range, and spectrum. IEEE transactions on
image processing, 19(9):2241–2253, 2010a.

Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K Nayar. Generalized assorted pixel
camera: postcapture control of resolution, dynamic range, and spectrum. IEEE transactions on
image processing, 19(9):2241–2253, 2010b.

Youngho Yoon, Inchul Chung, Lin Wang, and Kuk-Jin Yoon. Spheresr: 360◦ image super-resolution
with arbitrary projection via continuous spherical image representation. arXiv e-prints, pp. arXiv–
2112, 2021.

Jingang Zhang, Runmu Su, Qiang Fu, Wenqi Ren, Felix Heide, and Yunfeng Nie. A survey on
computational spectral reconstruction methods from rgb to hyperspectral imaging. Scientific
reports, 12(1):11905, 2022.

Jizhou Zhang, Tingfa Xu, Shengwang Jiang, Yuhan Zhang, and Jianan Li. Hyperspectral image
joint super-resolution via implicit neural representation. In Conference on Infrared, Millimeter,
Terahertz Waves and Applications (IMT2022), volume 12565, pp. 246–251. SPIE, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
3217–3226, 2020a.

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
3217–3226, 2020b.

Kaiwei Zhang. Implicit neural representation learning for hyperspectral image super-resolution.
arXiv preprint arXiv:2112.10541, 2021.

Lei Zhang, Jiangtao Nie, Wei Wei, Yanning Zhang, Shengcai Liao, and Ling Shao. Unsupervised
adaptation learning for hyperspectral imagery super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3073–3082, 2020c.

Yanan Zhang, Jizhou Zhang, and Sijia Han. Hyperspectral image joint super-resolution via local
implicit spatial-spectral function learning. IEEE Photonics Journal, 2024.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In Proceedings of the European conference
on computer vision (ECCV), pp. 286–301, 2018a.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2472–2481, 2018b.

Ke Zheng, Lianru Gao, Wenzhi Liao, Danfeng Hong, Bing Zhang, Ximin Cui, and Jocelyn Chanussot.
Coupled convolutional neural network with adaptive response function learning for unsupervised
hyperspectral super resolution. IEEE Transactions on Geoscience and Remote Sensing, 59(3):
2487–2502, 2020.

Ellen D Zhong, Tristan Bepler, Joseph H Davis, and Bonnie Berger. Reconstructing continuous
distributions of 3d protein structure from cryo-em images. In International Conference on Learning
Representations, 2020.

Yanfei Zhong, Xinyu Wang, Yao Xu, Shaoyu Wang, Tianyi Jia, Xin Hu, Ji Zhao, Lifei Wei, and
Liangpei Zhang. Mini-uav-borne hyperspectral remote sensing: From observation and processing
to applications. IEEE Geoscience and Remote Sensing Magazine, 6(4):46–62, 2018. doi: 10.1109/
MGRS.2018.2867592.

Zhiyu Zhu, Hui Liu, Junhui Hou, Huanqiang Zeng, and Qingfu Zhang. Semantic-embedded unsuper-
vised spectral reconstruction from single rgb images in the wild. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2279–2288, 2021.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 A ILLUSTRATION OF USING SSIF FOR MULTITASK IMAGE SUPER-RESOLUTION
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Figure 9: An illustration of image super-resolution on different spatial and spectral resolutions. The red, green,
and blue boxes indicate three different super-resolution problems: Spatial Super-Resolution (spatial SR), Spectral
Super-Resolution (spectral SR), and Spatio-Spectral Super-Resolution (SSSR). The three subfigures illustrate
how the classic super-resolution models, the spatial implicit functions, and SSIF handle different SR tasks
which generate images with different spatial and spectral resolutions. (a) Classic SR - most super-resolution
models train separate SR models for different input and output image pairs with different spatial and spectral
resolutions such as RCAN (Zhang et al., 2018a), SR3(Saharia et al., 2021), SSJSR (Mei et al., 2020), (He et al.,
2021b), US3RN (Ma et al., 2021), SSFIN (Ma et al., 2022); (b) Spatial Implicit Function (SIF) - recently many
research focused on using the idea of neural implicit function to develop spatial scale-agnostic super-resolution
models such that one model can be trained to do super-resolution for different spatial scales such as MetaSR(Hu
et al., 2019), LIIF(Chen et al., 2021), SADN (Wu et al., 2021a), ITSRN (Yang et al., 2021), (Zhang, 2021),
and CiaoSR (Cao et al., 2023). However, they have to train separate SR models if target images have different
spectral resolutions. (c) Spatial-Spectral Implicit Function (SSIF ) aims at using one model to handle different
spatial scales and spectral scales at the same time such that we can train one generic model for different SR tasks.

