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Abstract
Graph neural networks (GNNs) have exhib-
ited prominent performance in learning graph-
structured data. Considering node classification
task, based on the i.i.d assumption among node
labels, the traditional supervised learning simply
sums up cross-entropy losses of the independent
training nodes and applies the average loss to op-
timize GNNs’ weights. But different from other
data formats, the nodes are naturally connected.
It is found that the independent distribution mod-
eling of node labels restricts GNNs’ capability
to generalize over the entire graph and defend
adversarial attacks. In this work, we propose a
new framework, termed joint-cluster supervised
learning, to model the joint distribution of each
node with its corresponding cluster. We learn the
joint distribution of node and cluster labels con-
ditioned on their representations, and train GNNs
with the obtained joint loss. In this way, the data-
label reference signals extracted from the local
cluster explicitly strengthen the discrimination
ability on the target node. The extensive exper-
iments demonstrate that our joint-cluster super-
vised learning can effectively bolster GNNs’ node
classification accuracy. Furthermore, being bene-
fited from the reference signals which may be free
from spiteful interference, our learning paradigm
significantly protects the node classification from
being affected by the adversarial attack.

1. Introduction
Graph-structured data is ubiquitous in a broad spectrum of
application domains, such as social networks (Perozzi et al.,
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2014; Fan et al., 2019), biological networks (Diao et al.,
2022; Wang et al., 2024; Shen et al., 2024b), recommender
system (He et al., 2020; Chen et al., 2022). Graph neural
networks (GNNs) have been extensively explored to learn
the complex connectivity information and node features in
an end-to-end manner. Particularly, GNNs follow a message
passing strategy and learn the representation of each node by
iteratively aggregating the representations of its neighbors
and combining with itself, which facilitate various down-
stream tasks including node classification (Kipf & Welling,
2017; Gasteiger et al., 2018), link prediction (Grover &
Leskovec, 2016), and graph classification (Lee et al., 2019;
Zhou et al., 2021b).

Despite the persistent efforts in feature learning, label de-
pendencies among nodes receives inadequate attentions.
Considering the node classification task with GNNs, de-
cision making is modeled by independent conditional dis-
tribution P (yi|zi), where yi and zi are the label and
learned feature of a specific node and its cross-entropy
loss is CE(yi, P (yi|zi)). However, it is notorious that
such independent decision making of node label exac-
erbates following issues. Overfitting: The overly mini-
mization of cross-entropy loss prefers the higher predic-
tion probabilities (i.e., over-confident decision) on the
small set of training nodes, resulting in poor generaliza-
tion on the rest of graph(Weigend, 1994; Guo et al., 2017).
Susceptibility to adversarial attacks: The over-confident
GNNs underestimate their uncertainties, which is often
leveraged by adversarial attacker to craft input examples that
lie in uncertain regions but have different labels (Szegedy
et al., 2013). This presents a challenge to calibrate GNNs’
training and hence generate robust decision making.

On the other hand, the decision making based on i.i.d
assumption of node label is not in line with the graph-
structured data, where nodes tend to connect with “simi-
lar” neighbors to form some clusters. The i.i.d assumption
factorizes the joint distribution into a product of multiple pre-
diction densities: P (y1, · · · , yn|z1, · · · , zn) =

∏
P (yi|zi).

This straightforward factorization fails to comprehensively
account for the inherent node correlations. Although the
message passing learns the neighborhood-aware node fea-
tures, the label dependencies are thrown out during node
inference. Just like human experts making decisions with
other data-label pairs as reference signals, GNN models
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could promote their reasoning capabilities via the prompt
data. We are aware of the previous arts in investigating the
label dependencies (Ma et al., 2018; Huang et al., 2020); but
they either cannot unite with the feature learning in GNNs
or have poor efficiency. In view of such, we ask:

How can we efficiently learn the joint distribution together
with GNNs to reason node label rationally?

In this paper, we propose a new framework named joint-
cluster supervised learning to model the joint distribution
of each node and its corresponding cluster. For an in-
dividual node, we learn the joint-cluster distribution of
P (yi, yc|zi, zc), where zc and yc are the constructed cluster
feature and label, respectively. The motivation for adopting
cluster is to provide the sufficient reference signals for target
sample, while reducing computational complexity required
to integrate the remaining nodes in the vanilla joint distri-
bution. Particularly, we optimize GNNs by minimizing the
joint-cluster cross-entropy loss. The well-trained GNNs are
then leveraged to infer the node label by marginalizing the
joint-cluster distribution as shown in Figure 1. Compared
to supervised learning, the main difference of our work is to
explicitly learn the joint density of the target sample and its
reference signals. The contributions are summarized below:

• We introduce a new paradigm of joint-cluster supervised
learning for graph data. By breaking the i.i.d assumption
in node classes and loss computation, we propose to
model the joint distribution between the target node and
its located cluster, and leverage it to train and infer GNNs.

• The joint distribution disperses prediction densities of a
node over a larger label space, thereby relieving the over-
confident decision making. We comprehensively test on
small, large, class-imbalanced, and heterophilic graphs.
The experiments on 12 datasets and 7 backbone mod-
els consistently validate the substantial generalization
capability of joint-cluster distribution learning.

• The joint-cluster distribution learning generates more ro-
bust classifications for the attacked nodes compared with
the independent decision making, owing to the reliable
reference signal of cluster.

• The joint-cluster supervised learning surpasses the state-
of-the-art (SOTA) models that encode the label dependen-
cies, in terms of the node classification accuracy, training
and inference efficiencies.

2. Preliminary of GNNs and Supervised
Learning

We focus on the node classification task to introduce the new
concept of joint distribution learning. Let (xi, yi) denote
the node-label pair, where xi ∈ Rd and yi ∈ Rc are input
feature and label vector of node vi, resepctively, d and c

are the dimension sizes. Given training set {(xi, yi)}Li=1,
where L is the number of labeled nodes, the goal of node
classification task is to train a predictor fθ : Rd → Rc,
mapping each node over the entire graph to a desired label
with trainable parameter θ.

2.1. Graph Neural Networks

GNNs have emerged as one of the standard tools to learn
both the node features and graph structure. Mathematically,
based on the recursive message passing mechanism, at the
k-th layer of GNNs, the embedding vector z(k)i of each node
vi is obtained by (Xu et al., 2018):

z
(k)
i = Aggregate({z(k−1)

j | ∀j ∈ N (i) ∪ i}; θ). (1)

Function Aggregate denotes combination operator (e.g.,
sum, mean, or max) on the neighborhood embeddings, and
N (i) denotes a set of neighbors connected to node vi. Sup-
pose we have a number of repeated message-passing layers.
We simply use zi = fθ(xi) to denote the final generated
node representation of node vi and utilize it to predict the
corresponding node label ŷi.

2.2. Independent Cross-entropy Loss

Following the supervised learning paradigm and considering
the training nodes, vanilla cross-entropy loss is obtained by
LCE = −

∑L
i=1 yi log ŷi. This approach has been applied

to multiple domains such as CV and NLP. Particularly, the
supervised learning makes use of the conditional density
p (y | z) for each pair (zi, yi) and train model weights via
maximum likelihood estimator (MLE):

θ̂CE

(
{zi, yi}Li=1

)
= argmax

θ
p (y1, . . . , yL | z1, . . . , zL; θ)

(2a)

= argmax
θ

L∏
i=1

p (yi | zi; θ) (2b)

= argmax
θ

L∑
i=1

log p (yi | zi; θ) . (2c)

Note that we use p (yi | zi; θ) and p (yi | zi) interactively,
where the former one is used in the context of model opti-
mization and the later one is adopted for simpleness. The
transition from Eq.(2a) to Eq.(2b) is deduced not according
to mathematical consequence but based on the i.i.d assump-
tion between nodes’ labels. However, such decomposition is
not desired in graph data, since the node features and classes
are inherently correlated depending on the graph connec-
tivity. Although GNNs aggregate the neighborhoods and
make decision on the target node conditioned on the set of
neighbors’ features, the joint-distribution modeling of node
classes is still broken in Eq.(2b). The prior knowledge that
the nodes at the same cluster share similar labels is widely
accepted in many real-world graphs, like social networks.
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Figure 1. An illustration of our joint-cluster supervised learning framework: First, we obtain node embeddings through the encoder. Then
the cluster embedding and label are generated through the divided graph structure. Then the node embedding and the cluster embedding
are concatenated and fed into the classifier to obtain a joint distribution prediction. Finally, the joint-cluster loss and marginalization are
used for training and inference.

