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Abstract

Several graph analysis problems are based on some variant of subgraph isomor-
phism: Given two graphs, G and (), does G contain a subgraph isomorphic to Q)?
As this problem is NP-complete, past work usually avoids addressing it explic-
itly. In this paper, we propose a method that localizes, i.e., finds the best-match
position of, () in G, by aligning their Laplacian spectra and enhance its stability
via bagging strategies; we relegate the finding of an exact node correspondence
from @ to G to a subsequent and separate graph alignment task. We demonstrate
that our localization strategy outperforms a baseline based on the state-of-the-art
method for graph alignment in terms of accuracy on real graphs and scales to
hundreds of nodes as no other method does.

1 Introduction

Graph analysis tasks frequently require localizing a smaller target graph () within a larger source
graph G, i.e., finding an induced subgraph of G best aligned with Q). This type of problem may
appear as subgraph discovery [1, 2], where we seek a target graph in G, as subgraph querying [3, 4],
where we find out whether a target subgraph match exists within a collection of source graphs, or as
graph matching [5-T7], where we have to align corresponding nodes across two graphs, potentially
of different sizes; the problem finds practical application in detecting sub-molecules in bigger
molecules [8], localizing parts of shapes in computational geometry [9], and detecting an electronic
subcircuit within a larger one [10] by sampling multiple subgraphs and comparing the spectra of their
adjacency matrices to that of the query subgraph. Despite the problem’s prevalence, past research has
avoided tackling it directly due to its NP-hardness. 5(v)

In this paper, we propose a spectral solution to the
problem of subgraph localization, built by identify-
ing the spectrum Ag of a graph ) within that of
another graph G. Figure 1 visualizes an instance of
the subgraph localization problem by our formula-
tion; we aim to find a function ¢ that indicates which
. ) . G

nodes in G correspond to (). Our solution effectively Figure 1: An instance of subgraph localiza-
recovers both the nodes belonging to the part and the 4, (left) and its solution (right).

edges that connect the part to the graph. This problem

is an instance of inverse eigenvalues problems [11], the class of problems which aim to reconstruct a
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matrix from its spectrum. Further, we go beyond this one-off optimization-based solution to enhance
the method’s stability by applying a bagging-like strategy. Our experimental study demonstrates
that our approach tackles the subgraph localization problem more effectively than state-of-the-art
competitors.

In summary, our contributions are as follows:

* We propose a spectral formulation of and solution to the subgraph localization problem (Sec. 4).
* We enhance the stability of the method via customized bagging-like strategies (Sec. 5).
* We experimentally validate the effectiveness of our solution on real and synthetic graphs (Sec. 6).

2 Related Work

The subgraph isomorphism problem is to decide whether a source graph contains a target subgraph
and return that exact subgraph. This problem is mainly solved for very small target subgraphs
(< 10 nodes) and aims at exact matches. Several methods speed up this process by exploiting query
specifics, such as patterns in multiple subgraph queries [12]. By contrast, our method aims at bigger
target subgraphs. In subgraph querying, the goal is to identify all source graphs among a collection
that contain a query target subgraph, without necessarily indicating its position [3, 4, 13]. The goal of
subgraph matching is to match the nodes of a smaller graph to those of a subgraph in a bigger graph.
Many methods for graph matching effectively solve subgraph isomorphism, though not specifically
designed for this purpose [5]. Recent work [14, 15] employs deep neural models to learn node
embeddings [16] subsequently used for matching. Yet, these methods require training on (query,
target) pairs. The problem of subgraph localization seeks a good fit, by some measure [17] of a target
subgraph within a bigger source graph. This problem has been scarcely studied. A recent application
in computer vision [18] uses subgraph localization to detect temporal actions. However, this model
uses edges for temporal aspects and inter-scene relations, and hence does not generalize to arbitrary
graphs. An existing spectral solution [19] is limited to special families of graphs, such as cliques.

3 Subgraph localization

All aforementioned problems have in common the search for one graph within another. We study the
most generic form of this problem, which corresponds to the problem named Subgraph localization in
our previous discussion. That is, we aim to identify a subset of the nodes of a graph G corresponding
to an input graph ; we do not aim at an exact 1-to-1 correspondence among all graph elements, but
to simply detect a set of best matches.