A.2 SPECTRAL ENCODER Eλ

A key component of SSIF is the spectral encoder Eλ component. It consists of a Fourier feature
mapping layer Ψ(·) followed by a multi-layer perceptron MLP (·):

bi,k = Eλ(λi,k) = MLP (Ψ(λi,k)) (8)

The Fourier feature mapping layer Ψ(·) takes a wavelength λi,k sampled from the wavelength interval
Λi = [λi,s, λi,e] ∈ Λhr−h as the input and map it to a high dimensional vector bi,k ∈ Rd, by
using sinusoid functions with different frequencies. The idea is similar to the position encoder in
Transformer (Vaswani et al., 2017), NeRF (Mildenhall et al., 2020), Space2Vec (Mai et al., 2020b;
Tancik et al., 2020), and spatial implicit functions (Zhang, 2021; Dupont et al., 2021) for pixel
location encoding. Here, we adopt the Space2Vec (Mai et al., 2020b) style position encoder Ψ(·). Let
λmin, λmax be the minimum and maximum scaling factor in the wavelength space, and g = λmax

λmin
.

We define Ψ(·) as Equation 9). Here,
⋃T−1

t=0 indicates vector concatenation through different scales.
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Ψ(λ) =

T−1⋃
t=0

[
sin(

λ

λmin · gt/(T−1)
), cos(

λ

λmin · gt/(T−1)
)
]
; (9)

A.3 SUPER-RESOLUTION DATA PREPARATION

Figure 2a illustrates the data preparation process of SSIF. Given a training image pair which consists
of a high spatial-spectral resolution image Ihr−h

max ∈ RH×W×Cmax and an image with high spatial
resolution but low spectral resolution Ihr−m ∈ RH×W×c, we perform downsampling in both the
spectral domain and spatial domain.

For the spectral downsampling process (the blue box in Figure 2a), we randomly sample a band
number C ∼ Uni(Cmin, Cmax) from a uniform distribution between the minimum and maximum
band number Cmin, Cmax > 0. We use C to downsample Ihr−h

max in the spectral domain which yield
Ihr−h ∈ RH×W×C . Then we convert Ihr−h into location-value-wavelength samples (x, shr−h,Λ).
x and Λ serve as the input features while shr−h are the prediction target. Note that, here we can
sample equally spaced wavelength intervals or irregular spaced wavelength intervals for the target
HR-HSI images Ihr−h since SSIF is agnostic to this irregularity.

For the spatial downsampling (the orange box in Figure 2b), we randomly sample a spatial scale
p ∼ Uni(pmin, pmax) where Uni(pmin, pmax) is a uniform distribution between the minimum and
maximum spatial scale pmin, pmax > 0. We use p to spatially downsample Ihr−m into Ilr−m ∈
Rh×w×c which serves as the input for SSIF . Here, h = H/p and w = W/p.

Interestingly, when the spatial upsampling scale p is fixed as 1, our SSIF is degraded to a spectral SR
model. When the band C is fixed as the same as the input band, i.e., C = c, SSIF is degraded to a
spatial SR model. When we vary C and p during SSIF training, we allow the model to do spatial SR
and spectral SR at different difficulty levels which helps it to learn a continuous representation both
in the spatial and spectral domain.

A.4 BASLINES

We consider 10 baselines in our SSSR task on two benchmark datasets:

1. RCAN + AWAN uses RCAN (Zhang et al., 2018a) for spatial SR and then AWAN (Li et al.,
2020) for spectral SR in a sequential manner.

2. AWAN + RCAN simply reverses the order of RCAN and AWAN.

3. AWAN + SSPSR uses AWAN and SSPSR (Mei et al., 2020) for spectral SR and spatial SR.

4. RC/AW + MoG-DCN first separately uses RCAN (Zhang et al., 2018a) to do spatial SR
to obtain HR-MSI images and uses AWAN (Li et al., 2020) to do spectral SR to obtain
LR-HSI images, and then uses MoG-DCN (Dong et al., 2021) to do hyperspectral image
fusion based on the previously generated HR-MSI and LR-HSI images.

5. SSJSR (Mei et al., 2020) uses a fully convolution-based deep neural network to do SSSR.

6. US3RN (Ma et al., 2021) uses a deep unfolding network to solve the SSSR problem with a
closed-form solution.

7. SSFIN (Ma et al., 2022) follows the multi-task structure, first decoupling the SSSR into
two tasks: spatial SR and spectral SR. Then it implements SSSR by feature fusion. It is the
current state-of-the-art model for the SSSR task.

8. LIIF (Chen et al., 2021) is a spatial implicit function which was initially designed for spatial
SR on multispectral data. We increase the output dimension of LIIF’s final MLP to allow it
to work on hyperspectral images.

9. CiaoSR (Cao et al., 2023) modifies the LIIF’s nearest neighbor interpolation query feature
into a self-attention-like architecture. We also change the output dimension of its final MLP
to allow it to work on hyperspectral images.

10. LISSF (Zhang et al., 2024) is an implicit neural representation for joint SSSR of multi-
spectral images in arbitrary scales. However, the input image encoder of LISSF utilizes 3D
CNN layers, based on the assumption that the bands of the input images should have equal
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spectral intervals between them, which is usually not the case in reality. In this paper, for a
fair comparison, we replace its input image encoder backbone as SwinIR to be consistent
with SSIF so that this modified LISSF can process input images with unequal band intervals.