These intuitions inspire us to learn the joint distribution of
node classes conditioned on their features.

3. Joint-cluster Supervised Learning
As analyzed before, GNNs utilize graph structure through
the unique message passing, while still treating the node
labels as independent from each other during the loss op-
timization. Despite the conceptual simpleness, it is not
trivial to model the joint distribution. Given a number
of training nodes, the fully joint conditional distribution
p (y1, . . . , yL | z1, . . . , zL; θ) has to be constructed over la-
bel state space of RcL . The optimization on such high-
dimensional state space is computationally intractable and
hard to generalize on the test nodes. To enable the compu-
tation on common hardware, we propose to learn the joint
distribution from cluster perspective. It is generally assumed
nodes within the same cluster are highly connected while the
edge connections between clusters are sparse. We thereby
divide the graph into M independent clusters {C1, . . . , CM}
and factorize the joint distribution as:

p (y1, . . . , yL | z1, . . . , zL; θ) (3a)

=

M∏
m=1

p ({yi | vi ∈ Cm} | {zi | vi ∈ Cm} ; θ) . (3b)

In other words, the node label distributions between clusters
are close to be independent. Although the i.i.d assumption
on clusters reduces the computation complexity to some
extent, the joint modeling on a subset of nodes is still im-
practical and is unfriendly to be adopted to infer the classes
of test nodes. In this work, for each node representation-
label pair (zi, yi), we instead learn a joint conditional distri-
bution p (yi, ȳm | zi, z̄m; θ), where z̄m and ȳm denote the
statistical cluster feature and label, respectively. One of
the simplest ways to construct the cluster feature and label
is to average the node representations and labels from the

training samples within the corresponding cluster, which is
adopted in our method. The more advanced solution, like
differentiable features and label vectors, could be used to
learn the cluster statistics. Given the set of training nodes,
MLE optimizes the joint-cluster conditional distribution as:

θ̂JC

(
{zi, yi}Li=1

)
(4a)

= argmax
θ

p (y1, . . . , yL | z1, . . . , zL; θ) (4b)

= argmax
θ

M∏
m=1

p ({yi | vi ∈ Cm} | {zi | vi ∈ Cm} ; θ)

(4c)

= argmax
θ

M∏
m=1

|Cm|∏
i=1

p (yi, ȳm | zi, z̄m; θ) (4d)

= argmax
θ

M∑
m=1

|Cm|∑
i=1

log p (yi, ȳm | zi, z̄m; θ) . (4e)

Through the transition from Eq.(4c) to Eq.(4d), we decouple
the distributions of connected nodes to facilitate computa-
tion but still keep the node-cluster relation to realize joint
modeling. In this way, we can easily train on a set of indi-
vidual nodes and extend the well-trained model to estimate
the joint distribution of test samples. In this work, we use
the graph clustering algorithm of METIS (Karypis & Ku-
mar, 1998), which aims to construct the vertex partitions
such that within clusters links are much more than between-
cluster links to better capture the community structure of
the graph. This partitioning manner is in line with our i.i.d
assumption on clusters, where the between-cluster depen-
dencies are negligible. Based on the above joint modeling,
we introduce how to train models and infer node classes,
and put the pseudo-code in Appendix A for further detailed

3



Rethinking Independent Cross-Entropy Loss For Graph-Structured Data

information.

Training with joint-cluster loss. We design the joint-
cluster cross-entropy loss to learn the node-cluster distri-
bution. Let fθ : (xi, x̄m) → (yi, ȳm) be a model to map
the node and cluster features into their corresponding joint
label yiȳ⊺m ∈ Rc×c. As shown in Figure 1, the model
consists of an encoder (e.g., GNNs) to generate node rep-
resentations and a classifier to predict the joint label. Re-
calling Section 2.1, the final representation of node vi is
given by zi. We adopt average pooling to define the cluster
representation z̄m = 1/Lm

∑Lm

i=1 zi and the cluster label
ȳm = 1/Lm

∑Lm

i=1 yi, where Lm is the number of labeled
nodes within cluster Cm. We then concatenate the node and
cluster representations as the joint feature, which is fed into
the classifier to predict joint label yiȳ⊺m. Mathematically,
the joint-cluster cross-entropy loss is defined as:

LJC = −
L∑

i=1

{(yiȳ⊺
m) · log gϕ (con (zi, z̄m))

+ (ȳmy⊺
i ) · log gϕ (con (z̄m, zi))}.

(5)

where con ( ·, ·) is a vector concatenation operation ordered
by the node embedding and its cluster embedding, gϕ is
the classifier, and node vi belongs to cluster Cm. The dot
product and log function operate element-wisely. Notably,
for the purpose of symmetric joint distribution modeling,
at the second item of the above equation, we exchange the
position of node and cluster embeddings to predict their
label ȳmy⊺i (i.e., the transpose of yiȳ⊺m).

Node class inference in joint distribution. Based on the
joint distribution p (yi, ȳm | zi, z̄m; θ) between the node and
its cluster, we aim to infer every individual node classes as in
the standard supervised learning framework. In other words,
we have to recover the independent conditional distribution
p(yi | zi; θ) and make a decision over the label state space
Rc. The direct solution is to marginalize the joint label
along the cluster label dimension:

p(yi | zi; θ) =
∫
Rd

c∑
k=1

p (yi, ȳm = k | zi, z̄; θ) q (z̄) dz̄

≈
c∑

k=1

p (yi, ȳm = k | zi, z̄m; θ) .

(6)
q (z̄) denotes the continuous distribution of cluster repre-
sentation. In practice, since the node is nearly indepen-
dent to the other clusters, the approximation deduction in
Eq.(6) only uses the dwelling cluster feature to obtain the
marginalized distribution. As illustrated in Figure 1, given
the two-dimensional prediction p (yi, ȳm | zi, z̄m; θ) corre-
sponding to truth yiȳ

⊺
m, we sum the prediction scores row

wisely to estimate p(yi | zi; θ). Unlike the standard su-
pervised learning, during model inference, we make use

of the cluster reference signal to reason the node classes
rationally and robustly. This merit is functionally similar
to the in-context learning strategy explored recently (Min
et al., 2021), where a set of data-label pairs are concatenated
with input to guide the language model to make more ac-
curate decisions. As empirically studies in Appendix H, in
graph-structured data, we observe the joint distribution mod-
eling provides better node classification accuracy compared
with the simple concatenation. Furthermore, we provide the
more detailed explanations about joint-cluster supervised
learning in Appendix E.

4. Related Work
A detailed discussion is provided in Appendix C. Two fami-
lies of label dependency modeling are:

Label propagation. In the realm of GNNs, label prop-
agation works on the assumption that nodes connected
by an edge are likely to share the same label (Shi
et al., 2020; Wang & Leskovec, 2020; Zhou et al.,
2023). It propagates node labels along with edge weights
throughout the graph (Wang & Leskovec, 2021; Xie
et al., 2022b), and then infer the unlabeled nodes effec-
tively. Difference compared to existing work: While the la-
bel propagation often infer nodes without considering the
node features (e.g., at post-processing phase), our joint-
cluster learning framework could work with any GNN back-
bones to comprehensively learn the structure, feature, and
label information end-to-end.

