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ABSTRACT

We consider the problem of learning an optimal expert behavior policy given noisy
demonstrations that contain observations from both optimal and non-optimal ex-
pert behaviors. Popular imitation learning algorithms, such as generative adversar-
ial imitation learning, assume that (clean) demonstrations are given from optimal
expert policies but not the non-optimal ones, and thus often fail to imitate the op-
timal expert behaviors given the noisy demonstrations. Prior works that address
the problem require (1) learning policies through environment interactions in the
same fashion as reinforcement learning, and (2) annotating each demonstration
with confidence scores or rankings. However, such environment interactions and
annotations in real-world settings take impractically long training time and a sig-
nificant human effort. In this paper, we propose an imitation learning algorithm to
address the problem without any environment interactions and annotations associ-
ated with the non-optimal demonstrations. The proposed algorithm learns ensem-
ble policies with a generalized behavioral cloning (BC) objective function where
we exploit another policy already learned by BC. Experimental results show that
the proposed algorithm can learn behavior policies that are much closer to the
optimal policies than ones learned by BC.

1 INTRODUCTION

Imitation learning (IL) has become a widely used approach to obtain autonomous robotics control
systems. IL is often more applicable in real-world problems than reinforcement learning (RL) since
expert demonstrations are often easier than designing appropriate rewards that RL requires. There
have been several IL methods that involve RL (Ziebart et al., 2008; Ng et al., 2000; Abbeel &
Ng, 2004; Ho & Ermon, 2016). Those IL methods inherit sample complexity from RL in terms
of environment interactions during training. The complexity restricts applicabilities in real-world
problems since a number of environment interactions in real-world settings often take a long time
and cause damage to the robot or the environment. Therefore, we are interested in IL methods that
do not require the environment interactions, such as behavioral cloning (BC) (Pomerleau, 1991)
which learns an expert policy in a supervised fashion.

BC as well as popular IL methods, such as generative adversarial imitation learning (GAIL) (Ho
& Ermon, 2016), assume the expert demonstration is optimal. Unfortunately, it is often difficult to
obtain optimal demonstrations for many tasks in real-world problems because the expert who tries to
operate the robot so that it can achieve tasks often makes mistakes due to various reasons, such as the
difficulty of the task, difficulty in handling the controller, limited observability of the environment,
or the presence of distraction. The mistakes include unnecessary and/or incorrect operations to
achieve the tasks. Given such noisy expert demonstrations, which contain records of both optimal
and non-optimal behavior, BC as well as the popular IL methods fails to imitate the optimal policy
due to the optimal assumption on the demonstrations as shown in (Wu et al., 2019).

A naive solution to cope with the noisy demonstrations is discarding the non-optimal demonstrations
among the ones that were already collected. This screening process is often impractical because it
involves a significant human effort. Most of recent IL works suppose settings where a very limited
number of clean expert demonstrations, which are composed of only the optimal behavior records,
are available. Those methods are also vulnerable to the noisy demonstrations due to the optimal
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assumption on the demonstrations. Thus they implicitly suppose such impractical screening process
if they were applied in real-world problems, where a number of the noisy demonstrations other than
the clean ones can be easily obtained. There have been IL methods addressing the noisy demonstra-
tions. Instead of the screening process, they require to annotate each demonstration with confidence
scores (Wu et al., 2019) or rankings (Brown et al., 2019). Even though they cope well with the
noisy demonstrations to obtain the optimal behavior policies, such annotation costs a significant
human effort as it is for the screening. Hence, we desire IL methods that can cope well with the
noisy demonstrations, which can be easily obtained in real-world settings, without any screening
and annotation processes associated with the non-optimal behaviors.

In this paper, we propose a novel imitation learning algorithm to address the noisy demonstrations.
The proposed algorithm does not require (1) any environment interactions during training, and (2)
any screening and annotation processes associated with the non-optimality of the expert behaviors.
Our algorithm learns ensemble policies with a generalized BC objective function where we exploit
another policy already learned by BC. Experimental results show that the proposed algorithm can
learn policies that are much closer to the optimal than ones learned by BC.

2 RELATED WORKS

A wide variety of IL methods have been proposed in these last few decades. BC (Pomerleau, 1991)
is the simplest IL method among those and thus BC could be the first IL option when enough clean
demonstrations are available. Ross & Bagnell (2010) have theoretically pointed out a downside of
the BC which is referred to as compounding error – the small errors of the learners trained by BC
could compound over time and bring about the deterioration of their performance. On the other hand,
experimental results in (Sasaki et al., 2018) show that BC given the clean demonstrations of sufficient
amounts can easily obtain the optimal behavior even for complex continuous control tasks. Hence,
the effect of the compounding error is negligible in practice if the amount of clean demonstrations is
sufficient. However, even if the amount of the demonstrations is large, BC cannot obtain the optimal
policy given the noisy demonstrations due to the optimal assumption on the demonstrations. Another
widely used IL approaches are inverse reinforcement learning (IRL) (Ziebart et al., 2008; Ng et al.,
2000; Abbeel & Ng, 2004) and adversarial imitation learning (AIL) (Ho & Ermon, 2016). Since
those approaches also assume the optimality of the demonstrations, they are also not able to obtain
the optimal policy given the noisy demonstrations, as shown in (Wu et al., 2019). As we will show
in Section 6, our algorithm successfully can learn near-optimal policies if noisy demonstrations of
sufficient amounts are given.

