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ABSTRACT

Existing digital sensors capture images at fixed spatial and spectral resolutions (e.g.,
RGB, multispectral, and hyperspectral images), and generating super-resolution
images with different resolution settings requires bespoke machine learning models.
Spatial Implicit Functions (SIFs) partially overcome the spatial resolution challenge
by representing an image in a spatial-resolution-independent way. However, they
still operate at fixed, pre-defined spectral resolutions. To address this challenge,
we propose Spatial-Spectral Implicit Function (SSIF), a neural implicit model
that represents an image as a function of both continuous pixel coordinates in
the spatial domain and continuous wavelengths in the spectral domain. This
continuous representation across spatial and spectral domains enables a single
model to learn from a diverse set of resolution settings, which leads to better
generalizability. This representation also allows the physical principle of spectral
imaging and the spectral response functions of sensors to be easily incorporated
during training and inference. Moreover, SSIF does not have the equal spectral
wavelength interval requirement for both input and output images which leads to
much better applicability. We empirically demonstrate the effectiveness of SSIF on
two challenging spatial-spectral super-resolution benchmarks. We observe that
SSIF consistently outperforms state-of-the-art baselines even when the baselines
are allowed to train separate models at each spatial or spectral resolution. We
show that SSIF generalizes well to both unseen spatial and spectral resolutions.
Moreover, due to its physics-inspired design, SSIF performs significantly better at
low data regime and converges faster during training compared with other strong
neural implicit function-based baselines.

1 INTRODUCTION

While the physical world is continuous, most digital sensors (e.g., cell phone cameras, multispectral
or hyperspectral sensors in satellites) can only capture a discrete representation of continuous signals
in both spatial and spectral domains (i.e., with a fixed number of spectral bands, such as red, green,
and blue). Due to the limited energy of incident photons, fundamental limitations in achievable signal-
to-noise ratios (SNR), and time constraints, there is always a trade-off between spatial and spectral
resolution (Mei et al., |2020; Ma et al., 2021ﬂ High spatial resolution and high spectral resolution
can not be achieved at the same time, leading to a variety of spatial and spectral resolutions used
in practice for different sensors. However, ML models are typically bespoke to certain resolutions,
and models typically do not generalize to spatial or spectral resolutions they have not been trained
on. This calls for image super-resolution (SR) methods, which are capable of increasing the spatial
or spectral resolution of a given single low-resolution image (Galliani et al., [2017)). It has become
increasingly important for a wide range of tasks including object recognition and tracking (Pan et al.,
2003; [Uzair et al.| 2015} [Xiong et al.l 2020), medical image processing (Lu & Fei, 2014} |Johnson
et al.| 2007), remote sensing (He et al.,|2021bj Bioucas-Dias et al.| 2013} | Melgani & Bruzzone, |2004;
Zhong et al., 2018} [Wang et al.|[2022a; |Liu et al., |2023), and astronomy (Ball et al., [2019).

The diversity in input-output image resolutions (both spatial and spectral) significantly increases the
complexity of deep neural network (DNN) based SR model development. Most SR research develops

!Given a fixed overall sensor size and exposure time, higher spatial resolution and higher spectral resolution
require the per pixel sensor to be smaller and bigger at the same time, which are contradicting each other.
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Figure 1: (a) SSIF represents an input low-resolution multispectral (LR-MSI) image I'"~™ as a continuous

function ~1(x, \) on both pixel coordinates x in the spatial domain and wavelengths A in the spectral domain.
SSIF can perform both spatial (blue arrows) and spectral (red arrows) super-resolution simultaneously (illustrated
with a specific pixel A). (b) An illustration of the physical principle of spectral imaging for MSI and HSI sensors.

separate DNN models for each input-output image resolution pairs with a specific spatial and spectral
resolution (Lim et al.l 2017; Zhang et al.,|2018b; Ma et al., 2021; Mei et al., 2020; Ma et al.| 2022).
For example, convolution-based SR models such as RCAN (Zhang et al.,[2018a)), SR3(Saharia et al.|
2021)), SSISR (Mei et al.| 2020), (He et al.,[2021b), and SSFIN (Ma et al.,[2022) need to be trained
separately for each input-output image resolution settingsﬂ This practice has three limitations: /)
For some SR settings with much less training data, these models can yield suboptimal results or lead
to overfitting; 2) It prevents generalizing trained SR models to unseen spatial/spectral resolutions.
3) it is hard to incorporate domain knowledge such as sensor response functions into the model
design. Inspired by the recent progress in 3D reconstruction with implicit neural representation (Park
et al.,|2019; Mescheder et al.,|2019;|Chen & Zhang, 2019; Sitzmann et al.,|2020; Mildenhall et al.,
2020), image neural implicit functions (NIF) (Dupont et al., 2021} |Chen et al.| 2021} |Yang et al.,
20215 Zhang| 2021};|Cao et al,|[2023) partially overcome the aforementioned problems (especially
the second one) by learning a continuous function that maps an arbitrary pixel spatial coordinate to
the corresponding visual signal value and generate images at any spatial resolution. We call them
Spatial Implicit Functions (SIF). However, each SIF model still has to be trained separately to target
a specific spectral resolution (i.e., a fixed number of spectral bands).

Extending SIFs to the spectral domain is a non-trivial task due to the complexities of the spectral
response functions. First, the response functions of different bands might not be simple functions
(e.g., Gaussian or more complicated functions) and can be different types. Second, the bands of
the input/output images might be unequally spaced in the spectral domain. For many RGB or
multispectral images, each band may have different spectral widths (i.e., lengths of wavelength
intervals) and different bands’ wavelength intervals may even overlap with each other. The "Spectral
Signature of Pixel A" of the image I'"~™ in Figure [la| shows one example of such cases. Recent
work like LISSF (Zhang et al., [2024) utilizes 3D CNN in the image encoder to naively generalize
SIFs into a spatial-spectral SR model. However, LISSF relies on a strong assumption that all input
images should have equal-spaced spectral wavelength intervals which most RGB and multispectral
images do not satisfy. This significantly limits its applicability in most spatial-spectral SR problems.
Therefore, effectively incorporating images from various sensors with diverse characteristics is the key
to achieving cost-effectiveness and model generalizability, but poses a great challenge to modeling.

In this work, we propose Spatial-Spectral Implicit Function (SSTF’), which generalizes neural
implicit representations to the spectral domain as a physics-inspired architecture by incorporating
sensors’ physical principles of spectral imaging (Nguyen et al.l 2014; [Zheng et al] 2020). SSIF
represents an image I as a continuous function v*(x, A) on both pixel spatial coordinates x in the
spatial domain and wavelengths X in the spectral domain. As shown in Figure(lal given an input low-
resolution multispectral (or RGB) image, a single S.SIF model can generate images with different
spatial and spectral resolutions. To tackle the problem of modeling response functions p;(\) of
sensor ¢, we predict each spectral band value of each target pixel x as the integral of the radiation
function 7 (x, \) of pixel x and the response function p;(\) (see Figure|l1b|as an illustration). Our
contributions are as follows:

2Figulrel@in Appendixillustrates this separate training practice.
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1. We propose SSIF which represents an image as a physics-inspired continuous function on both
pixel coordinates in the spatial domain and wavelengths in the spectral domain. Unlike LISSF,
SSIF does not have the equally spaced spectral band requirement for both input and output
images. It can handle SR tasks with different spatial and spectral resolutions simultaneously.

2. We demonstrate the effectiveness of SSTF' on two challenging spatial-spectral super-resolution
benchmarks — CAVE (the indoor scenes) and Pavia Centre (Hyperspectral Remote Sensing
images). SSIF consistently outperforms state-of-the-art SR baseline models on spatial SR,
spectral SR, and spatial-spectral SR tasks even when the baselines are trained separately at each
spectral resolution (and spatial resolution). We show that SSIF generalizes well to both unseen
spatial and spectral resolutions.

3. We show that due to the physics-inspired design — explicitly incorporating physical principles of
spectral imaging into SSIF’s model design, SSIF performs significantly better at low data regime
and converges faster during training compared with existing SIF baselines.

2 RELATED WORK

Image Super Resolution As an ill-posed single image-to-image translation problem, super-
resolution (SR) aims at increasing the spatial or spectral resolution of a given image such that
it can be used for different downstream tasks. It has been widely used on natural images(Zhang et al.|
2018a; [Hu et al., 2019} [Zhang et al., [2020bj |Saharia et al., 2021} |Chen et al., 2021)), screen-shot
images (Yang et al.,|2021), omnidirectional images (Deng et al.,[2021; Yoon et al., [2021) medical
images (Isaac & Kulkarnil [2015)), as well as multispectral (He et al., [2021b; [Liu et al.| 2023) and
hyperspectral remote sensing images(Mei et al.,[2017; Ma et al., 2021; Mei et al., [2020; Wang et al.,
2022b)). Traditionally image SR (Ledig et al.,|2017; [Lim et al.,|2017; Zhang et al., 2018b; |Haris et al.,
2018}, Zhang et al., [2020c} Yao et al., [2020; |[Mei et al.| [2020; [Saharia et al.,|2021; Ma et al., 2021} He
et al.,[2021bj |[Ma et al., [2022}; |Cao et al.| 2023) has been classified into three tasks according to the
input and output image resolutions Spatial Super-Resolution (spatial SR), Spectral Super-Resolution
(spectral SR) and Spatio-Spectral Super-Resolution (SSSR). Spatial SR (Zhang et al.| 2018a; Hu
et al.||2019;|Zhang et al.,[2020a; Niu et al., 20205 Wu et al.| 2021b; |Chen et al., 2021} [He et al., 202 1b)
focuses on increasing the spatial resolution of the input images (e.g., from h x w pixels to H x W
pixels) while keeping the spectral resolution (i.e., number of spectral bands/channels) unchanged.
In contrast, spectral SR (Galliani et al.,[2017; [Fu et al.,[2018; |Arad et al., [2018}; |Kaya et al., [2019;
Fu et al.| 2020; |He et al., [2021a; Sun et al., 2021} [Zhu et al., 2021} Zhang, 2021} |[Mei et al., [2022;
Zhang et al.} 2022} He et al., 2023)) focuses on increasing the spectral resolution of the input images
(e.g., from c to C channels) while keeping the spatial resolution ﬁxeﬂ SSSR (Mei et al., 2020; Ma
et al.| 2021;2022)) focuses on increasing both the spatial and spectral resolution of the input images.
Here, h, w (or H, W) indicates the height and width of the low-resolution, LR, (or high-resolution,
HR) images while ¢ and C' indicate the number of bands/channels of the low/high spectral resolution
images. For video signal, SR can also be done along the time dimension, but we don’t consider it
here and leave it as future work.

