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Abstract

Algorithmic prediction rules are increasingly used to allocate resources, such as tar-1

geting households for social welfare programs, determining payments to Medicare2

Advantage insurers, and assigning eligibility for social benefits, all of which create3

incentives for strategic manipulation of input features. Policymakers often respond4

by excluding manipulable features from the prediction model, yet it is not well5

understood when this reduces the prediction risk. In this paper, we analyze feature6

selection under strategic behavior in a linear regression setting, motivated by risk7

adjustment models in U.S. health policy. Our model characterizes how organiza-8

tions strategically manipulate reported features in response to decision rules, and9

how a regulator can counteract such strategic behavior through feature selection.10

We establish sufficient conditions on the cost structure of feature manipulation11

that identify when excluding manipulable features reduces prediction risk, and12

conversely, when retaining the full feature set yields more accurate predictions.13

These results offer a first step toward principled feature selection methods that14

explicitly account for unreliable and strategically manipulated data inputs.15

1 Introduction16

Algorithmic predictions are increasingly used to inform decision-making about allocation of resources.17

Decision-makers rely on individuals’ features to determine eligibility and set allocation amounts, with18

the aim of implementing normative priorities. For example, eligibility for social welfare programs is19

determined using poverty-targeting scores [2, 23], and government payments to health providers and20

insurers is based on patient risk scores [7]. Such algorithmic decision-making systems incentivize21

organizations that serve individuals to respond strategically and “game” the prediction rule.22

We consider the U.S. Medicare Advantage (MA) program as a running example, where the government23

determines payments to private insurers using a public risk-adjustment model that is trained to predict24

patient costs given health data from the previous year [5, 19]. The goal of risk adjustment is to ensure25

that insurers receive higher payments for higher-risk enrollees who are expected to need more services.26

This payment rule inadvertently introduces incentives for private insurers to overreport diagnosis27

codes, thereby inflating risk-adjusted payments, a practice known as “upcoding.” In 2024, higher MA28

risk scores were estimated to translate into $50 billion in overpayments, as a result of upcoding [15].29

To counteract the effect of upcoding, Centers for Medicare & Medicaid Services (CMS) excludes30

diagnoses that are at risk of inappropriate coding by health plans and providers [3, 4]. In 2024, CMS31

removed the conditions corresponding to Protein-Calorie Malnutrition and Angina Pectoris from the32

payment model to limit the sensitivity of the model to higher coding intensity in MA and maintain the33

ability to accurately predict costs [4]. Despite the use of feature selection as a policy lever to combat34

manipulation, it remains difficult to reason about which features a decision-maker should exclude in35

response to strategic behavior, since dropping features comes at the cost of predictive accuracy.36
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To address this gap, we develop a formal framework to reason about feature selection under strategic37

behavior. We build on existing frameworks of strategic learning [9], but with a focus on policy levers38

commonly used in practice that are perhaps more coarse and simple, but as a result more widely39

applied. In addition, while general strategic learning requires detailed information about costs to40

manipulation, we focus on realistic limited information settings.41

Contributions. We present a theoretical model of a decision-maker’s choice to drop or retain features42

in a prediction model when such features can be strategically manipulated. We focus on a regression43

setting, which aligns with the risk-adjustment models used by CMS. We give sufficient conditions for44

the decision-maker to be better off dropping or retaining features, which we also pair with simulations45

and examples. Finally, we discuss future directions towards practical policy recommendations.46

1.1 Related work47

A growing line of work in strategic classification is aimed at learning optimal prediction rules when48

decision subjects can manipulate their features at a cost [9, 6, 22]. Different from prior literature that49

focused on pure gaming, the goal in [18, 12, 22] is to additionally incentivize genuine improvement in50

individual outcomes. [8, 22, 11] study settings in which individuals have hidden features that causally51

affect the outcome. In contrast, we study a setting where the decision-maker explicitly excludes52

manipulable features from the prediction rule. Closest to our work is that of Holmstrom and Milgrom53

[11]. An important difference is the decision-maker’s prediction risk objective in our work.54

The health policy literature has put forth several concrete proposals for feature selection in Medicare55

Advantage risk adjustment. These proposals suggest, for example, including patient survey data [1,56

14] or excluding diagnoses added to a patient health record via chart review [17]. Our work is distinct57

in that it provides a principled framework to navigate a set of feature selection decisions.58