A.5 SSIF MODEL VARIANTS

We consider 4 SSIF variants: SSIF-RF-GS, SSIF-RF-GF, SSIF-RF-US, and SSIF-RF-UF. Both
SSIF-RF-GS and SSIF-RF-GF uses a Gaussian distribution N (µi, σ

2
i ) as the response function for

each band bi with wavelength interval Λi = [λi,s, λi,e] where µi =
λi,s+λi,e

2 and σi =
λi,e−λi,s

6 .
The difference is SSIF-RF-GS uses N (µi, σ

2
i ) to sample K wavelengths from Λi while SSIF-RF-GF

uses fixed K wavelengths with equal intervals in Λi. Similarly, both SSIF-RF-US and SSIF-RF-UF
uses a Uniform distribution U(λi,s, λi,e) as the response function for each band bi. SSIF-RF-US uses
U(λi,s, λi,e) to sample K wavelengths for each Λi while SSIF-RF-UF uses fixed K wavelengths
with equal intervals.

We also consider 1 additional SSIF variant – SSIF-M which only uses band middle point µi =
λi,s+λi,e

2 for each wavelength interval, i.e., K = 1.

A.6 DATASET DESCRIPTION

The CAVE dataset (Yasuma et al., 2010b) consists of 32 indoor hyperspectral (HSI) images captured
under controlled illumination. Each image has a spatial size of 512 × 512 and 31 spectral bands
covering the wavelength from 400nm to 700nm. Each HSI image is associated with an RGB image
with the same spatial size. There are a lot of studies using the CAVE dataset for hyperspectral image
super-resolution (Yao et al., 2020; Mei et al., 2020; Zhang et al., 2020c; Zhang, 2021; Han et al.,
2021; Qu et al., 2021; Ma et al., 2021; 2022). However, these works focus on different SR tasks. In
this work, we focus on the most challenging task – SSSR. The train/test split on the CAVE dataset
varies from paper to paper. In order to keep a fair comparison to the previous study, we adopt the
train/test split from SSFIN (Ma et al., 2022), the latest work on this dataset, and use the first 22
samples as the training dataset and the rest 10 samples as testing. The limited number of samples
poses a significant challenge on modeling training. So similar to the previous work (Ma et al., 2021;
Chen et al., 2021), given a HR-HSI and HR-MSI image pair (Ihr−h

max , Ihr−m), we first do random
cropping for a 64p× 64p image patch from both images. Then Ihr−m is spatially downsampled to
a 64× 64 image patch which serves as the input LR-MSI image Ilr−m. We choose pmin = 1 and
pmax = 8 for spatial downsampling, Cmin = 8 and Cmax = 31 for spectral downsampling (See
Appendix A.3).

The Pavia Centre (PC) dataset is taken by ROSIS, a widely used hyperspectral sensor. The images
were collected over the center area of Pavia, northern Italy, in 2001. It contains 102 spectral bands
covering a spectrum from 430nm to 860nm. Figure 1a shows the spectral signature of one pixel
A when C = 102. It has 1095 × 715 effective pixels. Similarly, we also adopt the train/test split
from SSFIN (Ma et al., 2022) and crop the upper left 1024× 128 pixels as the testing dataset and
the rest for training. The PC dataset does not come with a multispectral image counterpart. So we
adopt the practice of (Mei et al., 2020) to simulate the high-resolution multispectral (HR-MSI) image
based on the sensor specification of the multispectral sensor of IKONOS. The resulted image has 4
bands which correspond to R, G, B, and NIR. Please see the MSI spectral signature in Figure 1a for
reference. The same random cropping technique is used for PC. We choose pmin = 1 and pmax = 8
for spatial downsampling, Cmin = 13 and Cmax = 102 for spectral downsampling (See Appendix
A.3).

A.7 SSIF IMPLEMENTATION AND TRAINING DETAILS

We use SwinIR (Liang et al., 2021) as the image encoder EI and we use CiaoSR (Chen et al., 2021)
as the pixel feature decoder Fx. We ablate the combinations of different image encoders and pixel
feature decoders in Figure 13 and we find the combination of SwinIR and CiaoSR performs the best.
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For both the CAVE and Pavia Centre datasets, we first tune the learning rate lr = {5.e − 5, 1.e −
4, 2.e − 4}. We find out the default learning rate used by CiaoSR lr = 1.e − 4 works the best for
both datasets.

Then we tune the hyperparameters of CiaoSR including the output image feature dimension for image
encoder EI(·) – dI = {64, 128, 256}, the input image size h = w ∈ {48, 64}, the hidden dimension
of CiaoSR’s multi-layer perceptron – hLIIF ∈ {256, 512}. We find out dI = 64, h = w = 64, and
hLIIF = 256 give us the best results of CiaoSR on CAVE while for the Pavia Centre, dI = 256,
h = w = 64, and hLIIF = 512 yield the best results. In addition, we find out that using multiple
PyTorch dataloaders with different input image sizes h = w is especially useful for the Pavia Centre
dataset. In our experiment, we use three different dataloaders with {16, 32, 64} as their input image
size.

After we get the best hyperparameter combination of CiaoSR, we directly use them for SSIF without
tuning. And we only tune the newly added hyperparameters for SSIF including the hidden dimension
hSSIF = {512, 1024} of MLP (·) in Equation 8 and the wavelength sampling number K ∈
{2, 4, 8, 16, 32, 48, 52, 64}. We find out hSSIF = 512 and K = 16 are the best hyperparameter
combination for the CAVE dataset and hSSIF = 1024 and K = 128 is the best for the Pavia Centre
dataset.