Implicit Neural Representation Recently, we have witnessed an increasing amount of work using
implicit neural representations for different tasks such as image regression (Tancik et al.| [2020)
and compression(Dupont et al., 2021} Striimpler et al., 2021)), 3D shape regression/reconstruction
(Mescheder et al.| [2019; |Tancik et al, [2020; |(Chen & Zhang|, 2019), 3D shape reconstruction via
image synthesis (Mildenhall et al., |2020), 3D magnetic resonance imaging (MRI) reconstruction
(Tancik et al., 2020), 3D protein reconstruction (Zhong et al., [2020), spatial feature distribution
modeling (Mai et al.,|2020b; [2022} [2023b; |Cole et al., 2023} Mai et al., 2023a; [RuSwurm et al.| [2024;
Wu et al., 2024])), geographic question answering (Mai et al.| [2020a), and etc. The core idea is to
learn a continuous function that maps spatial coordinates (e.g., pixel coordinates, 3D coordinates,
and geographic coordinates) to the corresponding signals (e.g., point cloud intensity, MRI intensity,
visual signals, etc.). A common setup is to input the spatial coordinates in a deterministic or learnable
Fourier feature mapping layer (Tancik et al.,[2020) (consisting of sinusoidal functions with different
frequencies), which converts the coordinates into multi-scale features. Then a multi-layer perceptron

3A related task, Multispectral and Hyperspectral Image Fusion (Zhang et al., [2020c; [Yao et al., [2020),
takes a high spatial resolution MSI image and a low spatial resolution HSI image as inputs and generates a
high-resolution HSI image. Here, we focus on the single image-to-image problem and leave this as future work.

4See [He et al.| (2023); [Zhang et al.| (2022) for comprehensive reviews on different deep-learning-based
spectral SR models.
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further transforms these multi-scale features for downstream tasks. In parallel, neural implicit
functions (NIF) such as LIIF (Chen et al., 2021}, ITSRN (Yang et al., [2021), Zhang| (2021), and
CiaoSR (Cao et al.,|2023) are proposed for image spatial SR which map pixel spatial coordinates
to the visual signals in the high spatial resolution images. One outstanding advantage is that they
can jointly handle spatial SR tasks at an arbitrary spatial scale. Recently, LISSF (Zhang et al.,
2023;2024) was developed as a NIF-based SSSR model that uses an image encoder with 3D CNN
and generalizes LIIF with 3D coordinates in spatial and spectral space for arbitrary scale SSSR.
However, it adopts a strong assumption that input images’ bands must have equally spaced spectral
wavelength intervals which most RGB and multispectral images do not satisfy. This significantly
limits LISSF’s applicability. In all, to our best knowledge, the existing NIF-based models learn
continuous image representations in the spatial domain while still operating either at fixed pre-defined
spectral resolutions, or on input images with equally spaced wavelength intervals. In comparison,
our SSIF can make predicsions for sensors with arbitrary response functions by leveraging physical
characteristics for the light sources and sensors. Both input and output images of SSIF can have
irregularly spaced wavelength intervals with arbitrary upsampling spectral scales.

3 PROBLEM STATEMENT

The spatial-spectral image super-resolution (SSSR) problem over various spatial and spectral reso-
lutions can be conceptualized as follows. Given an input low spatial/spectral resolution (LR-MSI)
image I'"=™ € R">wx¢ e want to generate a high spatial and spectral resolution (HR-HSI) image
I'm=h ¢ REXWXC Here, h,w,c and H, W, C are the height, width and channel dimension of
image I'""™ and I""~" and H > h, W > w, C > c¢. The spatial upsampling scale p is defined
as p = H/h = W/w. Without loss of generality, let A"" =" = [AT AT . AL] € RE*? be the
wavelength interval matrix, which defines the spectral bands in the target HR-HSI image I""~". Here,
A; = [Nis, Aie] € R? is the wavelength interval for the ith band of I""~" where \; s, \; . are the
start and end wavelength of this band. A" ~" can be used to fully express the spectral resolution of
the target HR-HSI image I""—". In this work, we do not use C'/c to represent the spectral upsampling
scale because bands/channels of image I'""~™ and I""~" might not be equally spaced (See Figure
. So AP"=h is a very flexible representation for the spectral resolution, capable of representing
situations when different bands have different spectral widths or their wavelength intervals overlap
with each other. When I""~" has equally spaced wavelength intervals, such as those of most of the
hyperspectral images, we use its band number C' to represent the spectral scale.

The spatial-spectral super-resolution (SSSR) can be represented as a function
Ihr—h — HS" (IlT_m,p, Ahr—h,) (])

where H*"(-) takes as input the image I'"~"™, the desired spatial upsampling scale p, and the target
sensor wavelength interval matrix A" =" and generates the HR-HSI image 1"~ ¢ RE*WxC 1p
other words, we aim at learning one single function /77 (-) that can take any input images I'"~™
with a fixed spatial and spectral resolution, and generate images I""~" with diverse spatial and
spectral resolutions specified by different p and A" ",

Note that none of the existing SR models can achieve this. Most classic SR models have to learn
separate H*"(-) for different pairs of p and A*"~" such as EDSR |[Lim et al. (2017), RCAN (Zhang
et al.;2018a), SR3(Saharia et al., [2021)), SSJSR (Mei et al., [2020)), |He et al.| (2021b)), SwinIR (Liang
et al.,[2021)), and SSFIN (Ma et al.,[2022)). For SIF models such as LIIF(Chen et al., 2021}, SADN
(Wuet al.,2021a), ITSRN (Yang et al., 2021)),/Zhang| (2021}, CiaoSR (Cao et al., 2023)), they can learn
one H*" () for different p but with a fixed APT=R (see Figure E]) LISSF (Zhang et al.,|2024) can learn
one H*"(-) for different p and A" " but it requires the wavelength interval matrix A" =™ € R¢*?2
of I'" =™ equally spaced while SSIF allows arbitrary A" =™,

4 SPATIAL-SPECTRAL IMPLICIT FUNCTION

In order to achieve generalizability we design SSIF based on light sensor and light source principles.

4.1 LIGHT SENSOR PRINCIPLE

On the sensor side, the SSIF model design follows the physical principle that the pixel density value
of a sensor can be computed by an integral of the radiance function 7 (z, \) and the response function
p(X) of a sensor. More specifically, let s« ; be the pixel density value of a pixel x at the spectral band
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Figure 2: Data preparation (a) and training (b) for SSTF'. In Figure (b), we use Gaussian distributions as the
response functions for different wavelength intervals {A1, As, .., Ac } while the response function p;(A,,x) for
A; is highlighted in red. The green dots are K wavelengths {\; 1, A 2, ..., As, x } sampled from a wavelength
interval A; = [Ai s, Mie] € A" "™ and {pi 1, pi2, ..., pi, i } are their corresponding response function values.
{bi,1,bi,2,...,b; i } are their encoded spectral embeddings. ) represents the weighted sum in Equation@

b; with wavelength interval A;. It can be computed by an integral of the radiance function 1*(x, \)
and response function p;(\) of a sensor at band b; (see Figure [1b|as an illustration).

S — / Pr(A (6, A) dA P
A.

i

where A is wavelength. So for each pixel x, the radiance function is a neural field that describes
the radiance curve as a function of the wavelength. Note that, unlike recent NeRF where only three
discrete wavelength intervals (i.e., RGB) are considered, we aim to learn a continuous radiance curve
over wavelength for each pixel. The spectral response function (Zheng et al.| [2020) describes the
sensitivity of the sensor to different wavelengths and is usually sensor-specific. For example, the red
sensor in commercial RGB cameras has a strong response (i.e., high pixel density) to red light. The
spectral response functions of many commercial hyperspectral sensors (e.g., AVIRIS’s ROSIS—O3E1
EO-1 Hyperion) are very complex due to atmospheric absorption. A common practice adopted by
many studies (Barry et al. [2002} Brazile et al., |2008}; |Cundill et al.| 2015} |Crawford et al., 2019
Chi et al.} 2021 is to approximate the response functions of individual spectral bands as a Gaussian
distribution or a uniform distribution. In this work, we adopt this practice and show that this inductive
bias enforced via physical laws improves generalization.

4.2 LIGHT SOURCE PRINCIPLE

On the light source side, SSIF model design leverages the “spectral signature” principle that
the spectral intensity curve (radiation as a function of wavelength) of any pixel ¥*(x, \) can be
decomposed as a weighted sum of k pretrained spectral signature functions. This constraint enforces
a useful regularity that different surface types such as water, bare ground, and vegetation reflect
radiation differently in various wavelengths and have their unique spectral signatureﬂ With the
decomposition of the pixel spectral intensity curve as a weighted sum of learnable spectral signature
functions, it is possible to learn them from raw data, which often contains mixed surface types.

4.3 SSIF ARCHITECTURE

In the following, we will discuss the design of our SSIF which allows us to train a single SR model
for different p and A""~". The whole model architecture of SSIF is illustrated in Figure

Following previous SIF works (Chen et al.,|2021} [Yang et al.| 2021} [Cao et al., [2023)), SSIF first
uses an image encoder E7(-) to convert the input image I'" =™ € R"*%X¢ into a 2D feature map
Sir—m = pI(1i"—m) ¢ RM*wxd" \which shares the same spatial shape as I'"~™ but with a larger
channel dimension. E(-) can be any convolution-based image encoder such as EDSR (Lim et al.,
2017), RDN (Zhang et al., 2018b)), or SwinIR (Liang et al., [2021). Then we can approximate the
integral of Equation [2] as a weighted sum over the predicted radiance values of K wavelengths
{\i1,Ai2, s Aix } sampled from a wavelength interval A; = [\; 5, \; o] € A" =" at location x

Shttps://crs.hi.is/?page_id=877
®https://www.esa.int/SPECIALS/Eduspace_EN/SEMPNQ3Z20F_2.html


https://crs.hi.is/?page_id=877
https://www.esa.int/SPECIALS/Eduspace_EN/SEMPNQ3Z2OF_2.html

Under review as a conference paper at ICLR 2025

K K
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Here, p;()) is the response function value, i.e., weight, of wavelength A given the current response
function for band b;. y!(x, \) is the radiance value of ) at location x which can be computed by a
neural implicit function G**, which maps an arbitrary pixel location x € L—l, 1] ® [~1,1] of TP
and a wavelength \; ; € A; into the radiance value of the target image I""~" at the corresponding
location and wavelength, i.e., Y1 (x, \; 1) = G¥*(S"™™ x, \; 1.). Here, ® is the Cartesian product.