Conditional random fields. To leverage the label corre-
lation in node classification, there has been previous work
in combining conditional random fields (CRF) with GNNs.
CGNF (Ma et al., 2018) learns the pairwise label correla-
tion with pairwise energy function, a specific expression
form of CRF, which is optimized to train GNNs. CRF-
GNNs inserts CRF layer between the graph convolutional
layers, which regularizes GNNs to preserve the label depen-
dencies among nodes (Gao et al., 2019). SPN (Qu et al.,
2022) models the local label correlation of each linked node
pair via nodeGNN and edgeGNN and takes the edges in
graph as input to propagate all the pairwise label corre-
lations along edges. Difference compared to existing work:
① While CRF-based methods focus on modeling the local la-
bel correlation of every linked node pair, we learn the global
joint distribution of node and its cluster. ② Our proposals
show promising training scalability and inference efficiency.
The CRF-based methods take the whole graph as input to
propagate all the pairwise label correlations along edges. In
contrast, we train and infer the joint distribution of target
node only with one reference signal (i.e., cluster), which
allows the batch training on large graphs (e.g., Amazon with
millions of nodes).
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Table 1. Test Accuracy (%) for different models on class-balanced small datasets, where the best results are in bold. CE denotes the
cross-entropy loss, and JC denotes our joint-cluster loss function.

Model Loss Cora CiteSeer PubMed DBLP Facebook

GCN CE 81.70±0.65 71.43±0.47 79.06±0.32 74.30±1.94 73.91±1.40

JC 83.51±0.35 72.97±0.55 79.80±0.19 75.10±1.63 74.64±1.75

SGC CE 81.68±0.52 71.85±0.39 78.70±0.38 74.30±2.12 74.13±2.13

JC 83.87±0.79 72.92±0.16 79.97±0.25 74.87±1.81 74.74±1.96

SAGE CE 79.96±0.44 69.94±0.93 78.37±0.72 70.59±1.46 70.95±2.26

JC 80.81±0.63 70.54±1.49 79.50±1.02 71.87±2.07 71.59±1.78

GAT CE 83.22±0.29 71.06±0.40 78.54±0.63 75.32±2.62 76.34±2.26

JC 83.77±0.44 71.61±0.95 79.35±0.47 76.92±1.59 77.46±2.30

MLP CE 58.65±0.97 60.41±0.56 73.27±0.35 47.95±3.97 55.34±2.60

JC 67.19±0.62 63.23±0.87 75.92±0.39 61.16±3.63 56.62±2.42

5. Experiments
In this section, we evaluate our joint-cluster learning frame-
work on 12 public datasets over 7 backbone models. The
code is available at: https://github.com/MR9812/Joint-
Cluster-Supervised-Learning

5.1. Evaluation on Small Graph Datasets
Implementation. ▷ Datasets. We use the bench-
mark datasets Cora, CiteSeer, PubMed (Sen et al., 2008),
DBLP (Bojchevski & Günnemann, 2017), and Face-
book (Rozemberczki et al., 2021a) in the class-balanced
setting, which is widely adopted to evaluate GNNs. Further-
more, we consider two more challenging node classification
tasks. In particular, we conduct on LastFMAsia (Rozem-
berczki & Sarkar, 2020) and ogbn-arxiv (Hu et al., 2020)
to evaluate the performance of our proposed joint-cluster
loss on class-imbalanced environment; and we consider
Chameleon, Squirrel, and Wisconsin to evaluate on het-
erophilic graphs (Rozemberczki et al., 2021b). ▷ Back-
bone models. We take GCN (Kipf & Welling, 2017),
SGC (Wu et al., 2019), GraphSage (Hamilton et al., 2017),
GAT (Veličković et al., 2018) and MLP as base models to
compare our proposals with the standard cross-entropy loss
in the class-balanced setting. Due to space limit, we use
GCN, SGC, and MLP to evaluate on the class-imbalanced
and heterophilic environment. The details of datasets and
backbone models are presented in Appendix B D. We run
each experiment 10 times and report the mean values with
standard deviation.

Q: Whether our proposals outperform the standard su-
pervised learning on the easy and small datasets? Yes,
one key advantage of joint distribution modeling is to infer
nodes more correctly with cluster references. We exam-
ine on class-balanced, class-imbalanced, and heterophilic
datasets.

▷ Class-balanced graph datasets. The comparison re-
sults are collected in Table1, from which we make follow-
ing observations. ❶ The joint-cluster supervised learn-

ing exhibits significantly superior performances on all
the backbone models. Compared with the standard cross-
entropy loss, our approach delivers the average improve-
ments of 1.47%, 1.47%, 1.21%, 1.22% on models GCN,
SGC, SAGE, and GAT, respectively. ❷ Interestingly, com-
pared with the average improvement of 1.34% over GNN
backbones, the more clear advantage of 10.5% is achieved
in MLP architecture. That is because GNNs learn the single
node class conditioned on aggregated features, while MLP
decides the node label only based on its input feature. Mov-
ing a step forward, our proposals learn the comprehensive
joint distribution of multiple node labels conditioned on
their features aggregated from GNNs, which fully activates
the model’s generalization ability.

▷ Class-imbalanced graph datasets. As shown in Ta-
ble2, we observe ❶ the similar trend of performance en-
hancement in the imbalance setting. We use imbalance
ratio, mini (|Ti|) /maxi (|Ti|), to measure the extent of
class imbalance, where |Ti| represents the number of nodes
belonging to the i-th class. LastFMAsia and ogbn-arxiv are
two extremely imbalanced datasets, whose imbalance rates
are 1.0% and 0.1%, respectively. It is observed our joint-
cluster learning framework obtains average improvements of
5.75% and 3.16% on LastFMAsia and ogbn-arxiv over the
standard supervised learning. We attribute this result to the
referential ability of the joint-cluster distribution modeling,
which uses the cluster of neighbors when making decisions.
The joint distribution weakens the over-confident prediction
on the majority classes by assigning prediction confidence
on other related minority classes, and thus ameliorates the
generalization on them.

▷ Heterophilic graph datasets. On the heterophilic
graphs, the connected nodes tend to have the different
classes and make the joint-distribution learning challenging
via adding label noise. Following the data split of Pei et al.
(2020), we compare with vanilla cross-entropy loss on three
benchmark datasets. As shown in Table 3, ❶ we observe
our joint-cluster loss function consistently delivers great
advantage with clear performance margin. That is because
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Table 2. Test F1(%) of different loss functions on the class-imbalanced datasets.

Model Loss LastFMAsia ogbn-arxiv

F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight

GCN CE 84.91±0.74 73.79±1.28 84.60±0.73 71.74±0.29 51.80±0.44 70.93±0.33

JC 85.92±0.41 74.61±1.02 85.49±0.43 72.17±0.24 52.06±0.15 71.57±0.18

SGC CE 84.82±0.82 70.85±1.36 84.22±0.55 71.77±0.14 50.75±0.29 70.71±0.21

JC 85.84±0.45 73.25±1.17 85.32±0.40 72.08±0.15 51.15±0.26 70.92±0.15

MLP CE 68.91±0.70 42.37±1.45 67.06±0.73 55.50±0.23 33.93±0.20 55.00±0.19

JC 78.81±0.69 53.09±1.71 76.89±0.69 61.21±0.16 38.61±0.23 60.48±0.11

Table 3. Test accuracy (%) on heterophilic graphs.

Model Loss Chameleon Squirrel Wisconsin

GCN CE 59.25±2.81 48.93±2.21 49.22±3.77

JC 68.87±2.55 56.76±1.43 50.39±4.53

SGC CE 63.88±2.78 53.79±3.13 51.96±4.23

JC 71.91±2.03 61.99±2.42 52.23±3.94

MLP CE 41.90±1.51 29.23±2.09 80.98±5.12

JC 50.09±2.42 32.37±2.20 81.96±5.45

the proposed joint-cluster distribution learning infer node
label with the reference signal of whole cluster, instead of
using the direct neighbors. This validates the effectiveness
of adopting global cluster structure in joint distribution.

5.2. Evaluation on Large Graph Datasets

Implementation. ▷ Datasets. Two complex large
datasets are adopted, i.e., Yelp and Amazon (Zeng et al.,
2019), where each node contains multiple classes. ▷
Backbone models. We evaluate in two scalable sub-
graph sampling models, i.e., GraphSAGE (Hamilton et al.,
2017) and Cluster-GCN (Chiang et al., 2019), and in pre-
computing-based model of SIGN (Frasca et al., 2020). The
details of datasets and backbone models are provided in
Appendix B D.

