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ABSTRACT

Advanced deep learning-based approaches have been actively applied to forecast
the spatiotemporal physical dynamics governed by partial differential equations
(PDEs), which acts as a critical procedure in tackling many science and engineer-
ing problems. As real-world physical environments like PDE system parameters
are always capricious, how to generalize across unseen out-of-distribution (OOD)
forecasting scenarios using limited training data is of great importance. To bridge
this barrier, existing methods focus on discovering domain-generalizable repre-
sentations across various PDE dynamics trajectories. However, their zero-shot
OOD generalization capability remains deficient, since extra test-time samples
for domain-specific adaptation are still required. This is because the fundamental
physical invariance in PDE dynamical systems are yet to be investigated or inte-
grated. To this end, we first explicitly define a two-fold PDE invariance principle,
which points out that ingredient operators and their composition relationships re-
main invariant across different domains and PDE system evolution. Next, to cap-
ture this two-fold PDE invariance, we propose a physics-guided invariant learn-
ing method termed iMOOE, featuring an Invariance-aligned Mixture Of Operator
Expert architecture and a frequency-enriched invariant learning objective. Exten-
sive experiments across simulated benchmarks and real-world applications vali-
date iMOOE’s superior in-distribution performance and zero-shot generalization
capabilities on diverse OOD forecasting scenarios.

1 INTRODUCTION

Reasoning physical dynamics governed by partial differential equations (PDEs) is essential for a
wide range of science and engineering applications, such as meteorological prediction (Pathak et al.,
2022), battery design (Wang et al., 2024a), chemical synthesis (Gao & Günnemann, 2024) and elec-
tromagnetic simulation (Huang et al., 2022). As real-world PDE dynamical systems are always com-
plex, ever-changing and even unknown, it is difficult for traditional numerical methods to explicitly
discover the physical law, which requires intensive expert knowledge and computation resources. To
this end, physics-informed deep learning (Yu & Wang, 2024; Li et al., 2024c) are applied to identify
unknown PDE dynamics and speed up calculation. For instance, neural operators (Kovachki et al.,
2023; Li et al., 2023c) are developed to discover the underlying PDE law based on observed trajec-
tories and geometries. Score-based generative models (Li et al., 2024b; Shysheya et al., 2024) are
employed to reconstruct the full physical field from sparse measurements. Despite these success, the
zero-shot out-of-distribution (OOD) generalization performance of PDE dynamics learning remains
underexplored. It is crucial to achieve accurate zero-shot PDE forecasting on unseen OOD scenarios
without additional adaptation. It can obviate test-time retraining burden and accelerate various PDE
system design and control problems (Hao et al., 2022).

To tackle OOD challenges in PDE dynamics learning, existing works focus on learning domain-
generalizable representations from multi-domain PDE dynamics. Such domain can be governed by
variable physical parameters in PDE systems (Cho et al., 2024). This line of research can be cate-
gorized into three classes. First, domain-aware meta-learning (Zintgraf et al., 2019) is leveraged to
empower PDE forecasting models with fast adaptation ability to test domains (Wang et al., 2022b;
Kirchmeyer et al., 2022; Kassaı̈ Koupaı̈ et al., 2024). These methods divide the network parameter
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space into domain-invariant and domain-specific parts, assuming they can represent shared and dis-
tinct knowledge in parametric PDE systems. Second, parameter conditioning schemes (Takamoto
et al., 2023; Cho et al., 2024; Gupta & Brandstetter, 2022) are developed and integrated into cur-
rent neural PDE solvers, allowing them to generalize across varying parameters. Third, (Hao et al.,
2024a; McCabe et al., 2024; Subramanian et al., 2023) demonstrate that pretraining on diverse PDE
dynamics data can enhance the transferability to downstream forecasting tasks. However, the zero-
shot OOD generalization capability of these methods is still lacking. They demand enough test-time
samples and domain-specific fine-tuning to achieve ideal performance. The core reason is that they
do not explicitly illuminate the fundamental invariance principle across various PDE dynamics.

In this work, we look into the zero-shot generalizable PDE dynamics forecasting problem, with only
limited variety of training trajectories available. This zero-shot setting excludes the access to test-
time data for domain adaptation, which is resource-intensive and time-consuming. We are motivated
by the invariant learning theory (Arjovsky et al., 2019; Liu et al., 2021), which can provably achieve
ideal OOD performance by exploiting the invariant correlations between inputs and targets across
varying distributions. Although invariant learning has performed impressively on vision and graph
OOD tasks (Liu et al., 2022; Chen et al., 2023a; 2022), how to define and discover the basic physical
invariance principle for OOD generalizable PDE dynamics forecasting remains unexplored. To this
end, we propose to address the zero-shot OOD forecasting problem by explicitly prescribing and
estimating the PDE invariance from multiple training domains.

To bridge this gap, we first discover that for a specific PDE system, there are two kinds of invariance
independent of domain shifts: i) Individual physical processes dictated by a set of specialized oper-
ators; ii) Composition relationships between these operators and exogenous conditions like physical
parameters and forcing terms. For example, reaction-diffusion systems used in chemistry and ecol-
ogy (Rao et al., 2023) consist of a diffusion process formed by Laplacian operator and a nonlinear
reaction function, with a diffusion and reaction coefficient controlling their rates respectively. The
widely-used operator splitting method (Glowinski et al., 2017) for numerical PDE solving is built
upon this discovery, which separates a complex PDE into several simpler operators and solves them
by different numerical tools. Exploiting these two kinds of physics-guided invariant correlations can
tackle the distribution shifts of PDE forecasting scenarios in a zero-shot manner.

In this work, informed by the two-level invariance principle in PDE systems, we propose a physics-
guided invariant learning method towards zero-shot generalizable PDE dynamics forecasting. Such
PDE invariance learning can be realized by an invariance-aligned network and risk equality objec-
tive. Specifically, as PDE can be split into a set of compositional operators (Glowinski et al., 2017),
we design a mixture of operator experts architecture to capture these invariant operators and their
composition relationships. It is closely aligned with the proposed two-level PDE invariance. Then,
we propose a frequency-enriched invariant learning objective to approximate the PDE invariance by
equalizing the risk of various training domains. Our main contributions are summarized as follows:

• We propose a physics-guided PDE invariance learning method termed iMOOE, which can
achieve zero-shot PDE dynamics forecasting across diverse OOD scenarios.

• A mixture of operator expert network and a frequency-augmented risk equality objective
are proposed to capture the two-fold PDE invariance.

• Extensive experiments demonstrate superior zero-shot OOD generalization capability of
iMOOE, as well as its delicate compatibility with diverse neural operators.

2 OOD GENERALIZATION ON PDE FORECASTING

2.1 PROBLEM FORMULATION

In this work, we focus on forecasting the spatiotemporal dynamics of two-dimensional PDE systems
which can be characterized in the following form:

∂tu = F (x,u, ∂xu, ∂xxu, . . . ,p, f) , ∀ (t,x) ∈ [0, T ]× Ω, (1)

where u(t,x) ∈ Rm is m system state variables defined within the time span T and spatial domain
Ω ⊂ R2. p indicates the PDE parameters that can reflect physical properties, such as the Reynold
number in fluid dynamics. f denotes the forcing term from external input, such as the heat source
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Figure 1: (a) The SCM diagram for the formation process PDE dynamics. It illustrates prescribed
two-level PDE invariance and potential distribution shifts on exogenous inputs. (b) A case study by
varying physical parameters of DR dynamics to compare the zero-shot OOD performance of four
methods. Without the guidance of formalized PDE invariance, previous methods can not achieve
better OOD results on unseen environments. (c) The ID-OOD correlations of two neural opera-
tors. Based on the slope of two linear positive ID-OOD lines, FNO equipped with PDE invariance
learning can capture more transferrable knowledge from limited training domains and achieve better
OOD robustness. Refer to Appendix E.6 for more details.

in the temperature field. F (·) represents the unknown PDE law that governs the underlying physical
processes. ∂xnu is the spatial derivatives which underpin the differential operators in F (·). Suppose
we can collect system trajectories {u(t,x)}Nt

t=1 of Nt time steps from multiple environments Eall.
The environment e ∈ Eall can be distinguished by variable factors in PDE systems, which lead to
diverse OOD scenarios. Akin to prior works on OOD dynamics forecasting (Liu et al., 2023), we
consider distribution shifts on initial conditions u(0,x), physical parameters p, forcing terms f and
temporal resolution Nt. We also assume periodic boundary conditions for PDE systems following
(Li et al., 2021; Wang et al., 2024b; Kassaı̈ Koupaı̈ et al., 2024). Under this multi-context setting, the
goal of OOD generalizable PDE dynamics forecasting is to learn a neural simulator f(·) on available
trajectories from limited training environments Dtr = {De}e∈Etr⊆Eall

, and f(·) can perform well
on all (unseen) domains without any test-time adaptation. This zero-shot OOD forecasting objective
can be cast as a min-max risk optimization problem (Wang et al., 2022a) below:

min
f

max
e∈Eall

Re (f) , s.t. Re (f) = Ep(Ie,Ye) [ℓ (f(I
e),Ye)] , (2)

where Ie = {ue(t,x)}H−1
t=0 is a trajectory of past H steps observed from e, Ye = {ue(t,x)}Nt

t=H is
the target sequence that should be predicted. ℓ(·) is the loss function quantifying prediction errors.
For brevity, we use ut to denote u(t,x) in the rest of content. We describe the practical value of
such zero-shot OOD dynamics forecasting setting in Appendix B.4.

2.2 INVARIANT LEARNING FOR DYNAMICS FORECASTING

Directly solving the min-max optimization problem in Eq. 2 is nontrivial. Following prior invariant
learning literature (Krueger et al., 2021), we can derive the optimal solution f∗ by finding a maximal
invariant predictor which hinges on the invariant correlations between observed trajectories I and
future targets Y. Let ϕ and g denote PDE invariance extractor and output forecaster, then we can
decompose f = g ◦ϕ. In light of (Liu et al., 2021), the optimal ϕ∗(I) should satisfy two properties :

a. Sufficiency property: Y = g∗(ϕ∗(I)) + ϵ, where ϵ is random noise. It requires ϕ∗(I) to possess
sufficient predictive information that can forecast future dynamics Y.

b. Invariance property: Epe [ℓ (g∗(ϕ∗(Ie)),Ye)] = Epe′ [ℓ(g∗(ϕ∗(Ie
′
)),Ye′)], ∀e, e′ ∈ Eall. It

requires ϕ∗ to identify the invariance principle in PDE dynamical system F (·). Such PDE invariance
can give rise to equal risks across different forecasting environments.