Problem 1. The subgraph localization problem for a graph G = (V, E), where V is a set of n nodes
and E CV x V is a set of edges, and a query graph Q = (Vg, Eq) withng = |Vg|, ng < n,
calls to find a set of nodes Vg C 'V, inducing a set of edges Es C E, such that |Vs| = |Vg| and
there exists a bijective function f : Vg — Vg between the nodes in Vs and those in Vg such that for
each (i, j) € Eg there exists (f(3), f(j)) € Eq and vice versa.

In many applications solving subgraph localization, we do not need to explicitly materialize the
correspondence function f. Such a one-to-one correspondence is not explicitly sought for. Thus, we
can eschew recovering an exact f and instead aim at finding an indicator function § : V' — {0,1}
such that 6(v) = 1, if v € Vi, and §(v) = 0 otherwise.

At first glance, finding such an indicator function seems easier than recovering a bijective function f.
However, even in this identity-function formulation, the problem corresponds to the decision version
of the subgraph isomorphism problem, which asks whether a graph G contains a subgraph isomorphic
to another graph (). Thus, the problem is still NP-complete. Even so, we further relax our
requirements, allowing the function ¢ to be a binary version of a continuous real-value function v :
V' — R on values below a threshold 7, whereby d(v) = 1 only if v(v) < 7 and §(v) = 0 otherwise.

This relaxed problem calls to find a real function, or, equivalently, a real vector v € R”, withn = |V,
for a known permutation of nodes. To overcome the requirement for a known node permutation,
we consider a permutation-invariant spectral alignment approach reminiscent of the Hamiltonian
operator used in shape analysis [9, 20]. Before delving into the approach, we introduce the notation.

Background. The adjacency matrix of graph G with n nodes is a nxn matrix A€{0,1}"*"
where A;;=11if (i,j) € E, 0 otherwise. The degree matrix D is an nxn diagonal matrix where
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each entry d;=>" ki A;; is the degree of node i. The Laplacian matrix is defined as L =
D — A. The Laplacian matrix of undirected graphs is symmetric and positive semi-definite, hence its
eigenvalues A1, ..., A,, are real and non-negative. The spectrum A(M) of a matrix M is the ordered
sequence A\1<...<\,, of its eigenvalues. A graph’s spectrum is that of its Laplacian matrix.

4 Spectral Subgraph localization

We examine how the presence of a subgraph within a graph affects the graph’s spectrum. Spectral
theory establishes that the spectrum of a subgraph interlaces with the spectrum of the graph. However,
the problem is also non-trivially affected by nodes beside the subgraph. Still, if we could compensate
for the effect of nodes other than the subgraph’s nodes, the two spectra would be indistinguishable.
Following this reasoning, we devise a novel objective for subgraph localization. To that end, we first
propose an original connection between subgraph localization and inverse eigenvalue problems with
structural constraints [11].

Inverse Eigenvalue Problem. The general additive inverse eigenvalue problem (AIEP) is defined as
follows:

Problem 2 (AIEP, Problem 3.6 in [11]). Given an n x n matrix A, a special class of matrices N,
and a set of scalars {\q,;}F_,, find X € N such that {\(A + X);}2_; = {\g,}1_1.

A vast literature on this problem (see [11] and references therein) explores questions regarding
the existence of solutions and numerical approximation algorithms for various special classes of
matrices M. A common variant of Problem 2 expresses the problem as a least squares problem
between the spectra:

: _ 2
min | ACA+X) — Agl”. ()

We establish a connection between the subgraph localization problem (Problem 1) and the additive
inverse eigenvalue problem (Problem 2). Under the above formulation, we aim to find a v that, added
to the diagonal of the Laplacian of G, renders its first ng eigenvalues equal to those of the query
graph. In addition to finding v, we aim to remove from G the edges that connect the identified part to
the remaining nodes. To the best of our knowledge, this is the first time such a connection has been
established, and the first time an AIEP with structural Laplacian constraints is considered.

For simplicity, we commence with an intuitive scenario although our solution applies to any graph G
and any query () without prejudice. We assume that G has a number of clearly separated communities,
one of which corresponds to the query graph (). A community is defined by a cut, as nodes within
the same community are more well connected than nodes across communities. Without loss of
generality, assume the graph comprises two distinct communities. In this case, G’s Laplacian is a
block matrix with two diagonal blocks L1 €R™@ *"@ and Lgg eR(—nQ)x(n=nQ) and a few entries in
the blocks L1 €R"@*("~"@) and Ly, eR("~"@) X" representing edges across the two communities.
The spectra A(L) of G and A(Lg) of @ differ on the nodes in Lo, and the edges in Lo and Lo;.