2 Model and Problem Formulation59

We study the strategic interaction between organizations that receive predictions based on the features60

of the individuals they serve, and a decision-maker who specifies the prediction rule. The decision-61

maker publishes a prediction rule fθ : X → Y parameterized by θ ∈ Θ ⊆ Rd, mapping an62

individual’s features x ∈ X ⊆ Rd to the predicted outcome ŷ ∈ Y ⊆ R. We consider linear63

prediction rules fθ(x) = θ⊤x =
∑d

i=1 θixi such that θi ≥ 0 for all i. The linear specification is a64

commonly studied setting in strategic learning [10, 12, 22]. Moreover, this is not merely a modeling65

assumption: many models used by CMS in practice—including the risk adjustment model used to66

allocate payments to Medicare Advantage plans—are based on least squares regression [20, 21].67

The organization observes features x corresponding to an individual and takes action a ∈ A ⊆ Rd to68

manipulate the features from x to x+ a in order to maximize the predicted outcome ŷ. We model the69

population of individuals as a distribution P0 over the space Z = X × Y with mean µ = Ex∼P0 [x]70

and covariance Σ. We consider the distribution of individuals to be the same across organizations and71

study a single type of organization in this work.72

We assume that the decision-maker has access to unmanipulated data points from the space Z =73

X × Y . Such data are obtained either from a pre-deployment period (prior to the use of fθ) or from74

an alternative policy under which organizations are not incentivized to manipulate their features. In75

Medicare, this corresponds to traditional Medicare (fee-for-service), where payments are not based76

on enrollees’ risk scores and thus there is no incentive to overreport diagnoses [15]. We consider77

the true outcome model is a linear function y = θ∗⊤x and the decision-maker estimates the true78

parameters θ∗ using unmanipulated samples from Z .79

Organization’s best-response model. The organization incurs a cost C(a) > 0 for modifications80

resulting from action a. We model the cost function as C(a) = 1
2a

⊤Ha, where H ∈ Rd×d is81

the cost matrix and H ≻ 0. For private insurers, this cost arises from payments to chart review82

contractors for mining additional diagnosis codes and from conducting in-home health assessments83

aimed at identifying undocumented conditions [7]. We assume that organizations behave rationally84

and best-respond to fθ by choosing action85

a∗(x; θ) = argmax
a∈A

θ⊤(x+ a)− 1
2 a

⊤Ha (1)
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We can compute the action the organization will take by maximizing (1) over a ∈ A. Although86

real-world settings sometimes restrict A (e.g., binary or bounded actions), in this work we consider87

the unconstrained case A = Rd. Note that ∇a(θ
⊤(x+ a)− 1

2 a
⊤Ha) = θ −Ha. If A = Rd and88

H ≻ 0, a∗(x; θ) = H−1θ. From here on, we omit the dependence on x and write a∗(θ) = H−1θ.89

Decision-maker’s objective. The decision-maker’s goal is to predict the true outcome as accurately90

as possible. For example, the government seeks to avoid over- or under-estimating enrollees’ risk,91

thereby minimizing corresponding over- and under-payments to insurers. We define prediction92

risk under strategic response as mean squared error MSE(θ), and the decision-maker chooses θ to93

minimize MSE(θ):94

MSE(θ) = Ex∼P0
[(θ⊤(x+ a)− θ∗⊤x)2] (2)

When the decision-maker has full information of H,P0, and θ∗, the minimum MSE is defined95

as the “strategic optimum” if we think of our model as a game between the organization and the96

decision-maker.97

Definition 2.1 (Strategic optimum). The strategic optimum in the full-information game is defined as98

OPTθ∗(P0, H) = min
θ∈Θ

Ex∼P0
[(θ⊤(x+ a∗(θ))− θ∗⊤x)2]

In the real world, however, decision-makers do not have full information about the cost structure.99

They often rely on simple—but not formally justified—heuristics, as we discuss in the next section.100

2.1 MSEfull and MSEdrop101

In practice, decision-makers often drop features they expect to be highly manipulable, as noted earlier102

with diagnoses in the CMS risk-adjustment model [4]. Yet, the conditions under which doing so103

reduces the decision-maker’s prediction risk are not well understood. We characterize regimes in104

which feature dropping lowers risk and regimes in which the full model is preferable. Specifically,105

we identify conditions under which it is optimal for the decision-maker to retain all features.106

For the remainder of this work, we study the two feature case X = (X1, X2) and focus on the model107

that drops X2. The analysis for dropping X1 is analogous. For simplicity, we assume a diagonal cost108

matrix i.e., H−1 = diag(h11, h22) and h12 = 0. In this case, y = θ∗1x1 + θ∗2x2 and we denote mean109