Based on above two requisites for PDE invariance learning, the core challenge lies in how to identify
the fundamental PDE invariance principle from multi-domain trajectories. The forecasting model
f∗ = g∗(ϕ∗(I)) built upon PDE invariance can realize the desirable zero-shot OOD performance.
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2.3 INVARIANCE PRINCIPLE FOR PDE DYNAMICS

We now formally introduce the invariance principle for PDE dynamics forecasting. Due to the lack
of such invariance formalism, domain-invariant representations learned by previous meta-learning-
based (Kirchmeyer et al., 2022; Kassaı̈ Koupaı̈ et al., 2024) or parameter conditioning-based meth-
ods (Takamoto et al., 2023) can not achieve ideal OOD outcomes. We define PDE invariance based
on such finding: As the PDE law F (·) is composed of a few operator items (Rudy et al., 2017), the
widely used operator splitting method can (Glowinski et al., 2017) decompose PDE into different
operators and combine the solution of each part. It has exhibited great efficiency on a wide range
of PDE solving, including the complex nonlinear Navier-Stokes equation (Glowinski et al., 2017).
Then, we derive the two-fold PDE invariance principle which underpins PDE system evolution:

(i). Operator invariance: PDE dynamics are governed by the composition of a few spatial operators
{σi(x,u, ∂xu, . . . )}Ki=1. These elementary operators representing distinct physics remain invariant
across system evolution and different domains.

(ii). Compositionality invariance: The composition method h to aggregate basic operators, physical
parameters and forcing terms is fixed as F = h(σ1, ..., σi, ..., σK ,p, f) for a specific PDE system.

In addition, the future state ût+1 can be calculated as ût+1 =
∫ t+1

t
h({σi}Ki=1,p, f)dt + ut given

the last observation ut. In a nutshell, invariant correlations between input I and target Y involve:
invariant operators {σi}Ki=1, invariant compositional relationships h among different items, as well
as the fixed step-wise numerical integration. We present a structural causal model (SCM) (Krueger
et al., 2021) in Fig. 1(a) to illustrate the formation process of PDE dynamics and its pertinent two-
level invariant correlations. Regardless of various time steps and distribution shifts on {u0,p, f},
the fundamental set of operators and their composition relationships can remain invariant. Besides,
we provide a case study by varying diffusion and reaction coefficient of DR dynamics in Fig. 1(b),
and the ID-OOD correlation lines (an effective metric to assess OOD robustness (Yuan et al., 2023))
in Fig. 1(c). Both of them can further demonstrate the effectiveness of the proposed physics-guided
PDE invariance learning for improving zero-shot OOD capability. See Appendix B for more related
works on PDE dynamics forecasting and invariant learning.

3 PHYSICS-GUIDED INVARIANT LEARNING FRAMEWORK

To develop the physics-guided invariant learning for zero-shot OOD forecasting, the key challenge
resides in how to cultivate an effective invariant forecaster that can exploit two-level PDE invariance
principle defined in Sec. 2.3. To achieve this, we first design a mixture of operator experts network
which can respect the invariant correlations between past observations and future trajectories. In
vision OOD tasks, the mixture-of-experts (MoE) architecture has shown great generalization, since
MoE can closely align with the invariant correlations between image attributes and labels (Li et al.,
2023a). But how to enable MoE to capture PDE invariance for zero-shot OOD forecasting remains
an open issue. Next, we propose a frequency-enriched invariant learning objective to estimate PDE
invariance from multiple training domains. It can tackle the high-frequency learning pitfall in ex-
isting neural operators (Khodakarami et al., 2025). Up to now, we can derive the invariant Mixture
of Operator Experts (iMOOE), a physics-guided invariant learning method towards zero-shot OOD
generalizable PDE dynamics forecasting as depicted in Fig. 2.

3.1 ARCHITECTURE ALIGNMENT: MIXTURE OF OPERATOR EXPERTS

To align with the operator and compositionality invariance presented in Sec. 2.3, we develop the
MOOE architecture which consists of two parts: i) A group of specialized neural operator experts
to represent the unique and unknown physics. ii) A fusion network to aggregate these expert output
with exogenous input like system parameters. This design shares the similar spirit with the effective
operator splitting solver (Glowinski et al., 2017), which separates a complex PDE into a set of sim-
pler operators and calculates each part by suitable numerical methods. Taking the reaction-diffusion
equation as an example (Krishnapriyan et al., 2021), we can solve the second-order diffusion com-
ponent by finite difference and calculate the reaction function by forward pass. Note that the typical
operator splitting algorithm for PDE solving has a serial structure, which treats the solution of the
former operator as the initial condition of the latter operator. But such serial operator solving will
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Figure 2: (a) Overview of iMOOE method, which can capture the physics-guided PDE invariance by
the mixture of operator experts architecture and frequency-enriched multi-context (|Etr| = 2 here)
training. (b) The structure of single operator expert, which can well fit in diverse neural operators.

lead to slow computation for neural PDE learning. In this regard, the developed MOOE network
stacks operator experts in parallel instead of linking them in series, as depicted in Fig. 2(a).

Operator Experts. Similar to operator splitting, each individual operator expert in MOOE should
be specialized in approximating a distinct physical process. In addition, we observe that each oper-
ator component in PDEs is formed by state variable u or its certain orders of partial derivatives. For
instance, advection term ∇ · u consists of ∂xu whereas diffusion term ∇2u stems from ∂xxu. In
this regard, we design a binary mask vector mi = {0, 1}S for each operator expert σi, making it can
adaptively select the useful spatial derivatives to benefit operator learning. Here, S is the number
of pre-computed derivatives ∂xnu. We leverage existing neural operators (Kovachki et al., 2023) as
the backbone operator experts, which excel at approximating PDE laws:

σi = NOi

(
x,ut−W+1:t,mi ⊙ [∂xut, ∂xxut, . . . ]

T
)
. (3)

A notable advantage is that expert NOi(·) can be compatible with a broad variety of neural operators
without any modification on their structures. We verify this compatibility in Section 4.3. Apart from
spatial coordinates x and past sequences of length W , we also incorporate pre-calculated derivatives
as prior input, which can render operator learning easier (Li et al., 2024a). To encourage operator
experts to represent inhomogeneous physical processes, we feed them with different sets of pre-
calculated derivatives by designing a mask diversity loss:

Lmask = min
{mi}K

i=1

1

K2

∑K
i=1

∑K
j=1 exp

(
−∥mi −mj∥22

)
. (4)

We illustrate this masking-based input derivative selection design in Fig. 2(b), and analyze its effect
in Appendix E.1.2.

Fusion Network. The key role of the fusion network is to aggregate the output of operator experts
and condition it on physical parameters in variable p and f . Regarding the parameter conditioning,
we directly concatenate the expert output with PDE parameters and utilize a multi-layer perceptron
(MLP) to encode it. As for the aggregator, we should consider two different cases after some empir-
ical trials: i) For PDE systems with strong non-linearity, such as the convection term u ·∇(∇×u) in
turbulence flow (Dresdner et al., 2023), we employ an extra network to learn this complex compo-
sition. ii) For PDE systems without these intractable non-linear terms, such as the additive operator
relationship in reaction-diffusion, we can simply add up expert output. In brief, the fusion network
representing the invariant composition relationship h can be expressed as follows:

h = FusionNet (MLP1 (σi,p, f) , . . . ,MLPK (σK ,p, f)) . (5)

In Appendix E.1.3, we verify that choosing a suitable type of fusion network can better align with
the compositionality invariance and achieve better OOD performance.

3.2 FREQUENCY-ENRICHED INVARIANT LEARNING OBJECTIVE

With the MOOE network which can align with two-fold PDE invariance, the next step is to design an
effective invariant learning objective that can satisfy two requisites presented in Sec. 2.2. However,
we find that the intrinsic spectral bias issue of neural operators will hinder PDE invariance learning
due to the neglect of high-frequency information. To mitigate it, we propose a frequency-augmented
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invariant learning loss which can help to capture the complete domain-generalizable representations
in PDE dynamics.

Maximal Prediction Loss. Following invariant learning literature (Liu et al., 2021), we can fulfill
the sufficiency property by maximizing the mutual information between the two-level PDE invari-
ance h ◦ {σi}Ki=1 and future forecasts Ye. In light of (Tsai et al., 2021), this information maximiza-
tion objective can be realized by the maximal prediction loss in dynamics forecasting:

Lpred =
1

|Etr|
∑
e∈Etr

Re
pred, and Re

pred = Epe

[
Nt∑
t=H

∥∥∥∥ue
t −

∫ t

t−1

h({σi}Ki=1,p
e, fe)dt− ûe

t−1

∥∥∥∥2
2

]
,

(6)
where we utilize the autoregressive training manner and ûe

t−1 is the predicted state at the last time
step. We utilize the Euler forward method to implement the numerical integration on time marching.

Risk Equality Loss. The invariance property demands prediction error across various environments
to be equal. As proved in invariant learning literature (Krueger et al., 2021), we can meet this risk
equality objective by minimizing the variance of risks over different training environments:

Linv = Var
({

Re
pred

}
e∈Etr

)
, (7)

where Re
pred is provided in Eq. 6. We borrow the useful linear scheduling scheme to impose this

risk equality loss (Krueger et al., 2021), which reserves an initial empirical risk minimization stage
(i.e. a pretraining stage merely by Lpred) to learn the rich predictive representations. Refer to
Appendix E.1.5 for the effect of this linear invariant loss scheduling. Note that our design differs
from (Krueger et al., 2021) in environment division. In addition to taking physical parameters in
p and f as environment labels, we also partition training domains by different autoregressive steps,
since there exist covariate shifts in p(Ie,Ye). Specifically, during the autoregressive prediction, the
distribution of past sequences p(Ie) can change with the time marching, but the correlations between
Ie and Ye keep invariant at each time step. We find this step-wise division is instrumental for fluid
dynamics forecasting such as Navier-Stokes and Burgers systems, as shown in Appendix E.1.4.