There have been several works that address the noisy demonstrations (Wu et al., 2019; Brown et al.,
2019; Tangkaratt et al., 2019; Kaiser et al., 1995; Grollman & Billard, 2012; Kim et al., 2013).
Those works address the noisy demonstrations by either screening the non-optimal demonstrations
with heuristic non-optimal assessments (Kaiser et al., 1995), annotations associated with the non-
optimality (Wu et al., 2019; Brown et al., 2019; Grollman & Billard, 2012), or training through the
environment interactions (Kim et al., 2013; Wu et al., 2019; Brown et al., 2019; Tangkaratt et al.,
2019). Our algorithm does not require any screening processes, annotations associated with the
non-optimality, and the environment interactions during training.

Offline RL methods (Lange et al., 2012; Fujimoto et al., 2019; Kumar et al., 2020) train the learner
agents without any environment interactions, and allow the training dataset to have non-optimal
trajectories as in our problem setting. A drawback of offline RL methods for the real-world applica-
tions is the requirement to design reward functions, which often involves a significant human efforts
for its success, since those methods assume that the reward for each state-action pair is known. Our
algorithm does not require to design reward functions as in standard IL methods.

Disagreement regularized imitation learning (DRIL) (Brantley et al., 2019) is a state-of-the-art IL
algorithm which employs an ensemble of policies as our algorithm does. The aims of employing the
ensemble is different between DRIL and our algorithm. DRIL uses the disagreement in predictions
made by policies in the ensemble to evaluate whether the states observed during training the learner
are ones observed in the expert demonstrations. On the other hand, our algorithm uses the ensemble
to encourage the learner to take optimal actions on each state as described in 5.3. In addition, DRIL
fundamentally requires the environment interactions during training whereas our algorithm does not.
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3 PRELIMINARIES AND PROBLEM SETUP

In this work, we consider an episodic fixed-horizon Markov decision process (MDP) which is for-
malized as a tuple {S,A,P, R, d0, T}, where S is a set of states, A is a set of possible actions
agents can take, P : S×A×S → [0, 1] is a transition probability, R : S×A→ [0, 1] is a reward
function, d0 : S → [0, 1] is a distribution over initial states, and T is an episode horizon. The agent’s
behavior is defined by a stochastic policy π : S×A→ [0, 1] and Π denotes a set of the stochas-
tic policies. The expected one-step immediate reward for a policy π given a state s is defined as
Rπ(s) = Ea∼π(·|s)

[
R(s, a)

]
.

Let dπt and dπ = 1
T

∑T
t=1 d

π
t denote the distribution over states at time step t and the aver-

age distribution over T time steps induced by π, respectively. The distributions dπ1 at the first
step correspond to d0 for any π. When following a policy π throughout an episode, the ex-
pected one-step immediate reward at time step t and the expected T -step reward are defined as
Rπt = Es∼dπt ,a∼π(·|s)

[
R(s, a)

]
= Es∼dπt

[
Rπ(s)

]
and J (π,R) =

∑T
t=1R

π
t = TEs∼dπ

[
Rπ(s)

]
,

respectively. We refer to J (π,R) as on-policy expected T -step reward. We also consider another
T -step reward defined by Jβ(π,R) = TEs∼dβ

[
Rπ(s)

]
, which we call off-policy expected T -step

reward, where β ∈ Π is a policy that can differ from π.

In our problem setting, the functions R is not given. Instead, we observe noisy demonstrations.
We refer to the agent that generates the noisy demonstrations as the noisy expert. The decision
process turns to be MDP\{R} as in the common imitation learning settings, and our problem can
be formalized as to find an optimal policy in MDP\{R}. Here we refer to the true expert policy
π∗e as ones being able to take the optimal (thus not noisy) behavior in episodic tasks. We make the
following four assumptions to further formalize our problem setting:

Assumption 1. The T -step expected reward of π∗e satisfies J (π,R) ≤ J (π∗e , R); Jβ(π,R) ≤
Jβ(π∗e , R); and Jβ(π∗e , R) ≤ J (π∗e , R) for any non-optimal policies π, β ∈ Π \ {π∗e}.

Assumption 2. With small probability ε, which we call non-optimal probability, the policies πe
the noisy experts follow during demonstrations are sampled at each time step as πe = π ∼ pΠ if
ε ≥ z ∼ U(0, 1), otherwise πe = π∗e , where pΠ is an unknown distribution over the set of policies,
z is a random variable, and U(0, 1) is a uniform distribution with range [0, 1].

Assumption 3. The rewardRπet is at least zero if the noisy expert has followed a policy π ∈ Π\{π∗e}
once or more so far, otherwise Rπet = Es∼dπet

[
εEπ∼pΠ [Rπ(s)] + (1− ε)Rπ∗

e (s)
]
.

Assumption 4. The sequence {Rπe1 , ..., RπeT } has monotonically decreasing property Rπet ≥ R
πe
t+1.