All experiments are conducted on a Linux server with 4 CUDA GPU of 24GB memory. We use
the official implementations of all baselines9. We implement our SSIF in PyTorch and the code is
available in the supplementary file. We will make SSIF’s code publicly available upon acceptance.

A.8 SUPPLEMENTARY EXPERIMENTAL RESULTS ON THE CAVE DATASET AND PAVIA
CENTRE DATASET

A.8.1 SSSR MODEL COMPARISON ACROSS DIFFERENT SPECTRAL SCALES

While Figure 3 and 4 only show the comparison of different SSSR models’ PSNR metrics on CAVE
dataset and Pavia Centre dataset across different spectral scales, as their complementaries, Figure
10 and Figure 11 show the full plot of the comparison results of different SSSR models on all three
metrics (i.e., PSNR, SSIM, and SAM) across different spectral scales on two datasets.

A.8.2 STATISTICAL SIGNIFICANCE ON OUR SSSR EXPERIMENTAL RESULTES

While Table 1 and 2 demonstrate the advantage of SSIF over all existing baselines on the SSSR task
across all spatial scales, we do not report the statistical significance.

To show the robustness of the model, we compare our strongest baseline CiaoSR (Cao et al., 2023),
and our SSIF-RF-GS model on the SSSR task across different spatial scales. More specifically, we
retrain both models 3 times by using 3 different random seeds and plot their average performances as
well as error bars, as shown in Fig. 12a and Fig. 12b. We can see that SSIF consistently outperforms
CiaoSR across different spatial scales and different evaluation metrics, which proves the superiority
of our approach.

A.9 ABLATION STUDIES OF SSIF

A.9.1 ABLATION STUDIES OF SSIF’S EI AND Fx ON THE CAVE DATASET

We first study the impact of different image encoders EI and pixel feature decoders Fx on the
performance of SSIF. Based on our best model on the CAVE dataset (i.e., SSIF-RF-GS), Table 3 and
Figure 13 show the evaluation results of our ablation studies on (three) different image encoders EI

and (two) pixel feature decoders Fx within SSIF model. We can see that:

1. Across all scales (both spatial and spectral), with different image encoder EI , the perfor-
mances of SSIF show a consistent pattern: SwinIR (Liang et al., 2021) > RDN (Zhang et al.,
2018b) > EDSR(Lim et al., 2017).

9The LIIF and CiaoSR implementation is under BSD 3-Clause "New" or "Revised" License.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: The evaluation results of various models on the SSSR task across different C on the CAVE (Yasuma
et al., 2010a) dataset. We compare their performances on three metrics: PSNR, SSIM, and SAM.

Figure 11: The evaluation results of various models on the SSSR task across different C on the Pavia Centre
dataset. We compare their performances on three metrics: PSNR, SSIM, and SAM.

2. Similarly, across all scales (both spatial and spectral), with different pixel feature decoder
Fx, the performances of SSIF also show a consistent pattern: CiaoSR (Cao et al., 2023) >
LIIF Chen et al. (2021).

3. Using SwinIR as EI and CiaoSR as Fx in SSIF yields the best performance of SSIF.

4. The observed performance improvements are mutually beneficial. Employing a stronger
combination of image encoder EI and pixel feature decoder Fx consistently boosts SSIF
performance.

A.9.2 ABLATION STUDIES OF SSIF’S Dx,λ ON THE CAVE DATASET

Next, we conduct ablation studies of different designs of spectral decoder Dx,λ on the CAVE dataset.
The results are shown in Figure 14. One SSIF variant – SSIF-RF-GS is used here. We test three
spectral decoder Dx,λ variants:
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(a) CAVE Dataset

(b) Pavia Centre Dataset

Figure 12: The error bar of the SSSR performances of CiaoSR (Cao et al., 2023) and our SSIF-RF-GS on the (a)
CAVE dataset (Yasuma et al., 2010a) and (b) Pavia Centre dataset. We use 3 different random seeds to retrain
both models to obtain the results.

Table 3: Evaluation results of the ablation study on the impact of different image encoders EI (i.e., EDSR (Lim
et al., 2017), RDN (Zhang et al., 2018b), and SwinIR (Liang et al., 2021)) and pixel feature decoders Fx (LIIF
(Chen et al., 2021) and CiaoSR (Cao et al., 2023)) within our SSIF model for SSSR tasks across different spatial
scales p on the CAVE dataset with 31 bands.