Frequency Enrichment Loss. Both Lpred and Linv are inadequate to capture the complete PDE
invariance, since neural operators prioritize learning the dominant low-frequency features in state u
(a.k.a. the spectral bias issue) (Lippe et al., 2023). Ignoring the necessary high-frequency modes
entails spectral information loss for invariant operator learning, which impedes σi to satisfy the
sufficiency property given in Sec. 2.2. Besides, high-frequency learning errors can propagate to the
whole spectral domain during the autoregressive prediction process, rendering it hard to generalize
across OOD scenarios with different frequency distributions. To this end, we propose to augment
high-frequency representations when learning PDE invariance by designing a regularization item:

Lfreq =
1

|Etr|
∑
e∈Etr

Re
freq, and Re

freq = Epe

 Nt∑
t=H

∑
ξ

∥ξ∥22 ∥F (ut) (ξ)−F (ût) (ξ)∥22

 , (8)

where F is the fast Fourier transform and ξ is the wavenumber vector for each spatial frequency.
Apparently, the weight ||ξ||22 can pay more attention to the high-frequency modes at each forecasting
step. We validate such frequency enrichment loss can induce better PDE forecasting generalization
in Appendix. E.1.1. Prior works on OOD vision recognition (Chen et al., 2023a; Zhang et al., 2022)
also proved that diverse and rich features can lead to better OOD capability.

3.3 OVERALL FRAMEWORK

The total PDE invariance learning objective for iMOOE is presented below:

Ltotal = λpredLpred + λinvLinv + λfreqLfreq + λmaskLmask; (9)

Equipped with this hybrid training loss and invariance-aligned architecture developed in Sec. 3.1, we
can effectively learn the proposed PDE invariance to achieve zero-shot OOD forecasting. Existing
neural operators always train with prediction loss Lpred, without any effort to learn the fundamental
PDE invariance principle. This could be the key reason for their failures on OOD dynamics fore-
casting. We demonstrate in Section 4.3 that when equipped with the explicit physics-informed PDE
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invariance learning method iMOOE, current neural operators can realize better OOD performance.
Moreover, in Appendix E.7, we further investigate how the properties of multi-environment training
data can affect the zero-shot OOD capability of iMOOE. As simulating PDE trajectories or measur-
ing real-world PDE dynamics is expensive, such analysis can provide a guideline on how to collect
training data under a limited data budget.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We adopt five PDE dynamical systems in different fields for the spatiotemporal physical
dynamics forecasting task: Diffusion-Reaction (DR) (Takamoto et al., 2022), Navier-Stokes (NS)
(Li et al., 2021), Burgers (BG) (Hao et al., 2024b), Shallow-Water (Takamoto et al., 2022) and Heat-
Conduction (HC) (Hao et al., 2024b). We construct a wide range of OOD scenarios by varying the
physical parameters of initial conditions u0, PDE coefficients p, forcing terms f or temporal resolu-
tions Nt. ID and OOD parameters for PDE simulation are randomly drawn from two non-overlapped
uniform distributions, while previous parametric PDE learning works like (Kassaı̈ Koupaı̈ et al.,
2024; Takamoto et al., 2023) just select several separate parameters. The spatial resolution of each
state frame is fixed to 64× 64. See Appendix C for detailed description on data generation.

Evaluation Criteria. We leverage two metrics in PDEBench (Takamoto et al., 2022) to comprehen-
sively evaluate the forecasting performance: i) normalized Mean Squared Error (nMSE) in raw data
space: nMSE = ∥ûH:Nt − uH:Nt∥

2
2 / ∥uH:Nt∥

2
2. ii) fourier Root Mean Squared Error (fRMSE) in

frequency domain: fRMSE =
√∑ξmax

ξmin
∥F(ûH:Nt

)(ξ)−F(uH:Nt
)(ξ)∥22/(ξmax − ξmin + 1). They

can reflect the forecasting accuracy of PDE system states from both data and physics views. Note
that for all experiments, we present both in-distribution (ID) and out-of-distribution (OOD) results
in zero-shot setting (i.e. without any access to test-time samples for adaptation).

Implementation Details. We fix the number of operator experts K = 2 and loss weights λpred =
1, λfreq = 0.1, λmask = 0.001. Similar to prior invariant learning work (Krueger et al., 2021), we
linearly schedule λinv with an upper threshold of 0.001. The popular Fourier Neural Operator (FNO)
(Li et al., 2021) with 4 layers and 64 width is employed as the backbone of each operator expert.
We pre-calculate first- and second-order spatial derivatives for adaptive selection by masking. Past
H = W = 10 steps observations are used to predict future trajectories, following the same setting
in previous PDE forecasing works (Li et al., 2021; Kassaı̈ Koupaı̈ et al., 2024). iMOOE is trained
on a NVIDIA A100 GPU with total 500 epochs, 0.001 initial learning rate by Adam optimizer.

4.2 ZERO-SHOT OOD PERFORMANCE

Baselines. We select six latest PDE forecasting methods with highlighted OOD generalization capa-
bility: i) CoDA (Kirchmeyer et al., 2022) and GEPS (Kassaı̈ Koupaı̈ et al., 2024): two context-aware
meta-learning-based models. ii) CAPE (Takamoto et al., 2023): a parameter conditioning method.
iii) CNO (Raonic et al., 2023): a robust convolutional neural operator. iv) DPOT (Hao et al., 2024a):
a transformer-based operator with denoising pretraining. v) VCNeF (Hagnberger et al., 2024): a
conditional neural field-based method. Note that meta-learning-based methods commonly require
few-shot adaptation to perform OOD forecasting. In Appendix E.4, we describe how to adapt them
to zero-shot setting and further compare zero-shot iMOOE with few-shot CoDA, GEPS. Implemen-
tation details of these baseline models are provided in Appendix E.9.

Results. We report ID/OOD generalization outcomes on various unseen scenarios in Table 1. It is
obvious that iMOOE can achieve the state-of-art (SOTA) results on this simulated benchmark, with
an average increase of 40.21% on nMSE and 30.78% on fRMSE. Such considerable promotion re-
flects that explicitly learning the proposed physics-guided PDE invariance can boost zero-shot OOD
performance on PDE dynamics forecasting. Moreover, we present the OOD results on extrapolated
temporal resolutions in Table 2. Following previous time extrapolation setting (Kassaı̈ Koupaı̈ et al.,
2024), we train on [0, Nt] and test on [0, 2Nt]. We find that iMOOE can achieve SOTA results with
an average growth of 32.51% on nMSE and 15.30% on fRMSE. It indicates that learning the un-
derlying PDE invariance across time steps can improve the OOD performance on unseen temporal
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Table 1: Zero-shot ID/OOD generalization results compared to existing generalizable PDE dynamics
forecasting methods. The listed five PDE dynamical systems are employed to synthesize a diversity
of OOD forecasting scenarios. Best results are in bold and second-best results are underlined. ”n.a.”
indicates the excess of computational resource limit.

Metrics Models DR NS BG SW HC

ID OOD ID OOD ID OOD ID OOD ID OOD

nMSE

CoDA 3.40e-1 6.05e-1 4.31e-1 9.14e-1 8.72e-1 9.22e-1 n.a. n.a. 1.16e+0 2.37e+0
CAPE 8.90e-3 7.16e-2 9.09e-2 3.56e-1 5.00e-3 3.04e-2 2.71e-6 6.18e-5 5.70e-2 3.65e+0
CNO 3.36e+0 2.56e+0 6.03e-1 6.90e-1 3.30e-3 1.87e-2 2.10e-5 3.82e-5 1.01e-1 2.45e+0
DPOT 2.62e-2 5.67e-2 3.44e-1 5.08e-1 2.18e-2 8.41e-2 6.69e-5 4.85e-4 3.68e-2 2.12e+0
VCNeF 8.70e-3 7.84e-2 1.40e-1 3.81e-1 1.03e-2 4.68e-2 4.59e-5 6.12e-4 1.37e+0 1.42e+0
GEPS 8.71e-3 7.94e-2 2.07e-1 4.13e-1 2.24e-2 7.56e-2 1.22e-4 2.76e-4 9.43e-1 1.35e+0
iMOOE 5.15e-3 4.23e-2 6.49e-2 3.12e-1 1.20e-3 1.08e-2 3.34e-7 3.02e-5 3.92e-2 1.22e+0

fRMSE

CoDA 7.88e-3 9.93e-3 3.81e-2 7.31e-2 2.12e-2 2.50e-2 n.a. n.a. 1.25e-2 7.09e-3
CAPE 1.18e-3 2.21e-3 1.97e-2 5.77e-2 2.13e-3 5.70e-3 1.22e-4 5.50e-4 2.05e-3 8.83e-3
CNO 3.06e-2 2.43e-2 4.67e-2 7.79e-2 2.60e-3 5.82e-3 3.35e-4 4.79e-4 2.84e-3 7.54e-3
DPOT 3.00e-3 2.80e-3 4.59e-2 7.30e-2 5.32e-3 1.04e-2 6.61e-4 1.95e-3 3.08e-3 7.83e-3
VCNeF 1.68e-3 2.77e-3 2.66e-2 6.11e-2 3.20e-3 7.28e-3 5.46e-4 1.93e-3 1.26e-2 7.13e-3
GEPS 1.99e-3 3.28e-3 3.85e-2 6.85e-2 5.14e-3 9.38e-3 9.08e-4 1.38e-3 1.04e-2 6.16e-3
iMOOE 9.16e-4 1.78e-3 1.38e-2 5.36e-2 1.10e-3 3.83e-3 4.59e-5 3.65e-4 1.31e-3 5.95e-3

Table 2: Zero-shot time extrapolation results on two PDE systems.