G** can be decomposed into three neural implicit functions — a pixel feature decoder F'*, a spectral
encoder £*, and a spectral decoder D**. The pixel feature decoder takes the 2D feature map of the
input image S!"~™ as well as one arbitrary pixel location x € [~1,1] ® [~1,1] of I""~" and maps
them to a pixel hidden feature h, € R where d is the hidden pixel feature dimension (see Equation
EID. Here, F* can be any spatial implicit function such as LIIF |Chen et al.|(2021), ITSRN (Yang et al.|
2021)), and CiaoSR (Cao et al., [2023)).

h, = F*(S" ™ x) “

The spectral encoder E*encodes a wavelength ik samdpled from any wavelen%th interval A; =
[Niss Aie] € A"~ into a spectral embedding b; , € R?. We can implement E* as any position

encoder (Vaswani et al., 2017; Mai et al. 2020b). Please refer to Appendix @] for a detailed
description. Here, we will sample K wavelength from each A; according to its spectral response
function as shown in Figure [2b]

b = E*\ik) )

Finally, the spectral decoder D*** maps the image feature embedding h, and the spectral embedding
b; ;. into a radiance value sy ; 1, = va’\(bi,k; hy) for )\, i, at location x. So we have the prediction
K K
Sx,i = Z Pi(Nik)Sxik = Z pi(Ni k) D (by i3 hy) (6)

k=1 k=1

D** can be implemented as different NN architectures. Our ablation study (see Figure in
Appendix shows that a simple dot product function, which satisfies the “spectral signature”
principle, performs very well. The response function p;(); ) can be a learnable function or a
predefined function depending on the target HSI sensor. For this study, we use predefined functions,
e.g. a Gaussian distribution or a uniform distribution, for each band b; by following Chi et al.| (2021).

For training, the prediction s, ; € R is compared with the ground truth s;(,i using a L1 loss:

L= > > > lsxi—skilh 0

(Iir=m Thr=h)eD (x,sh7—h Ahr—h)eIhr—h A, c Ahr—h

Here the dataset D contains all the low-res and high-res image pairs for the SSSR task. Figure 23]
illustrates the data preparation process of SSIF. Please see Appendix for a detailed description.

5 EXPERIMENTS

To test the effectiveness of the proposed SSIF, we evaluate it on two challenging spatial-spectral
super-resolution benchmark datasets — the CAVE dataset (Yasuma et al.,|2010b) and the Pavia Centre
datasetﬂ Both datasets are widely used for super-resolution tasks on hyperspectral images. Please
refer to Appendix [A.6]and for a description of both datasets and SSIF’s model training details.
5.1 BASELINES AND SSIF MODEL VARIANTS

Compared with spatial SR and spectral SR, there has been much less work on SSSR. We mainly
compare our model with 10 baseline RCAN + AWAN, AWAN + RCAN, AWAN + SSPSR,
RC/AW + MoG-DCN, SSJSR, US3RN, SSFIN, LIIF, CiaoSR, and LISSF. Please refer to Appendix
[A-4]for a detailed description of each baseline. For the first 7 baselines, we have to train separate SR
models for different spatial and spectral resolutions of the output images. LIIF and CiaoSR can use
one model to generate output images with different spatial resolutions. However, we still need to
train separate models for I""~" with different band numbers C'. In contrast, SSITF and LISSF can
handle different spatial and spectral resolutions with one model.

7
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

$We do not pick LISSF as one baseline since it cannot handle RGB or multispectral images as input.
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Based on the response functions we use (Gaussian or Uniform) and the wavelength sampling methods
(Sampled or Fixed), we have 4 SSIF variants: SSIF-RF-GS, SSIF-RF-GF, SSIF-RF-US, and
SSIF-RF-UF. We also consider 1 additional SSIF variant — SSIF-M which only use band middle
point to represent each band. Please refer to Appendix [A.5]for a detailed description of them.

5.2 SSSR oON THE CAVE DATASET

Table [T]shows the evaluation result of the SSSR task across different spatial scales p on the original
CAVE dataset with 31 bands. We use three evaluation metrics - PSNR, SSIM, and SAM which
measure the quality of generated images from different perspectives. We evaluate different baselines
as well as SSTF under different spatial scales p = {2,4, 8,10, 12, 14}. We can see that:

1. All 4 SSIF-RF-* models can outperform or are comparable to the 10 baselines across all tested
spatial scales even if the first 7 baselines are trained separately on each p.

2. SSIF-RF-GS achieves the best or 2nd best results across all spatial scales and metrics.

3. A general pattern we can see across all spatial scales is that the order of the model performances
is SSIF-RF-* > CiaoSR > LIIF > LISSF and other 7 baselines. For more statistical significance
analysis see the error bar plots shown in Figure[12]in Appendix[A.8.2]

Table 1: Results for the image SSSR task across different spatial scales p on the original CAVE (Yasuma et al.,
2010al) dataset with 31 bands. “In-distribution” and “Out-of-distribution” indicate whether the model has seen
this spatial scale p during training. “Out-of-distribution” prediction is only applicable to LIIF (Chen et al., 2021},
CiaoSR (Cao et al.|[2023), LISSF (Zhang et al.,[2024)), and S'STF models. The performance of these models
across different p are obtained from the same model while for other 7 baselines, we trained separated SR models
for each spatial scale p. Except for LIIF, CiaoSR, and LISSF (Zhang et al.||2024), the performances of all the
other 7 baselines are from (Ma et al., 2022)*. We highlight the best model for each setting in bold and underline
the second-best model.

Model In-distribution

Spatial Scale p 2 4 8

Metric PSNRT SSIMT SAM| | PSNRT SSIMT SAM] | PSNRT SSIMT SAM ]
RCAN + AWAN(Ma et al.|[2021)* 36.22 0.971 8.81 32.69 0.935 9.82 28.25 0.834 11.73
AWAN + RCAN(Ma et al.|[2021)* 36.09 0.969 8.42 31.44 0.916 9.24 27.77 0.837 12.39
AWAN + SSPSR(Ma et al.|[2021)* 36.16 0.969 8.49 32.34 0.928 9.25 28.19 0.860 10.97
RC/AW+MoG-DCN(Dong et al.|[2021)* | 36.12 0.969 8.53 32.68 0.923 9.44 28.33 0.853 13.20
SSISR(Mei et al.|[2020)* 35.51 0.970 7.67 30.90 0.916 9.30 27.30 0.844 9.28
US3RN(Ma et al.|[2021)* 36.18 0.972 7.43 32.90 0.942 791 28.81 0.887 9.02
SSFIN(Ma et al.|[2022)* 37.36 0.977 6.49 3341 0.947 7.11 29.21 0.896 8.07
LIIF(Chen et al.[[2021) 36.82 0.977 6.85 34.36 0.956 7.31 31.26 0.900 8.32
CiaoSR(Cao et al.[[2023) 37.09 0.974 8.77 34.75 0.954 9.36 32.05 0913 7.84
LISSF(Zhang et al.[|]2024) 35.88 0.962 10.15 34.57 0.936 10.16 32.00 0.908 10.85
SSIF-M 36.08 0.952 10.22 34.45 0.937 10.32 32.27 0.901 10.78
SSIF-RF-GS 38.23 0.979 6.92 36.23 0.965 7.00 33.54 0.931 732
SSIF-RF-GF 37.42 0.977 6.85 35.47 0.963 7.09 32.98 0.928 7.68
SSIF-RF-US 37.98 0.977 6.66 35.65 0.963 6.90 33.21 0.930 7.29
SSIF-RF-UF 37.41 0.976 7.04 35.53 0.962 7.41 33.00 0.927 8.09
Model Out-of-distribution

Spatial Scale p 10 12 14 |
Metric PSNR1T SSIMT SAM/| | PSNRt SSIMt SAMJ| | PSNRt SSIM{T SAM|
LIIF(Chen et al.[[2021) 29.97 0.867 9.51 29.00 0.844 9.90 28.26 0.827 10.36
CiaoSR(Cao et al.|[2023) 30.55 0.877 8.19 29.36 0.851 8.61 28.55 0.832 8.82
LISSF(Zhang et al.[|2024) 31.06 0.875 11.27 30.18 0.858 11.40 29.67 0.845 11.51
SSIF-M 31.27 0.880 11.13 30.40 0.860 11.19 29.59 0.844 11.68
SSIF-RF-GS 32.20 0.909 7.87 31.14 0.891 8.19 30.44 0.878 8.57
SSIF-RF-GF 32.03 0911 8.02 31.20 0.895 8.21 30.38 0.881 8.62
SSIF-RF-US 32.18 0.912 7.70 31.26 0.895 7.90 30.52 0.882 8.23
SSIF-RF-UF 31.82 0.906 8.57 30.83 0.887 8.86 30.19 0.874 9.14

Figure [3(a) and [3[b) compare model performances under different C' with a fixed spatial scale (p = 4

and p = 8 respectively). We can see that:

1. Both Figure[3(a) and [3(b) show that SSIF-RF-GS achieves the best performances in two spatial
scales on both "in-distribution" and "out-of-distribution" spectral resolutions.

2. The performance of SSIF with fixed set of wavelengths during training (SSIF-RF-UF, SSIF-RF-
GF, and SSIF-M) drop significantly when C' > 31 while SSIF with randomized wavelengths
(SSIF-RF-GS and SSIF-RF-US) generalized well for C' > 31.

3. A general pattern can be observed — the order of model performance is SSIF-RF-* > CiaoSR >
LIIF > LISSF >other 7 baselines.