Ablations on image encoder & pixel feature decoder In-distribution
Spatial Scale p 2 4 8
Model Image Encoder Pixel Feature Decoder PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM ↓

SSIF EDSR (Lim et al., 2017)
LIIF (Chen et al., 2021) 36.54 0.974 7.26 34.44 0.954 7.54 32.19 0.912 7.94
CiaoSR (Cao et al., 2023) 37.05 0.974 7.45 34.76 0.954 7.78 32.33 0.913 8.25

SSIF RDN (Zhang et al., 2018b)
LIIF (Chen et al., 2021) 36.95 0.974 7.32 34.86 0.945 7.61 32.45 0.918 8.10
CiaoSR (Cao et al., 2023) 37.08 0.974 7.49 34.91 0.955 8.08 32.50 0.915 8.76

SSIF SwinIR (Liang et al., 2021)
LIIF (Chen et al., 2021) 37.86 0.978 7.22 35.76 0.963 7.49 33.17 0.911 7.90
CiaoSR (Cao et al., 2023) 38.23 0.979 6.92 36.23 0.965 7.00 33.54 0.931 7.32

Ablations on image encoder & pixel feature decoder Out-of-distribution
Spatial Scale p 10 12 14
Model Image Encoder Pixel Feature Decoder PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM ↓

SSIF EDSR (Lim et al., 2017)
LIIF (Chen et al., 2021) 31.13 0.893 8.22 30.16 0.875 8.45 29.49 0.863 8.70
CiaoSR (Cao et al., 2023) 31.41 0.896 8.53 30.45 0.878 8.70 29.60 0.864 8.96

SSIF RDN (Zhang et al., 2018b)
LIIF (Chen et al., 2021) 31.40 0.899 8.44 30.57 0.881 8.75 29.71 0.866 9.03
CiaoSR (Cao et al., 2023) 31.51 0.897 8.84 30.65 0.881 9.16 29.83 0.868 9.16

SSIF SwinIR (Liang et al., 2021)
LIIF (Chen et al., 2021) 31.21 0.896 8.76 30.28 0.877 8.96 29.54 0.860 9.43
CiaoSR (Cao et al., 2023) 32.20 0.909 7.87 31.14 0.891 8.19 30.44 0.878 8.57

1. “D”: Dx,λ is a multilayer perceptron (MLP) which is modulated by the image feature em-
bedding hx. Dx,λ takes a spectral embedding bi,k as the input and output the corresponding
radiance value. When Dx,λ is a one-layer MLP, this can be seen as the dot product between
the input spectral embedding bi,k and image feature embedding hx.

2. “C”: Dx,λ is a multilayer perceptron (MLP) which takes the concatenation of spectral
embedding bi,k and image feature embedding hx as the input and output the corresponding
radiance value.
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(a) Scale p = 4 (b) Scale p = 8

Figure 13: Evaluation results of the ablation study on the impact of different image encoders EI and pixel
feature decoders Fx within our SSIF model for SSSR task across different band numbers C on the CAVE
dataset.

(a) Scale p = 4 (b) Scale p = 8

Figure 14: The ablation studies of different designs of spectral decoder Dx,λ on the CAVE dataset. Here, we
use one SSIF model – SSIF-RF-GS. Three spectral decoder Dx,λ variants are explored: “D” “C” and “A”. Gray
areas indicate out-of-distribution spectral scales which have not been seen during SSIF training.

3. “A”: Dx,λ is a self-attention (Vaswani et al., 2017) based mechanism. It initially computes
the dot product between the spectral embedding bi,k and the image feature embedding hx,
then it applies self-attention function to re-weight the spectral and spatial information within
the output embedding.

Three spectral decoders Dx,λ amount to 3 different SSIF variants. From Figure 14, we can see that
SSIF-RF-GS-D outperforms SSIF-RF-GS-A and SSIF-RF-GS-C across different spatial and spectral
scales (on both in-distribution and out-of-distribution spectral scales) on all three metrics, which
indicates that spectral decoder Dx,λ variant D is usually more effective than A and C.

A.9.3 ABLATION STUDIES OF THE NUMBER OF SAMPLED WAVELENGTHS ON THE PAVIA
CENTRE DATASET

We conduct the ablation study on the effect of the number of sampled wavelengths in each wavelength
interval Λi – K on the model performance. We use the Pavia Centra dataset as an example and
compare model performances of SSIF-RF-GF with different K. Figure 15 illustrates the results. We
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can see that a bigger K leads to better model performance and better generalizability on unseen
spectral scales C. In other words, the performance of SSIF-RF-GF with larger K is better across
different C and is more stable when C > 102.

Figure 15: The ablation study on the number of sampled wavelengths in each wavelength interval Λi – K. We
use the Pavia Centra dataset with spatial scale p = 8 as an example. The setting is similar to Figure 4. We
use SSIF-RF-GF model as an example and tune the hyperparameter K = {4, 8, 16, 32, 64, 128}. Here, each
SSIF is named as SSIF-RF-GF-K. We can see that a bigger K leads to better model performance and better
generalizability on unseen spectral scales (i.e., C > 102).

A.10 STUDIES ON THE ADVANTAGES OF PHYSICS-INSPIRED NATURE OF SSIF

Compared with existing SIF models such as LIIF (Chen et al., 2021) and CiaoSR (Cao et al., 2023),
SSIF has one big difference – it incorporates the physical principles of spectral imaging into the
neural implicit function model design. We hypothesize that the physics-inspired nature of SSIF can
lead to three advantages:

1. Data efficiency: Compared with other SIF models, SSIF will require less training data to
achieve the same level of model performance. In other words, when trained with different
proportions of training data, SSIF will always outperform other SIF models.