Models
DR NS

nMSE fRMSE nMSE fRMSE

In-time Out-time In-time Out-time In-time Out-time In-time Out-time

CAPE 3.30e-3 3.88e-1 1.11e-3 8.58e-3 1.92e-1 5.46e-1 4.36e-2 7.04e-2
DPOT 4.51e-3 4.58e+0 1.31e-3 1.75e-2 1.94e-1 6.22e-1 4.62e-2 7.88e-2

VCNeF 2.41e-3 5.46e-1 9.81e-4 1.26e-2 3.00e-1 9.67e-1 4.90e-2 8.66e-2
GEPS 2.52e-3 6.96e-1 1.02e-3 1.39e-2 2.70e-1 6.57e-1 4.78e-2 7.77e-2

iMOOE 9.47e-4 1.99e-1 4.93e-4 6.26e-3 1.65e-1 4.57e-1 3.89e-2 6.79e-2

Table 3: Operator compatibility study on DR data with various OOD contexts. ”Env1” to ”Env8” in-
dicates eight different settings for diffusion and reaction coefficients. ”+MOOE” denotes employing
vanilla neural operators as the backbone of operator experts. ”+iMOOE” denotes further imposing
the frequency-enriched invariance training on MOOE.

Operators Variants Env1 Env2 Env3 Env4 Env5 Env6 Env7 Env8 Mean Std

FNO
Naive 6.78e-2 8.80e-2 6.70e-2 6.00e-2 3.14e-2 1.11e-1 1.62e-1 4.68e-2 7.94e-2 3.88e-2

+MOOE 3.40e-2 6.00e-2 3.88e-2 3.28e-2 1.88e-2 8.14e-2 1.22e-1 2.49e-2 5.16e-2 3.26e-2
+iMOOE 3.19e-2 5.20e-2 3.12e-2 3.05e-2 1.41e-2 6.02e-2 9.93e-2 1.87e-2 4.23e-2 2.60e-2

DeepONet
Naive 5.94e-1 9.73e-1 6.38e-1 5.18e-1 3.99e-1 7.27e-1 5.58e-1 5.09e-1 6.15e-1 1.63e-1

+MOOE 6.03e-1 9.74e-1 6.39e-1 5.37e-1 3.70e-1 7.18e-1 5.56e-1 4.82e-1 6.10e-1 1.69e-1
+iMOOE 5.45e-1 8.75e-1 5.76e-1 4.93e-1 3.47e-1 6.31e-1 4.82e-1 4.45e-1 5.49e-1 1.47e-1

VCNeF
Naive 5.77e-2 9.74e-2 6.11e-2 5.35e-2 2.48e-2 1.26e-1 1.68e-1 3.85e-2 7.84e-2 4.54e-2

+MOOE 3.51e-2 6.91e-2 3.37e-2 3.31e-2 2.62e-2 8.86e-2 1.40e-1 3.31e-2 5.73e-2 3.72e-2
+iMOOE 3.29e-2 6.59e-2 3.01e-2 3.30e-2 2.60e-2 8.31e-2 1.37e-1 3.36e-2 5.52e-2 3.62e-2

OFormer
Naive 4.95e-2 6.74e-2 4.75e-2 4.74e-2 5.27e-2 6.77e-2 7.47e-2 5.31e-2 5.75e-2 1.01e-2

+MOOE 4.47e-2 4.38e-2 4.16e-2 4.98e-2 5.31e-2 4.78e-2 6.60e-2 5.03e-2 4.96e-2 7.12e-3
+iMOOE 4.06e-2 4.15e-2 4.17e-2 4.80e-2 5.29e-2 3.47e-2 3.65e-2 5.09e-2 4.34e-2 6.18e-3

distribution shift scenarios. To measure iMOOE’s zero-shot OOD capacity more clearly, we present
an empirical upper bound for its OOD performance in Appendix E.5.

4.3 UNIVERSALITY STUDY

In Table 3, we manifest iMOOE’s flexibility on integrating diverse operator learning models into op-
erator experts σ(·) in a plug-and-play fashion. We involve four classic categories of neural operators
including FNO (Li et al., 2021), DeepONet (Lu et al., 2021), neural field-based VCNeF (Hagnberger
et al., 2024) and transformer-based OFormer (Li et al., 2023b). We validate their vanilla capability
and iMOOE-upgraded performance on DR dynamics under 8 OOD environments, and present OOD
nMSE results of each environment in Table 3. Existing neural operators have not been comprehen-
sively validated under this zero-shot OOD setting. When augmented by either MOOE or iMOOE,
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these neural operators can consistently achieve lower mean and variance values on nMSE over var-
ious OOD contexts. Such promotion underscores both the PDE invariance-aligned architecture and
frequency-enriched objective can improve zero-shot OOD capability of existing neural operators.

Table 4: Zero-shot OOD results on SST dynamics.

Models nMSE fRMSE

Mean Std Mean Std

GEPS 8.24e-1 3.08e-1 5.28e-2 6.02e-3
DPOT 5.56e-1 2.43e-1 3.65e-2 5.19e-3

VCNeF 6.69e-1 2.67e-1 4.61e-2 6.39e-3
DyAd 5.87e-1 2.44e-1 3.79e-2 5.15e-3
CAPE 6.51e-1 2.81e-1 3.84e-2 5.59e-3

iMOOE 5.12e-1 2.36e-1 3.44e-2 5.03e-3 Figure 3: Test SST sample showcase.

4.4 APPLICATION TO REAL-WORLD PDE DYNAMICS

Apart from the simulated benchmark above, we also leverage real-world PDE-governed dynamics
of daily Sea Surface Temperature (SST) (Huang et al., 2021) for OOD validation. A specific region
on Pacific Ocean is selected and divided into 60 × 60 grid. We predict SST state of future 6 days
using past 4 days’ observations. SST data between year 1982-2019 and 2020-2021 is utilized for
training and testing. Note that each independent SST trajectory can be deemed as an instance from
a unique environment, since daily SST variations are affected by many exogenous conditions like
solar radiation and ocean currents. Input parameters are also unknown so we feed one-valued vector
to the fusion network. We take a typical SST baseline called DyAd (Wang et al., 2022b) and present
the comparison results in Table 4. We can see that iMOOE can attain the lowest mean and variance
of two metrics across various OOD samples. It reflects that iMOOE can better estimate the invariant
physical laws in SST. Test samples in Fig. 3 exhibit iMOOE can capture local variations of SST with
higher fidelity and accuracy. Beyond 2D PDE-governed dynamics, we further demonstrate iMOOE’s
zero-shot OOD capability can be extended to other types of dynamical systems in Appendix E.2.
4.5 SENSITIVITY ANALYSIS

Table 5: Effect of varying numbers of operator experts.

Number of
expert K

DR BG Inference
timenMSE fRMSE nMSE fRMSE

1 5.26e-2 1.94e-3 1.38e-2 4.35e-3 0.08s
2 4.63e-2 1.81e-3 1.14e-2 3.95e-3 0.11s
3 4.17e-2 1.74e-3 1.07e-2 3.83e-3 0.15s
4 5.00e-2 1.84e-3 1.14e-2 3.88e-3 0.18s

In Table 5, we investigate the influence
of the number of operator experts K on
iMOOE’s zero-shot OOD performance.
To ensure a fair comparison, we only es-
calate K from 1 to 4 and keep other se-
tups like the width of FNO and training
batch size unchanged. We find that the
best-performing group is K = 3 while
the worst setting is K = 1. This reveals
that small K (i.e. only 1 expert) is not
sufficient to capture the operator invari-
ance, while large K (i.e. 4 experts) could be redundant given that actual PDE systems contains only
a few number of compositional invariant operators (Rudy et al., 2017). Besides, the increasing num-
ber of neural operators can exacerbate the computational overhead. Refer to Appendix D for more
detailed explanations on the effect of expert number K and its distinction from the mixture-of-expert
(MoE) architecture in large foundation models (LFMs). Refer to Appendix E.3 for more sensitivity
analysis on loss weights in Eq. 9.

5 CONCLUSION

In this work, we propose the iMOOE learning framework to address the zero-shot OOD general-
ization issue in the scope of PDE-governed spatiotemporal physical dynamics forecasting. We first
introduce the two-level physics-guided invariance principle for PDE dynamical systems. Then, we
develop the mixture of operator experts architecture plus the frequency-augmented invariant learning
objective to capture such PDE invariance from limited training environments. Various experiments
demonstrate the excellent zero-shot OOD forecasting capability of iMOOE. However, the proposed
PDE invariance learning is validated on a limited diversity of dynamical systems. In future work, we
plan to extend iMOOE’s zero-shot OOD capability to other types of PDE dynamics, such as PDE
systems on irregular grids, or more real-world applications like earth system forecasting.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text. It is important to note that the LLM
was not involved in the ideation, research methodology, or experimental design. All research con-
cepts, ideas, and analyses were developed and conducted by the authors. The contributions of the
LLM were solely focused on improving the linguistic quality of the paper, with no involvement in
the scientific content or data analysis. We have ensured that the LLM-generated text adheres to
ethical guidelines and does not contribute to plagiarism or scientific misconduct.

B RELATED WORK

B.1 SPATIOTEMPORAL PDE DYNAMICS FORECASTING

Deep learning-based dynamics forecasting centers around developing diverse neural operators to
decipher the unknown time-dependent PDE systems. This line of research has been extensively
leveraged to reason a wide scope of real-world spatiotemporal dynamics, like atmospheric circula-
tion (Pathak et al., 2022), ocean wave (Cui et al., 2025), turbulent fluid (Xing et al., 2024), and power
system transient (Cui et al., 2023). Their innovations come from either new operator architectures
or more robust autogressive training methods, which are aimed at addressing a range of open issues
in PDE forecasting, including solving parametric PDEs (Takamoto et al., 2023; Cho et al., 2024),
full-field reconstruction from sparse observations (Shysheya et al., 2024; Li et al., 2024b), irregular
geometries (Li et al., 2023c; Wu et al., 2024a) or long temporal process stability (Lippe et al., 2023;
Rühling Cachay et al., 2023). However, most of these works do not highlight the zero-shot OOD
generalizable forecasting, which is a significantly crucial problem for two reasons: i) The unseen
OOD scenarios can always occur in real-world PDE dynamics prediction, owing to the ubiquitous
distribution shifts of forecasting contexts, encompassing system parameters, external forcing func-
tions, initial conditions and sampling conditions. ii) As procuring abundant dynamics trajectories
to learn domain-transferable representations is expensive, many PDE dynamics forecasting methods
are cultivated in low-data regime. In this sense, how to generalize across diverse OOD environments
with limited training data is of great importance. Although several studies have explored the poten-
tial of meta-learning (Kirchmeyer et al., 2022; Kassaı̈ Koupaı̈ et al., 2024) or parameter conditioning
(Takamoto et al., 2023; Gupta & Brandstetter, 2022) methods in OOD forecasting, their zero-shot
generalization capability remains lacking since they can not expose the truly fundamental invariance
in PDE dynamical systems. Another drawback is that they need to carry out ad-hoc modifications to
current neural operator architectures. To remedy them, we elucidate the physical invariance principle
of PDE dynamics from two perspectives, and then develop a Mixture-of-Expert (MoE)-based archi-
tecture which can delicately integrate existing operator learning methods to capture PDE invariance
in a plug-and-play manner.