Q: Whether our proposals can scale on the large datasets
and boost model performance? Yes, as reported in Table
4, ❶ the joint-cluster learning framework generally obtains
the best accuracy on the large-scale multi-class datasets.
Compared with the standard cross-entropy, our method ob-
tains the average improvement of 0.75% and 0.39% on Yelp
and Amazon, respectively. One exceptional cases is SIGN
conducting on Amazon dataset. We speculate that one of
the main reasons is the batch size, which is not large enough
to obtain enough cluster statistics for the joint-cluster dis-
tribution modeling. The future work can use the trainable
cluster feature and label to overcome this problem.

5.3. Robustness Under Adversarial Attack

Implementation. Following the previous work, we use
datasets including Cora, CiteSeer, PubMed and Polblogs to

Table 4. Test micro-F1(%) on large graph datasets.

Model Loss Yelp Amazon

GraphSAGE CE 63.67±0.38 75.65±0.16

JC 63.99±0.46 76.14±0.29

Cluster-GCN CE 62.44±0.52 76.12±0.17

JC 63.02±0.68 76.63±0.27

SIGN CE 64.42±0.07 80.22±0.04

JC 64.95±0.09 80.09±0.05

evaluate robustness under an untargeted adversarial graph
attack. Specifically, we use the metattack (Sun et al., 2020)
implemented in DeepRobust1, a pytorch library, to gener-
ate attacked graphs by deliberately modifying the graph
structure. The details are summarized in Appendix B. Fol-
lowing previous works (Jin et al., 2020b), we only consider
the largest connected component (LCC) in the adversar-
ial graphs, and randomly split 10%/10%/80% of nodes for
training, validation, and testing.

Q: Compared with vanilla training, whether the joint-
distribution learning can ameliorate model’s robustness
under adversarial attack? Yes, the comparison results
are collected in Table 5, where we make the following obser-
vations to support our answers. ❶ The joint-cluster learning
framework achieves significant gain under all perturbation
rates. Compared with the independent decision making, our
joint-cluster modeling takes the whole cluster as reference
signals, which contains certain number of clean nodes to im-
prove the robustness of class prediction. ❷ The performance
gain increases with the perturbation rates. Specifically, the
absolute improvements over the vanilla loss are 2.2%, 3.1%,
8.6%, 6.7% and 8.9% in the perturbation rates of 5%, 10%,
15%, 20%, and 25%. These results validate the effectiveness
of cluster reference signal, which is structrually stable even
under the acute attacks.

5.4. Comparison with Label Dependency Modeling
Related Work

Q: Whether the joint-cluster supervised learning deliv-
ers the superior accuracy and efficiency compared with

1https://github.com/DSE-MSU/DeepRobust
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Table 5. Test accuracy (%) under metattack, where Ptb Rate means the perturbation percent.

Datasets Ptb Rate(%) GCN SGC GAT

CE JC CE JC CE JC

Cora

5% 76.80±0.87 78.84±0.57 76.28±0.20 78.76±0.45 80.24±0.54 80.76±0.51

10% 70.12±1.42 74.65±0.44 69.29±0.48 73.50±0.57 74.89±1.46 75.49±0.83

15% 64.21±1.92 72.24±0.67 65.05±1.09 71.93±0.51 70.55±1.19 71.63±1.29

20% 53.56±1.98 59.77±0.75 57.14±0.32 58.11±0.83 58.74±1.60 59.45±1.12

25% 48.98±1.58 53.89±1.19 51.18±0.51 53.44±1.04 53.38±1.14 55.46±1.68

CiteSeer

5% 69.96±0.82 70.15±0.79 71.87±0.20 72.72±0.62 72.03±1.08 73.96±0.53

10% 67.39±0.74 68.51±1.06 68.19±0.15 68.84±0.50 70.21±0.82 71.10±0.24

15% 64.32±0.93 67.23±1.24 65.01±1.68 67.59±0.79 67.99±1.43 70.39±0.57

20% 55.18±1.67 57.59±1.29 56.38±0.23 56.67±0.88 60.40±1.41 61.57±0.98

25% 56.22±2.27 61.54±2.01 55.94±0.14 61.75±0.92 59.60±2.18 60.74±1.05

PubMed

5% 83.09±0.10 83.17±0.10 78.12±0.03 83.07±0.07 82.27±0.19 82.97±0.30

10% 81.08±0.18 81.27±0.10 71.16±0.00 81.35±0.06 79.93±0.16 81.81±0.39

15% 78.31±0.28 78.71±0.07 67.16±0.03 78.85±0.06 78.24±0.13 80.08±0.24

20% 76.55±0.34 76.90±0.08 63.88±0.02 77.03±0.09 75.83±0.27 78.02±0.34

25% 74.51±0.50 75.05±0.07 61.10±0.01 75.05±0.11 73.01±0.35 75.61±0.32

Polblogs

5% 72.70±0.60 78.37±3.57 74.44±0.38 78.70±3.81 76.56±0.74 78.65±0.88

10% 71.90±0.69 74.15±0.39 70.46±0.29 76.64±0.51 72.42±0.69 76.79±1.11

15% 67.92±0.78 70.53±0.53 55.99±1.85 72.64±1.24 61.13±5.36 69.04±2.97

20% 57.76±0.37 62.84±0.93 51.94±0.11 65.60±1.77 51.96±0.17 54.13±0.16

25% 56.17±2.11 64.87±0.96 52.02±0.46 61.67±4.12 49.46±2.41 52.04±1.15

Table 6. Accuracy (%), training time (s), and inference time (s) comparisons with CRF-based models. Since CRF-GCN does not provide
code, the accuracy is directly reported and the time is omitted.

Methods Cora CiteSeer PubMed

Accuracy Training Inference Accuracy Training Inference Accuracy Training Inference

GCN 81.70 0.002 0.001 71.43 0.002 0.001 79.06 0.008 0.001
CGNF 83.2 0.389 0.181 72.2 0.240 0.093 79.4 7.523 2.959

CRF-GCN 82.8 − − 72.1 − − 79.2 − −
SPN 80.90 0.244 0.162 69.97 0.164 0.121 76.66 2.704 1.254

GCN+JC 83.51 0.004 0.001 72.97 0.005 0.001 79.80 0.018 0.001

existing label dependency learning frameworks? Yes, we
examine it below.

▷ Comparison with CRF-based models. We consider
threee CRF-based models, i.e., CGNF, CRF-GCN and SPN,
and collect the comparison results in Table 6. ❶ Our pro-
posals obtain the clear performance gains even compared
with SOTA models encoding label dependency. Particularly,
the absolute improvements are 0.4%, 1.1% and 0.5% on
Cora, Citeseer, and Pubmed, respectively. These baselines
predict the target node by accounting the label dependencies
from all the connected neighbors. In contrast, we only take
the cluster as reference signal to learn the joint distribu-
tion, which is simple but shows great generalization. ❷ Our
proposals consume much less training and inference times,
which are comparable to vanilla GCN. While we only con-
sider the cluster in joint distribution, the CRF-based models
learn the node together with all its neighbors burdensomely.

▷ Concatenating with label propagation. C&S (Huang
et al., 2020) is proposed to smooth node labels at the
post-processing phase of MLP model. Prior to such post-

processing, our joint distribution labeling can be plugged
in to better prepare MLP by learning the label correlations
of nodes. We examine our thoughts in Table7. ❶ It is ob-
served that over all the larger datasets (i.e., except Cora and
Citeseer), MLP can evidently benefit from the joint-cluster
loss. On the small datasets, the stacking of C&S and joint
loss will make the node labels overly similar over the whole
graph and degrade model performance.

5.5. In-depth Discussion of Joint-cluster Supervised
Learning

Q: How the joint-cluster distribution modeling learns to
concentrate node embeddings of the same class (cluster)
within compact space? We visualize the node representa-
tions learned by cross-entropy loss and joint-cluster loss in
Figure 2. Different from the vanilla loss, our joint-cluster
loss exhibits 2D projections with more coherent shapes of
clusters. One of the possible reasons is the node representa-
tions are learned to embrace their corresponding clusters in
the joint modeling.

