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Abstract

Algorithmic prediction rules are increasingly used to allocate resources, such as tar-
geting households for social welfare programs, determining payments to Medicare
Advantage insurers, and assigning eligibility for social benefits, all of which create
incentives for strategic manipulation of input features. Policymakers often respond
by excluding manipulable features from the prediction model, yet it is not well
understood when this reduces the prediction risk. In this paper, we analyze feature
selection under strategic behavior in a linear regression setting, motivated by risk
adjustment models in U.S. health policy. Our model characterizes how organiza-
tions strategically manipulate reported features in response to decision rules, and
how a regulator can counteract such strategic behavior through feature selection.
We establish sufficient conditions on the cost structure of feature manipulation
that identify when excluding manipulable features reduces prediction risk, and
conversely, when retaining the full feature set yields more accurate predictions.
These results offer a first step toward principled feature selection methods that
explicitly account for unreliable and strategically manipulated data inputs.

1 Introduction

Algorithmic predictions are increasingly used to inform decision-making about allocation of resources.
Decision-makers rely on individuals’ features to determine eligibility and set allocation amounts, with
the aim of implementing normative priorities. For example, eligibility for social welfare programs is
determined using poverty-targeting scores [2, 23], and government payments to health providers and
insurers is based on patient risk scores [7]. Such algorithmic decision-making systems incentivize
organizations that serve individuals to respond strategically and “game” the prediction rule.

We consider the U.S. Medicare Advantage (MA) program as a running example, where the government
determines payments to private insurers using a public risk-adjustment model that is trained to predict
patient costs given health data from the previous year [3,[19]. The goal of risk adjustment is to ensure
that insurers receive higher payments for higher-risk enrollees who are expected to need more services.
This payment rule inadvertently introduces incentives for private insurers to overreport diagnosis
codes, thereby inflating risk-adjusted payments, a practice known as “upcoding.” In 2024, higher MA
risk scores were estimated to translate into $50 billion in overpayments, as a result of upcoding [[15]].

To counteract the effect of upcoding, Centers for Medicare & Medicaid Services (CMS) excludes
diagnoses that are at risk of inappropriate coding by health plans and providers [3|4]. In 2024, CMS
removed the conditions corresponding to Protein-Calorie Malnutrition and Angina Pectoris from the
payment model to limit the sensitivity of the model to higher coding intensity in MA and maintain the
ability to accurately predict costs [4]. Despite the use of feature selection as a policy lever to combat
manipulation, it remains difficult to reason about which features a decision-maker should exclude in
response to strategic behavior, since dropping features comes at the cost of predictive accuracy.
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To address this gap, we develop a formal framework to reason about feature selection under strategic
behavior. We build on existing frameworks of strategic learning [9]], but with a focus on policy levers
commonly used in practice that are perhaps more coarse and simple, but as a result more widely
applied. In addition, while general strategic learning requires detailed information about costs to
manipulation, we focus on realistic limited information settings.

Contributions. We present a theoretical model of a decision-maker’s choice to drop or retain features
in a prediction model when such features can be strategically manipulated. We focus on a regression
setting, which aligns with the risk-adjustment models used by CMS. We give sufficient conditions for
the decision-maker to be better off dropping or retaining features, which we also pair with simulations
and examples. Finally, we discuss future directions towards practical policy recommendations.

1.1 Related work

A growing line of work in strategic classification is aimed at learning optimal prediction rules when
decision subjects can manipulate their features at a cost [9} 16} 22]]. Different from prior literature that
focused on pure gaming, the goal in [18 112}, 22] is to additionally incentivize genuine improvement in
individual outcomes. [8} 22} [11] study settings in which individuals have hidden features that causally
affect the outcome. In contrast, we study a setting where the decision-maker explicitly excludes
manipulable features from the prediction rule. Closest to our work is that of Holmstrom and Milgrom
[L1]. An important difference is the decision-maker’s prediction risk objective in our work.