Note that the MoE-based architecture (Dai et al., 2024) has been extensively employed in Large
Language Models (LLM) to increase the representation capacity and knowledge density without
sacrificing the inference speed. Few neural PDE solvers based on spatial domain decomposition
(Hao et al., 2023; Chalapathi et al., 2024) also borrow this parallel structure to improve the compu-
tational efficiency for large-scale PDEs. It shares the same spirit with the finite element method, as
each expert is assigned to calculate on a sub-domain and coordinating these experts can behave well
on complex geometries. In contrast, our proposed mixture of operator expert architecture is aimed
at capturing the domain-invariant operators for zero-shot generalizable forecasting. Another differ-
ence from LLM on MoE usage is that experts in LLM are sparsely activated according to the routed
token, whereas MoE in neural PDE is always dense as each expert should account for sub-operators
or sub-domains.

B.2 INVARIANT LEARNING FOR OOD GENERALIZATION

Invariant learning (Arjovsky et al., 2019; Liu et al., 2021) is an effective paradigm to boost OOD
generalization performance. It aims to discover invariant representations that can possess sufficient
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information to predict targets and elicit equal risks across various (unseen) environments. There
exist two open issues in invariant learning: i) how to prescribe the domain-specific invariance prin-
ciple for different learning problems; ii) how to design the effective OOD objectives to estimate the
defined invariance on limited training contexts. Existing works strive to address these challenges
from different aspects, such as feature learning (Chen et al., 2023a), multi-objective optimization
(Chen et al., 2023b), architecture alignment (Li et al., 2023a), information bottleneck (Ahuja et al.,
2021) and gradient consistency (Rame et al., 2022). These research outcomes have been success-
fully applied to vision recognition (Li et al., 2023a), molecule prediction (Chen et al., 2022; Li et al.,
2022), pedestrian motion forecasting (Liu et al., 2022) and time series analysis (Liu et al., 2024).
However, the efficacy of invariant learning for PDE dynamics forecasting is still under-explored. To
bridge this gap in this work, we propose to unleash its power by fostering an iMOOE architecture
and optimizing it by a frequency-enriched risk equality loss, both of which can help to capture the
complete PDE dynamics invariance.

B.3 PHYSICAL INVARIANCE LEARNING

Incorporating physical prior knowledge into deep learning is a valid way to improve the general-
ization capacity, data efficiency as well as the physical consistency of produced predictions (Yu &
Wang, 2024). In light of this, a line of related research focus on imposing domain-specific physics
knowledge which remains invariant in PDE dynamical systems, for the sake of better accuracy and
OOD robustness of dynamics reasoning. These physical invariance can involve symmetries (Wang
et al., 2021), conservation laws (Huang et al., 2024), exact physics models (Holt et al., 2024) or basis
function dictionaries (Mouli et al., 2024). In this work, we propose a two-level invariance princi-
ple for PDE dynamics inspired by the formation process of PDE laws and useful operator splitting
method. Such PDE invariance can be deemed as a kind of prior physical knowledge, which need to
be digged out by physics-informed invariant learning.

B.4 PRACTICAL VALUE OF ZERO-SHOT OOD DYNAMICS FORECASTING

In the scope of both parametric PDE simulation and real-world PDE-governed physical dynamics
forecasting, the zero-shot OOD generalization is a ubiquitous and urgent issue. i) In many industrial
manufacturing fields which require high-intensity PDE calculation, such as electromagnetic simu-
lation (Huang et al., 2022) and airfoil design (Wu et al., 2024b), PDE parameters are ever-changing
due to the varying material properties and ambient factors. It is also hard to acquire valuable test-
time trajectories for each new physical environment. Thus the zero-shot OOD simulation is highly
demanded. ii) In many spatiotemporal physical dynamics forecasting fields such as weather and
climate prediction (Bodnar et al., 2025), there always exist unforeseen dynamics patterns in me-
terological variables due to the chaotic nature of systems and unpredictable human activities. It is
impossible to collect abundant training contexts which can cover all the unforeseen test scenarios. It
is also computational expensive to fine-tune the weather foundation model (Bodnar et al., 2025) for
the hourly or daily inference. Thus the zero-shot OOD forecasting is greatly significant.

C MULTI-ENVIRONMENT DATASET DETAILS

Unless otherwise stated, the experiments conducted in this work follow the same data setting during
the training and test stage: i) Training data: 16 environments with 64 trajectories per environment.
ii) Test data: 16 environments with 8 trajectories per environment. All OOD forecasting experiments
are executed in zero-shot settings, without any test-time samples for model fine-tuning or adaptation.
Below, we clarify the multi-context state trajectory generation method on five two-dimensional PDE
dynamical systems. We assume the boundary conditions (BCs) are fixed (e.g. periodic BC) for each
PDE system, so that BCs are not regarded as environment variables.

Diffusion-Reaction (Takamoto et al., 2022). The underlying DR equation is presented as:

∂tu = Du∂xxu+Du∂yyu+
(
u− u3 − k − v

)
, (10)

∂tv = Dv∂xxv +Dv∂yyv + (u− v) . (11)

u, v denote the concentrations of activator and inhibitor respectively. The spatiotemporal domain is
(x, t) ∈ [0, 2]2 × [0, 20]. At the initial state, two objects are randomly localized into six 0.2 × 0.2
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squares. Two diffusion coefficients Du, Dv and one reaction coefficient k are assigned to construct
different physical contexts. The physical parameters of training trajectories are drawn from Du ∈
[1e-3, 2e-3], Dv ∈ [5e-3, 1e-2], k ∈ [5e-3, 1e-2], while the OOD test parameters are fetched from
Du ∈ [2e-3, 3e-3], Dv ∈ [1e-2, 1.5e-2], k ∈ [1e-2, 1.5e-2]. We utilize past 10 steps sequence to
forecast future 11 steps states, i.e. H = W = 10 and Nt = 21.

Navier-Stokes (Li et al., 2021). The vorticity-type incompressible NS equation is presented as:

∂tω = −u · ∇ω + ν∆ω + 0.1 (sin(wπ(x+ y)) + cos(wπ(x+ y))) ,∇ · u = 0. (12)

ω, u denote the velocity field and fluid vorticity. The spatiotemporal domain is (x, t) ∈ [0, 1]2 ×
[0, 50]. The initial vorticity are produced from a normal Gaussian random field. The viscosity co-
efficient ν and the frequency coefficient w in the forcing term can be employed to generate diverse
physical environments. We simulate training sequences using ν ∈ [1e-5, 1e-3] and OOD test se-
quences using ν ∈ [5e-6, 8e-6] ∪ [1.2e-3, 2e-3] with a fixed w = 2. We utilize previous 10 steps
trajectories to forecast future 21 steps vorticity, i.e. H = W = 10 and Nt = 31.

Burgers (Hao et al., 2024b). The coupled BG equation is presented as:

∂tu = −u · ∇u+ ν∆u. (13)

u denotes the fluid velocity field. The spatiotemporal domain is (x, t) ∈ [0, 64]2 × [0, 1]. Identical
to (Hao et al., 2024b), we also adopt the same sine and cosine functions over the spatial domain to
generate initial conditions. The viscosity coefficient ν is employed to produce diverse forecasting
scenarios. The training sequences are simulated from ν ∈ [5e-3, 5e-2], whereas the OOD test
sequences are simulated from ν ∈ [2.5e-3, 4e-3] ∪ [6e-2, 1e-1]. The past 10 steps series are utilized
to forecast future 11 steps velocity, i.e. H = W = 10 and Nt = 21.

Shallow-Water (Takamoto et al., 2022). The hyperbolic SW equation is presented as:

∂th+ ∂xhu+ ∂yhv = 0, (14)

∂thu+ ∂x

(
u2h+

1

2
grh

2

)
= −grh∂xb, (15)

∂thv + ∂y

(
v2h+

1

2
grh

2

)
= −grh∂yb. (16)

u, v denote the velocities along the horizontal and vertical axis. h denotes the water depth and b is
a spatially varying bathymetry. hu, hv can be perceived as the directional momentum components.
gr indicates the acceleration of gravity. The spatiotemporal domain is (x, t) ∈ [0, 5]2 × [0, 1]. Akin
to (Takamoto et al., 2022), the initial conditions are shaped as 2D radial dam breaks. We take their
initial radius as physical parameters to construct data contexts. The training series are fetched from
radius within [0.3, 0.63], and the OOD test series are obtained from radius within [0.63, 0.7]. The
prior 10 steps series are utilized to forecast the water depth of future 11 steps, i.e. H = W = 10
and Nt = 21.

Heat-Conduction (Hao et al., 2024b). The HC equation with a varying heat source is presented as:

∂tu = ∇(a(x)∇u) +A sin(m1πx) sin(m2πy) sin(m3πt). (17)

u denotes the temperature field over the spatiotemporal domain (x, t) ∈ [0, 1]2 × [0, 5]. Similar
to (Hao et al., 2024b), the coefficient function a(x) is stipulated as a exponential Gaussian random
field. The external forcing terms are altered to generated various physical contexts. We specifically
vary three frequency coefficients m1, m2, m3 of heat sources and keep the amplitude A = 200. The
training temperature fields are produced by m1,m3 ∈ [1, 2],m2 ∈ [5, 10], and the OOD test fields
stem from m1,m3 ∈ [2, 3],m2 ∈ [10, 15]. We utilize past 10 steps fields to forecast the temperature
of future 11 steps, i.e. H = W = 10 and Nt = 21.