5.3 SSSR ON THE PAVIA CENTRE REMOTE SENSING DATASET

Table [2] shows the evaluation results of the SSSR task across different spatial scales p =
{2,3,4,8,10,12,14, 16} on the original Pavia Centre dataset with 102 bands. We can see that:
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(a) Spatial Scale 4 (b) Spatial Scale 8

PSNR

Target Band Numbers C
mmmm SSIF-RF-GS

Target Band Numbers C
= = LISSF x AWAN+SSPSR

— A LUF —Y

Figure 3: Results (PSNR) of different models on the SSSR task across different C' on the CAVE (Yasuma et al.}
ﬁ-zo

10al)) dataset. Here, the x axis indicates the number of bands C' of I"*" ", (a) and (b) compare the performances
of different models across different C' in two spatial scales p = 4 and p = 8. Since our SSIF’ can generalize
to different p and C, the evaluation metrics of each SSIF' are generated by one trained model. The gray area
in these plots indicates "out-of-distribution" performance in which S'STF' are evaluated on C's which have not
been used for training. Please see Figurein Appendix@for the evaluation results on three metrics.

w— SSIF-M = SSIF-RF-GF mmm SSIF-RF-US mmmm SSIF-RF-UF

@ RCAN+AWAN 4 AWAN+RCAN % RC/AW+MoG-DCN @ SSISR @ US3RN B SSFIN - CiaoSR

(a) Spatial Scale 4 (b) Spatial Scale 8

PSNR

60 80 100 120
Target Band Numbers C
wm— SSIF-RF-GS

140 [ 20 40 120 140

) ) 160
Target Band Numbers C
w— SS|F-RF-UF = = [ISSF

— A LIF

Figure 4: Evaluations across different C' on the Pavia Centre dataset. The setup is the same as Figure Note that
some of the baseline models do not appear in plots because the performances of them are very low and cannot be
shown in the current metric range. Please see Figure[TT]in Appendix [A-8]for the results on three metrics.

m— SSIF-M w— SSIF-RF-GF m— SSIF-RF-US K AWAN+SSPSR

@ RCAN+AWAN = AWAN+RCAN % RC/AW+MoG-DCN @ SSISR @ US3RN SSFIN V- CiaoSR

1. All SSIF-RF-* can outperform all baselines on all spatial scales.
2. The performances of 4 SSIF-RF-* models are very similar across different spatial scales, and they
outperform LISSF, CiaoSR, and LIIF in most settings.

Table 2: Image super-resolution on the original Pavia Centre (Yasuma et al.,2010al) dataset with 102 bands. We
evaluate models across different spatial scales p = {2, 3,4,8,10,12,14,16}. "In-distribution" and "Out-of-
distribution" have the same meaning as Tablem The performance of LIIF, CiaoSR, LISSF, and SSIF across
different p are obtained from the same models while the other 7 baselines need to be trained separately on each
p. Except for LIIF, CiaoSR, and LISSF, the performances of all the other 7 baselines are from Ma et al. (IZUQ_Z[)*

Model In-distribution
Spatial Scale p 2 3 4 8
Metric PSNR 1 SSIM 1 SAM | |PSNR 1 SSIM 1 SAM | |PSNR 1 SSIM 1 SAM | |[PSNR 1 SSIM 1 SAM |
RCAN + AWAN(Ma et al.}[2021 3423 0932 438 | 29.67 0.829 5.60 | 27.60 0.732 6.63 | 2391 0496 845
AWAN + RCAN(Ma et al.|[2021 3454 0936 438 | 29.66 0.827 5.70 | 27.61 0.734 6.69 | 23.67 0.515 8.87
AWAN + SSPSR(Ma et al.[[2021 3424 0934 430 | 29.60 0.828 5.55 | 27.71 0742 632 | 2421 0506 8.14
3401 0929 491 | 29.77 0.833 553 | 2759 0.734  6.66 | 2392 0.528 844
31.80 0.894 480 | 29.05 0.810 6.14 | 27.06 0.703 6.93 | 20.61 0.347 18.30
3586 0951 3.71 | 3038 0.857 4.88 | 2823 0.775 5.80 | 2426 0548 7.96
3575 0950 3.65 | 30.79 0.880 4.95 | 27.75 0.762 570 | 24.18 0.535 8.15
36.08 0957 399 | 32.12 0909 4.86 | 30.16 0.849 531 | 26.09 0.608 7.01
36.46 0960 3.83 | 3096 0.884 5.26 | 30.18 0.851 5.12 | 26.08 0.618 6.82
3579 0954 455 | 30.17 0.875 5.17 | 29.88 0.825 579 | 25.12 0.598 7.12
3587 0956 433 | 29.82 0.851 5.80 | 30.07 0.848 548 | 26.06 0.610 7.03
SSIF-RF-GS 36.84 0962 3.71 | 32.31 0910 4.61 | 3042 0.858 499 | 26.03 0.619 6.77
SSIF-RF-GF 36.71 0962 3.74 | 3228 0910 4.62 | 3036 0857 502 | 26.14 0.628 6.75
SSIF-RF-US 3646 0960 397 | 31.64 0.897 495 | 3030 0.855 5.17 | 26.09 0.622 6.85
SSIF-RF-UF 36.79 0962 3.73 | 3227 0.909 4.64 | 3043 0.858 500 | 26.17 0.629 6.71
Model Out-of-distribution
Spatial Scale p 10 12 14 16
Metric PSNR 1 SSIM 1 SAM ||PSNR 1 SSIM 1 SAM | |PSNR 1 SSIM 1 SAM | [PSNR 1 SSIM 1 SAM |
LIIF(Chen et al.|[2021 2487 0512 785 | 2420 0.447 825 | 2377 0401 853 | 23.60 0376 8.54
Ciao 202 2350 0453 853 | 2286 0407 9.14 | 2230 0.359 9.78 | 22.10 0345 991
LISSF( 2458 0.505 8.12 | 23.64 0451 859 | 2344 0.373 8.88 | 2341 0377 884
SSIF-M 2482 0518 7.78 | 2371 0408 853 | 2346 0374 878 | 2334 0354 891
SSIF-RF-GS 2486 0.523  7.52 | 24.05 0443 8.05 | 23.66 0401 837 | 2352 0.382 8.50
SSIF-RF-GF 2481 0523 753 | 2421 0451 798 | 23.70 0.402 837 | 2351 0375 8.50
SSIF-RF-US 2489 0.525 759 | 24.03 0441 8.17 | 23.67 0397 840 | 23.52 0.378 8.55
SSIF-RF-UF 24.88 0521 7.53 | 24.15 0447 8.02 | 23.65 0400 840 | 2344 0.373 8.8

Figure @a) and @{b) compare different models across different spectral resolutions under two fixed
spatial scales (p = 4 and 8 respectively). We can see that:
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1. 4 SSIF-RF-* models can outperform all 10 baselines across different C' when p = 4. Whenp = 8,
they outperform or are on the bar with CiaoSR and LIIF while outperforming other 8 baselines.

2. All 4 SSIF-RF-* show good generalization for “out-of-distribution” spectral scales, especially
when C' > 102 while SSIF-M suffers from performance degradation.

5.4 SPECTRAL SR, SPATIAL SR EXPERIMENTS AND ABLATION STUDIES

In addition to those 10 baselines, three specialized spectral SR models — HDNet (Hu et al., [2022]),
MST++ (Cai et al., |2022), and SSRNet (Dian et al., 2023)) — were used for benchmarking on the
spectral SR task using the CAVE and Pavia Centre datasets. The results, detailed in Appendix [A.TT]
show that SSIF either outperforms or is on par with these task-specific baselines. Notably, SSIF also
possesses the flexibility to handle both spatial and spectral SR simultaneously. We also compare
CiaoSR and SSIF on spatial SR task. Results in Appendix[A.12]show that SSIF can outperform or be
on bar with CiaoSR even without the multiple spectral scale training process. Table[/7|in Appendix
compares the computational complexity of different models which shows that SSIF can achieve
the SOTA performance without significantly increasing the model complexity.

Ablation studies on different designs of image encoder E’, pixel feature decoder F*, and spectral
decoder D*** on the CAVE dataset can be seen in Appendix and|A.9.2] We find that using
SwinIR as E!, CiaoSR as F*, and dot product function as D** leads to the best performance of
SSIF. We also conduct an ablation study for K on Pavia Centre dataset (see Figure[I3]in Appendix
and find out that a larger K usually leads to better performance and better generalizability on
unseen C. It shows that SSIF-RF-GF models with small Ks also suffer from performance drop when
C > 102 just like what we see in the CAVE experiments while bigger K's will mitigate this problem.

5.5 ANALYSIS

Qualitative Results In Figure|5, we provide qualitative comparisons of SSSR results from different
methods. We can see that SSIF is much better at synthesizing sharp textures than other methods.
Figure [6] shows the SSIF has superior performance on spectral reconstruction with extreme band
numbers and significantly outperforms other methods. More results can be seen in Appendix [A.16]

What the Spectral Encoder Learned? To understand how the spectral encoder represents a given
wavelength A\ we plot each dimension of spectral embedding against \ (Figure [7). We find that
they generally resemble piecewise-linear PL basis functions (Paul & Koch, |1974) or the continuous
PK basis functions (Melal, |1976)). This makes sense because PL and PK are classical methods to
represent a scalar function —i.e., GX*(S"~™ x, - ) in our case. We can think that the weights of
these bases are provided by the £ and F* given I'"~™ and x. Having a spectral encoder with
learnable parameters can potentially provide better representations than fixed basis functions.

The Advantages of Physics-Inspired Design of SSIF  We find out that due to the incorporation of
physical principles of spectral imaging in SSIF’s model design, compared with other SIFs, SSIF is
more data efficient, parameter efficient, and training efficient. Figure [8a|shows that SSIF-RF-GS is
more data efficient and can consistently outperform CiaoSR and SSIF-M across different training
data sampling ratios. Figure [8b|shows SSIF-RF-GS is more training efficient since it can converge
faster. See Appendix [A.10|for detailed explanations.

6 CONCLUSION

In this work, we propose Spatial-Spectral Implicit Function (SSIF), a physics-inspired neural implicit
model that represents an image as a continuous function of both pixel coordinates in the spatial
domain and wavelengths in the spectral domain. This enables SSIF to handle SSSR tasks with
different output spatial and spectral resolutions simultaneously with one model. In contrast, all
previous works have to train separate SR models for different spectral resolutions. We demonstrate
the effectiveness of SSIF on the SSSR task with two datasets — CAVE and Pavia Centre. We show
that SSIF can outperform all baselines across different spatial and spectral scales even when the
baselines are allowed to be trained separately at each spectral resolution, thus solving an easier task.
We demonstrate that SSIF generalizes well to unseen spatial and spectral resolutions. Moreover, we
show that compared with other SIFs, due to its physics-inspired nature, SSIF is much more data
efficient, parameter efficient, and training efficient.

In this study, the effectiveness of SSIF is mainly shown on hyperspectral image SR, while SSIF is
flexible enough to handle multispectral images with irregular wavelength intervals. This will be
studied in future work. Moreover, the data limitation of the hyperspectral images poses a significant
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challenge to SR model training. We also plan to construct a large dataset for hyperspectral image SR.
SSIF also has the risk of generating Deepfakes. Therefore, a holistic evaluation of SSIF on various

downstream tasks is one of our future works.