µ = (µ1, µ2) and second-moment matrix M = Ex∼P0 [xx
⊤].110

The decision-maker learns θ̂ using samples (x, y) drawn from P0 by minimizing the risk111

θ̂ = argmin
θ∈Θ

E(x,y)∼P0
[(θ⊤x− y)2]. (3)

From the definition of our linear model, θ̂full = θ∗ in the full feature model. We start by computing112

the MSE of the full feature model (MSEfull) as113

MSEfull = Ex∼P0
[(θ̂⊤full(x+H−1θ̂full)− θ∗⊤x)2] = (θ∗⊤H−1θ∗)2 =

(
θ∗21 h11 + θ∗22 h22

)2
. (4)

This follows from substituting the best-response of the organization. When the decision-maker114

chooses to drop X2, they learn a single parameter θ̂drop = (β1, 0). We derive MSEdrop in Lemma A.1115

and directly state here:116

MSEdrop = (h11β
2
1 − θ∗2(µ2 − rµ1))

2 + θ∗22 (Σ22 + r2Σ11 − 2rΣ12), (5)

where r := M12/M11. From here on, for brevity, we will use ∆ := µ2 − r µ1 and V := Σ22 +117

r2Σ11 − 2rΣ12. Note that both MSEfull,MSEdrop ≥ OPTθ∗(P0, H).118

3 Results119

In this section, we give sufficient conditions for when dropping features is better than keeping all120

features, and vice versa. All proofs are deferred to Appendix A.121

First, we show that there exists a high-cost regime (i.e., h11, h22 are small) where retaining both122

features strictly dominates any one-feature model.123
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Figure 1: Best model across manipulation costs. For each (h11, h22) (entries of H−1), the shading
shows which model yields the lowest MSE. Boundary curves mark equal-risk frontiers.

Proposition 3.1 (Features can be retained at high cost). If the covariance matrix Σ is positive definite,124

or ∆ ̸= 0, then there exists ε > 0 such that for any h11, h22 < ε, MSEfull < MSEdrop.125

The main message of this result is that it is beneficial for the decision-maker to safely retain all126

features whenever manipulation is kept sufficiently costly. Specific to our example, a central policy127

lever CMS can use to disincentivize upcoding is to increase the cost of manipulation—via higher legal128

penalties and more comprehensive audits. We examine this regime in Figure 1 for (a) independent129

and (b) correlated features, where the region with dominance of MSEfull is shaded in blue.130

When ∆ = 0 and V = 0 (Σ has rank 1), it is possible that there exists no cost setting, no matter how131

high, in which the full model dominates the one-feature model. We give a specific example of feature132

distributions for which this happens in Figure 1 (c). We note that when manipulation is cheap, Σ133

determines the winner (Figure 1 (a, b)). This establishes that feature correlation should guide feature134

selection decisions. It also bears out the intuition that health policymakers have long stood by: as you135

include more features, you expand the “gameable” surface area of the model [13].136

Next, we show that the difference MSEdrop − MSEfull is monotone when h11, h22 ≥ 0.137

Proposition 3.2 (Unique h22-threshold for drop vs full). For any given h11 > 0, there exists a unique138

threshold h∗
22 ∈ R such that139

sgn(MSEdrop − MSEfull) =


+1, for 0 < h22 < h∗

22,

0, for h22 = h∗
22,

−1, for h22 > h∗
22.

In this case, given an estimate for h11, the decision-maker can compute h∗
22 and make a choice from140

only one-sided information on h22. Moreover, this points to a more efficient feature-level auditing141

strategy, rather than auditing at the patient level. We provide additional simulations in Appendix B142

with different values of (µ1, µ2), Σ and θ∗ and show that our results are consistent.143

4 Discussion144

We present a model to formally reason about feature selection when such features can be strategically145

manipulated. In particular, we provide sufficient conditions under which the decision-maker should146

drop features rather than retain the full set, and conversely when the full model is optimal. From a147

policy standpoint, an important next step is to identify by how much the manipulation costs should be148

raised to provide concrete recommendations. An interesting direction for future work is to study a149

setting where organizations differ in the population of individuals they serve. Further, organizations150

could face different costs of manipulation. For example, Medicare Payment Advisory Commission151

[16] has found substantial heterogeneity in coding intensity across MA organizations. Amid a152

growing body of work on strategic classification, we hope our work invites further investigation of153

feature selection under strategic behavior.154
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A Proofs225