D MORE ANALYSIS ON MIXTURE OF OPERATOR EXPERT ARCHITECTURE

D.1 DISPARATE MOE USAGE IN IMOOE AND LFMS

The key difference lies in during the forward pass, LFMs (Dai et al., 2024; Liu et al., 2025; Shi et al.,
2025) need to selectively activate a sparse number of FFN experts, while iMOOE stands for a dense
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version of MoE which should aggregate the output of all neural operator experts by the designed
fusion network. Commonly, LFMs require a huge number of experts to express the fine-grained
and specialized knowledge in pretraining data corpus, and their performance on downstream tasks
can benefit from the large capacity of specialized experts. However, as for PDE invariance learning,
the invariant knowledge is prescribed as the composition of a few number of invariant operators,
since real-world PDE dynamical systems often consist of a small set of physical processes (Rudy
et al., 2017). Accordingly, iMOOE can capture the underlying PDE law by only a few number of
operator experts. Besides, LFMs usually enable each FFN expert to represent distinct knowledge by
the load balance loss (Dai et al., 2024). While iMOOE leverages the proposed mask diversity loss
to adaptively select different sets of spatial derivatives for expert input, which can explicitly enforce
individual operator experts to express distinct physical processes.

D.2 DETAILED EXPLANATIONS ON THE EFFECT OF THE NUMBER OF OPERATOR EXPERTS

The mixture of operator expert architecture is specifically designed to closely align with the pro-
posed two-level PDE invariance principle. In Table 5, we can observe it is not strict that iMOOE’s
zero-shot OOD capability can constantly promote with the increase of the expert number K for two
reasons: i) Overfitting risk. A large K will increase iMOOE’s model complexity. When K is overly
large but the operator invariance is not that complex, such as K = 4 for DR dynamics, iMOOE is
likely to overfit to the limited training domains (i.e. 16 training environments with to 1024 DR trajec-
tories). It can diminish the accuracy and robustness of captured PDE invariance. ii) Representation
redundancy. Real-world PDE systems are usually composed by a few number of physical processes,
such as the DR system only contains a Laplacian operator and a reaction function. A overly large
K could render the representations of these FNO experts redundant to each other. For example,
when we input second-order derivatives [uxx, vxx, uyy, vyy, uxy, vxy] to four FNO experts to learn
DR dynamics, their actual learned masks are m1 = [0, 1, 1, 0, 1, 1],m2 = [0, 1, 1, 1, 0, 1],m3 =
[1, 0, 0, 0, 1, 1],m4 = [0, 0, 1, 0, 0, 0]. We can observe that the first and second expert behaves very
similarly to each other, and the fourth expert is unnecessary since its behavior can be covered by
other three experts. Thus K = 3 can perform better than K = 4 as shown in Table 5.

E ADDITIONAL RESULTS

E.1 ABLATION STUDY

E.1.1 EFFECT OF FREQUENCY-ENRICHED LOSS IN EQ. 8

We investigate the benefits of the proposed frequency enrichment loss Lfreq for PDE invariance
learning. We utilize DR trajectories to validate the improved forecasting generalizability induced
by additional regularization on high-frequency representations. Diffusion and reaction coefficients
can dictate the distribution of frequency patterns in DR state evolutions. Apart from nMESE and
fRMSE metrics, we also present the forecasting errors within different frequency bands in Table
6. ”Low”, ”Mid”, ”High” denote non-overlapped ranges of wavenumber ξ: ξlow ∈ [0, 4], ξmid ∈
[5, 12], ξhigh ∈ [13, ξmax]. After equipping PDE learning with frequency augmentation, the ID/OOD
nMSE can drop by 24.38% and 25.00%, and ID/OOD fRMSE can decrease by 10.20% and 12.32%.
Notably, improving high-frequency feature learning can also enhance the OOD accuracy on both
low-frequency and mid-frequency patterns. Such ID/OOD promotion verifies the necessity of the
proposed frequency-enriched objective, which can mitigate the spectral bias of neural operators and
help to capture the complete PDE invariance from the spectral domain.

Table 6: Ablation results of frequency enrichment loss on DR data.

Methods
ID OOD

nMSE fRMSE nMSE fRMSE

Low Mid High Total Low Mid High Total

w/o Lfreq 6.81e-3 3.39e-3 1.17e-3 3.31e-4 1.02e-3 5.64e-2 9.29e-3 1.25e-3 4.42e-4 2.03e-3
w/ Lfreq 5.15e-3 2.96e-3 1.09e-3 3.03e-4 9.16e-4 4.23e-2 7.92e-3 1.17e-3 4.20e-4 1.78e-3
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E.1.2 EFFECT OF PRE-CALCULATED DERIVATIVE SELECTION

We investigate the effect of input spatial derivative selection designed in Section 3.1. Such design
incorporates certain orders of pre-calculated spatial derivatives into each operator expert input and a
specific mask diversity loss which can encourage experts to represent distinct operators. We report
the influence of this derivative selection design in Table 7. We can find that especially for the real-
world SST changing dynamics which are complex and hard to capture, the prior derivative input can
make it easier and more accurate to discover SST’s physical law. (Li et al., 2024a) consistently val-
idated that introducing additional spatial derivatives can improve neural PDE learning. We conduct
a further analysis on this design as follows:

i) Effect of mask diversity loss Lmask. We set λmask = 0 and feedforward all pre-computed deriva-
tives to each expert. The OOD nMSE and fRMSE results on DR data are 4.78e− 2 and 1.89e− 3,
leading to 13.0% and 6.18% degradation versus standard iMOOE. We find masks learned by two
experts are similar to each other, which hinders them from representing distinct invariant operators.

ii) Effect of derivative types. As BG equation contains first-order and second-order derivatives, we
take both of them as prior input for vanilla iMOOE, and each mask learns to adaptively select the
needed derivatives for its coupled operator expert. But when we just input first-order derivatives,
OOD nMSE and fRMSE increase to 1.16e − 2 and 3.85e− 3, with 7.41% and 0.52% degradation.
This verifies that prior second-order derivatives can improve learning efficiency for BG systems.

iii) Actual learned mask vectors m. When learning on DR data, we feed second-order derivatives
[uxx, vxx, uyy, vyy, uxy, vxy] to two experts in iMOOE, and their actual learned mask is m1 =
[0, 0, 1, 1, 1, 0], m2 = [1, 1, 1, 0, 0, 1]. As there are many operator splitting methods for DR equation
(e.g. dividing into diffusion and reaction terms is just one of them), iMOOE can learns a suitable
splitting way via learning operator invariance from limited data.

Table 7: Ablation results of input spatial derivative selection.

Methods DR BG SST

nMSE fRMSE nMSE fRMSE nMSE fRMSE

w/o derivative selection 4.95e-2 1.95e-3 1.13e-2 3.94e-3 6.07e-1 3.82e-2
w/ derivative selection 4.23e-2 1.78e-3 1.08e-2 3.83e-3 5.12e-1 3.44e-2

Degradation ↓ 17.02% 9.55% 4.63% 2.87% 18.55% 11.05%

E.1.3 EFFECT OF THE CHOICE OF FUSION NETWORK

We verify that properly choosing the type of expert fusion methods (presented in Section 3.1) is
crucial to learn the accurate PDE invariance. We can determine the type of fusion network in light
of prior physical knowledge on PDE systems. To focus on this network structure study, we abandon
additional multi-environment invariance training. We take DR and NS systems for comparison and
provide OOD results in Table 8. We can find that for linear PDE systems such as DR, which holds a
simple additive relationship between the diffusion operator and reaction function, simply summing
up the outputs of operator experts is a better fit. But for strongly non-linear PDE systems like NS,
which include complex operator multiplication, we should impose an extra fusion network and let it
learn how to integrate expert outputs to capture the non-linear PDE law.

Table 8: Ablation results of the choice of two types of fusion methods.

Expert Composition Methods DR NS

nMSE fRMSE nMSE fRMSE

Linear fusion by simple addition 5.80e-2 2.02e-3 4.82e-1 6.32e-2
Non-linear fusion by extra network 6.46e-2 3.28e-3 3.76e-1 5.54e-2

E.1.4 EFFECT OF STEP-WISE ENVIRONMENT PARTITION

As mentioned in Section 3.2, dividing the training environments based on autoregressive time steps
can further boost the outcomes of PDE invariance learning. We adopt two fluid dynamics datasets,
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namely DR and BG to verify this step-wise partition method. During the fluid evolution, the state
variations on two consecutive time steps are quite distinct, but the physical transition law between
these two steps remain invariant. Therefore, we can regard each autoregressive step as a unique con-
text. It can enhance the diversity of training environments and lead to more robust PDE invariance
representations. In Table 9, we exhibit the benefits brought by such step-wise environment division.
We can see that adding this environment partition method to original invariance training can result
in an average increase of 10.41% and 4.09% on ID and OOD generalization performance for these
two fluid dynamics systems.

Table 9: Ablation results of step-wise environment division on NS and BG data.

Methods
NS BG

ID OOD ID OOD

nMSE fRMSE nMSE fRMSE nMSE fRMSE nMSE fRMSE

w/o step-wise division 7.11e-2 1.50e-2 3.41e-1 5.49e-2 1.48e-3 1.17e-3 1.11e-2 3.94e-3
w/ step-wise division 6.49e-2 1.38e-2 3.12e-1 5.36e-2 1.20e-3 1.10e-3 1.08e-2 3.83e-3

E.1.5 EFFECT OF LINEAR LOSS SCHEDULING

According to previous invariant learning implementation (Krueger et al., 2021), the linear scheduling
scheme is an effective and canonical way to impose the risk equality loss Linv on neural networks.
To probe its effect on PDE invariance learning, we compare the performance of the MOOE model
with fixed Linv or linearly added Linv in Table 10. Concretely, ”fixed” means Linv keeps at 0.001
during the whole training procedure. ”Linearly scheduled” indicates Linv is zero during the ini-
tial 175 epochs, then linearly increases to 0.001 during the intermediate 150 epochs, and finally
stays at 0.001 during the last 175 epochs. The main distinction between these two schemes lies in
whether executing traditional empirical risk minimization (ERM) training by the maximal predic-
tion loss Lpred during the initial pretraining stage of 175 epochs. Prior invariant learning works
(Chen et al., 2023a; Zhang et al., 2022) claim that native ERM pretraining can help to gain rich data
representations at the beginning. Invariant learning can be deemed as a certain way to filter out the
domain-generalizable representations. We verify its effect on DR dynamics as shown in Table 10.
We can find that compared to fixing Linv from scratch, linearly imposing Linv on MOOE can lead
to better ID/OOD forecasting accuracy and lower error variance across test environments. It reflects
that linear scheduling scheme can be better way to conduct the PDE invariance learning objective
when training on diverse physical environments.