LISSF LIIF LISSF LIIF
real_and_fake_peppers, cave, =4 CiaoSR SSIF(ours) test0, pavia, =8 CiaoSR SSIF(ours)

Figure 5: Visual comparison of spatial SR results using different methods on the CAVE (Yasuma et al.|[2010a)
(x4) and Pavia Centre dataset (x8). We zoom in the red box region from the ground truth image.

watercolors, CA

CiaoSR SSIF(ours) T Band number : < n SSIF(ours) — T Band numb
| | -
0 .2 0 0.3
Figure 6: Visualization of the error maps of different methods of spectral reconstruction from MSI images on the
CAVE (Yasuma et al}[2010a)) (x4) and Pavia Centre dataset (x8). Mean Absolute Error across all reconstructed
bands is used for error calculation. We also compare the reconstructed spectral signatures (spectral intensity) of
selected pixels from different methods and mark them with red rectangles in the RGB image.
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(a) Spectral embedding d = 5 (b) Spectral embedding d = 10

Figure 7: Visualizations of the spectral embeddings with small spectral embedding dimensions d = {5, 10}.
Here we draw a curve for each dimension of the embedding, derived from the spectral encoders E> of two
learned SSIF-RF-GS. The x-axis indicates the wavelength and each curve E*(\)[j] corresponds to the values of
a specific spectral embedding dimension j.
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Figure 8: Evaluation results of data efficiency and training efficiency on SSSR task in CAVE dataset (Yasuma
et all 20104). (a) We randomly sample 25%, 50% and 75% of the CAVE train set to train CiaoSR (Cao et al.|
2023) and our SSIF model (SSIF-RF-GS, SSIF-M), respectively. Here we report the test result on spatial scale
p = 12. (b) The training loss curve of three models in 500 epochs, gray circle indicates SSIF converges faster in
the early training stage.
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Ethics Statement All datasets we use in this work including the CAVE and Pavia Centra datasets
are publicly available datasets. Please refer to Appendix[A.6]for a detailed description of both datasets.
No human subject study is conducted in this work. We do not find specific negative societal impacts
of this work. SSIF might have the risk of generating Deepfakes. A holistic evaluation of SSIF on
various downstream tasks such as semantic segmentation and land use classification will be one of
our future works.

Reproducibility Statement Our source code has been uploaded as a supplementary file to reproduce
our experimental results. The implementation details of the spectral encoder are described in Appendix
[A.2] and the dataset preparation details are discussed in Appendix [A.3] All baselines used in the
main experiments are described in Appendix The SSIF model training details are described in

Appendix
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A APPENDIX

A.1 A ILLUSTRATION OF USING SSIF FOR MULTITASK IMAGE SUPER-RESOLUTION
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Figure 9: An illustration of image super-resolution on different spatial and spectral resolutions. The red, green,
and blue boxes indicate three different super-resolution problems: Spatial Super-Resolution (spatial SR), Spectral
Super-Resolution (spectral SR), and Spatio-Spectral Super-Resolution (SSSR). The three subfigures illustrate
how the classic super-resolution models, the spatial implicit functions, and SSIF handle different SR tasks
which generate images with different spatial and spectral resolutions. (a) Classic SR - most super-resolution
models train separate SR models for different input and output image pairs with different spatial and spectral
resolutions such as RCAN (Zhang et al.| [2018a), SR3(Saharia et al.;,[2021), SSJISR (Mei et al.||2020), (He et al.,
2021b), US3RN (Ma et al.,|2021)), SSFIN (Ma et al.,|2022)); (b) Spatial Implicit Function (SIF) - recently many
research focused on using the idea of neural implicit function to develop spatial scale-agnostic super-resolution
models such that one model can be trained to do super-resolution for different spatial scales such as MetaSR(Hu
et al., [2019), LIIF(Chen et al.| 2021}, SADN (Wu et al.}2021a), ITSRN (Yang et al., 2021), (Zhang, 2021),
and CiaoSR (Cao et al.||2023)). However, they have to train separate SR models if target images have different
spectral resolutions. (c) Spatial-Spectral Implicit Function (SS1F’) aims at using one model to handle different
spatial scales and spectral scales at the same time such that we can train one generic model for different SR tasks.

A.2 SPECTRAL ENCODER E*

A key component of SSTF is the spectral encoder E* component. It consists of a Fourier feature
mapping layer ¥(-) followed by a multi-layer perceptron M LP(-):

bix = E*\ix) = MLP(¥(\i 1)) (8)

The Fourier feature mapping layer ¥(-) takes a wavelength )\, 5 sampled from the wavelength interval
A; = [Mis,Mie] € A" as the input and map it to a high dimensional vector b; ;, € R?, by
using sinusoid functions with different frequencies. The idea is similar to the position encoder in
Transformer (Vaswani et al.,|2017)), NeRF (Mildenhall et al., 2020), Space2Vec (Mai et al.,|2020b;
Tancik et al., [2020), and spatial implicit functions (Zhang, 2021} |Dupont et al., [2021) for pixel
location encoding. Here, we adopt the Space2Vec (Mai et al.,[2020b) style position encoder W(-). Let
Amins Amaz b€ the minimum and maximum scaling factor in the wavelength space, and g = Amae

Amin

We define ¥(-) as Equation @) Here, Uz:ol indicates vector concatenation through different scales.
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A.3 SUPER-RESOLUTION DATA PREPARATION

Figure [2aillustrates the data preparation process of SSIF. Given a training image pair which consists
of a high spatial-spectral resolution image I""~" € R¥*W>*Cmaz and an image with high spatial
resolution but low spectral resolution I""~™ ¢ R¥*Wx¢ we perform downsampling in both the
spectral domain and spatial domain.

For the spectral downsampling process (the blue box in Figure [2a)), we randomly sample a band
number C' ~ Uni(Chnin, Crmaz) from a uniform distribution between the minimum and maximum
band number C,,in, Crnaz > 0. We use C to downsample I27—" in the spectral domain which yield
Ihr=h ¢ REXWXC Then we convert I""~" into location-value-wavelength samples (x,s"" =" A).
x and A serve as the input features while s"”~" are the prediction target. Note that, here we can
sample equally spaced wavelength intervals or irregular spaced wavelength intervals for the target

HR-HSI images I""~" since SSIF is agnostic to this irregularity.

For the spatial downsampling (the orange box in Figure 2b), we randomly sample a spatial scale
p ~ Uni(Pmin, Pmaz) Where Uni(pmin, Pmaz) is @ uniform distribution between the minimum and
maximum spatial scale pPimin, Pmaz > 0. We use p to spatially downsample I =™ into I'" ™ €
R"*wXe which serves as the input for SSTF. Here, h = H/p and w = W/p.

Interestingly, when the spatial upsampling scale p is fixed as 1, our SSIF is degraded to a spectral SR
model. When the band C' is fixed as the same as the input band, i.e., C' = ¢, SSIF is degraded to a
spatial SR model. When we vary C' and p during SSIF training, we allow the model to do spatial SR
and spectral SR at different difficulty levels which helps it to learn a continuous representation both
in the spatial and spectral domain.

A.4 BASLINES
‘We consider 10 baselines in our SSSR task on two benchmark datasets:

1. RCAN + AWAN uses RCAN (Zhang et al., 2018a) for spatial SR and then AWAN (Li et al.,
2020) for spectral SR in a sequential manner.

2. AWAN + RCAN simply reverses the order of RCAN and AWAN.
3. AWAN + SSPSR uses AWAN and SSPSR (Mei et al.,2020) for spectral SR and spatial SR.

4. RC/AW + MoG-DCN first separately uses RCAN (Zhang et al.,|2018a)) to do spatial SR
to obtain HR-MSI images and uses AWAN (Li et al., 2020) to do spectral SR to obtain
LR-HSI images, and then uses MoG-DCN (Dong et al.,|2021) to do hyperspectral image
fusion based on the previously generated HR-MSI and LR-HSI images.

5. SSJSR (Mei et al.l 2020) uses a fully convolution-based deep neural network to do SSSR.

6. US3RN (Ma et al., 2021)) uses a deep unfolding network to solve the SSSR problem with a
closed-form solution.

7. SSFIN (Ma et al.| 2022) follows the multi-task structure, first decoupling the SSSR into
two tasks: spatial SR and spectral SR. Then it implements SSSR by feature fusion. It is the
current state-of-the-art model for the SSSR task.

8. LIIF (Chen et al.,2021)) is a spatial implicit function which was initially designed for spatial
SR on multispectral data. We increase the output dimension of LIIF’s final MLP to allow it
to work on hyperspectral images.

9. CiaoSR (Cao et al., 2023)) modifies the LIIF’s nearest neighbor interpolation query feature
into a self-attention-like architecture. We also change the output dimension of its final MLP
to allow it to work on hyperspectral images.

10. LISSF (Zhang et al. [2024) is an implicit neural representation for joint SSSR of multi-
spectral images in arbitrary scales. However, the input image encoder of LISSF utilizes 3D
CNN layers, based on the assumption that the bands of the input images should have equal
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spectral intervals between them, which is usually not the case in reality. In this paper, for a
fair comparison, we replace its input image encoder backbone as SwinIR to be consistent
with SSIF so that this modified LISSF can process input images with unequal band intervals.

A.5 SSIF MODEL VARIANTS

‘We consider 4 SSIF variants: SSIF-RF-GS, SSIF-RF-GF, SSIF-RF-US, and SSIF-RF-UF. Both
SSIF-RF-GS and SSIF-RF-GF uses a Gaussian distribution NV (u;, 02) as the response function for
each band b; with wavelength interval A; = [\; 5, \; ] where p; = L’\” and o; = %
The difference is SSIF-RF-GS uses N (115, 07) to sample K wavelengths from A; while SSIF-RF-GF
uses fixed K wavelengths with equal intervals in A;. Similarly, both SSIF-RF-US and SSIF-RF-UF
uses a Uniform distribution / ()\,;75, )\,;76) as the response function for each band b;. SSIF-RF-US uses
U(Ni,s, Aie) to sample K wavelengths for each A; while SSIF-RF-UF uses fixed K wavelengths
with equal intervals.

We also consider 1 additional SSIF variant — SSIF-M which only uses band middle point p; =

% for each wavelength interval, i.e., K = 1.