To cancel out this difference, we aim to transform L to a Hamiltonian [20] operator # = L+ diag(v),
where v : V' — R is a scalar real-valued function and L is the Laplacian. The Hamiltonian reduces
to the Laplacian if the potential is 0. According to [9, Lemma 1], if we add to the diagonal of L a
vector v having non-zero values, v(v) > T, limited to nodes in Lo, i.e., outside Vo, then eigenvectors
corresponding to eigenvalues \; < 7 of the resulting spectrum A(L + diag(v)) will have non-zero
values /imited to the positions corresponding to nodes in Vg, in effect rendering A(L + diag(v))
similar to A(Lg). Still, the non-zero entries between communities in Lo, Lo, affect the spectrum.
To cancel that effect, we introduce a Laplacian editing matrix that removes the contribution of such
edges to the Laplacian of the graph G:

E=| ~ diag(Li21) Lio
Lgl — dlag(Lgll)

where Li21 (Lo 1) corrects node degrees for the removal of edges in Lio (L2;). In effect, the
corrected Laplacian L — E is equivalent to the Laplacian of a graph with two connected components,
one of which isomorphic to the query graph Q). Thus, the solution v renders the |Vg| smallest
eigenvalues of the corrected Laplacian indistinguishable from the spectrum of @, Ag, i.e., A(L —
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E + diag(v)) = A, where, with a slight abuse of notation, A(L — E + diag(v)) refers to the |Vg|
smallest eigenvalues of L — E + diag(v). Since both v and E are unknown, we optimize the objective:

min [|A(L - E + diag(v)) - Aol st E=E"E1=0, of(L—E) <0, |[v|=c (2

This objective is not convex, yet it only depends on the spectrum, for which there exists efficient
approximations [21]; it leads to a solution even if the initial value of v is a noisy version of the
ground truth. As constraints, we postulate that E should be: (i) symmetric, E = E; (ii) row- (and,
by symmetry, also column-) centered, E1 = 0, with every row summing to 0; and (iii) yielding only
non-positive off-diagonal entries off (L — E) < 0. In addition, we enforce that v be a point on the
surface of a sphere of radius ¢, via the constraint ||v|| = ¢. Proposition 4.1 provides a sufficient
condition on ¢ for the optimality of Equation (2), considering the noiseless case where G exactly
contains the subgraph Q).

Proposition 4.1. When ¢ > /n— ng max(AQ), the global optimum of Equation (2) is obtained at

c with v=

No=m otherwise max(v)— min(v)’ Sij=|v; — 0| Aij, E=diag(S1)—S (3)

v {0 ifu; €V v — min(v)

Proof. Let E be constructed from Equation 3. L — E is the Laplacian of a graph composed of
two disjoint components, one of which is exactly the component indicated by Equation 3, i.e., the
query subgraph ). Then there is a permutation IT such that TILIT' is a block diagonal matrix with
the Laplacian of each component on the diagonal. Without loss of generality, we assume that the
Hamiltonian operator attains this block diagonal form:

. Lo
L — E + diag(v) = Lo+ ———1 |- @
,/n—nQ

When c satisfies the stated condition, the spectrum of the bottom-right block contains only eigenvalues
larger than max(Ag). It follows that the first ng eigenvalues of L — E + diag(v) are exactly those
of L, rendering the objective of Equation 2 equal to zero. O

In effect, by Proposition 4.1, we can recover the optimal solution if v is appropriately normalized
and c is no less than a certain value. We exploit this result in Section 4.3 to design our algorithm by
numerical optimization. We first introduce a regularization term.

Regularization. The objective in Equation 2 does not prevent v from taking arbitrary values.
However, since L — E has two connected components, v plays a role similar to that of Fiedler’s
vector in the minimization of the normalized cut [22]. This observation leads us to the spectral
regularization v (L — E)v that exhorts v to take values in the null-space of L — E. In other words,
the spectral regularizer drives v to be a stepwise function. We combine the spectral regularization
with our objective as follows:

min [A(L - E + diag(v)) — Aol +uv (L-E)v
7 Data term Spectral regularizer (5)

st E=E" E1=0, off(L—E) <0, |v]| =c

where p > 0 is a regularization coefficient.
Corollary. Proposition 4.1 applies also with the spectral regularization term in Equation (5).