Assumption 1 indicates that both on-policy and off-policy expected T -step reward following π∗e are
always greater than or equal to ones following any other policies. In other words, we assume the true
expert policy is an optimal one in the MDP, and the agent following the policy is able to behave so
that the expected immediate rewards at any states are maximized. Under Assumption 1, the problem
that we would like to solve in this work can be said to learn a parameterized policy πθ to maximize
its on-policy expected T -step reward J (πθ, R) to J (π∗e , R). Assumption 2 indicates that the noisy
expert occasionally adopts non-optimal policies, which results in the noisy demonstrations, due to
random events, such as the presence of distractions, associated with the random variable z. The
noisy expert is going to visit states that would be never visited by the true expert if the noisy expert
followed non-optimal policies even once. Assumption 3 indicates that those states are less rewarded
and their rewards are at least zero. Assumption 3 also indicates that the noisy demonstrations have
a number of episodes where the noisy expert has reached the same state s where the noisy expert
has adopted both π∗e and π ∈ Π \ {π∗e} with the probability ε. Assumption 4 indicates that, since
the probability the noisy expert consecutively follows π∗e decreases as time step increases according
to Assumption 2, the divergence between dπet and dπ

∗
e
t becomes greater as the number of time step

t increases, and thus the one-step expected immediate reward Rπet = Es∼dπet ,a∼πe(·|s)
[
R(s, a)

]
decreases as t increases.
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4 ANALYSIS OF PERFORMANCE DETERIORATION

In this section, we firstly describe BC objective in 4.1. Then, we analyze why the learner trained
by BC deteriorates its performance when using the noisy demonstrations from the expected T-step
reward maximization and KL-divergence minimization perspectives in 4.2 and 4.3, respectively.

4.1 BEHAVIORAL CLONING OBJECTIVE

Let πθ ∈ Π is a learner policy parameterized by θ to be optimized by IL algorithms. The objective
of BC in common is as follows:

arg max
θ

Es∼dπe ,a∼πe(·|s)[log πθ(a|s)]. (1)

The objective (1) aims to mimic the expert behavior which follows πe. It can be interpreted that (1)
is to maximize the expected one-step immediate reward Rπθ (s) to Rπe(s) at each state s ∼ dπe .
Since the state distribution dπe is not induced by πθ, it can also be said that (1) is to maximize the
off-policy expected T -step rewards Jπe(πθ, R) to J (πe, R).

4.2 THE EXPECTED T-STEP REWARD MAXIMIZATION

We obtain the lower bound of the expected on-policy T -step reward for the noisy expert policy in
almost the same way to derive Theorem 2.1 in (Ross & Bagnell, 2010) where they showed the lower
bound for the learner policies given the “clean“ expert demonstrations.
Theorem 1. If the Assumptions 1 - 4 hold, J (πe, R) has the following lower bound:

J (πe, R) ≥
{

1

T

T−1∑
t=0

(1− ε)t
}
· Eπ∼pΠ

[Jπe(π,R)]. (2)

The detailed derivation can be found in Appendix A.1. Assume that the learner policy πθ has a
probability of non-optimal behavior ε̂ = ε + ζ at most as the result of BC, where ζ ∈ [0, 1 − ε] is
an additional probability of non-optimal behavior due to the remained loss in (1). Note that ζ may
become greater than zero due to the difficulty in the optimization of (1) even if ε = 0. The learner
following πθ with ε̂ can be deemed as another noisy expert who samples a policy at each time step
πθ = π ∼ pπθ if ε̂ ≥ z ∼ U(0, 1), otherwise πθ = π∗e , where pπθ is a (special) distribution from
which the same policy is always sampled. By replacing ε̂ and pπθ from ε and pΠ in Theorem 1
respectively, we obtain the following corollary.
Corollary 1. If the Assumptions 1 - 4 hold and the policy πθ has a probability of non-optimal
behavior ε̂ = ε+ ζ, J (πθ, R) has the following lower bound:

J (πθ, R) ≥
{

1

T

T−1∑
t=0

(1− ε̂)t
}
· Jπe(πθ, R). (3)

Recall that the BC objective (1) is to maximize Jπe(πθ, R). If ε̂ = 0, Corollary 1 indicates that the
on-policy expected T -step reward J (πθ, R), which corresponds to the actual learner performance,
is boosted by maximizing Jπe(πθ, R) through the optimization of the BC objective (1). On the
other hand, if ε > 0 and thus ε̂ > 0, the first factor on the RHS in (3) becomes much smaller as ε
becomes larger. Corollary 1 thus shows that the probability of non-optimal behavior ε of the noisy
expert significantly negates the improvement of learner performance J (πθ, R) by BC even if ζ can
be sufficiently minimized through the optimization. Hence, the learner trained by BC is not able to
boost the learner performance enough if the noisy demonstrations were given.