The health policy literature has put forth several concrete proposals for feature selection in Medicare
Advantage risk adjustment. These proposals suggest, for example, including patient survey data [1,
14] or excluding diagnoses added to a patient health record via chart review [17]]. Our work is distinct
in that it provides a principled framework to navigate a set of feature selection decisions.

2 Model and Problem Formulation

We study the strategic interaction between organizations that receive predictions based on the features
of the individuals they serve, and a decision-maker who specifies the prediction rule. The decision-
maker publishes a prediction rule fy : X — ) parameterized by # € © C R?, mapping an
individual’s features x € X C R? to the predicted outcome § € Y C R. We consider linear
prediction rules fy(z) = 0"z = Ele 0;x; such that §; > 0 for all <. The linear specification is a
commonly studied setting in strategic learning [10} [12} [22]. Moreover, this is not merely a modeling
assumption: many models used by CMS in practice—including the risk adjustment model used to
allocate payments to Medicare Advantage plans—are based on least squares regression [20} 21].

The organization observes features a corresponding to an individual and takes action a € A C R% to
manipulate the features from x to x + a in order to maximize the predicted outcome y. We model the
population of individuals as a distribution Py over the space Z = X x Y with mean 1 = E,p, []
and covariance . We consider the distribution of individuals to be the same across organizations and
study a single type of organization in this work.

We assume that the decision-maker has access to unmanipulated data points from the space Z =
X x Y. Such data are obtained either from a pre-deployment period (prior to the use of fy) or from
an alternative policy under which organizations are not incentivized to manipulate their features. In
Medicare, this corresponds to traditional Medicare (fee-for-service), where payments are not based
on enrollees’ risk scores and thus there is no incentive to overreport diagnoses [15]. We consider
the true outcome model is a linear function y = #* "2 and the decision-maker estimates the true
parameters 6* using unmanipulated samples from Z.

Organization’s best-response model. The organization incurs a cost C'(a) > 0 for modifications
resulting from action a. We model the cost function as C(a) = 1a” Ha, where H € R%*¢ is
the cost matrix and [ > 0. For private insurers, this cost arises from payments to chart review
contractors for mining additional diagnosis codes and from conducting in-home health assessments
aimed at identifying undocumented conditions [7]]. We assume that organizations behave rationally
and best-respond to fy by choosing action

a*(x;0) = argmax 0 (z +a) — %aTHa (1
acA
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We can compute the action the organization will take by maximizing (I)) over a € A. Although
real-world settings sometimes restrict .4 (e.g., binary or bounded actions), in this work we consider
the unconstrained case A = R?. Note that V(0" (z + a) — $a" Ha) = 6 — Ha. If A = R% and

H =0, a*(z;0) = H~'0. From here on, we omit the dependence on = and write a* () = H 6.

Decision-maker’s objective. The decision-maker’s goal is to predict the true outcome as accurately
as possible. For example, the government seeks to avoid over- or under-estimating enrollees’ risk,
thereby minimizing corresponding over- and under-payments to insurers. We define prediction
risk under strategic response as mean squared error MSE(#), and the decision-maker chooses 6 to
minimize MSE(6):

MSE(0) = E,up, [(07 (z + a) — 6% T 2)?] )
When the decision-maker has full information of H, Py, and 6*, the minimum MSE is defined

as the “strategic optimum” if we think of our model as a game between the organization and the
decision-maker.

Definition 2.1 (Strategic optimum). The strategic optimum in the full-information game is defined as
OPTy- (Po, H) = min By, (07 (x+a*()) — 6" x)?]

In the real world, however, decision-makers do not have full information about the cost structure.
They often rely on simple—but not formally justified—heuristics, as we discuss in the next section.

2.1 MSEg; and MSEg4yop

In practice, decision-makers often drop features they expect to be highly manipulable, as noted earlier
with diagnoses in the CMS risk-adjustment model [4]]. Yet, the conditions under which doing so
reduces the decision-maker’s prediction risk are not well understood. We characterize regimes in
which feature dropping lowers risk and regimes in which the full model is preferable. Specifically,
we identify conditions under which it is optimal for the decision-maker to retain all features.