Proof. Let E be constructed from Equations (3). L — E is the Laplacian of a graph composed of two
disjoint components, one of which is exactly indicated by Equation (3), i.e., the query subgraph Q.
Then v in Equation (3) belongs to the null-space of L — E, rendering the regularization term 0, hence
Equation (3) also provides the global minimum of Equation (5). O
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4.1 Connection to partial shape localization

Equation (2) bears a connection with the Hamiltonian used for partial shape localization [9]. In par-
ticular, [9, Lemma 1] states that the eigenvectors of the Hamiltonian A x + v of the Laplace-Beltrami
operator A x on the Riemannian manifold &X', for large threshold 7, localizes the query region R. To
translate this operation to the cases of graphs, we substitute the Laplace-Beltrami operator with the
discrete positive semi-definite Laplacian matrix (L — E) and add a potential function diag(v), induc-
ing the Hamiltonian operator (L — E + diag(v)). Our results extend [9, Lemma 1] to Equation (5),
which we constrain through regularization and the constraint in Proposition 4.1.

4.2 Localizing disconnected subgraphs

A special case of subgraph localization is that of a graph with a number of connected components,
one of which corresponds to the query graph Q. In this case the editing matrix E = 0, leading to the
simpler objective:

min [|A(L + diag(v)) — Aol +puv Ly st v =ec (6)

4.3 Numerical optimization

We exploit Proposition 4.1 to craft a numerical procedure that minimizes the objective in Equation (2),
collaterally optimizing for E and v. In the first iteration ¢ = 0, we initialize E; = 0. In iteration ¢+ 1

we minimize f(v,E,) = |A(L — E, + diag(v)) — Agl|3 + uv ' (L — E,) v for v given E;:
Vg1 = arg min f(v, E,), @)
villv|=c
via projected gradient descent, until convergence; an iteration k£ + 1 of projected gradient descent

performs the step:
Xk

X1 = Xp41 — AV f(v, Eg) Vht1 = Cm o

where o > 0 regulates the learning rate. The gradient V, for Equation 8 requires a differentiable
eigendecomposition, which is achievable by extant methods [23].
We subsequently update E according to:

oo Va— min(vy)

Si; = |0 — ] A4i; E, .1 = diag(S1) — S. 9
max(vq) _ min(vq) J v U]| J q+1 iag(S1) ©))
We obtain a threshold 7 of the indicator function ¢(v) for the nodes comprising the subgraph by
splitting the elements of v into two clusters minimizing sum-of-squares error from the mean (i.e.,
optimizing the k-means objective in one dimension) and compute the matrix E from this thresholded v
by Equations 9.

The SSL algorithm. We eventually present our Spectral Subgraph Localization (SSL) algorithm
(Algorithm 1 in the supplementary material) for Problem 1. SSL takes as input the adjacency
matrix A of the full graph G and the spectrum of a query subgraph, and returns the vector v and
the threshold 7 of the indicator function ¢; it additionally requires some hyperparameters, such as
the number of outer iterations maxiter,,;, the number of inner iterations maxiters;,, the learning
rate o, and the regularization coefficient . We empirically found that the number of iterations and
the learning rate do not significantly affect results across datasets if chosen within some range; we
report those ranges and recommended values in Table 1 in the supplementary material. On the other
hand, the regularization coefficient ;1 in Equation 5 requires tuning for each dataset. We thus first
normalize the value of z by ¢? to remove the dependency on v’s magnitude and then perform grid
search on a range of values for y to select an appropriate value.

The optimization process alternates the projected gradient optimization in Equation 8 and the update
of E using Equations 9 until it converges or reaches the maximum number of iterations maxiter,,t.
Figure 2 illustrates the solution’s progressive convergence through iterations.