7



Rethinking Independent Cross-Entropy Loss For Graph-Structured Data

Table 7. Performance of C&S with the MLP trained by cross-entropy loss and joint-cluster loss.

Methods Cora CiteSeer PubMed DBLP Facebook LastFMAsia Arxiv

MLP+CE 58.65±0.97 60.41±0.56 73.27±0.35 47.95±3.97 55.34±2.60 68.91±0.70 55.50±0.23

MLP+JC 67.19±0.62 63.23±0.87 75.92±0.39 61.16±3.63 56.62±2.42 78.81±0.69 63.13±0.10

MLP+CE+C&S 80.05±0.46 70.36±0.44 77.08±0.26 71.19±2.59 67.48±4.60 85.73±0.61 68.58±0.05

MLP+JC+C&S 77.37±0.65 69.01±0.93 77.91±0.43 73.23±0.86 69.39±3.53 87.26±0.54 70.06±0.09

GCN GraphSAGE SGC MLP0.00

0.01

0.02

0.03

0.04

0.05

Ge
ne

ra
liz

at
io

n 
Ga

p

Cross Entropy Loss
Joint-Cluster Loss

Figure 2. Left, Middle: Node representation visualization by t-SNE (Van der Maaten & Hinton, 2008) for 8-layer GCN trained by CE loss
(left) and JC loss (middle) on Cora. Right: Normalized comparison of the gap between train and test losses on ogbn-arxiv.
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Figure 3. Hyperparameter effect of the cluster number in the joint-cluster supervised learning. Note that a/b in Yelp, a denotes cluster
number in Cluster_GCN and GraphSAGE, and b represents cluster number in SIGN, which uses a larger batch size.

Q: Whether the joint learning avoids the overfitting on
training set. The model’s generalization ability is com-
monly measured by the gap between training loss and test
loss. The smaller the gap is, the better the model can be
free from the overfitting but generalizes on the testing set.
We plot such a loss gap in the right part of Figure 2, where
joint-cluster loss generally has a smaller gap. Since joint-
cluster loss avoids the over-confident prediction by referring
to cluster information.

Q: How is the sensitivity of the joint-cluster learning
framework to the cluster number? Fig.3 shows the hy-
perparameter effect of the cluster number on both small and
large datasets. We observe the joint-cluster loss benefits
from a suitable number in a smaller dataset Cora. Yet, we
notice the performances are stable as the cluster number
changes in larger datasets, such as Arxiv and Yelp.

Q: Does our joint-cluster learning framework require ex-
pensive memory cost compared to standard supervised
learning framework? We examine this question in Table 8.
It is found that our framework requires little cost on most
models except GAT, which brings the non-negligible im-
provements in node classification accuracy and robustness
over adversarial attack. Although GAT requires a higher

Table 8. Occupied memory (ratio) of JC loss compared with vanilla
cross-entropy loss.

Model Cora CiteSeer PubMed

GCN 1.01× 1.04× 1.00×
SGC 1.06× 1.05× 1.00×
MLP 1.01× 1.05× 1.02×
SAGE 1.03× 1.08× 1.07×
GAT 1.70× 1.39× 1.56×

cost due to its complex attention mechanism, this is still
acceptable compared with the benefits.

6. Conclusion
In this paper, we hypothesize that the independent condi-
tional distribution of node labels is not in line with the
graph-structured data, where nodes tend to connect with
“similar” neighbors and linked nodes have complicated re-
lationships. Based on the i.i.d assumption, the supervised
learning with standard cross-entropy loss fails to fully ac-
tivate the model’s ability in generalizing over a test set as
well as defending adversarial attacks. Motivated by the label
dependencies between nodes and their corresponding clus-
ters, we have presented the joint-cluster supervised learning
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framework for the training and inference in graph data. This
new paradigm learns the joint distribution of nodes and
their cluster labels conditioned on their features, and intro-
duces the joint-cluster cross-entropy loss. The extensive
experiments demonstrate that our model can boost the node
classification performance of GNN models and simple MLP
architecture compared to the standard supervised learning
on a wide range of real-world datasets. The limitations and
interesting future work are discussed in Appendix I.
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A. Algorithm
The detailed description of our proposed joint-cluster learning framework.

Algorithm 1 Joint-Cluster Learning Framework
Input: Adjacent matrix A, features matrix X, the set of labeled nodes VL and their labels YL, encoder fθ, classifier gϕ
Output: Predicted labels of unlabeled nodes
Partition graph nodes into M clusters C1,C2, ...,CM by METIS;
for i = 1 to M do
Ȳm = 1/Lm

∑Lm

k=1 Yk;

// Calculate cluster_label according to YL.

end for
for i = 1 to max_iteration_epoch do
Z = fθ (A,X) ;

// Update node embedding.

Z̄m = 1/Lm

∑Lm

k=1 Zk;

// Update cluster embedding.

Update joint_embeddings Zjc according to ZL and Z̄m

Ŷjc = gϕ (Zjc) ;

// Obtain joint prediction of Node and Cluster.

Yjc = YiȲ
⊤
m;

// Joint label of node and cluster.

Calculate joint-cluster loss Ljc according to Yjc and Ŷjc

▽θ,ϕ [Ljc]
end for

B. The Statistics of Datasets
Table 9 contains the statistics for the nine datasets used in our experiments for node classification. Experiments are under
the single-class and multi-class setting. For single-class classification task, we conduct the experiments on an online
social network (LastFMAsia (Rozemberczki & Sarkar, 2020)), a webpage dataset(Wisconsin2), three page-page networks
(Facebook (Rozemberczki et al., 2021a), Chameleon and Squirrel (Rozemberczki et al., 2021b)) and citation networks,
including Cora, CiteSeer, PubMed (Kipf & Welling, 2017), DBLP (Bojchevski & Günnemann, 2017) and ogbn-arxiv (Hu
et al., 2020). For multi-class classification task, we use businesses types network based on customer reviewers and friendship
(Yelp (Zeng et al., 2019)), and product network based on buyer reviewers and interactions (Amazon (Zeng et al., 2019)).
Furthermore, the statistics of the datasets used in adversarial attack in Table 10.

Next, we will introduce in detail the data split. We follow the standard split proposed by (Kipf & Welling, 2017) on three
citation networks, including Cora, CiteSeer, and PubMed. For DBLP and Facebook, we use 20 labeled nodes per class
as the training set, 30 nodes per class for validation, and the rest for testing. In addition, we conduct the experiments on
LastFMAsia and ogbn-arxiv to further evaluate the performance of our proposed joint-cluster loss on imbalanced datasets.
For LastFMAsia, we randomly split 25%/25%/50% of nodes for training, validation, and testing. For ogbn-arxiv, we follow
the standard split proposed by (Hu et al., 2020). For heterophilic graph datasets(Chameleon, Squirrel and Wisconsin), we
fellow the data split of (Pei et al., 2020; Yang et al., 2023). For two large multi-class datasets proposed by (Zeng et al.,
2019), including Yelp and Amazon, whose node numbers are 716K and 1598K. Following (Zeng et al., 2019), we use the
same data split to stay our focus on the design of the objective function and conduct a fair comparison with independent
cross-entropy loss. For robustness experiments, following previous works (Jin et al., 2020b), we only consider the largest
connected component (LCC) in the adversarial graphs, and randomly split 10%/10%/80% of nodes for training, validation,
and testing.

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 9. Statistics of datasets used in experiments (“m” stands for multi-class classification, and “s” for single-class).

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7(s)
CiteSeer 3,327 4,732 3,703 6(s)
PubMed 19,717 44,338 500 3(s)
DBLP 17,716 105,734 1,639 4(s)

Facebook 22,470 342,004 128 4(s)
LastFMAsia 7,624 55,612 128 18(s)
ogbn-arxiv 169,343 1,166,243 128 40(s)
Chameleon 2,277 36,101 2,325 5(s)

Squirrel 5,201 217,073 2,089 5(s)
Wisconsin 251 499 1,703 5(s)

Yelp 716,847 6,977,410 300 100(m)
Amazon 1,598,960 132,169,734 200 107(m)

Table 10. Following (Jin et al., 2020b), we only consider the largest connected component (LCC).