For the remainder of this work, we study the two feature case X = (X7, X5) and focus on the model
that drops X». The analysis for dropping X is analogous. For simplicity, we assume a diagonal cost
matrix i.e., H ' = diag(h11, hoo) and h1o = 0. In this case, y = 071 + 0515 and we denote mean
p = (11, pi2) and second-moment matrix M = E,p,[zz ].

The decision-maker learns 0 using samples (z, y) drawn from Py by minimizing the risk

6 = arg minEq ,yp, (672 —y)?. 3)
6co

From the definition of our linear model, ét‘ull = 6§ in the full feature model. We start by computing
the MSE of the full feature model (MSEg;) as
MSEg = Epop, [(Ofn(z + H 0n) — 07 T2)%] = (0°TH10%)% = (072hay + 03%ha0)°. (4)

This follows from substituting the best-response of the organization. When the decision-maker

chooses to drop X5, they learn a single parameter édmp = (B1,0). We derive MSE;qp in Lemma
and directly state here:

MSEurop = (h1187 — 03 (2 — rp1))? + 6037 (S22 + r*E11 — 2rSia), Q)

where r := Mjo/Mi;. From here on, for brevity, we will use A := o — rp; and V := g +
7“2211 — 2r3i19. Note that both MSEy, MSEdrop > OPTy- (730, H)

3 Results

In this section, we give sufficient conditions for when dropping features is better than keeping all
features, and vice versa. All proofs are deferred to Appendix [A]

First, we show that there exists a high-cost regime (i.e., h11, hoo are small) where retaining both
features strictly dominates any one-feature model.
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Figure 1: Best model across manipulation costs. For each (hq1, hoo) (entries of H 1), the shading
shows which model yields the lowest MSE. Boundary curves mark equal-risk frontiers.

Proposition 3.1 (Features can be retained at high cost). If the covariance matrix 3. is positive definite,
or A # 0, then there exists € > 0 such that for any hi1, haa < €, MSEqn < MSEqrqp.

The main message of this result is that it is beneficial for the decision-maker to safely retain all
features whenever manipulation is kept sufficiently costly. Specific to our example, a central policy
lever CMS can use to disincentivize upcoding is to increase the cost of manipulation—via higher legal
penalties and more comprehensive audits. We examine this regime in Figure [I]for (a) independent
and (b) correlated features, where the region with dominance of MSEy,) is shaded in blue.

When A = 0and V' = 0 (2 has rank 1), it is possible that there exists no cost setting, no matter how
high, in which the full model dominates the one-feature model. We give a specific example of feature
distributions for which this happens in Figure|l|(c). We note that when manipulation is cheap, X
determines the winner (Figure[T](a, b)). This establishes that feature correlation should guide feature
selection decisions. It also bears out the intuition that health policymakers have long stood by: as you
include more features, you expand the “gameable” surface area of the model [[13]].

Next, we show that the difference MSEy;op — MSEg,;; is monotone when hi1, hay > 0.

Proposition 3.2 (Unique hoo-threshold for drop vs full). For any given hy1 > 0, there exists a unique
threshold h3, € R such that

+1, for 0 < hoa < h3,,
$gn(MSEdrop — MSEgu) = ¢ 0, for hog = hi,,

—1, for hog > h§2

In this case, given an estimate for /31, the decision-maker can compute 135, and make a choice from
only one-sided information on ho5. Moreover, this points to a more efficient feature-level auditing
strategy, rather than auditing at the patient level. We provide additional simulations in Appendix [B]
with different values of (1, i2), X and 8* and show that our results are consistent.