2. Parameter efficiency: Compared with other SIF models, SSIF requires a much smaller
number of learnable parameters to achieve the same set of tasks.

3. Training efficiency: During model training, SSIF converges faster than other SIF models.

To validate our hypotheses, we conduct a series of experiments on the CAVE dataset (Yasuma et al.,
2010a) by comparing our strongest baseline CiaoSR (Cao et al., 2023) with our SSIF-RF-* and
SSIF-M.

We summarize our findings in Figure 16, Table 4, and Figure 17. We can see that:
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1. SSIF-RF-* is indeed more data efficient than CiaoSR and SSIF’s simple variant, SSIF-M, as
shown in Figure 16. Since SSIF explicitly embeds the physical principles of spectral imaging
into its model design, SSIF is less data-dependent and more robust. When trained with
different proportions of training data, SSIF-RF-* can consistently outperform CiaoSR. In
particular, SSIF shows great performance gains when trained with only 25% of the train set
(at least 3.14 PSNR gain). Moreover, SSIF-RF-* can also consistently outperform SSIF-M
which indicates that simply performing spectral encoding without considering the nature of
sensors’ response functions (as SSIF-M does) will lead to significant model performance
degradation.

2. SSIF is also parameter efficient. It has similar numbers of learnable parameters as CiaoSR
(see Table 4). However, we need to train separate CiaoSR models for different target spectral
resolutions while one SSIF can handle all these tasks simultaneously.

3. SSIF is also training efficient as shown in Figure 17. As discussed above, since SSIF
explicitly embeds the physics principles, it can converge faster as a result. This phenomenon
is particularly evident in early epochs, as shown in Figure 17.

(a) Scale p = 4 (b) Scale p = 12

Figure 16: Experiments to demonstrate the data efficiency of SSIF on spatial SR task with two spatial scales
p = 4 and p = 12. We randomly sample 25%, 50% and 75% of the CAVE train set and use the sampled
subsets to train CiaoSR (Cao et al., 2023) and our SSIF variants, i.e., SSIF-RF-* and SSIF-M. It is obvious that
SSIF-RF-* consistently outperforms CiaoSR (Cao et al., 2023) and SSIF-M across different training data ratios.

Table 4: A comparison between SSIF and CiaoSR in terms of model parameters. We can see that SSIF is
parameter efficient since with 0.3M additional parameters, it can simultaneously generate output images with
various spectral resolutions while we have to train separate CiaoSR models for different spectral resolutions.

Model Model Size (MB) Million Parameters
CiaoSR (Cao et al., 2023) 169 13.0
SSIF 172 13.3

A.11 SPECTRAL SR ON THE CAVE AND PAVIA CENTRE REMOTE SENSING DATASET

We evaluate the performance of SSIF on the single-image spectral SR task (i.e., keeping the spatial
resolution unchanged while increasing the spectral resolution) and compare it with multiple baselines.
In addition to the existing baselines, we also add three recent spectral SR models – HDNet (Hu et al.,
2022), MST++ (Cai et al., 2022), and SSRNet (Dian et al., 2023). The spectral SR evaluation results
on both datasets are summarized in Table 5, we can see that:

1. Three spectral SR baselines perform better than other baselines on both datasets, while four
SSIF variants show competitive performance on both datasets.

2. On the CAVE dataset, SSIF-RF-GS outperforms all baselines for PSNR and SSIM, while
remaining on par with 3 new baselines for SAM.

3. On the Pavia Centre dataset, SSIF-RF-US can outperform all baselines for PSNR and SSIM
while being competitive for SAM. SSIF-RF-GS achieves the best SAM score.

HDNet (Hu et al., 2022), MST++ (Hu et al., 2022), and SSRNet (Hu et al., 2022) are specifically
designed for spectral SR tasks. We have to train separate models for different spectral scales in
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Figure 17: A comparison of training and validation loss curves for SSIF-RF-GS, SSIF-M and CiaoSR in the first
50 epochs. We can see that SSIF-RF-GS converges faster.

Table 5: The evaluation result of the spectral super-resolution task on CAVE(Yasuma et al., 2010a) and PAVIA
Centra datasets. On the CAVE and PAVIA Centra datasets, we use RGB images and 4-band images as the
respective input and benchmark model performance to reconstruct all hyperspectral bands – 31 and 102 bands
respectively. Note that HDNet (Hu et al., 2022), MST++ (Cai et al., 2022), and SSRNet (Dian et al., 2023) are
SOTA methods exclusively designed for spectral SR tasks, while our SSIF can tackle spatial SR, spectral SR,
and SSSR tasks in arbitrary scales. All methods except for LISSF are implemented using their respective official
codes, with hyperparameters selected from their respective papers.