A.6 DATASET DESCRIPTION

The CAVE dataset (Yasuma et al., 2010b)) consists of 32 indoor hyperspectral (HSI) images captured
under controlled illumination. Each image has a spatial size of 512 x 512 and 31 spectral bands
covering the wavelength from 400nm to 700nm. Each HSI image is associated with an RGB image
with the same spatial size. There are a lot of studies using the CAVE dataset for hyperspectral image
super-resolution (Yao et al., [2020} |[Mei et al.| [2020; Zhang et al.l [2020c; |[Zhang} 2021} Han et al.}
20215 Qu et al.| 2021; Ma et al.,[2021};2022). However, these works focus on different SR tasks. In
this work, we focus on the most challenging task — SSSR. The train/test split on the CAVE dataset
varies from paper to paper. In order to keep a fair comparison to the previous study, we adopt the
train/test split from SSFIN (Ma et al.| [2022), the latest work on this dataset, and use the first 22
samples as the training dataset and the rest 10 samples as testing. The limited number of samples
poses a significant challenge on modeling training. So similar to the previous work (Ma et al., 2021}
Chen et al., 2021), given a HR-HSI and HR-MSI image pair (Immh, I""=™), we first do random
cropping for a 64p x 64p image patch from both images. Then I""~™ is spatially downsampled to
a 64 x 64 image patch which serves as the input LR-MSI image I'"~". We choose p,,;, = 1 and
Pmaz = 8 for spatial downsampling, C,,;, = 8 and C,,q, = 31 for spectral downsampling (See

Appendix [A.3).

The Pavia Centre (PC) dataset is taken by ROSIS, a widely used hyperspectral sensor. The images
were collected over the center area of Pavia, northern Italy, in 2001. It contains 102 spectral bands
covering a spectrum from 430nm to 860nm. Figure [Ta] shows the spectral signature of one pixel
A when C' = 102. It has 1095 x 715 effective pixels. Similarly, we also adopt the train/test split
from SSFIN (Ma et al.l|[2022) and crop the upper left 1024 x 128 pixels as the testing dataset and
the rest for training. The PC dataset does not come with a multispectral image counterpart. So we
adopt the practice of (Mei et al.,[2020) to simulate the high-resolution multispectral (HR-MSI) image
based on the sensor specification of the multispectral sensor of IKONOS. The resulted image has 4
bands which correspond to R, G, B, and NIR. Please see the MSI spectral signature in Figure [Ta]for
reference. The same random cropping technique is used for PC. We choose py,in, = 1 and pypar = 8
for spatial downsampling, C),,;, = 13 and C,,4, = 102 for spectral downsampling (See Appendix

A.7 SSIF IMPLEMENTATION AND TRAINING DETAILS

We use SwinlR (Liang et al.l 2021) as the image encoder ET and we use CiaoSR (Chen et all,[2021)
as the pixel feature decoder F*. We ablate the combinations of different image encoders and pixel
feature decoders in Figure [13|and we find the combination of SwinIR and CiaoSR performs the best.
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For both the CAVE and Pavia Centre datasets, we first tune the learning rate Ir = {5.e — 5, 1.e —
4,2.e — 4}. We find out the default learning rate used by CiaoSR Ir = 1.e — 4 works the best for
both datasets.

Then we tune the hyperparameters of CiaoSR including the output image feature dimension for image
encoder E1(-) — d! = {64,128,256}, the input image size h = w € {48, 64}, the hidden dimension
of CiaoSR’s multi-layer perceptron — hy 7 € {256,512}. We find out dl =64, h =w = 64, and
hrrrr = 256 give us the best results of CiaoSR on CAVE while for the Pavia Centre, df = 256,
h =w =64, and hpr;r = 512 yield the best results. In addition, we find out that using multiple
PyTorch dataloaders with different input image sizes h = w is especially useful for the Pavia Centre
dataset. In our experiment, we use three different dataloaders with {16, 32,64} as their input image
size.

After we get the best hyperparameter combination of CiaoSR, we directly use them for SSIF without
tuning. And we only tune the newly added hyperparameters for SSIF including the hidden dimension
hssip = {512,1024} of MLP(-) in Equation [8| and the wavelength sampling number K €
{2,4,8,16,32,48,52,64}. We find out hgs;r = 512 and K = 16 are the best hyperparameter
combination for the CAVE dataset and hgs;r = 1024 and K = 128 is the best for the Pavia Centre
dataset.

All experiments are conducted on a Linux server with 4 CUDA GPU of 24GB memory. We use
the official implementations of all baselineﬂ We implement our SSIF in PyTorch and the code is
available in the supplementary file. We will make SSIF’s code publicly available upon acceptance.

A.8 SUPPLEMENTARY EXPERIMENTAL RESULTS ON THE CAVE DATASET AND PAVIA
CENTRE DATASET

A.8.1 SSSR MODEL COMPARISON ACROSS DIFFERENT SPECTRAL SCALES

While Figure [3|and ] only show the comparison of different SSSR models’ PSNR metrics on CAVE
dataset and Pavia Centre dataset across different spectral scales, as their complementaries, Figure
and Figure |l I|show the full plot of the comparison results of different SSSR models on all three
metrics (i.e., PSNR, SSIM, and SAM) across different spectral scales on two datasets.

A.8.2 STATISTICAL SIGNIFICANCE ON OUR SSSR EXPERIMENTAL RESULTES

While Table [T and [2] demonstrate the advantage of SSIF over all existing baselines on the SSSR task
across all spatial scales, we do not report the statistical significance.

To show the robustness of the model, we compare our strongest baseline CiaoSR (Cao et al., |[2023),
and our SSIF-RF-GS model on the SSSR task across different spatial scales. More specifically, we
retrain both models 3 times by using 3 different random seeds and plot their average performances as
well as error bars, as shown in Fig. [T2a]and Fig. [T2b] We can see that SSIF consistently outperforms
CiaoSR across different spatial scales and different evaluation metrics, which proves the superiority
of our approach.

A.9 ABLATION STUDIES OF SSIF
A.9.1 ABLATION STUDIES OF SSIF’S EZ AND F* ON THE CAVE DATASET

We first study the impact of different image encoders E and pixel feature decoders F'* on the
performance of SSIF. Based on our best model on the CAVE dataset (i.e., SSIF-RF-GS), TableE] and
Figure |13|show the evaluation results of our ablation studies on (three) different image encoders E!
and (two) pixel feature decoders F'* within SSIF model. We can see that:

1. Across all scales (both spatial and spectral), with different image encoder E’, the perfor-
mances of SSIF show a consistent pattern: SwinIR (Liang et al.,2021) > RDN (Zhang et al.|
2018b) > EDSR(Lim et al.,[2017).

The LIIF and CiaoSR implementation is under BSD 3-Clause "New" or "Revised" License.
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Figure 10: The evaluation results of various models on the SSSR task across different C' on the CAVE

et al.|[2010a) dataset. We compare their performances on three metrics: PSNR, SSIM, and SAM.
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Figure 11: The evaluation results of various models on the SSSR task across different C' on the Pavia Centre
dataset. We compare their performances on three metrics: PSNR, SSIM, and SAM.

2. Similarly, across all scales (both spatial and spectral), with different pixel feature decoder
F*, the performances of SSIF also show a consistent pattern: CiaoSR 2023) >
LIIF (2021).

3. Using SwinIR as E! and CiaoSR as F* in SSIF yields the best performance of SSIF.

4. The observed performance improvements are mutually beneficial. Employing a stronger

combination of image encoder ' and pixel feature decoder I consistently boosts SSIF
performance.

A.9.2 ABLATION STUDIES OF SSIF’S D** ON THE CAVE DATASET

Next, we conduct ablation studies of different designs of spectral decoder D*** on the CAVE dataset.
The results are shown in Figure [I4] One SSIF variant — SSIF-RF-GS is used here. We test three
spectral decoder D** variants:
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Figure 12: The error bar of the SSSR performances of CiaoSR (Cao et al.,[2023) and our SSIF-RF-GS on the (a)
CAVE dataset (Yasuma et al.}[2010a) and (b) Pavia Centre dataset. We use 3 different random seeds to retrain
both models to obtain the results.

Table
etal)

3: Evaluation results of the ablation study on the impact of different image encoders E” (i.e., EDSR

2017), RDN (Zhang et al.,2018b), and SwinIR (Liang et al.,|2021)) and pixel feature decoders F* (LIIF

(Chen et al.| and CiaoSR (Cao et all 2023)) within our SSIF model for SSSR tasks across different spatial
scales p on the CAVE dataset with 31 bands.

Ablations on image encoder & pixel feature decoder In-distribution
Spatial Scale p 2 4 8
Model | Image Encoder Pixel Feature Decoder PSNR?T | SSIMT | SAM| | PSNR?T | SSIMT | SAMJ | PSNRT | SSIMT | SAM |
: LIF (Chenetal.[2021] | 3654 | 0974 | 726 | 3444 | 0954 | 754 | 3219 | 0912 [ 7.94
SSIF | EDSR (Lim et al.]2017
CiaoSR (Cao et al[2023) | 37.05 | 0974 | 745 [ 3476 | 0954 | 778 | 3233 | 0913 | 825
LIIF (Chen et al.|[2021} 36.95 | 0974 | 7.32 | 34.86 | 0945 | 7.61 | 3245 | 0918 | 8.10
SSIF RDN (Zhang et al.}[2018b —
20180 CiaoSR (Cao et al.[2023) | 37.08 | 0974 | 749 | 3491 [ 0955 | 808 | 3250 | 0915 | 876
. - LIIF (Chen et al.|[2021} 37.86 | 0978 | 7.22 | 3576 | 0963 | 7.49 | 33.17 | 0911 | 7.90
SSIF | SwinIR (Liang et al.]2021 e e B B B I ==
CiaoSR (Cao etal.[2023) | 3823 | 0979 | 6.92 | 3623 [ 0.965 | 7.00 | 3354 | 0931 | 7.32
Ablations on image encoder & pixel feature decoder Out-of-distribution
Spatial Scale p 10 12 14
Model | Image Encoder Pixel Feature Decoder PSNR?T | SSIMT | SAM| | PSNR?T | SSIMT | SAM| | PSNRT | SSIMT | SAM |
- LIIF (Chenetal [2021] | 3113 [ 0893 | 822 | 30.16 | 0875 | 845 | 2949 | 0863 | 870
SSIF | EDSR (Lim et al.|2017 === === ==
CiaoSR (Cao et al.[2023) | 3141 | 0.896 | 8.53 | 3045 [ 0.878 | 870 [ 29.60 | 0.864 | 8.96
LIIF (Chen et al.|[2021} 3140 | 0899 | 844 | 3057 | 0.881 | 875 | 29.71 | 0.866 | 9.03
SSIF RDN (Zhang et al.||2018b — —
CiaoSR (Cao etal.[2023) | 3151 | 0.897 | 8.84 | 30.65 [ 0.881 | 9.16 | 29.83 | 0.868 | 9.16
. - LIIF (Chen et al.|[2021} 3121 | 0896 | 876 | 3028 | 0877 | 896 | 29.54 | 0.860 | 9.43
SSIF SwinIR (Liang et al.[2021 —
CiaoSR (Cao etal.[2023) | 3220 | 0909 | 7.87 | 3114 [ 0.891 | 819 | 3044 | 0878 | 857

1. “D”: D** is a multilayer perceptron (MLP) which is modulated by the image feature em-
bedding hy. D** takes a spectral embedding b; ;. as the input and output the corresponding
radiance value. When D** is a one-layer MLP, this can be seen as the dot product between
the input spectral embedding b; ;, and image feature embedding hy.