4.3 KL DIVERGENCE MINIMIZATION

Let Sπe be a set of states that are observed in the noisy demonstration. Sπe can be thought of
as the domain of (empirical) state distributions dπe . Sπe can be defined with two state sets of
states as Sπe = Sπee ∪ S

πe
e+∗, where Sπee contains states that are observed if the noisy expert has

followed a policy π ∈ Π \ {π∗e} once or more so far in the episode, and Sπee+∗ contains states
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at which the noisy expert has followed a policy π ∈ Π \ {π∗e} at the first time in the episode.
Under Assumption 3, the rewards Rπet for the states s ∈ Sπee are at least zero whereas Rπet =
Es∼dπet

[
εEπ∼pΠ

[Rπ(s)]+(1− ε)Rπ∗
e (s)

]
for the states s ∈ Sπee+∗. Note that the noisy expert adopts

π ∈ Π \ {π∗e} with a probability ε at the states s ∈ Sπee+∗. Let dπee and dπee+∗ be the state distributions
the noisy expert policy induces in Sπee and Sπee+∗, respectively. Then we can define dπe as a mixture
of those distributions as

dπe(s) = αdπee (s) + βdπee+∗(s), (4)

where α and β are ratios the noisy expert entered states that belong to Sπee and Sπee+∗ during demon-
strations, respectively. In addition, α + β = 1 is satisfied. Using Equation (4), the upper bound of
the objective function in Equation (1) is derived as follows:

Es∼dπe ,a∼πe(·|s)[log πθ(a|s)] ≤ −αΩe(θ)− βΩe+∗(θ), (5)
Ωe(θ) = Es∼dπee [DKL[πe(·|s)||πθ(·|s)]], (6)

Ωe+∗(θ) = εEs∼dπee+∗,π∼pΠ
[DKL[π(·|s)||πθ(·|s)]]

+ (1− ε)Es∼dπee+∗
[DKL[π∗e(·|s)||πθ(·|s)]], (7)

where DKL is forward Kullback-Leibler (KL) divergence. The full derivation can be found in
Appendix A.2. The inequality (5) shows that the BC objective (1) with the noisy demonstrations
is to minimizes the sum of KL divergences. The first term on the RHS in (7) leads the learner
to imitate some non-optimal behaviors whereas the second term is to learn π∗e on the same states.
The optimization to maximize the RHS in (7) is difficult because minimizing KL divergences with
different target distributions at the same time is difficult in general. The first term on the RHS in (7)
thus works as a “noisy” regularizer with a coefficient ε that makes the learner confused to learn π∗e .
The difficulty in the optimization due to the noisy regularizer increases ζ as ε increases.

As mentioned in 4.1 and 4.2, BC is to maximize Jπe(πθ, R) to J (πe, R). Hence, minimizing
Ωe(θ) in (6) corresponds to maximize Es∼dπee [Rπθ (s)] to Es∼dπee [Rπe(s)]. Since the rewards
Rπe(s) are at least zero for the states s ∼ dπee according to Assumption 3 and the definition of
Sπee , Es∼dπee [Rπθ (s)] becomes at least zero by minimizing Ωe(θ). Hence Jπe(πθ, R) becomes at
least zero as the rate α increases, while the rate α increases as the probabilities of non-optimal be-
havior ε increases. Thus, the larger the probability ε is, the more difficult it is to boost the learner
performance by BC.

If the influence of the noisy regularizer can be reduced, probabilities the learner follows π∗e at the
state s ∈ Sπee+∗ will increase. In addition, as probabilities the learner follows π∗e at the states s ∈
Sπee+∗ increase, the rate (corresponding to α) for the states s ∈ Sπee will decrease. Thus, it can be
said that, the more often learner follows π∗e at the states s ∈ Sπee+∗, the more rewards Rπ

∗
e (s) the

learner obtains according to Assumption 3. To summarize the above analysis, reducing the influence
of the noisy regularizer for states s ∈ Sπee+∗, which leads the learner to imitate some non-optimal
behaviors, might boost the learner performance.

5 ALGORITHM

The analyses in Section 4 describe that the learner trained by standard BC deteriorates its perfor-
mance when the noisy demonstrations are given. Based on both analyses in 4.2 and 4.3, the learner
performance will be boosted if the learner imitates the optimal policy π∗e but not the non-optimal
ones π ∈ Π \ {π∗e} for the states s ∈ Sπee+∗. In other words, the learner performance will be boosted
if ε̂ of the learner can be reduced. In this section, we first propose our algorithm that avoids learning
π ∈ Π\{π∗e} while learning π∗e in 5.1. Then we describe how our algorithm works to avoid learning
π ∈ Π\{π∗e} from mode seeking and reward maximization perspectives in 5.2 and 5.3, respectively.
We lastly provide limitations of our algorithm in 5.4.

5.1 PROPOSED ALGORITHM

We consider a generalization of the BC objective as follows:

arg max
θ

Es∼dπe ,a∼πe(·|s)[log πθ(a|s) · R̂(s, a)], (8)
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Algorithm 1 Behavioral Cloning from Noisy Demonstrations
1: Given the expert demonstrations D.
2: Set R̂(s, a) = 1 for ∀(s, a) ∈ D.
3: Split D into K disjoint sets {D1,D2, ...,DK}.
4: for iteration = 1,M do
5: for k = 1,K do
6: Initialize parameters θk.
7: for l = 1, L do
8: Sample a random minibatch of N state-action pairs (sn, an) from Dk.
9: Calculate a sampled gradient 1

N

∑N
n=1∇θk log πθk(sn, an) · R̂(sn, an).