Method CAVE Dataset PAVIA Dataset
PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓

RCAN + AWAN(Ma et al., 2021) 39.1725 0.9745 7.5411 37.1532 0.9412 3.6554
AWAN + RCAN(Ma et al., 2021) 39.4221 0.9784 7.4742 37.2122 0.9401 3.7555
AWAN + SSPSR(Ma et al., 2021) 39.6511 0.9799 7.3155 37.0145 0.9544 4.0819
RC/AW + MoG-DCN(Dong et al., 2021) 39.2411 0.9723 7.4131 36.9283 0.9273 4.1211
US3RN(Ma et al., 2021) 40.1445 0.9801 7.0136 37.9338 0.9608 3.8764
SSFIN(Ma et al., 2022) 40.7596 0.9812 6.9713 38.0258 0.9721 3.614
HDNet(Hu et al., 2022) 42.9673 0.9809 6.7478 40.7674 0.9551 3.4914
MST++(Cai et al., 2022) 43.4765 0.9811 6.4257 40.8456 0.9549 3.4712
SSRNet(Dian et al., 2023) 43.3197 0.9800 6.7734 40.9170 0.9578 3.4653
LIIF(Chen et al., 2021) 41.4132 0.9738 6.9426 38.2002 0.9692 3.6811
CiaoSR(Cao et al., 2023) 41.5314 0.9771 6.9422 38.3148 0.9700 3.6628
LISSF (Zhang et al., 2024) 37.7852 0.9511 7.7781 35.1242 0.9511 4.5371
SSIF-M 38.2954 0.9682 7.4577 36.9544 0.9588 4.5210
SSIF-RF-GS 44.0124 0.9814 6.7324 40.4987 0.9812 3.4400
SSIF-RF-GF 43.5187 0.9783 6.8544 40.1455 0.9785 3.6515
SSIF-RF-US 43.2655 0.9788 6.8688 40.9563 0.9888 3.5710
SSIF-RF-UF 40.8507 0.9715 7.2901 40.8701 0.9864 3.5400

spectral SR. In contrast, SSIF just needs to be trained once to tackle spatial SR, spectral SR, and
SSSR tasks in arbitrary spatial and spectral scales. SSIF outperforms or is on par with these three
task-specific and scale-specific models, showing the superiority of SSIF.

A.12 SPATIAL SR ON THE CAVE DATASET

When the spectral scale C/c = 1, the SSSR task degrades to the normal spatial SR task. The results are
shown in Table 6. In order to make a fair comparison, both CiaoSR and SSIF have the same image
encoder – SwinIR and the same pixel feature decoder – CiaoSR. They are trained with a fixed spectral
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scale C/c = 1. From Table 6, we can see that SSIF outperforms CiaoSR across different spatial scales
on different evaluation metrics. The only exceptions are PSNR and SAM when p = 2 and PSNR
when p = 10. In these cases, SSIF also shows competitive performances. This demonstrates the
advantages of SSIF over CiaoSR on the architecture side even without the multiple spectral scale
training process.
Table 6: Evaluations of CiaoSR(Cao et al., 2023) and SSIF for the spatial SR task on CAVE dataset (Yasuma
et al., 2010a). Here, we fix the spectral scale as 1 during SSIF training to make a fair comparison with CiaoSR.

In-distribution Out-of-distribution
Spatial scale 2 8 10 14
Metrics PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓
CiaoSR 40.7741 0.9718 6.4201 35.1210 0.9401 7.0751 33.5548 0.9232 7.3800 28.6452 0.8815 8.9752
SSIF (SwinIR-CiaoSR) 40.7454 0.9794 6.0511 36.9974 0.9642 7.0024 33.5145 0.9313 7.2954 29.3421 0.8932 9.0125

A.13 COMPARISON ON MODEL COMPUTATIONAL COMPLEXITY

As shown in Table 7, we compared SSIF with all baselines on model computational complexity with
three metrics: the number of parameters (Params), FLOPS, and model size. We can see that SSIF’s
Param. and model size are comparable to many INR baselines such as LIIF, CiaoSR, and LISSF while
they are much less than some CNN-based baselines such as AWAN+SSPSR and RC/AW+MoG-DCN.
In terms of FLOPS, SSIF is slightly higher but it is comparable to CiaoSR which is the most similar
model of SSIF. We can see that SSIF can achieve SOTA performance on the SSSR task without
significantly increasing the model complexity.

Table 7: A comparison across different SSSR models on computational complexity. Since SSIF can use different
image encoders and pixel feature decoders, SSIF (SwinIR-CiaoSR) indicates the version with the highest
computational complexity – the one using CiaoSR as the image encoder and SwinIR as the pixel feature decoder.

Methods Params(M) FLOPS(G) Model Size (Mb)
RCAN + AWAN(Ma et al., 2021) 17.3 40.3 201.4
AWAN + RCAN(Ma et al., 2021) 17.6 35.1 203.0
AWAN + SSPSR(Ma et al., 2021) 30.7 58.1 325.1
RC/AW+MoG-DCN(Dong et al., 2021) 434.3 491.2 499.3
US3RN(Ma et al., 2021) 2.7 64.2 30.7
SSFIN(Ma et al., 2022) 5.7 75.3 65.8
LIIF(Chen et al., 2021) 12.0 419.3 156.8
CiaoSR(Cao et al., 2023) 13.0 636.5 169.0
LISSF (Zhang et al., 2024) 13.1 725.4 174.6
SSIF (SwinIR-CiaoSR) 13.3 717.0 172.0