Table 10: Ablation results of linear invariant loss scheduling on DR data.

Methods
ID OOD

nMSE fRMSE nMSE fRMSE

Mean Std Mean Std Mean Std Mean Std

MOOE+fixed Linv 5.61e-3 4.93e-3 1.04e-3 3.91e-4 5.80e-2 7.59e-2 2.02e-3 4.76e-4
MOOE+linearly scheduled Linv 5.06e-3 4.84e-3 9.23e-4 3.86e-4 4.93e-2 5.77e-2 1.87e-3 4.06e-4

E.2 APPLICABILITY TO DIVERSE DYNAMICAL SYSTEM FORECASTING

In this section, we demonstrate the proposed physics-informed invariant learning method iMOOE
can be easily extended to a wide variety of dynamics forecasting scenarios, apart from the 2D PDE
systems on regular grids. In the following, we validate iMOOE’s zero-shot OOD forecasting perfor-
mance on neural ODE systems, 3D fluid dynamics and real-world time series. We can adapt iMOOE
to these diverse dynamics by replacing the expert backbone with task-specific architectures.

E.2.1 APPLICATION TO ODE-GOVERNED DYNAMICS FORECASTING

We verify iMOOE’s zero-shot OOD capability on neural ODE systems, as prior meta-learning-based
methods such as CoDA (Kirchmeyer et al., 2022) and GEPS (Kassaı̈ Koupaı̈ et al., 2024) are also
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extended to ODE-governed dynamics forecasting. We conduct simulation on a typical ODE system
called damped and driven pendulum equation, as shown in Appendix B.1 of (Kassaı̈ Koupaı̈ et al.,
2024). We utilize past 10-step states to forecast the pendulum motion angle of future 41 steps. The
time horizon of collected trajectories is [0, 25] and Nt = 51. We construct 16 ID training domains
and 8 OOD test domains by randomly drawing four ODE parameters from the ID/OOD ranges
given in Table 11. Identical to CoDA and GEPS, a 4-layer MLP network with 64 hidden dimension
is taken as the backbone for operator experts of iMOOE. The pre-calculated spatial derivatives and
mask diversity loss are discarded since they are unnecessary for ODE simulation. We report OOD
forecasting performance of zero-shot iMOOE and few-shot CoDA, GEPS in Table 12. iMOOE
can achieve 10.4% and 12.66% increase on nMSE and fRMSE versus GEPS. This may stem from
their difference on discovering physical invariance. Specifically, iMOOE explicitly prescribes the
two-level invariance principle and directly captures it via the proposed physics-informed invariant
learning. While hypernetwork-based meta-learning methods like CoDA, GEPS estimate such in-
variance by implicitly operating in the network parameter space without any physical guidance.

Table 11: ID/OOD parameter ranges of pendulum
system for environment generation.

Parameters ID Range OOD Range

Damping coefficient α [0.1,0.2] [0.2,0.3]
Natural frequency ω0 [0.5,1.0] [1.0,1.5]
Forcing frequency ωf [0.3,0.6] [0.6,0.9]
Forcing amplitude F [0.1,0.2] [0.2,0.3]

Table 12: OOD forecasting results on ODE-
governed pendulum dynamics.

Models nMSE fRMSE

CoDA 5.31e+0 5.96e-2
GEPS 2.50e+0 5.45e-2

iMOOE 2.24e+0 4.76e-2

E.2.2 APPLICATION TO 3D FLUID DYNAMICS FORECASTING

Apart from the typical 2D PDE dynamics, we also demonstrate iMOOE’s zero-shot OOD perfor-
mance on 3D PDE systems. We employ the 3D compressible Navier-Stokes equation in PDEBench
(Takamoto et al., 2022) and construct ID and OOD scenarios using the same method in Appendix C.
Specifically, for shear and bulk viscosity coefficients, we still randomly draw their values from the
ID parameter range [1e− 5, 1e− 3] and OOD range [5e− 6, 8e− 6]∪ [1.2e− 3, 2e− 3]. The Mach
number is kept as 1.0. The number of ID training and OOD test domains as well as their data volume
are also identical to setups in Appendix C. The size of 3D spatial domain is 32×32×32, and the past
10-step velocity field sequences are provided to forecast the future 11-step states. FNO3d is utilized
as the backbone of operator experts for iMOOE3d. We present the 3D OOD dynamics forecasting
results in Table 13. We observe that iMOOE can attain 17.36% and 39.26% increase on nMSE and
fRMSE compared to previous 3D neural operators. Such results further validate the effectiveness of
proposed physics-guided PDE invariance learning to more complex 3D PDE dynamics.

E.2.3 APPLICATION TO REAL-WORLD TIME SERIES PREDICTION

We further validate iMOOE’s OOD capability on real-world time series prediction. Such time series
dynamics are hard to be directly parsed by ODE or PDE laws. We leverage the Electricity Trans-
former Temperature (ETT) data (Zhou et al., 2021) and follow the data split setting in (Zhou et al.,
2021). The changing dynamics of Oil Temperature (OT) is hard to decipher. OT dynamics are asso-
ciated with exogenous covariates like electricity load. The task is to predict future 96-step OT values
given lookback 512-step OT and six auxiliary power load sequences. To implement iMOOE on this
task, we borrow the Moirai-MoE (Liu et al., 2025) as backbone to approximate the invariant knowl-
edge in ETT dynamics. The proposed frequency-augmented invariant learning objective is utilized
to fine-tune Moirai-MoE. As temporal distribution shifts are ubiquitous in time series domain (Kim
et al., 2021), we simply deem each segmented ETT trajectory as an independent environment. Con-
sequently, iMOOE can attain 25.29% and 13.59% growth on nMSE and fRMSE compared to native
Moirai-MoE as reported in Table 14.

E.3 MORE RESULTS ON SENSITIVITY ANALYSIS

By hyperparameter tuning, we empirically find the fixed setting λpred = 1.0, λinv = 0.001, λfreq =
0.1, λmask = 0.001 can perform well on both simulated and real-world physical dynamics data. As

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: ID/OOD forecasting results on 3D NS
dynamics.

Models nMSE fRMSE

ID OOD ID OOD

UNet3d 1.67e+0 1.92e+0 3.09e-1 5.16e-1
FNO3d 3.83e-1 1.88e+0 4.99e-2 1.84e-1

VCNeF3d 1.69e-1 6.97e-1 5.88e-2 1.35e-1
iMOOE3d 1.19e-1 5.76e-1 2.11e-2 8.20e-2

Table 14: OOD forecasting results on ETT time
series dynamics.

Models nMSE fRMSE

Informer 3.17e-1 1.07e-2
Moirai-MoE 5.26e-2 4.93e-3

iMOOE 3.93e-2 4.26e-3

the effect of Lmask has been discussed in Appendix E.1.2, we investigate iMOOE’s sensitivity to
different λinv and λfreq values. OOD results in Table 15 reflect that we should assign moderate
values to λinv and λfreq for satisfactory outcomes.

i) Sensitivity to invariance loss weight λinv . For a smaller λinv = 0.0001, it diminishes the power
of Linv to capture the physical invariance and renders iMOOE overfit to training environments.
For a larger λinv = 0.01, the degradation stems from the intrinsic conflict between Linv and Lpred

according to Section 3 in REx (Krueger et al., 2021). REx claims that overly minimizing the variance
of errors across training domains can increase the error of the best-performing domain.

ii) Sensitivity to frequency loss weight λfreq . For a smaller λfreq = 0.01, the generalization errors
caused by high-frequency pitfalls can not be mitigated. For a larger λfreq = 1.0, the high-frequency
modes are over-optimized but the dominant low-frequency modes are not learned well.

Table 15: Influence of loss weights in Eq. 9.

Loss λinv λfreq
nMSE fRMSE

ID OOD ID OOD

Linv
0.01 0.1 5.58e-3 5.15e-2 9.26e-4 1.94e-3

0.0001 0.1 5.40e-3 5.24e-2 9.12e-4 1.98e-3

Lfreq
0.001 1.0 5.75e-3 5.04e-2 9.30e-4 1.95e-3
0.001 0.01 5.42e-3 4.89e-2 9.18e-4 1.88e-3

Ours 0.001 0.1 5.10e-3 4.23e-2 9.16e-4 1.78e-3

E.4 FURTHER COMPARISON WITH META-LEARNING-BASED METHODS

We first clarify how to adapt meta-learning-based baselines including CoDA (Kirchmeyer et al.,
2022) and GEPS (Kassaı̈ Koupaı̈ et al., 2024) to zero-shot OOD forecasting. Both CoDA and GEPS
separate their network parameter space into domain-invariant and domain-specific parts. Domain-
specific parameters need to be independently trained within each unique environment and require
few-shot adaptation. When applied to zero-shot OOD testing, domain-invariant parameters can keep
freezing, while domain-specific parameters including θe in CoDA and ce in GEPS are initialized by
averaged parameters over diverse training domains (e.g. c̄tr = 1

|Etr|
∑|Etr|

e=1 c
e). This test-time ini-

tialization method for domain-specific parameters is directly borrowed from GEPS (Kassaı̈ Koupaı̈
et al., 2024), as stated in its last paragraph of Section 4.1.