Datasets Nodes Edges Features Classes

Cora 2,485 5,069 1,433 7
CiteSeer 2,110 3,668 3,703 6
PubMed 19,717 44,338 500 3
Polblogs 1,222 16,714 / 2

C. Other Related Work
Graph neural networks. Existing GNNs follow the neighborhood aggregation strategy, which iteratively updates the node
representation by aggregating the representations of neighboring nodes and combining them with its representations (Xu
et al., 2018; Yang et al., 2021). Numerous variants of GNNs have been proposed to achieve outstanding performances in
many graph-based tasks, such as graph clustering (Bo et al., 2020; Liu et al., 2022b), node classification (Kipf & Welling,
2017; Wang et al., 2022; Zhuo et al., 2024) and graph classification (Lee et al., 2019; Zhou et al., 2021b). To deal with
large-scale graph, researchers have proposed some scalable graph learning methods (Chiang et al., 2019; Duan et al., 2022).

Graph adversarial attack. Graph adversarial attack refers to the process of manipulating or perturbing the nodes, edges,
or features in a graph to deceive or mislead graph-based learning models(Chen et al., 2020a; Jin et al., 2020a). These attacks
can be categorized into different types, such as structural attacks that modify the graph topology (Xu et al., 2019; Wang &
Gong, 2019; Li et al., 2020), feature-based attacks that manipulate node features (Liu et al., 2022a), and hybrid attacks that
combine both (Zhang et al., 2022; Xie et al., 2022a; Ma et al., 2022). Compared with cross-entropy loss, our joint-cluster
loss can refer to similar nodes in the process of loss optimization and inference, which can effectively alleviate the impact of
graph attacks.

D. Description of Backbone Models
We evaluate our joint-cluster supervised learning framework on differnet GNN models and scalable graph learning backbones:

• GCN (Kipf & Welling, 2017): GCN is a convolutional neural network which utilizes the structural information of graphs
by message passing mechanism.

• SGC (Wu et al., 2019): SGC eliminates the nonlinearities of GCN and collapses the weight matrix into a weight matrix.

• MLP: MLP is a simple neural network that maps a set of input vectors to a set of output vectors.

• GAT (Veličković et al., 2018): GAT learns edge weights in graph domain through the attention mechanism and achieves
significant performance.
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• GraphSAGE (Hamilton et al., 2017): Graphsage obtains neighbor nodes through sampling strategies and expresses node
representation through neighbor aggregation operations.

• Cluster_GCN (Chiang et al., 2019): Cluster_GCN is a fast and efficient mini-batch training algorithm that preserve
structural information within a batch by exploiting the graph clustering structure.

• SIGN (Frasca et al., 2020): SIGN is amenable to efficient precomputation by using graph convolutional filters of different
size, achieving fast training and inference.

E. Detailed Explanations
How to quantify and define the “joint distribution” of nodes and clusters? According to Eq. (4a)-(4e) at Page 3, the
conditional joint distribution is defined as p(y, ȳ | z, z̄), where y and ȳ are label variables of node and cluster, respectively;
z and z̄ are representation vector variables of them. To facilitate the empirical evaluation of joint distribution, we cluster the
underlying graph into many groups and only account the joint probability of nodes and their corresponding cluster, since the
random walks startign from a node (i.e., node’s flow influence) are often trapped in the local cluster (Spielman & Teng,
2013). Thus the empirical estimation of joint distribution on input graph is

∏M
m=1

∏|Cm|
i=1 p(yi, ȳ_m | z_i, z̄_m; θ), where

M is the number of clusters, |Cm| is the number of nodes within the m-th cluster. To represent the label and representation
variables of cluster, we use the means of training nodes within the cluster, i.e., ȳm and z̄m, for the computation purpose. As
illustrated in Fig. 1, we use a fully-connected networks with paramethers θ to approximate the joint distribution, which takes
the concatenate input of node and cluster representations (zi and z̄m) and output the joint label with size of Rc×c, where c is
the number of class categories.

How this new assumption concretely impacts the learning process? Motivated from natural instincts that advanced
intelligence makes decision with similar experienced samples as reference, we propose the joint distribution to calibrate the
node class decision via considering its multi-hop neighborhood distribution. Concretely, the joint probability of node i and
cluster m is defined as pi,m = yiȳ

T
m ∈ Rc×c, and the sum of elements in pi,m equal to one. Taking the binary classification

as example, supposing that ground-truth of two training nodes are y1 = [0, 1] and y2 = [0, 1] at cluster with average label
ȳm = [0.2, 0.8], we have the joint probabilities of [[0, 0], [0.2, 0.8]] and [[0.2, 0.8], [0, 0]]. According to cross-entropy loss at
Eq. (5), with the calibration of cluster label, the differentiable encoder will be regualized to assign prediction confidences on
other reference classes (i.e., the non-diagonal entries at c× c prob estimation p̂i,m). In other word, the learning process
is optimized to learn a smooth estimation of p̂i,m and avoids over-fitting, where each element at p̂i,m is supervised to
encode the joint probability of specific class tuple and has value highly smaller than one. At the inference phase, the prob
estimation p̂i is obtained by marginalizing along the cluster dimension at p̂i,m, which makes use of all the cluster-based
joint dependencies to infer a cautious class decision. In the experiment, we have observed the smooth estimation of joint
probability and the marginalizing-based inference signigicantly enhance classification accuracy, imbalanced classification,
and robustness, via tackling the over-fitting in learning process.

Whether there is an explicit or potential connection between labels and clusters? The connection beween labels
and clusters depend on the graph type: homogeneous or heterogeneuos garph. While node labels in the same cluster tend
to be same at homogeneous graph, they show distinctly at heterogeneous graph. But our framework does not assume on
either of the connections and prefer the division result where the node labels within a cluster are not completely consistent
with each other. That is because one can leverage the cluster’s diverse labels to calibrate each node as explained before.
Our experimental results show that our joint-cluster framework achieve promising accuracy in both homogeneous or
heterogeneuos garphs, without relying the connection assumption.

F. Multi-Class Task Design
We introduced the framework design of single-class classification task in the paper. In short, for the single-class setting,
joint-cluster learning framework expands a c-class classification task into a c2-class classification task. The multi-class
setting is slightly different from single-class. The number of clsses c in the multi-classification task represents c binary
classification tasks. We extend each two-class classification task to a four-class classification task for nodes and clusters, and
use cross-entropy loss to optimize each four-class classification. So the output dimension of the classifier is 4c.
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Table 11. Test Accuracy (%) for different models on five datasets. In addition, we show the best results in bold. We run 10 times and
report the mean ± standard deviation. CE denotes the standard cross-entropy loss, IC denotes in-context learning strategy, and JC denotes
our joint-cluster learning framework.

Model Loss Cora CiteSeer PubMed DBLP Facebook

GCN
CE 81.70±0.65 71.43±0.47 79.06±0.32 74.30±1.94 73.91±1.40

IC 81.56±0.25 70.08±0.56 79.37±0.46 72.53±2.55 70.35±1.86

JC 83.51±0.35 72.97±0.55 79.80±0.19 75.10±1.63 74.64±1.75

SGC
CE 81.68±0.52 71.85±0.39 78.70±0.38 74.30±2.12 74.13±2.13

IC 81.87±0.51 69.41±0.79 79.20±0.43 71.40±1.07 68.15±3.30

JC 83.87±0.79 72.92±0.16 79.97±0.25 74.87±1.81 74.74±1.96

SAGE CE 79.96±0.44 69.94±0.93 78.37±0.72 70.59±1.46 70.95±2.26

IC 78.70±1.13 67.52±0.96 78.50±0.58 70.17±3.29 69.75±1.75

JC 80.81±0.63 70.54±1.49 79.50±1.02 71.87±2.07 71.59±1.78

GAT CE 83.22±0.29 71.06±0.40 78.54±0.63 75.32±2.62 76.34±2.26

IC 83.21±0.32 71.43±0.47 78.38±0.22 74.10±1.59 72.49±2.34

JC 83.77±0.44 70.18±0.86 79.35±0.47 76.92±1.59 77.46±2.30

MLP CE 58.65±0.97 60.41±0.56 73.27±0.35 47.95±3.97 55.34±2.60

IC 64.27±0.43 62.27±1.69 75.74±0.46 58.83±2.31 56.53±3.20

JC 67.19±0.62 63.23±0.87 75.92±0.39 61.16±3.63 56.62±2.42

G. Implementation
Following the experimental settings of original papers, for GAT3, we choose the model parameters by utilizing an early
stopping strategy with a patience of 100 epochs on classification loss. For other GNN models45, we utilize the model
parameters which perform best on the validation set for testing. The remaining hyper-parameters including learning rate,
dropout and weight decay are tuned for different models. Scalable graph learning methods are executed based on the
official examples of PyTorch Geometric67. We further implement joint-cluster loss over each backbone framework. Because
Graphsage and SIGN divide the batch, it is impossible to guarantee that the nodes in the same batch are adjacent. Therefore,
in order to ensure fairness, for the joint-cluster loss of the large-scale graph learning methods, we use the manner of randomly
assigning clusters to the nodes.