4.4 Complexity Analysis

We derive the worst-case time complexity of the algorithm in the number of nodes 7 in the graph G.
The eigendecomposition in Equation 8 takes O(n?) per iteration; the computation in Equation 9
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(a) Iteration 1 (b) Iteration 6 (c) Iteration 18

Figure 2: Alignment of the spectrum A of () and the part of the spectrum A(L — E + diag(v))
of (& corresponding to @ at 1, 6, and 18 iterations; the two spectra progressively approach each other,
and thereby @) gets localized in G.

takes O(n?) for the matrix-vector multiplication; 1-D k-means in Line 9 takes O(n) with the best
algorithm [24]. In effect, the total time is O(maxiteryy, - (maxiter;, * n + n? + n)), where
the O(n?) term dominates. However, as L — E + diag(v) is a graph’s Laplacian, its spectrum can
be efficiently approximated through sampling [21].

S Improving SSL stability

The method we have developed so far strives to optimize the objective in Equation eq5. Yet, due
to the non-convex nature of that objective, it may converge to a local minimum (see Figure 8 in
the Supplementary material). To prevent this disposition, we propose a sampling-and-aggregation
methodology that resembles bagging. Bagging improves the stability of a predictor by learning the
model’s parameters on k samples of the data and then returning an aggregate prediction. Similarly,
we introduce effective sampling and aggregation schemes that improve the SSL results on all datasets
while incurring a constant time cost.

5.1 Edge sampling

An ideal solution based on edge sampling would exclude edges between the query graph @ and the
rest of the graph, thus achieve low conductance [25] between them and easily localize the query.
However, we do not know location of such edges in advance; that is, after all, the unknown of our
problem. Therefore, we resort to sampling ¢ < n edges uniformly from the input graph G, to obtain
a subgraph G; = (V;, E;), where E; C E. We repeat the sampling process k times and obtain
graphs G, . .. Gy, graphs.

5.2 Results aggregation

We run SSL on each sampled graph G, ... G\ with the same query graph (), to obtain indicator
functions 41, ..., d,. We regard each indicator function as a voter and devise the following three
aggregation strategies to compute the final solution V.

Threshold: In the threshold strategy, we count the occurrences d(v) = Zle d;(v) of each node in

the solutions SSL yields from each sampled graph G, . .. Gj. We include in the final solution Vg

each node v that appears in at least a fraction § € [0, 1] of the solutions, i.e., d(,:) > 6.

Neighborhood: The threshold strategy does not enforce any constraint on the solution Vg. Yet,
in most cases the query graph () is connected or contains only a few connected components. In
such cases, the solution induced by Vg should also be connected. We utilize a greedy strategy that
incrementally includes neighboring nodes in the solution it constructs to enforce connectivity. Starting
from an initial highly occurring node v, we include in the solution the neighbor u of v having the
most occurrences, i.e., arg maxyc v, (») d(u), where N;(v) is the set of neighbors of v in the sampled
graph G;, and continue selecting neighbors of the running solution until we reach |Vg| nodes.

Spectral: We select the best solution computed by the threshold method in terms of spectral difference
in Equation (2). We vary the threshold 6 to obtain further solutions, while enforcing the size of the
solution to be |Vg|.
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6 Experiments

Here we empirically evaluate our method, SSL, on a number of datasets and against several hypothe-
ses. Our evaluation aims to answer the following questions: (Q1) Do the regularization term and the
constraint ||v|| = ¢ in Equation (5) help the localization? (Q2) How does the conductance of the part
corresponding to () affect the quality of localization and how does SSL fare against state-of-the-art
methods for graph alignment? (Q3) What kind of graphs are challenging for SSL and why?

6.1 Experiment Design

The code and data are available at https://github.com/AU-DIS/SSL.

Hyperparameters. Unless stated otherwise, we choose maxitery,,; = 3, maxiter;, = 500,
ato1 = 107° and @ = 0.02. Regarding the regularization coefficient, we select ;x = 0.2 through
grid search. This choice achieves good accuracy across datasets and conductance levels. In the
sampling-and-aggregation methods of Section 5, we sample k = 30 graphs with t = 0.8|E| edges; in
the threshold method, we set § = 0.2. We initialize v; = ﬁ uniformly for all 7 as we experience
stable results regardless the initialization strategy.

Datasets. We evaluate SSL on the three real-world graphs from [26] and two synthetic graphs
generated by the Erd8s-Renyi (ER) and Barabasi-Albert (BA) models. The data characteristics are
described in the supplementary material. Additionally, we generate graphs with community structure
using the stochastic block model (SBM) [27].