Furthermore, we implement CoDA and GEPS through their vanilla few-shot adaptation manner
and our zero-shot inference setting. For few-shot setting, as claimed in Section 5.2 of both CoDA
(Kirchmeyer et al., 2022) and GEPS (Kassaı̈ Koupaı̈ et al., 2024), we draw only one PDE trajectory
from each unseen test environment to finetune the domain-specific network parameters. In Table 16,
we present OOD forecasting outcomes of zero-shot iMOOE and zero/few-shot CoDA and GEPS. It
is apparent that iMOOE can outperform CoDA and GEPS with few-shot test-time adaptation, due to
their difference on discovering PDE invariance. Specifically, iMOOE explicitly prescribes the two-
level PDE invariance principle and effectively approximates it via the proposed physics-informed
mixture of operator expert architecture and invariant learning objective. While meta-learning-based
CoDA, GEPS assume PDE invariance lies in domain-invariant network parameters. They implicitly
learn domain-generalizable representations in the parameter space without any physical guidance.
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Table 16: Further comparisons with meta-learning-based methods.

Methods BG NS

nMSE fRMSE nMSE fRMSE

CoDA(zero-shot) 9.22e-1 2.50e-2 9.14e-1 7.31e-2
CoDA(few-shot) 6.89e-1 1.84e-2 6.31e-1 6.45e-2
GEPS(zero-shot) 7.56e-2 9.38e-3 4.13e-1 6.85e-2
GEPS(few-shot) 5.37e-2 6.58e-3 3.32e-1 5.47e-2

iMOOE(zero-shot) 1.08e-2 3.83e-3 3.12e-1 5.36e-2

E.5 EMPIRICAL UPPER BOUND OF ZERO-SHOT OOD PERFORMANCE

To more intuitively gauge iMOOE’s zero-shot OOD forecasting capability, we propose to verify
the empirical upper bound for iMOOE’s OOD performance. Such bound can measure iMOOE’s
achievable OOD performance on unseen domains with distribution shifts (Gagnon-Audet et al.,
2023). Akin to the test operation in (Gagnon-Audet et al., 2023), we randomly select four OOD
test domains in DR data and train the standard FNO under each specific environment with differ-
ent volumes of training trajectories. In Table 17, we compare the OOD performance of zero-shot
iMOOE with three levels of empirical upper bounds forged by FNO. Apparently, iMOOE can con-
sistently surpass the 16-shot FNO and rival the 64-shot FNO, while underperforming the 256-shot
FNO. It further demonstrates the proposed PDE invariance learning can improve the zero-shot OOD
capability of neural operators on unseen scenarios.

Table 17: Empirical upper bound of zero-shot OOD capacity on DR data.

Models Env1 Env2 Env3 Env4

nMSE fRMSE nMSE fRMSE nMSE fRMSE nMSE fRMSE

FNO(256-shot) 3.40e-3 8.90e-4 3.65e-3 6.56e-4 1.38e-3 4.09e-4 4.59e-3 7.69e-4
FNO(64-shot) 6.38e-2 3.71e-3 6.20e-2 1.95e-3 1.18e-2 1.23e-3 4.34e-2 2.36e-3
FNO(16-shot) 2.10e-1 6.71e-3 9.41e-2 3.30e-3 4.06e-2 2.08e-3 1.27e-1 3.95e-3

FNO-iMOOE(zero-shot) 1.27e-2 1.65e-3 5.12e-2 1.82e-3 6.10e-2 1.42e-3 4.30e-2 2.09e-3

E.6 MORE RESULTS ON ID-OOD CORRELATIONS IN FIG. 1(C)

In the scope of domain generalization, ID-OOD correlation (Miller et al., 2021; Yuan et al., 2023)
is a useful metric to reflect the effective OOD robustness of a deep learning model. If the relation-
ships between ID and OOD test errors are sharply positive (i.e. the slope of ID-OOD fitted line
is positively large), we can claim that the developed neural network indeed captures the domain-
generalizable representations from training data and its OOD robustness is satisfactory. In practice,
the ID-OOD correlation line can be obtained by testing the developed model under various train-
ing hyper-parameters, such as changing the quantity of training data, total epochs, initial learning
rates, etc. For example, a single blue scatter in Fig. 4 represents the FNO-iMOOE model with a
unique training configuration. The same interpretations for the orange scatter of FNO. As the slope
of FNO-iMOOE’s ID-OOD line is significantly sharper than that of FNO, we can state that when
FNO is augmented by the proposed PDE invariance learning framework, it is able to capture the
fundamental invariance in PDE dynamics and achieve better OOD forecasting performance.

E.7 ANALYSIS ON TRAINING DATA PROPERTIES

In practice, either measuring real-world dynamics trajectories by multi-source sensors or generating
simulated PDE data by numerical solvers is prohibitively expensive. To this end, it is of great signif-
icance to investigate the impact of training data properties on zero-shot OOD forecasting capability.
This can guide us to construct more informative multi-context sequences and further improve OOD
performance from the data perspective. We conduct this study by answering two questions: i) What
is the effect of training data quantity? ii) When the budget of collecting training data is limited, in
terms of data diversity (i.e. the number of training environments |Etr|) and data quantity within each
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Figure 4: Supplementary fRMSE results for ID-OOD correlations.

environment, which factor is more important? DR data is utilized to probe these two aspects of data
properties. We showcase corresponding fRMSE and nMSE results in Fig. 5 and Fig. 6.

For the first question, we escalate the size of training trajectories from 256 to 4,096. Overall, with the
size of training data increasing, ID/OOD generalization capacity of PDE forecasting models elevate
considerably, which is amenable to the scaling property between data size and model performance in
scientific machine learning (Subramanian et al., 2023). Notably, for OOD fRMSE results, iMOOE
trained on size 512 can rival FNO trained on size 2,048. For OOD nMSE results, iMOOE trained on
size 512 even outperforms FNO trained on size 4,096. It indicates that the proposed PDE invariance
learning can enhance the zero-shot OOD performance and data efficiency of ordinary FNO. Using
1,024 training trajectories for iMOOE can reach satisfactory zero-shot OOD results on DR dynamics
compared to naive FNO.

For the second question, we keep the total number of training samples at 1,024 and alter the number
of training environments from 4 to 512. The training data quantity in each environment is equal.
We depict the distribution of ID and OOD results of each test sample in Fig. 5(b), 6(b). Overall,
with diverse training domains, i.e. when the number of training environments is up to 32, ID/OOD
results of each test trajectory can disperse more compactly. In other words, the variance across test
domains is smaller, and the average ID/OOD fRMSE is much lower. This reveals that when data
budget is limited, better data diversity can avoid overfitting to limited training domains, and aid to
find the fundamental PDE invariance principle by equalizing the risks across more diverse training
environments. This is coherent with the key claim in foundational invariant learning literature (Ar-
jovsky et al., 2019): with a sufficiently large number of diverse training environments, invariant risk
minimization would elicit the invariant predictor.

E.8 RUNTIME COMPARISON

We compare the runtime of both the PDE forecasting methods presented in Table 1 and the commer-
cial numerical solver Comsol (Multiphysics, 1998) in Table 18. We can see that the deep learning
methods can lead to a nearly 225× times speed-up on inferring the BG flow trajectories in contrast
to the inner finite element method in Comsol. It is hard for Comsol to converge when simulating the
turbulent flow (i.e. the viscosity coefficient ν in BG is small). At the same time, neural PDE methods
can obviate the need for complicated domain knowledge on modeling the real-world PDE systems.
Besides, it is apparent that FNO-iMOOE indeed incurs extra computational burden on top of vanilla
FNO, while its running speed is similar to other OOD forecasting methods for PDE dynamics.
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Figure 5: Impact of training data properties on ID/OOD fRMSE from two views: (a) Varying data
size. (b) Varying data diversity under limited data budget.

Figure 6: Impact of training data properties on ID/OOD nMSE from two views: (a) Varying data
size. (b) Varying data diversity under limited data budget.

E.9 IMPLEMENTATION DETAILS

We clarify hyperparameter settings for all baseline methods in Table 1, 2. The fixed training setups
include 32 training batch size and 1e− 3 initial rate for Adam optimizer.

• CoDA. We train CoDA for 1500 epochs. The hidden dimension of shared hypernetwork
and domain-specific 4-layer FNOs is 64. The weight of its L1 and L2 regularization on
hypernetwork parameters is 1e− 5.

• CAPE. We train CAPE for 500 epochs. The widdening factor of its channel attention and
width of 4-layer FNO backbone are 64. The weight of additional loss Lcape is 8.3e− 5.

• CNO. We train CNO for 500 epochs. The channel multiplier of its UNet-shaped operator
is 16. The hidden dimension and layer number of its bottleneck network is 128 and 4.

• DPOT. We finetune the pretrained DPOT of tiny version for 500 epochs. The latent dimen-
sion of Fourier attention and FFN layer is 512. The number of attention head is 4.

• VCNeF. We train VCNeF for 500 epochs. The latent dimension and patch size of the linear
transformer block is 64 and 16. The depth of modulation blocks is 4.

• GEPS. We train GEPS for 1500 epochs. The width of domain-specific 4-layer FNO is 64
and code size of context vector is 16.

E.10 VISUALIZATION ON OOD FORECASTING RESULTS OF IMOOE

In Fig. 7 to 13, we visualize the forecasting outcomes of iMOOE on representative OOD physical
environments of the five PDE dynamical systems.
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Table 18: Runtime comparison of different PDE dynamics simulation methods on BG data.

Methods Comsol FNO-iMOOE FNO CAPE VCNeF DPOT CNO GEPS CoDA

Inference Time 24.84±2.73s 0.11±0.002s 0.05±0.002s 0.06±0.002s 0.11±0.003s 0.09±0.002s 0.12±0.004s 0.11±0.003s 0.07±0.002s

Figure 7: OOD forecast showcase on a DR scenario with Du = 0.0021, Dv = 0.0113, k = 0.0109.

Figure 8: OOD forecast showcase on a high-Reynold number NS scenario with ν = 1.42e-4.

Figure 9: OOD forecast showcase on a low-Reynold number NS scenario with ν = 1.20e-3.
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Figure 10: OOD forecast showcase on a high-Reynold number BG scenario with ν = 2.5e-3.

Figure 11: OOD forecast showcase on a low-Reynold number BG scenario with ν = 1.0e-1.

Figure 12: OOD forecast showcase on a SW scenario with an unseen initial radius.

Figure 13: OOD forecast showcase on a HC scenario with m1 = 2.67,m2 = 12.66,m3 = 2.74.
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