H. Additional Experiments
In-context learning. We conduct experiments to demonstrate the effect of joint distribution modeling in joint-cluster
supervised learning framework. For each experiment, we compare the model trained by standard supervised learning,
in-context strategy and joint-cluster learning framework. For in-context learning, we use the same input as the joint-cluster
framework, the output is a c-dimensional vector, and the node label is used as the ground truth. As shown in Table 11, we
observe that in-context strategy does not get a stable accuracy improvement. We guess that in-context strategy requires the
cluster label should be sharp and the node label should be consistent with the cluster label, which will cause the model to be
limited by the division of clusters. Our joint-cluster framework learns the joint distribution of nodes and clusters, which will
learn potentially complex relationships between nodes, not just similarities.

Cluster mixup. It is worth noting that employing the clusters obtained by mixing training samples for training through
independent cross-entropy loss can potentially bring improvements, which is similar to mixup. We need to provide further
comparison to clarify the advantages of JC loss. Therefore, we directly apply the independent cross entropy loss after
obtaining the features z̄m and labels ȳm of the cluster to obtain the cluster training loss Lclu, and the overall loss function
can be presented as L = Lce + β · Lce, where β > 0 is tuning parameter to weight the importance of the cluster training

3https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gat.py
4https://github.com/tkipf/pygcn
5https://github.com/Tiiiger/SGC
6https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py
7https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sign.py
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Table 12. Test accuracy (%) on citation networks, CE denotes the standard cross-entropy loss, Mixup denotes cluster mixup training
strategy, and JC denotes our joint-cluster learning framework.

Methods Cora CiteSeer PubMed

GCN+CE 81.70±0.65 71.43±0.47 79.06±0.32

GCN+Mixup 82.43±0.44 71.68±0.51 79.36±0.17

GCN+JC 83.51±0.35 72.97±0.55 79.80±0.19

Table 13. The efficiency analysis of the training time and training memory.

Datasets Loss Cora CiteSeer PubMed

Time(s) Memory(MB) Time(s) Memory(MB) Time(s) Memory(MB)

GCN CE 0.002 88.29 0.002 184.90 0.016 3061.18
JC 0.004 89.16 0.005 191.53 0.018 3065.76

SGC CE 0.002 60.55 0.002 142.67 0.002 1577.18
JC 0.003 64.39 0.005 149.24 0.007 1581.75

MLP CE 0.001 60.55 0.002 142.67 0.002 1577.18
JC 0.004 61.15 0.004 149.24 0.006 1603.10

SAGE CE 0.005 49.54 0.005 148.00 0.006 147.51
JC 0.008 51.16 0.008 159.22 0.008 157.84

GAT CE 0.005 61.60 0.005 157.43 0.006 246.93
JC 0.007 104.99 0.008 218.44 0.011 385.76

loss. As shown in the table 12, experimental results indicate that applying independent cross-entropy loss on mixup cluster
samples yields some improvements, primarily attributed to the data augmentation of mixup samples and the challenge of
fitting mixed samples to bring generalization capability. However, the JC loss demonstrates more pronounced enhancements.
Different from the independent training on mixup cluster samples, our joint-cluster supervised learning provides a paradigm
to end-to-end learn the joint distribution of target node and its cluster, which brings generalization benefit to infer every
node classes via using cluster distribution as reference signals.

Efficiency analysis. We use METIS to efficiently perform cluster division at pre-processing stage for small graphs with
thousands of nodes, which takes less than five seconds. For the batch training on large graphs, we use random clustering on
sampled training nodes and do not require clustering time cost. Next we show the training time and training memory per
epoch for vanilla cross-entropy (CE) loss and our joint-cluster (JC) loss in Table 13. It is found that computational time
overhead and memory cost are extremely marginal, which brings the non-negligible improvements in node classification
accuracy and robustness over adversarial attack.
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Figure 4. Over-smoothing analysis about the model depth for node classification.

Over-smoothing. Over-smoothing which suggests that as the number of layers increases, the representations of the nodes
in GCN are inclined to converge to a certain value and thus become indistinguishable (Zhou et al., 2020). A number of
models have been recently proposed to alleviate the over-smoothing issue, including skip connection (Chen et al., 2020b),
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Table 14. Classification accuracy(%) among different models with varying numbers of labels on three citation networks.

Datasets Label GCN SGC MLP

CE JC CE JC CE JC

Cora 5 71.80±2.48 72.38±2.73 72.61±2.59 73.67±2.72 44.37±3.55 51.25±2.76

10 78.08±1.13 78.86±1.45 79.34±0.70 79.49±1.73 53.66±1.55 59.19±3.28

CiteSeer 5 57.91±6.18 60.98±5.08 56.67±5.32 61.34±6.56 45.52±3.83 46.84±5.00

10 68.22±1.36 69.92±1.28 68.62±1.13 69.88±1.14 53.47±2.52 55.85±2.22

PubMed 5 70.36±4.79 72.00±4.96 70.77±3.77 71.85±4.65 63.45±2.27 67.84±3.76

10 74.94±2.61 75.65±1.71 75.38±2.83 75.79±2.17 67.28±1.41 71.72±2.14

Table 15. Hyperparameter effect of the cluster number in the joint-cluster supervised learning with different clustering methods.

Methods Cora CiteSeer PubMed

5 7 5 6 5 3
K-Means 82.35±0.72 82.08±0.77 72.30±0.54 72.07±0.81 79.43±0.54 79.28±0.47

METIS 83.51±0.35 82.76±0.61 72.87±0.24 72.63±0.52 79.80±0.19 79.54±0.21

orthogonal regularization (Guo et al., 2022; Zhou et al., 2021a; Yang et al., 2022) and edge adjustment (Shen et al., 2024a).
Our framework can alleviate over-smoothing. As shown in Figure 2 of manuscript, in a 8-layer GCN, our framework can
exhibit 2D projection of node embeddings with more coherent shapes of clusters. In addition, we leverage GCN as the
backbone networks, and compare joint-cluster loss with cross-entropy loss by considering the layer numbers of 2, 4, 8, 16,
and 32. As shown in the Figure 4, our approach almost delivers the better node classification accuracies. That is because our
framework separates the node distribution modeling of different clusters, which could relieve the over-smoothing issue to
some extent.

Label scarcity setting. To verify the performance of our joint_cluster loss under label scarcity environment, we conduct
experiments on three citation networks, and the number of labeled nodes is very small. For all citation networks, we
randomly selected five and ten labeled nodes per class as the training set, leaving the validation and test sets unchanged at
500 nodes for validation and 1000 nodes for testing respectively. As shown in 14, onsidering each backbone model (i.e.,
GCN, SGC and MLP), our joint-cluster loss consistently diliver a much higher node classification accuracy.