Choosing (). Given a number k, we generate a query workload of size Vi = k from a real-world
graph G to evaluate our subgraph localization method as follows. (1) Randomly select a node w, add
it to Vy and place all its neighbors into a set V. (2) Randomly select a node v’ from N, add it to Vi,
place in IV all its neighbors not in V. (3) Repeat the previous step until |V | = k. (4) Set Q) as the
subgraph induced by Vg in G. For graphs generated by SBM, we set ) as the smallest community.

Quality measure. To evaluate performance in a manner independent of subgraph size, we employ
the popular classification performance measure of Balanced Accuracy (BA) [28]; given the query
graph Vg and the subgraph Vs returned by a localization algorithm, balanced accuracy is the
1 (IVQQVSI ‘\VQO“V5|>

arithmetic mean of sensitivity (or recall) and specificity: BA(v) = 3 Vol T | B

Nevertheless, BA measures the extent to which the returned subgraph exactly matches the node
identities of the query subgraph, without counting parts that are structurally isomorphic, yet do
not share the same identity. In reverse, the spectral difference in our optimization objective treats
such isomorphic parts as fully effective solutions, without considering node identities. To evaluate
our methods in terms of their native objective, we also report the Spectral difference | A\(L — E +
diag(v)) — Ag||3 between the query () and the solution graph Gs.

1 DATA DATA + reg. SSL
T T T T T

0.9 -

0.8

0.7 | —¢— DATA +reg.
—=— SSL

| |
06 0.2 0.3 0.4

Val/|v)

(a) Balanced Accuracy (b) v values in ascending order and corresponding graph nodes.

15 15 15

Uj

—e— DATA

Bal. accuracy

Figure 3: Variants of the objective function; SSL’s objective achieves the highest accuracy.

6.2 Ablation Study

We commence our study by examining how the terms in SSL’s objective function (Equation 5) affect
the result. The objective function consists of: (1) the data term, that drives the alignment between
the spectrum of the part and that of the query, (2) a spectral regularization term that exhorts v to
be in the null space of L — E and (3) the sphere constraint that enforces a constant norm on the
potential v. To study the contribution of each term on the results, we compare SSL against two
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variants thereof, one that optimizes only the data term in Equation (2), and one that optimizes a linear
combination of the data term and the spectral regularization, without a sphere constraint.

We experiment on graphs with |V| = 200 nodes sampled form the stochastic block model, letting the
size of the query subgraph increase from 20% of the graph to 45%. Figure 3a reports on the results of
this ablation study in terms of average balanced accuracy over 5 sampled graphs for each subgraph
size. Unsurprisingly, the optimization of the data term yields the worst results, although the method
performs well on small subgraphs. Still, the addition of the spectral regularizer and sphere constraint
enhances the results up to 20% accuracy. For small subgraphs the sphere constraint brings only
marginal gains compared to the spectral regularization. On the other hand, on large query subgraphs,
the sphere constraint boosts the accuracy by an additional 8%.

To further corroborate these results, Figure 3b shows an example of how the terms impact the
potential v, on a 40-node graph sampled from the SBM with two communities with 20 nodes each;
the query graph is one of the two communities. Ideally, we would like to obtain a v clearly separating
values between the part corresponding to the query graph and the rest. In that case, we say that v
forms a step function. The optimization of the data term (left chart) alone leads to no clear separation
between the two parts. Introducing the spectral regularization (middle chart) yields a result closer to
a step function, though some nodes are incorrectly assigned to the part. Finally, the full objective
in Equation 5 produces to a clearly separated potential vector v. Visualizing the mapping of this
potential to the graph (G, we clearly recognize the part G g as the light-colored nodes.
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Figure 4: Balanced accuracy (left) and spectral difference (right) on localizing query graphs of 10%,
20%, 30% of the parent graph vs. conductance from query graph to rest of the parent graph.