A.14 DISCUSSIONS ON THE CHOICE OF Cmin

Figure 18: Evaluation results at different Cmin in the CAVE dataset. Instead of setting Cmin = 8 as shown in
Figure 3, we set Cmin = 1 and retrain different SR models. The gray area indicates the area of out-of-distribution
spectra.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

To verify the model’s consistent performance when facing with different number of C in model
training, instead of setting Cmin = 8 as shown in Figure 3, we set the Cmin = 1 and Cmax = 31
when training the model, and then evaluate the model performance on the CAVE dataset. The spectral
downsampling process is the same as those in previous experimental settings. The results are shown
in Figure 18. We can see that changing Cmin = 1 does not change the trend of the curve compared
to Figure 3 and Figure 10, where Cmin = 8. Similarly, we can consistently see that SSIF-RF-GS and
SSIF-RF-US outperforms other SSIF variants and the recent baseline LISSF (Zhang et al., 2024).

A.15 DISCUSSIONS ON SSIF’S GENERALIZATION ACROSS DIFFERENT SPECTRAL BANDS

Figure 19: Evaluation results after training different models on truncated training images on the CAVE dataset.
Here, we only use the 8-26 bands of the training images of the CAVE dataset as training data for different SR
models. Then we test them in the original 1-31 bands of the testing images of the CAVE dataset. The gray area
indicates the area of out-of-distribution spectra, i.e., 1-7 and 27-31 bands of the testing images.

In addition, in order to evaluate the generalizability of SSIF across different spectral bands, we do
another experiment by truncating the CAVE dataset in the spectral domain. Here, we truncate the 1-7
and 27-31 bands of the training images in the CAVE dataset and train the model using only the 8th to
26th bands of the training images in CAVE. Then we evaluate the trained SR models on the original
testing images in the CAVE dataset (containing all 31 bands). Here, we call 8-26 bands in the testing
images “in-distribution” data while the 1-7, and 27-31 bands of these images are “out-of-distribution”
bands. As shown in Figure 19, SSIF-RF-GS and SSIF-RF-US show consistent performance, i.e.,
strong model generalizability across spectral space, in both in-distribution and out-of-distribution
spectral bands.

Figure 20, and 21 visualize the error maps of LISSF and SSIF on “out-of-distribution” spectral bands.
We can see that compared with LISSF, our SSIF demonstrates stronger generalizability across the
unseen spectral intervals.

Figure 20: Error maps of LISSF and SSIF on out-of-distribution spectral bands. SSIF and LISSF models are
trained on bands 8–26 of the CAVE training images with spatial scales 1–8. Both models are evaluated on the
“out-of-distribution” bands, i.e., band 1–7 of CAVE testing images. Here, the spatial SR scale p = 4 is within the
training spatial SR scales. The error maps are the mean average error.
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Figure 21: Error maps of LISSF and SSIF on out-of-distribution spectral bands. SSIF and LISSF models are
trained on bands 8–26 of the CAVE dataset with scales 1–8. Both models are evaluated on the “out-of-distribution”
bands, i.e., bands 27-31, of CAVE testing images. Here, the spatial SR scale p = 10 is outside of the training
spatial SR scales which is from 1 to 8. The error maps are the mean average errors.

A.16 MORE VISUALIZATION RESULTS

Figure 22 and 23 present the visual comparison results and corresponding error maps on the CAVE
dataset, with a specific focus on the in-distribution spatial scale. The error maps are the mean average
errors calculated on the generated RGB bands. The red circles and rectangles in Figures 22 and 23
highlight image regions where our SSIF shows big improvements compared with all baseline models.
As evident from these results, SSIF consistently outperforms other baselines, achieving significantly
lower error across the entire image.

Figure 22: Visual comparison and corresponding error maps on spatial SR on CAVE dataset. Here, the spatial
SR scale p = 8 which is within the training range of p. The error maps are the mean average errors calculated
on the RGB bands. The red circle highlights the noticeable improvement of SSIF over other baselines.

Figure 24 provides a comparison of different SR models’ SSSR results (p = 4) in the spectral
dimension, where the error maps are computed across all reconstructed 31 bands. We can see that
SSIF demonstrates superior performance compared to other models.

Figures 25 compares the visual results for out-of-distribution evaluation across different spatial scales
p = 10, 14. Among all baselines, SSIF achieves the best performance in these challenging settings,
showing its robustness and generalization capabilities.
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Figure 23: Visual comparison and corresponding error maps on spatial SR on the CAVE dataset. Here, the spatial
SR scale p = 4 which is within the training range of p. The error maps are the mean average errors calculated
on the RGB bands. The red rectangle highlights the noticeable improvement of SSIF over other baselines.

Figure 24: Visual comparison and corresponding error maps of different SR models on the CAVE dataset. Here,
the spatial SR scale p = 4 which is within the training range of p. Instead of showing MAE on the RGB bands
in 22 and 23, these error maps are the mean average error calculated on the reconstructed 31 bands.
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Figure 25: Visual result comparison of different models on out-of-distribution spatial scales, i.e., p = 10, 14.
All models are trained on spatial scales ranging from 1 to 8. The evaluation is conducted on p = 10, 14, which
are outside of the training spatial SR scales. The error maps are the mean average errors calculated on the RGB
bands. Each column indicates one SR model.
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