10: Update θk by gradient ascent using the sampled gradient.
11: end for
12: end for
13: Copy πθold ← πθ.
14: Set R̂(s, a) = πθold(a|s) for ∀(s, a) ∈ D.
15: end for
16: return πθ.

where R̂ : S×A→ [0, 1] denotes an arbitrary function which can differ from R. If R̂(s, a) = 1

for ∀(s, a) ∈ S × A, the objective (8) corresponds to the BC objective (1). If
∫
A R̂(s, a)da = 1

for ∀s ∈ S is satisfied, R̂(s, a) can be interpreted as weights for action samples obtained by the
demonstrations so that the actions are sampled according to their relative weights. The objective (8)
can also be deemed as that of the off-policy actor-critic (Off-PAC) algorithm1 (Degris et al., 2012)
with reward functions R̂(s, a) and zero discount factors.

Let πθ1 , πθ2 , ..., πθK beK parameterized policies with different initial parameters θ1, θ2, ..., θK , and
πθ(a|s) =

∑K
k=1 πθk(a|s)/K denotes an ensemble of the parameterized policies with parameters

θ = {θ1, θ2, ..., θK}. Let πθold be a parameterized policy with θold which was already optimized
with the noisy demonstrations. The main idea of our algorithm is to reuse the old policy πθold as
R̂(s, a) in the generalized BC objective (8).

arg max
θ

Es∼dπe ,a∼πe(·|s)[log πθ(a|s) · πθold(a|s)]. (9)

The overview of our algorithm is described in Algorithm 1.

5.2 WEIGHTED ACTION SAMPLING FOR π∗e MODE SEEKING

Since πθold satisfies
∫
A πθold(a|s)da = 1 for ∀s ∈ S , πθold can be interpreted as the weights for

the weighted action sampling. We below explain the weighted action sampling procedure in our
algorithm on Sπee+∗. Figure 1 depicts a toy example of the sampling procedure. The distribution
of the noisy expert actions on Sπee+∗ is a mixture of two distributions as shown in Equation (7).
If ε is sufficiently small, πθ is optimized so that its mode is closer to that of π∗e than π ∈ Π \
{π∗e} according to mode seeking properties of the forward KL divergence (Ghasemipour et al.,
2020). Given the sampling weights πθold(a|s) = πθ(a|s) for the empirical action samples, the
weighted action distribution distorts so that its mode also gets closer to the mode of π∗e . By iteratively
distorting the weighted action distribution with the same procedure, its mode fits to near the mode of
πe∗. The weights for actions sampled from π ∈ Π\{π∗e} eventually become much smaller, and thus
the learner will not learn π ∈ Π \ {π∗e}. The mode seeking procedure of our algorithm is analogous
to the mean shift algorithm (Fukunaga & Hostetler, 1975) so that the mode of πθ shifts towards that
of π∗e by minimizing the KL divergence between πθ and the weighted action distribution.

1Although Off-PAC multiplies log πθ(a|s) by a density ratio πe(s|a)/πθ(s|a), πθ(s|a) is empirically ap-
proximated to be one in popular off-policy RL algorithms such as DDPG (Lillicrap et al., 2015).
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iteration 1 iteration 5 iteration 10 iteration 15

weighted distribution

Figure 1: A toy example of the weighted action sampling procedure at each iteration in our algorithm
when given a state s ∈ Sπee+∗. On both rows, the horizontal lines are the action domains. The left
and right dotted lines on the top row describe π ∈ Π \ {π∗e} and π∗e(a|s), respectively. The dotted
lines on the bottom row describe the mixture distribution πe(a|s) = επ(a|s) + (1− ε)π∗e(a|s) with
ε = 0.4. The solid lines on the top row describe πθ(a|s) that are optimized with objective (8) at
each iteration. The solid lines on the bottom row describe distributions which draw actions, that were
already drawn by πe(a|s) in the noisy demonstrations, according to the current importance weight
πθ(a|s) at each iteration. πθ(a|s) are optimized at each iteration so that the weighted distribution at
the previous iteration is the target distribution.

5.3 REWARD MAXIMIZATION

As the Off-PAC objective, the objective (9) maximizes the expected (one-step) reward R̂(s, a) =

πθold(a|s). Recall that the learner policy πθ(a|s) =
∑K
k=1 πθk(a|s)/K is an ensemble of the pa-

rameterized policies in our algorithm. Following the work in (Perrone, 1993), we obtain

1

K

K∑
k=1

Es∼dπe ,a∼πe(·|s)[log πθk(a|s) · R̂(s, a)] ≤ Es∼dπe ,a∼πe(·|s)
[
log πθ(a|s) · R̂(s, a)

]
, (10)

where we use Jensen’s inequality with the concave property of logarithm : 1
K

∑K
k=1 log πθk(a|s) ≤

log πθ(a|s). The inequality (10) indicates that the ensemble of policies πθ1 , πθ2 , ..., πθK , each of
which was learned with (8), has greater or equal values of the objective function in (8) than the
averaged values over the policies in the ensemble. As mentioned in 5.2, R̂(s, a) = πθold(a|s)
becomes higher near the mode of π∗e . Thus, making πθ as the ensemble further encourages to shift
its mode to that of π∗e and avoid learning π ∈ Π \ {π∗e}.

5.4 LIMITATIONS

Our algorithm has three limitations. First, K ×M times computational cost is required in com-
parison with BC, where M is the number of iterations in Algorithm 1. Second, the compounding
error due to the probability of non-optimal behavior ζ still remains unless sufficient amounts of the
demonstrations are given. Lastly, πθ is fitting to π ∈ Π \ {π∗e} rather than π∗e if the major mode of
επ(a|s) + (1 − ε)π∗e(a|s) is nearer to the mode of π(a|s) than that of π∗e . It may be caused due to
the higher kurtosis of π(a|s) or ε of large values.