4 Discussion

We present a model to formally reason about feature selection when such features can be strategically
manipulated. In particular, we provide sufficient conditions under which the decision-maker should
drop features rather than retain the full set, and conversely when the full model is optimal. From a
policy standpoint, an important next step is to identify by how much the manipulation costs should be
raised to provide concrete recommendations. An interesting direction for future work is to study a
setting where organizations differ in the population of individuals they serve. Further, organizations
could face different costs of manipulation. For example, Medicare Payment Advisory Commission
[L6] has found substantial heterogeneity in coding intensity across MA organizations. Amid a
growing body of work on strategic classification, we hope our work invites further investigation of
feature selection under strategic behavior.
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A  Proofs

Lemma A.1 (MSEqp). Let X = (X1, Xo) withmean jn = (pu1, pi2) and covariance £, Y = 67X +

05 Xo. When the decision-maker chooses to drop X, they learn a single parameter 9drop = (/1,0).
In this case, the mean—squared error equals

MSEqrop = (h11587 — 05 (2 — 71))? + 032 (Do + 12511 — 2r%10)

Proof. We can compute f3; as
pr = arggninE(X,Y)W% [(BX1 —Y)?]

_ E[X,Y]
E[X?]
E[X;X,]
=0+ 65—
L EXE

=07 + 65,

where 7 := Mo /My, M :=E[XXT] =%+ puu'.

The organization’s best response to édmp is H *lédmp = (h1151,0).

Let Sarop := (O (X + H "4r0p) — 6*T X). Then,

drop
Earop = h11B7 + B1X1 — 07 X1 — 05X
=h1 B2 —05(Xy —7X1)
Thus,
_ 2 *
Ex~p,[Edrop) = h1167 — 05 (2 — 7 p11)
Var(egrop) = 65 Var(Xe — rXy)
= 9; (222 + T2211 — 27‘212)
Since
MSEdrop = ]EXN"PO [5§rop] = (E[&dmp])2 + Var(sdmp),
the result follows. O

Proof of Proposition[3.1] MSEjg; < MSEgp if

(67711 + 032has)? < (h11 B2 — 030)% + 632V
This is equivalent to the inequality
(07" = BY)hy + 037 h3y + 2072052 ha1hos + 28705 Ahyy < (030)% + 052V

The right hand side of the above inequality is strictly positive, since either the covariance matrix X is
PD, or A # 0. The left hand side tends to zero continuously as k11, hoo tend to zero.

Specifically, choose 6 > 0 such that (85A)% + 052V > §. Choose ¢ such that (0;* — 3% + 03* +
2072052)c 4 25205 Ac < 6. O

Proof of Proposition[3.2] Fix hq1 > 0. From @) and (), we know

g(h2) = MSEqgrop — MSEquy = (h11 87 — 030)% 4 032V — (672hay + 03%hay)?

Let D(hn) = (hnﬂ% — QSA)Q + 9;2‘/ (Z 0) Then, g(hgg) = D(hu) — (0’{2h11 + 9;2h22)2 is
strictly decreasing on [0, o). For hag > 0,

g'(hao) = =2605(01%h11 + 032h22) < 0



246 As hoy — 00, g(hgg) — —00. At hoy =0, g(O) = D(hll) — (9T2h11)2. Ifg(O) > 0, there exists a
247 unique h3, with g(h3,) = 0. We solve
D(h11) = (07%h11 + 057 h35)%, 07%hay + 05%hs, > 0
248 to get the threshold
b 0ih11 + /D(h11)
22 — 92 .
2

249

250

Note that the negative square-root branch is inadmissible. Since g(hq2) is strictly decreasing, we get
the desired result.
251

If g(0) < 0 (i.e.,\/D(h11) < 07%h11), g(haa) < 0 for any hay > 0. Thus, the threshold A3, < 0
252
253

In this case, the interval (0, h3,) is empty and the result still holds.

O
x4+ B Additional simulations

We run additional simulations varying j, 2, and 6* and present the results in Figure[2]
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Figure 2: Best model across manipulation costs. For each (h11, hao) (entries of H 1), the shading
shows which model yields the lowest MSE. Boundary curves mark equal-risk frontiers. Top labels
for each plot indicate p, 3, and 6*.
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