6.3 Competing methods

Here we assess our method and its enhanced variants against previous work. To the best of our
knowledge, no extant unsupervised method is capable of answering localization queries in graphs
with more than 15 nodes [29]. Therefore, we compare SSL to the nearest feasible competitor, namely
the state-of-the-art method for unsupervised graph alignment, CONE [30]. To set up CONE so that
it detects subgraphs, we inject in the query nodes with degree 0, so that the size of the query
corresponds to that of the graph G, i.e., |V = V/|. We extract the ensuing localization vector as the
matches of query nodes in G with the default hyper-parameter settings.
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Figure 4 presents the average BA of randomly generated connected subgraphs of our test data sets,
i€EVQ.JEVQ Aij

min(Efer,jev Aijvzier,jeV Avﬂj)
i.e., the ratio between the size of the cut among query ) and graph G and the minimum number of
edges among the two resulting partitions; to vary conductance, we start with a disconnected query
graph and progressively add connecting edges, and repeat this process 5 times for each of the 10
target conductance value, averaging results. A graph’s minimum conductance is associated [31] with
its algebraic connectivity, i.e., second smallest eigenvalue Ay [32]. A larger conductance denotes
more edges between the query subgraph and the rest of the graph, thus a harder subgraph localization
instance. We use query subgraphs corresponding to 10%, 20% and 30% of the full graph size.

10 for each query size, as a function of conductance, <I>(VQ) =

)

The results in Figure 4 also show that SSL effectively localizes the query in real graphs. Accuracy
gradually increases as conductance approaches ® (V) = 0, and finally settles close to 1 when the
query becomes loosely connected. On the other hand, optimizing the spectral difference alone leads to
good spectral difference but modest accuracy results. The bagging-like variants perform well in most
datasets. Remarkably, the Spectral strategy outperforms SSL in accuracy and exhibits comparable
spectral distance to DATA, which explicitly minimizes it. The performance of SSL most often
exceeds that of CONE. Even though performance drops as conductance grows, a real application
would aim at detecting subgraphs that exhibit distinguishable structures, such as communities. Such
subgraphs significantly deviate from random and complete subgraphs, most prominently in having
lower conductance. As conductance grows, the query subgraph progressively immerses into other
nodes, hence our spectral method cannot easily discern them. Yet, the fact that CONE fares poorly in
spectral distance indicates that it neglects alternative solutions isomorphic to the query graph.

Further, the results in Figure 4 show that SSL consistently outperforms CONE on synthetic graphs.
As with real graphs, we observe a gradual accuracy increase as the graph becomes progressively
disconnected. Notably, on ER graphs, SSL succeeds even at high conductance values (> 0.6).

6.4 Comparison of Spectral Characteristics

Impact of the graph’s spectrum. To better understand | —o— Football —A— Highschool —=— Malaria
the performance of SSL on different graphs, we look at it | —— Erdos-Renyi Barabasi

under the lens of the graph’s spectrum. Figure 5 shows the
spectra of the real and synthetic graphs in our experiments,

normalized in the range [O, )‘";)‘2 } . First, we observe that

the spectra of synthetic graphs exhibit a gradual increase
and a small difference between A, and the maximum eigen-
value \,,. By the Generalized Cheeger’s inequality [33]
the ktP-order conductance, miny, v, v, max{®(V;) :
i=1,2,...,k}, is related to the k*" eigenvalue. Thus, un-
der gradual eigenvalue growth, the presence or absence of Spectrum

one edge does not affect the spectrum significantly, hence Figure 5: Datasets’ graph spectra.
the projected gradient descent in SSL gracefully retrieves

a good solution. On the other hand, the spectra of our real graphs exhibit an abrupt divergence be-
tween A, and higher eigenvalues, indicating that a single edge may significantly affect the spectrum,
rendering the task of projected gradient descent more challenging. In effect, SSL performs better as
the gap between A and the rest of the eigenvalues decreases.

Norm. Eigenvalues

7 Conclusion

We studied the challenging problem of subgraph localization, which calls to find a set of nodes in a
larger graph whose induced subgraph best matches a given query subgraph. We devised a spectral
solution that adds a penalty to the larger graph’s Laplacian matrix so as to obtain a spectrum matching
that of the query graph. This novel approach requires solving a non-convex, non-smooth problem for
which we devised a numerical method. We also proposed a suite of effective bagging-style strategies
to boost performance. Our results demonstrate that our spectral method localizes query subgraphs
more effectively than a baseline based on the state-of-the-art method for graph alignment. To our
knowledge, this is the first endeavor in effective subgraph localization that handles graphs in the order
of magnitude of hundreds of nodes.
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