2. “C”: D** is a multilayer perceptron (MLP) which takes the concatenation of spectral
embedding b; ;, and image feature embedding hy as the input and output the corresponding
radiance value.
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Figure 13: Evaluation results of the ablation study on the impact of different image encoders £’ and pixel
feature decoders F™* within our SSIF model for SSSR task across different band numbers C' on the CAVE
dataset.
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Figure 14: The ablation studies of different designs of spectral decoder D*** on the CAVE dataset. Here, we
use one SSIF model — SSIF-RF-GS. Three spectral decoder D** variants are explored: “D” “C” and “A”. Gray
areas indicate out-of-distribution spectral scales which have not been seen during SSIF training.

3. “A”: D** is a self-attention (Vaswani et al., 2017) based mechanism. It initially computes
the dot product between the spectral embedding b; ;. and the image feature embedding hy,
then it applies self-attention function to re-weight the spectral and spatial information within
the output embedding.

Three spectral decoders D*** amount to 3 different SSIF variants. From Figure we can see that
SSIF-RF-GS-D outperforms SSIF-RF-GS-A and SSIF-RF-GS-C across different spatial and spectral
scales (on both in-distribution and out-of-distribution spectral scales) on all three metrics, which
indicates that spectral decoder D** variant D is usually more effective than A and C.

A.9.3 ABLATION STUDIES OF THE NUMBER OF SAMPLED WAVELENGTHS ON THE PAVIA
CENTRE DATASET

We conduct the ablation study on the effect of the number of sampled wavelengths in each wavelength
interval A; — K on the model performance. We use the Pavia Centra dataset as an example and
compare model performances of SSIF-RF-GF with different K. Figure[T3]illustrates the results. We
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can see that a bigger K leads to better model performance and better generalizability on unseen
spectral scales C. In other words, the performance of SSIF-RF-GF with larger K is better across
different C' and is more stable when C' > 102.

26.20

A —e— SSIF-RF-GF-128  —— SSIF-RF-GF-16
26.18 4 —=— SSIF-RF-GF-64  —v— SSIF-RF-GF-8
—4— SSIF-RF-GF-32 SSIF-RF-GF-4

26.16 4

26.14 4

PSNR

26.12

26.10 4

26.08 1

0.635
—e— SSIF-RF-GF-128 —&— SSIF-RF-GF-16
—=— SSIF-RF-GF-64  —¥— SSIF-RF-GF-8
0.630 ~—4— SSIF-RF-GF-32 SSIF-RF-GF-4

0.625

=
)
Y 6,620 1
0.615
0.610
7.1
—e— SSIF-RF-GF-128  —&— SSIF-RF-GF-16
7.0 1 —m— SSIF-RF-GF-64 —¥— SSIF-RF-GF-8
—— SSIF-RF-GF-32 SSIF-RF-GF-4
6.9
s 68
<
n 6.7
6.6
6.5 X
6.4 T T T T T T
0 20 40 60 80 100 120 140

Taget Band Number C

Figure 15: The ablation study on the number of sampled wavelengths in each wavelength interval A; — K. We
use the Pavia Centra dataset with spatial scale p = 8 as an example. The setting is similar to Figure ] We
use SSIF-RF-GF model as an example and tune the hyperparameter K = {4, 8, 16, 32, 64, 128}. Here, each
SSIF is named as SSIF-RF-GF-K. We can see that a bigger K leads to better model performance and better
generalizability on unseen spectral scales (i.e., C' > 102).

A.10 STUDIES ON THE ADVANTAGES OF PHYSICS-INSPIRED NATURE OF SSIF

Compared with existing SIF models such as LIIF (Chen et al, 2021)) and CiaoSR (Cao et al., 2023),

SSIF has one big difference — it incorporates the physical principles of spectral imaging into the
neural implicit function model design. We hypothesize that the physics-inspired nature of SSIF can
lead to three advantages:

1. Data efficiency: Compared with other SIF models, SSIF will require less training data to
achieve the same level of model performance. In other words, when trained with different
proportions of training data, SSIF will always outperform other SIF models.

2. Parameter efficiency: Compared with other SIF models, SSIF requires a much smaller
number of learnable parameters to achieve the same set of tasks.

3. Training efficiency: During model training, SSIF converges faster than other SIF models.

To validate our hypotheses, we conduct a series of experiments on the CAVE dataset (Yasuma et al )

2010a) by comparing our strongest baseline CiaoSR (Cao et al., |2023) with our SSIF-RF-* and
SSIF-M.

We summarize our findings in Figure[I6] Tabled] and Figure[I7] We can see that:
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1. SSIF-RF-* is indeed more data efficient than CiaoSR and SSIF’s simple variant, SSIF-M, as
shown in Figure[I6] Since SSIF explicitly embeds the physical principles of spectral imaging
into its model design, SSIF is less data-dependent and more robust. When trained with
different proportions of training data, SSIF-RF-* can consistently outperform CiaoSR. In
particular, SSIF shows great performance gains when trained with only 25% of the train set
(at least 3.14 PSNR gain). Moreover, SSIF-RF-* can also consistently outperform SSIF-M
which indicates that simply performing spectral encoding without considering the nature of
sensors’ response functions (as SSIF-M does) will lead to significant model performance
degradation.

2. SSIF is also parameter efficient. It has similar numbers of learnable parameters as CiaoSR
(see Table[d). However, we need to train separate CiaoSR models for different target spectral
resolutions while one SSIF can handle all these tasks simultaneously.

3. SSIF is also training efficient as shown in Figure [I7] As discussed above, since SSIF
explicitly embeds the physics principles, it can converge faster as a result. This phenomenon
is particularly evident in early epochs, as shown in Figure[T7]
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Figure 16: Experiments to demonstrate the data efficiency of SSIF on spatial SR task with two spatial scales
p = 4 and p = 12. We randomly sample 25%, 50% and 75% of the CAVE train set and use the sampled
subsets to train CiaoSR (Cao et al.| [2023)) and our SSIF variants, i.e., SSIF-RF-* and SSIF-M. It is obvious that
SSIF-RF-* consistently outperforms CiaoSR (Cao et al.,|2023) and SSIF-M across different training data ratios.

Table 4: A comparison between SSIF and CiaoSR in terms of model parameters. We can see that SSIF is
parameter efficient since with 0.3M additional parameters, it can simultaneously generate output images with
various spectral resolutions while we have to train separate CiaoSR models for different spectral resolutions.

Model ] Model Size (MB) | Million Parameters
CiaoSR (Cao et al..[2023) 169 13.0
SSIF 172 133

A.11 SPECTRAL SR ON THE CAVE AND PAVIA CENTRE REMOTE SENSING DATASET

We evaluate the performance of SSIF on the single-image spectral SR task (i.e., keeping the spatial
resolution unchanged while increasing the spectral resolution) and compare it with multiple baselines.
In addition to the existing baselines, we also add three recent spectral SR models — HDNet (Hu et al.,
2022), MST++ (Cai et al.| 2022), and SSRNet (Dian et al.l|2023). The spectral SR evaluation results
on both datasets are summarized in Table[5] we can see that:

1. Three spectral SR baselines perform better than other baselines on both datasets, while four
SSIF variants show competitive performance on both datasets.

2. On the CAVE dataset, SSIF-RF-GS outperforms all baselines for PSNR and SSIM, while
remaining on par with 3 new baselines for SAM.

3. On the Pavia Centre dataset, SSIF-RF-US can outperform all baselines for PSNR and SSIM
while being competitive for SAM. SSIF-RF-GS achieves the best SAM score.

HDNet (Hu et al., [2022)), MST++ (Hu et al.,[2022)), and SSRNet (Hu et al.| |2022) are specifically
designed for spectral SR tasks. We have to train separate models for different spectral scales in
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Figure 17: A comparison of training and validation loss curves for SSIF-RF-GS, SSIF-M and CiaoSR in the first
50 epochs. We can see that SSIF-RF-GS converges faster.

Table 5: The evaluation result of the spectral super-resolution task on CAVE(Yasuma et al.,2010a) and PAVIA
Centra datasets. On the CAVE and PAVIA Centra datasets, we use RGB images and 4-band images as the
respective input and benchmark model performance to reconstruct all hyperspectral bands — 31 and 102 bands
respectively. Note that HDNet (Hu et al.| 2022), MST++ (Cai et al.||2022), and SSRNet (Dian et al.} 2023) are
SOTA methods exclusively designed for spectral SR tasks, while our SSIF can tackle spatial SR, spectral SR,
and SSSR tasks in arbitrary scales. All methods except for LISSF are implemented using their respective official
codes, with hyperparameters selected from their respective papers.