Lemma A.1 (MSEdrop). Let X = (X1, X2) with mean µ = (µ1, µ2) and covariance Σ, Y = θ∗1X1+226

θ∗2X2. When the decision-maker chooses to drop X2, they learn a single parameter θ̂drop = (β1, 0).227

In this case, the mean–squared error equals228

MSEdrop = (h11β
2
1 − θ∗2(µ2 − rµ1))

2 + θ∗22 (Σ22 + r2Σ11 − 2rΣ12)

Proof. We can compute β1 as229

β1 = argmin
β

E(X,Y )∼P0
[(βX1 − Y )2]

=
E[X1Y ]

E[X2
1 ]

= θ∗1 + θ∗2
E[X1X2]

E[X2
1 ]

= θ∗1 + θ∗2r,

where r := M12/M11, M := E[XX⊤] = Σ + µµ⊤.230

The organization’s best response to θ̂drop is H−1θ̂drop = (h11β1, 0).231

Let εdrop := (θ̂⊤drop(X +H−1θ̂drop)− θ∗⊤X). Then,232

εdrop = h11β
2
1 + β1X1 − θ∗1X1 − θ∗2X2

= h11β
2
1 − θ∗2(X2 − rX1)

Thus,233

EX∼P0 [εdrop] = h11β
2
1 − θ∗2(µ2 − r µ1)

234

Var(εdrop) = θ∗2 Var(X2 − rX1)

= θ∗2 (Σ22 + r2Σ11 − 2rΣ12)

Since235

MSEdrop = EX∼P0
[ε2drop] = (E[εdrop])

2 +Var(εdrop),

the result follows.236

Proof of Proposition 3.1. MSEfull < MSEdrop if237 (
θ∗21 h11 + θ∗22 h22

)2
< (h11β

2
1 − θ∗2∆)2 + θ∗22 V.

This is equivalent to the inequality238

(θ∗41 − β4
1)h

2
11 + θ∗42 h2

22 + 2θ∗21 θ∗22 h11h22 + 2β2
1θ

∗
2∆h11 < (θ∗2∆)2 + θ∗22 V.

The right hand side of the above inequality is strictly positive, since either the covariance matrix Σ is239

PD, or ∆ ̸= 0. The left hand side tends to zero continuously as h11, h22 tend to zero.240

Specifically, choose δ > 0 such that (θ∗2∆)2 + θ∗22 V > δ. Choose ε such that (θ∗41 − β4
1 + θ∗42 +241

2θ∗21 θ∗22 )ε2 + 2β2
1θ

∗
2∆ε < δ.242

Proof of Proposition 3.2. Fix h11 > 0. From (4) and (5), we know243

g(h22) = MSEdrop − MSEfull = (h11β
2
1 − θ∗2∆

)2
+ θ∗22 V − (θ∗21 h11 + θ∗22 h22)

2

Let D(h11) := (h11β
2
1 − θ∗2∆

)2
+ θ∗22 V (≥ 0). Then, g(h22) = D(h11)− (θ∗21 h11 + θ∗22 h22)

2 is244

strictly decreasing on [0,∞). For h22 ≥ 0,245

g′(h22) = −2θ∗22 (θ∗21 h11 + θ∗22 h22) < 0

7



As h22 → ∞, g(h22) → −∞. At h22 = 0, g(0) = D(h11)− (θ∗21 h11)
2. If g(0) ≥ 0, there exists a246

unique h∗
22 with g(h∗

22) = 0. We solve247

D(h11) = (θ∗21 h11 + θ∗22 h∗
22)

2, θ∗21 h11 + θ∗22 h∗
22 ≥ 0

to get the threshold248

h∗
22 =

− θ21h11 +
√
D(h11)

θ22
.

Note that the negative square-root branch is inadmissible. Since g(h22) is strictly decreasing, we get249

the desired result.250

If g(0) < 0 (i.e.,
√

D(h11) < θ∗21 h11), g(h22) < 0 for any h22 > 0. Thus, the threshold h∗
22 ≤ 0.251

In this case, the interval (0, h∗
22) is empty and the result still holds.252

253

B Additional simulations254

We run additional simulations varying µ,Σ, and θ∗ and present the results in Figure 2.255

Figure 2: Best model across manipulation costs. For each (h11, h22) (entries of H−1), the shading
shows which model yields the lowest MSE. Boundary curves mark equal-risk frontiers. Top labels
for each plot indicate µ,Σ, and θ∗.
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