Clustering methods. We compare two clustering methods, K-means and METIS, on citation networks using the GCN
encoder, where the number of clusters was set to 5 and the number of classes of corresponding dataset. In table 15, it is
found METIS achieves a better accuracy. In table 16, we list the node classification accuracy, the number of preserved
within-cluster links, the number of dropped between-cluster links and the rate of within-cluster links to between-cluster links
during clusering. As shown in table 16, we find that MSTIS achieves better classification accuracy of nodes. The intuitive
reason is METIS aims to construct the vertex partitions such that within-cluster links are much denser than between-cluster
links to capture the community structure of the graph. As validated by the clustering metrics, the preserved number of
within-cluster links in METIS are more than that of K-means, while the dropped number of between-cluster links is smaller.
The reduction of between-cluster link breaking can lower the approximation error of joint distribution in Eq.(3b). METIS,
which divides clusters based on graph structure, is more suitable for joint-cluster supervised learning framework than
K-means, which divides clusters based on features.

More GNN backbones. To demonstrates the effectiveness and generalizability of our joint-cluster learning framework,
we further validate in the more backbones, including the more advanced backbone GCNII (Chen et al., 2020b) and the
spectral-based ChebNet (Defferrard et al., 2016). We compare with vanilla cross-entropy (CE) loss on citation networks. As
shown in table 17, for ChebNet, we can conclude that our joint-cluster distribution learning consistently dilivers the superior
performance in ChebNet. The intuitive reason is the node label dependency is an underlying and common phenomenon in
graph data. For GCNII, our joint-cluster (JC) loss dilivers a much higher node classification accuracy except Cora. That
is because the proposed joint-cluster distribution learning leverages the node label dependencies within cluster to make
cautious inference and better adapt to graph data. GCNII stacks 64 layers of graph convolutional networks on Cora, which is
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Table 16. The relationship between clustering performance and final performance with different clustering methods.

Datasets Methods Acc W-C links B-C links Rate

Cora K-Means 82.43±0.78 2857 2421 1.18
METIS 83.51±0.35 4910 368 13.34

CiteSeer K-Means 72.18±0.52 2740 1812 1.51
METIS 72.79±055 4430 122 36.31

PubMed K-Means 79.35±0.51 35452 8872 4.00
METIS 79.80±0.19 41028 3296 12.45

Table 17. Classification accuracy(%) among different models on citation networks.

Model Loss Cora CiteSeer PubMed Arxiv

ChebNet CE 80.54±0.66 70.26±0.59 78.63±0.35 −
JC 81.29±0.92 70.99±0.64 79.18±0.62 −

GCNII CE 85.35±0.56 73.37±0.65 80.36±0.43 72.74±0.16

JC 84.78±0.76 73.96±0.68 80.95±0.33 73.04±0.17

deeper than the layer numbers used in other datasets. Due to the smaller size of Cora, the message passing to a target node
in 64-layer GCNII could originate from entire graph, where the stacking of joint-cluster inference will make the node labels
too over-smooth in the same cluster to damage the classification accuracy.

Adversarial attacks. To fully demonstrate the effectiveness of our approach against adversarial attacks, we compare the
CE and JC losses in response to random attacks (Jin et al., 2020b), which randomly injects fake edges into the graph. We
first use the attack method to poison the graph. We then train JC loss and CE loss on the poisoned graph and evaluate the
node classification of these two losses on various backbones. We evaluate how our approach behaves under different ratios
of random noises from 20% to 100% with a step size of 20%, where the noise ratio represents the ratio of added false edges
to real edges. As shown in table 18, our joint-cluster loss consistently outperforms cross-entropy loss under all perturbation
rates. Compared with the independent cross-entropy loss that only uses neighborhood information, our joint-cluster learning
framework refers to a larger range of cluster information, which enables the model to reduce the interference caused by
wrong neighbors by referring to more information.

Prediction calibration. In order to showcase the efficacy of our framework in prediction calibration, we employ GCN
as the encoder and evaluate the impact using Expected Calibration Error (ECE) (Naeini et al., 2015), which partition
predictions into M equally-spaced bins (similar to the reliability diagrams) and taking a weighted average of the bins’
accuracy/confidence difference (Guo et al., 2017). We perform experiments on two citation networks(Pubmed and Arxiv),
whose classes are the most(40) and least(3) respectively, to demonstrate the comprehensive nature of our method in
prediction calibration. As shown in table 19, our framework provides superior prediction calibration than independent CE
loss. Joint-cluster distribution learning produces more reliable classifications than independent decisions due to the reference
signal of the clusters.

I. Limitations and Future Work
Although our framework achieves promising experimental justifications, it suffers from the computation inefficiency
issue. Compared with the standard supervised learning, the joint-cluster distribution modeling expands a c-classes node
classification task into a c2-classes prediction problem. Consequently, we require the larger memory and more expensive
time cost especially for the graph data with a large number of node classes. However, this computation challenge can be
relieved by reformulating the c2-classes prediction problem to a 2c-classes setting, where the ground-truth probability values
are described by the corresponding node or cluster labels.

In the future work, we will explore the joint-cluster supervised learning on a broad range of potential applications, such as
graph classification or link prediction. In addition, the correlation between samples is the biggest challenge in modeling real
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Table 18. Test accuracy (%) under random attacks, where Ptb Rate means the ratio of added false edges to real edges.

Datasets Ptb Rate(%) GCN SGC GAT

CE JC CE JC CE JC

Cora

20% 79.44±0.50 80.03±0.31 79.84±0.02 80.36±0.04 79.72±0.53 80.32±0.71

40% 76.38±0.82 77.02±0.23 77.15±0.02 77.53±0.06 76.21±0.70 77.07±0.60

60% 74.85±0.63 75.93±0.19 74.25±0.05 75.19±0.04 73.42±0.61 74.78±0.95

80% 73.39±0.58 74.64±0.58 73.07±0.05 73.21±0.03 72.13±1.04 72.92±0.62

100% 71.47±0.71 73.03±0.30 70.48±0.05 71.13±0.03 69.96±1.11 70.31±0.77

CiteSeer

20% 68.76±0.67 69.51±0.79 69.43±0.06 70.79±0.08 69.72±1.22 69.87±0.36

40% 65.27±0.42 65.88±0.26 65.83±0.02 66.73±0.08 65.63±0.94 65.97±0.67

60% 62.40±0.68 63.83±0.68 63.80±0.06 64.67±0.03 62.15±0.81 63.30±0.65

80% 61.34±0.60 62.75±0.75 62.84±0.05 63.69±0.05 60.01±0.91 61.70±0.70

100% 59.83±0.72 61.98±0.46 61.30±0.06 62.94±0.06 58.82±1.40 59.82±0.99

PubMed

20% 82.98±0.08 83.02±0.09 71.19±0.01 79.66±0.26 82.00±0.12 82.55±0.10

40% 81.13±0.08 81.16±0.06 64.61±0.02 76.43±0.21 80.01±0.24 80.80±0.20

60% 79.16±0.08 79.24±0.13 60.64±0.09 73.08±0.42 78.14±0.18 79.54±0.26

80% 77.88±0.15 78.13±0.20 58.93±0.07 70.50±0.31 76.90±0.22 78.41±0.13

100% 76.86±0.18 77.04±0.11 57.45±0.06 66.12±0.89 75.76±0.19 77.18±0.24

Polblogs

20% 89.37±0.34 89.70±1.41 83.96±0.76 89.26±0.58 90.38±0.33 90.51±0.43

40% 86.83±0.31 88.29±0.63 75.97±0.77 87.48±0.18 87.08±0.83 88.20±0.61

60% 85.50±0.38 86.49±0.70 72.82±0.81 86.26±0.73 86.47±0.83 86.50±0.84

80% 85.93±0.30 86.81±0.88 64.33±0.89 83.24±0.81 85.38±1.12 85.91±0.53

100% 85.48±0.40 86.04±0.39 68.90±0.39 85.31±0.36 84.56±1.44 85.52±0.78

Table 19. ECE (%) (with M = 10 bins) about cross-entropy loss and joint-cluster loss.

Methods PubMed Arxiv

GCN+CE 10.18% 1.28%
GCN+JC 6.82% 0.47%

problems using probability theory, especially in graph data. We expect more studies and exploration on more intermediate
factorizations between i.i.d and fully joint learning about the graph domain. We believe that the joint distribution learning
will continue to be a promising research area.
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