Method CAVE Dataset PAVIA Dataset

PSNRT SSIMT SAM] | PSNRT SSIMT SAM]
RCAN + AWAN(Ma et al.[|[2021) 39.1725 09745 7.5411 | 37.1532 0.9412 3.6554
AWAN + RCAN(Ma et al.|[2021) 39.4221 09784 7.4742 | 37.2122 0.9401 3.7555
AWAN + SSPSR(Ma et al.|[2021) 39.6511 09799 7.3155 | 37.0145 0.9544 4.0819
RC/AW + MoG-DCN(Dong et al.{|2021) | 39.2411 0.9723 7.4131 | 36.9283 0.9273 4.1211
US3RN(Ma et al.|[2021) 40.1445 09801 7.0136 | 37.9338 0.9608 3.8764
SSFIN(Ma et al.[[2022) 40.7596 0.9812 6.9713 | 38.0258 0.9721 3.614
HDNet(Hu et al.[[2022) 429673  0.9809 6.7478 | 40.7674 0.9551 3.4914
MST++(Cai et al.|[|2022) 434765 09811 6.4257 | 40.8456 0.9549 34712
SSRNet(Dian et al.|[2023) 433197 09800 6.7734 | 40.9170 0.9578 3.4653
LITF(Chen et al.![2021) 414132 0.9738  6.9426 | 38.2002 0.9692 3.6811
CiaoSR(Cao et al.|[2023) 41.5314 09771 6.9422 | 38.3148 0.9700 3.6628
LISSF (Zhang et al.[|2024) 37.7852 09511 7.7781 | 35.1242 0.9511 4.5371
SSIF-M i 38.2954  0.9682 7.4577 | 36.9544 0.9588 4.5210
SSIF-RE-GS 44.0124 0.9814 6.7324 | 40.4987 0.9812 3.4400
SSIF-RF-GF 43.5187 0.9783 6.8544 | 40.1455 0.9785 3.6515
SSIF-RF-US 432655 0.9788 6.8688 | 40.9563 0.9888 3.5710
SSIF-RF-UF 40.8507 09715 7.2901 | 40.8701 0.9864 3.5400

spectral SR. In contrast, SSIF just needs to be trained once to tackle spatial SR, spectral SR, and
SSSR tasks in arbitrary spatial and spectral scales. SSIF outperforms or is on par with these three
task-specific and scale-specific models, showing the superiority of SSIF.

A.12  SPATIAL SR ON THE CAVE DATASET
When the spectral scale C/c = 1, the SSSR task degrades to the normal spatial SR task. The results are

shown in Table@ In order to make a fair comparison, both CiaoSR and SSIF have the same image
encoder — SwinlR and the same pixel feature decoder — CiaoSR. They are trained with a fixed spectral
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scale C/c = 1. From Table[f] we can see that SSIF outperforms CiaoSR across different spatial scales
on different evaluation metrics. The only exceptions are PSNR and SAM when p = 2 and PSNR
when p = 10. In these cases, SSIF also shows competitive performances. This demonstrates the
advantages of SSIF over CiaoSR on the architecture side even without the multiple spectral scale
training process.

Table 6: Evaluations of CiaoSR(Cao et al.,[2023) and SSIF for the spatial SR task on CAVE dataset
2010a). Here, we fix the spectral scale as 1 during SSIF training to make a fair comparison with CiaoSR.

In-distribution Out-of-distribution
Spatial scale 2 8 10 14
Metrics PSNRT SSIMT SAM|] PSNRT SSIMT SAM] | PSNRT SSIMT SAM] PSNRT SSIMT SAM]
CiaoSR 40.7741 09718 6.4201 35.1210 0.9401 7.0751 | 33.5548 0.9232 7.3800 28.6452 0.8815 8.9752
SSIF (SwinIR-CiaoSR) | 40.7454 0.9794 6.0511 36.9974 0.9642 7.0024 | 33.5145 0.9313 7.2954 29.3421 0.8932 9.0125

A.13 COMPARISON ON MODEL COMPUTATIONAL COMPLEXITY

As shown in Table[7] we compared SSIF with all baselines on model computational complexity with
three metrics: the number of parameters (Params), FLOPS, and model size. We can see that SSIF’s
Param. and model size are comparable to many INR baselines such as LIIF, CiaoSR, and LISSF while
they are much less than some CNN-based baselines such as AWAN+SSPSR and RC/AW+MoG-DCN.
In terms of FLOPS, SSIF is slightly higher but it is comparable to CiaoSR which is the most similar
model of SSIF. We can see that SSIF can achieve SOTA performance on the SSSR task without
significantly increasing the model complexity.

Table 7: A comparison across different SSSR models on computational complexity. Since SSIF can use different
image encoders and pixel feature decoders, SSIF (SwinIR-CiaoSR) indicates the version with the highest
computational complexity — the one using CiaoSR as the image encoder and SwinIR as the pixel feature decoder.

Methods Params(M) FLOPS(G) Model Size (Mb)
RCAN + AWAN(Ma et al.|[2021 173 403 201.4
AWAN + RCAN(Ma et al.| 2021 17.6 35.1 203.0
AWAN + SSPSR(Ma et al.| 2021 30.7 58.1 325.1
RC/AW+MoG-DCN(Dong et al. 4343 491.2 499.3
US3RN(Ma et al.] 20 2.7 64.2 30.7
SSFIN(Ma et al.] 2022 5.7 75.3 65.8
LIIF(Chen et al.|[2021) 12.0 419.3 156.8
CiaoSR(Cao et al.| 2023 13.0 636.5 169.0
LISSF 13.1 725.4 174.6
SSIF (SwinIR-CiaoSR) 13.3 717.0 172.0

A.14 DISCUSSIONS ON THE CHOICE OF C;n,
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Figure 18: Evaluation results at different C,,,;,, in the CAVE dataset. Instead of setting C’y,ir, = 8 as shown in
Figure[3] we set Cy,in = 1 and retrain different SR models. The gray area indicates the area of out-of-distribution
spectra.
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To verify the model’s consistent performance when facing with different number of C' in model
training, instead of setting C,,,;,, = 8 as shown in Figure 3] we set the C',,i;, = 1 and Cly0, = 31
when training the model, and then evaluate the model performance on the CAVE dataset. The spectral
downsampling process is the same as those in previous experimental settings. The results are shown
in Figure We can see that changing C,,;,, = 1 does not change the trend of the curve compared
to Figure [3|and Figure@, where C,,,;,, = 8. Similarly, we can consistently see that SSIF-RF-GS and
SSIF-RF-US outperforms other SSIF variants and the recent baseline LISSF (Zhang et al.| [2024).

A.15 DISCUSSIONS ON SSIF’S GENERALIZATION ACROSS DIFFERENT SPECTRAL BANDS
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Figure 19: Evaluation results after training different models on truncated training images on the CAVE dataset.
Here, we only use the 8-26 bands of the training images of the CAVE dataset as training data for different SR
models. Then we test them in the original 1-31 bands of the testing images of the CAVE dataset. The gray area
indicates the area of out-of-distribution spectra, i.e., 1-7 and 27-31 bands of the testing images.

In addition, in order to evaluate the generalizability of SSIF across different spectral bands, we do
another experiment by truncating the CAVE dataset in the spectral domain. Here, we truncate the 1-7
and 27-31 bands of the training images in the CAVE dataset and train the model using only the 8th to
26th bands of the training images in CAVE. Then we evaluate the trained SR models on the original
testing images in the CAVE dataset (containing all 31 bands). Here, we call 8-26 bands in the testing
images “in-distribution” data while the 1-7, and 27-31 bands of these images are “out-of-distribution”
bands. As shown in Figure[I9] SSIF-RF-GS and SSIF-RF-US show consistent performance, i.e.,
strong model generalizability across spectral space, in both in-distribution and out-of-distribution
spectral bands.

Figure[20] and 1] visualize the error maps of LISSF and SSIF on “out-of-distribution™ spectral bands.
We can see that compared with LISSF, our SSIF demonstrates stronger generalizability across the
unseen spectral intervals.

UISSF Band 1 LISSF Band 2 LISSF Band 3 LISSF Band 4 LISSF Band 5 UISSF Band 6 LiSSF Band 7

S5iF Band 1 S5IF Band 2 S5IF Band 3 SSIF Band 4 S5IF Band 5 S5IF Band 6 S51F Band 7

]
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Figure 20: Error maps of LISSF and SSIF on out-of-distribution spectral bands. SSIF and LISSF models are
trained on bands 8-26 of the CAVE training images with spatial scales 1-8. Both models are evaluated on the
“out-of-distribution” bands, i.e., band 1-7 of CAVE testing images. Here, the spatial SR scale p = 4 is within the
training spatial SR scales. The error maps are the mean average error.
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Figure 21: Error maps of LISSF and SSIF on out-of-distribution spectral bands. SSIF and LISSF models are
trained on bands 8-26 of the CAVE dataset with scales 1-8. Both models are evaluated on the “out-of-distribution”
bands, i.e., bands 27-31, of CAVE testing images. Here, the spatial SR scale p = 10 is outside of the training
spatial SR scales which is from 1 to 8. The error maps are the mean average errors.

A.16 MORE VISUALIZATION RESULTS

Figure 22) and 23] present the visual comparison results and corresponding error maps on the CAVE
dataset, with a specific focus on the in-distribution spatial scale. The error maps are the mean average
errors calculated on the generated RGB bands. The red circles and rectangles in Figures 22]and 23]
highlight image regions where our SSIF shows big improvements compared with all baseline models.
As evident from these results, SSIF consistently outperforms other baselines, achieving significantly
lower error across the entire image.
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Figure 22: Visual comparison and corresponding error maps on spatial SR on CAVE dataset. Here, the spatial
SR scale p = 8 which is within the training range of p. The error maps are the mean average errors calculated
on the RGB bands. The red circle highlights the noticeable improvement of SSIF over other baselines.

Figure [24] provides a comparison of different SR models’ SSSR results (p = 4) in the spectral
dimension, where the error maps are computed across all reconstructed 31 bands. We can see that
SSIF demonstrates superior performance compared to other models.

Figures 23] compares the visual results for out-of-distribution evaluation across different spatial scales
p = 10, 14. Among all baselines, SSIF achieves the best performance in these challenging settings,
showing its robustness and generalization capabilities.

29



Under review as a conference paper at ICLR 2025

(00999 )i : ([000000°0] (020000
1 Y FYY Y W\l {

(XXIXIXIEX

SSFIN CiaoSR

AWAN+SSPSR RC/AW+MoG-DCN

SSISR US3RN SSFIN CiaoSR

SSIF

Figure 23: Visual comparison and corresponding error maps on spatial SR on the CAVE dataset. Here, the spatial
SR scale p = 4 which is within the training range of p. The error maps are the mean average errors calculated
on the RGB bands. The red rectangle highlights the noticeable improvement of SSIF over other baselines.
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Figure 24: Visual comparison and corresponding error maps of different SR models on the CAVE dataset. Here,
the spatial SR scale p = 4 which is within the training range of p. Instead of showing MAE on the RGB bands
in@ and@ these error maps are the mean average error calculated on the reconstructed 31 bands.
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Figure 25: Visual result comparison of different models on out-of-distribution spatial scales, i.e., p = 10, 14.
All models are trained on spatial scales ranging from 1 to 8. The evaluation is conducted on p = 10, 14, which
are outside of the training spatial SR scales. The error maps are the mean average errors calculated on the RGB
bands. Each column indicates one SR model.
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