6 EXPERIMENTS

In our experiments, we aim to answer the following three questions:

Q1. Does our algorithm improve the learner performance more than BC given the noisy demon-
strations?

Q2. Can the compounding error due to ζ be reduced as the number of noisy demonstrations
increase?

Q3. Is our algorithm competitive to the existing IL methods if both annotations associated with
the non-optimality and environment interactions are allowed?
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6.1 SETUP

To answer Q1 and Q2, we evaluated our algorithm against BC on four continuous control tasks that
are simulated with MuJoCo physics simulator (Todorov et al., 2012). We train an agent on each task
by proximal policy optimization (PPO) algorithm (Schulman et al., 2017) using the rewards defined
in the OpenAI Gym (Brockman et al., 2016). We use the resulting stochastic policy as the true
expert policy π∗e . We generate the noisy expert demonstrations using π∗e while randomly adopting
non-optimal policies π with probabilities of the non-optimal behavior ε. The non-optimal policies
π are selected from uniform distributions a ∼ U(−u, u), Gaussian distributions a ∼ N (a∗, I)
with a ∼ π∗e(·|s), or a deterministic policy a = 0, where u ∈ R|A| denotes all-ones vectors and
I ∈ R|A|×|A| denotes identity matrices. ε are selected from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. The noisy
expert takes actions following π∗e if z ≥ ε otherwise π which is fixed to a selected one through an
episode, where z ∼ U(0, 1). Each noisy demonstration with the selected ε consists ofN state-action
pairs, where N is selected from {5000, 10000, 50000, 100000}. Then we perform our algorithm
as well as BC to train the learners using each noisy demonstration. We also conducted the same
experiments on four low-dimensional discrete control tasks (see Appendix A.4).

To answer Q3, we evaluated our algorithm against IC-GAIL (Wu et al., 2019), 2IWIL (Wu et al.,
2019), T-REX (Brown et al., 2019), GAIL and DRIL on three continuous control tasks. IC-
GAIL, 2IWIL and T-REX require both annotations associated with the non-optimality and envi-
ronment interactions. GAIL and DRIL require the environment interactions for the training, but
they do not address the noisy demonstration problem. The true expert policy π∗e are obtained
in the same way as mentioned above. The non-optimal policies π are fixed to a ∼ U(−u, u).
We generate the noisy expert demonstrations which consists of 10000 state-action pairs for each
ε ∈ {0.05, 0.1, 0.15, ...., 1.0}. Then we perform our algorithm and the baselines using all noisy
demonstrations. The detailed description of this experimental setup can be found in Appendix A.3.

In both experiments, the performance of the learners is measured by cumulative rewards they earned
in an episode. The cumulative reward is normalized with ones earned by π∗e and a random policy
a ∼ U(−u, u) so that 1.0 and 0.0 indicate the performance of π∗e and the random policy, respectively.
We run five experiments on each task and setup, and measure the mean and standard deviation of
the normalized cumulative rewards for each learner over the five experiments. In all experiments,
we set the number of policies K = 5 in the ensemble learner policy πθ and the number of iterations
M = 5. The implementation details of our algorithm can be found in Appendix A.5.

6.2 RESULTS

Figure 2 depicts the experimental results against BC. Over all tasks, our algorithm obtains much
better learner performance than BC-Single, which is a single (thus not an ensemble) policy learned
by BC. It suggests that the policies learned by our algorithm are closer to π∗e than ones learned by
BC. The compounding error due to ζ is expected to be reduced as the number of demonstrations
increase. Whereas BC-Ensemble which denotes the ensemble of policies learned by BC yields
significant performance gains against BC-Single, increasing the number of noisy demonstrations
has a little effect to boost the learner performance trained by BC-Ensemble as shown in Figure 2-
(D). It indicates that BC-Ensemble can not reduce the compounding error due to ε. On the other
hand, our algorithm can boost the learner performance up to that of π∗e as increasing the number of
demonstrations. It suggests that our algorithm can reduce the compounding error due to both ε and ζ
if sufficient amounts of the noisy expert demonstrations are given, as is the case for BC with the clean
expert demonstrations. The results with the deterministic non-optimal policy π ∈ Π \ {π∗e} which
always takes an action a = 0 are worse than those with other non-optimal policies. It corresponds to
the limitation of our algorithm as mentioned in 5.4, since the major mode of επ(a|s)+(1−ε)π∗e(a|s)
might be around a = 0. We also conducted ablation experiments where the number of policies K
are selected from {1, 5} in our algorithm. See Appendix A.6 for details. The ablation experimental
results show that the learner obtains better performance if K increases. In addition, the performance
of the learner trained by our algorithm is significantly better than that of BC-Single even though
K = 1. It suggests that our algorithm improves the learner performance by not only the ensemble
approach but also using the old policies πθold .

Table 1 shows the experimental results against IC-GAIL, 2IWIL, T-REX, GAIL and DRIL. Over all
tasks, 2IWIL and our algorithm can successfully obtain the true expert performance while others can
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Figure 2: (A)-(C) The performance of policies vs. ε given 50000 state-action pairs of the noisy
expert demonstrations where the non-optimal policies π ∈ Π\{π∗e} are (A) U(−u, u), (B)N (a∗, I)
with a ∼ π∗e(·|s), and (C) the deterministic one a = 0, respectively. (D) The performance of policies
vs. the number of state-action pairs N of the noisy demonstrations with ε = 0.3 where π(a|s) =
U(−u, u). BC-Single is a policy learned by BC. BC-Ensemble is an ensemble of policies, each of
which was learned by BC. Shaded regions indicate the standard deviation over five experiments.

not. It suggests that our algorithm can obtain competitive results with that of existing IL methods
even though the annotation and the environment interactions are not used.

Table 1: The experimental results against IL methods that require the environment interactions.

IC-GAIL 2IWIL T-REX GAIL DRIL Ours

Ant-v2 0.631± 0.162 1.042± 0.021 0.586± 0.124 0.003± 0.004 1.071± 0.023 1.055± 0.053

HalfCheetah-v2 0.941± 0.103 1.024± 0.059 0.001± 0.113 0.106± 0.003 0.065± 0.006 1.093± 0.092

Hopper-v2 1.233± 0.152 1.223± 0.135 0.441± 0.219 0.000± 0.001 0.910± 0.099 1.003± 0.045

7 CONCLUSION

In this paper, we proposed an imitation learning algorithm to cope with the noisy expert demon-
strations. Experimental results showed that our algorithm can learn behavior policies that are much
closer to the true expert policies than ones learned by BC. Since our algorithm cope well with the
noisy expert demonstrations while not requiring any environment interactions and annotations asso-
ciated with the non-optimal demonstrations, our algorithm is more applicable to real-world problems
than the prior works. Although our algorithm has a few limitations as mentioned in 5.4, we believe
that the analysis of performance deterioration detailed in Section 4 contributes to step forward for
solving the noisy demonstration problems. In future work, we will consider the setting where the
probability of non-optimal behavior is state-dependent, which often occurs in the real world more
than the state-independent case that we have considered in this paper.
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A APPENDIX

A.1 DETAILED DEVIATION OF THEOREM 1

Proof. Let qt = (1 − ε)t denotes the probability the noisy expert consecutively follows π∗e in the
first t step, and χ =

∑T
t=1 qt−1 denotes sum of qt−1 over time steps. Then we obtain:

J (πe, R) ≥
T∑
t=1

qt−1R
πe
t + (1− qt−1) · 0 (11)

≥ T

{
1

T

T∑
t=1

qt−1

}{
1

T

T∑
t=1

Rπet

}
(12)

=
χ

T

{ T∑
t=1

Es∼dπet
[
εEπ∼pΠ

[Rπ(s)] + (1− ε)Rπ
∗
e (s)

]}
=

χ

T

{
εEπ∼pΠ

[Jπe(π,R)] + (1− ε)Jπe(π∗e , R)

}
≥ χ

T

{
εEπ∼pΠ

[Jπe(π,R)] + (1− ε)Eπ∼pΠ
[Jπe(π,R)]

}
(13)

=

{
1

T

T−1∑
t=0

(1− ε)t
}
· Eπ∼pΠ [Jπe(π,R)]

The first inequality (11) is from Assumption 2 and 3. The second inequality (12) is from Cheby-
shev’s sum inequality with the monotonically decreasing properties according to Assumption 4. The
third inequality (13) is from Assumption 1 : Jβ(π,R) ≤ Jβ(π∗e , R) for any π, β ∈ Π \ {π∗e}.

A.2 DETAILED DERIVATION OF THE KL DIVERGENCES

From the definition of (4), we obtain:

Es∼dπe ,a∼πe(·|s)[log πθ(a|s)] = αEs∼dπee ,a∼πe(·|s)[log πθ(a|s)] (14)

+ βEs∼dπee+∗,a∼πe(·|s)[log πθ(a|s)] (15)

The forward Kullback-Leibler (KL) divergence DKL between πe and πθ over a state distribution
dπe is defined as Es∼dπe [DKL(πe(·|s)||πθ(·|s))] = −Es∼dπe [Ea∼πe(·|s)[log πθ(a|s)]+H[πe(·|s)]],
whereH denotes the entropy. SinceH[πe(·|s)] always takes positive value and is not associated with
θ, we obtain an inequality : Es∼dπe ,a∼πe(·|s)[log πθ(a|s)] ≤ −Es∼dπe [DKL(πe(·|s)||πθ(·|s))]. The
same goes with (14) as

αEs∼dπee ,a∼πe(·|s)[log πθ(a|s)] ≤ −αEs∼dπe [DKL(πe(·|s)||πθ(·|s))]. (16)

Since πe adopts both π∗e and π ∈ Π \ {π∗e} following the probability ε, the third term (15) can be
expanded as:

βEs∼dπee+∗,a∼πe(·|s)[log πθ(a|s)] = βEs∼dπee+∗

{
εEπ∼pΠ,a∼π(·|s)[log πθ(a|s)]

+(1− ε)Ea∼π∗
e (·|s)[log πθ(a|s)]

}
≤ −β

{
εEs∼dπee+∗,π∼pΠ

[DKL(π(·|s)||πθ(·|s))]

+(1− ε)Es∼dπee+∗
[DKL(π∗e(·|s)||πθ(·|s))]

}
(17)

A.3 DETAILED DESCRIPTION OF THE EXPERIMENTAL SETUP

We annotate confidence scores for the noisy demonstrations so that the confidence is one if the
demonstrations are obtained with ε = 0 otherwise zero. The confidence scores are used IC-GAIL
as well as 2IWIL. We use publicly available code 2 for the implementation of both IC-GAIL and

2https://github.com/kristery/Imitation-Learning-from-Imperfect-Demonstration
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Figure 3: The performance of policies vs. ε given 50000 state-action pairs of the noisy expert
demonstrations where the non-optimal policies π ∈ Π \ {π∗e} select actions uniformly at random.
BC-Single is a policy learned by BC. BC-Ensemble is an ensemble of policies, each of which was
learned by BC. Shaded regions indicate the standard deviation over five experiments.

2IWIL. We follow the training procedure of both methods as described in Section 5 in (Wu et al.,
2019).

We annotate rankings for the noisy demonstrations so that the smaller ε correspond to higher rank-
ings. Then, we train the learner by T-REX given the ranked demonstration data. We use publicly
available code 3 for the implementation of T-REX.

For training the learner with GAIL and DRIL, we use all noisy demonstrations without any screening
process. We use publicly available code 4 for the implementation of GAIL and DRIL.

A.4 EXPERIMENTAL RESULTS ON DISCRETE CONTROL TASKS

Figure 3 shows the experimental results on four discrete control tasks. Over all tasks, our algorithm
obtain much better results than BC.

A.5 IMPLEMENTATION DETAILS OF OUR ALGORITHM

We implement our algorithm using K neural networks with two hidden layers to represent policies
πθ1 , πθ2 , ..., πθK in the ensemble. The input of the networks is vector representations of the state.
Each neural network has 100 hidden units in each hidden layer followed by hyperbolic tangent
nonlinearity, and the dimensionality of its final output corresponds to that of action space. The
final output is followed by softmax function in the discrete control tasks. As for the continuous
control tasks, the final output represents the mean of a Gaussian policy as πθk = N (µθk(s), σ2

θk),
where σ2

θk is implemented as a trainable independent vector from the networks. The neural network
architecture for the policy trained by BC is the same as the ones for a single policy in our algorithm.
We employ Adam (Kingma & Ba, 2014) for learning parameters with a learning rate of η ∗ 10−4

where η = K/
∑K
k=1 πθkold(µθkold(s)|s) is a scaling parameter. The parameter η plays a role in

scaling R̂ = πθold(a|s) to avoid the training being slow due to πθold(a|s) of small values.

The parameters in all layers are initialized by Xavier initialization (Glorot & Bengio, 2010). The
mini-batch size and the number of training epochs are 128 and 500, respectively.

A.6 ABLATION EXPERIMENTS

We conducted ablation experiments where we evaluate how the number of policies K in the ensem-
ble policy πθ as well as the number of the policies Kold used in the old ensemble policies πθold
affect the performance. Table 2 summarizes the ablation experimental results. Even if our algorithm
uses K = 1 as BC-Single does, the results of our algorithm are better than BC. It indicates that the

3https://github.com/hiwonjoon/ICML2019-TREX
4https://github.com/xkianteb/dril
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weighted action sampling described in 5.2 works to avoid learning the non-optimal policies without
relying on the ensemble approach. The same goes with K = 5. Our algorithm with K = 5 and
Kold = 1 obtain much better performance than BC-Ensemble with K = 5. This result also sup-
ports the weighted action sampling works. The learner performance with fixed K increases as Kold

increases. Similarly, the learner performance with fixed Kold increases as K increases. It suggests
that both K and Kold affect the performance in our algorithm.

Table 2: The performance of policies on the ablation experiment. The number of state-action pairs
of the noisy expert demonstrations isN = 50000. The non-optimal policies π ∈ Π\{π∗e} is U(0, I).
BC-Single is a policy learned by BC. BC-Ensemble is an ensemble of five policies, each of which
was learned by BC. K denotes the number of policies in the ensemble policy πθ. Kold denotes the
number of policies used in the old ensemble policy πθold . The mean and standard deviation of the
normalized cumulative rewards over three experiments are described.

Ant-v2 HalfCheetah-v2 Hopper-v2 Walker2d-v2 Average
BC-Single 0.149 ± 0.001 0.305 ± 0.006 0.258 ± 0.017 0.071 ± 0.004 0.196 ± 0.105

BC-Ensemble(K = 5) 0.664 ± 0.043 0.459 ± 0.014 0.352 ± 0.028 0.279 ± 0.039 0.438 ± 0.167
Ours(K = 1,Kold = 1) 0.272 ± 0.184 0.505 ± 0.279 0.405 ± 0.206 0.281 ± 0.306 0.366 ± 0.111
Ours(K = 5,Kold = 1) 0.903 ± 0.048 1.057 ± 0.008 0.602 ± 0.130 0.345 ± 0.049 0.731 ± 0.320
Ours(K = 1,Kold = 5) 0.517 ± 0.015 0.907 ± 0.007 0.778 ± 0.093 0.414 ± 0.085 0.654 ± 0.227
Ours(K = 5,Kold = 5) 0.995 ± 0.053 1.058 ± 0.053 0.573 ± 0.079 0.364 ± 0.044 0.747 ± 0.334
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