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Abstract

We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the
dominant method of conditional sampling for text-to-image diffusion models, yet unlike other
aspects of diffusion, it remains on shaky theoretical footing. In this paper, we first disprove
common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al.,
2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-
powered distribution p(x|c)γp(x)1−γ . Then, we clarify the behavior of CFG by showing
that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between
denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove
that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the
conditional distribution together with a Langevin dynamics corrector for a gamma-powered
distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically
understand CFG by embedding it in a broader design space of principled sampling methods.

1 Introduction

Classifier-free-guidance (CFG) has become an essential part of modern diffusion models, especially in text-to-
image applications (Dieleman, 2022; Rombach et al., 2022; Nichol et al., 2021; Podell et al., 2023). CFG
is intended to improve conditional sampling, e.g. generating images conditioned on a given class label or
text prompt (Ho & Salimans, 2022). The traditional (non-CFG) way to do conditional sampling is to simply
train a model for the conditional distribution p(x|c), including the conditioning c as auxiliary input to
the model. In the context of diffusion, this means training a model to approximate the conditional score
s(x, t, c) := ∇x log pt(x|c) at every noise level t, and sampling from this model via a standard diffusion sampler
(e.g. DDPM). Interestingly, this standard way of conditioning usually does not perform well for diffusion
models, for reasons that are unclear. In the text-to-image case for example, the generated samples tend to
be visually incoherent and not faithful to the prompt, even for large-scale models (Ho & Salimans, 2022;
Rombach et al., 2022).

Guidance methods, such as CFG and its predecessor classifier guidance (Sohl-Dickstein et al., 2015; Song
et al., 2020; Dhariwal & Nichol, 2021), are methods introduced to improve the quality of conditional samples.
During training, CFG requires learning a model for both the unconditional and conditional scores (∇x log pt(x)
and ∇x log pt(x|c)). Then, during sampling, CFG runs any standard diffusion sampler (like DDPM or DDIM),
but replaces the true conditional scores with the “CFG scores”

s̃(x, t, c) := γ∇x log pt(x|c) + (1− γ)∇ log pt(x), (1)

for some γ > 0. This turns out to produce more coherent samples in practice, and so CFG is used in almost
all modern text-to-image diffusion models (Dieleman, 2022). A common intuition for why CFG works starts
by observing that Equation (1) is the score of a gamma-powered distribution:

pt,γ(x|c) ∝ pt(x)1−γpt(x|c)γ , (2)

which is also proportional to pt(x)pt(c|x)γ . Raising pt(c|x) to a power γ > 1 sharpens the classifier around
its modes, thereby emphasizing the “best” exemplars of the given class or other conditioner at each noise
level. Applying CFG — that is, running a standard sampler with the usual score replaced by the CFG score
at each denoising step — is supposed to increase the influence of the conditioner on the final samples.
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Figure 1: CFG vs. PCG. We prove that the DDPM variant of classifier-free guidance (top) is equivalent
to a kind of predictor-corrector method (bottom), in the continuous limit. We call this latter method
“predictor-corrector guidance” (PCG), defined in Section 4.1. The equivalence holds for all CFG guidance
strengths γ, with corresponding PCG parameter γ′ = (2γ − 1), as given in Theorem 4.4. Samples from SDXL
with prompt: “photograph of a cat eating sushi using chopsticks”.

However, CFG does not inherit the theoretical correctness guarantees of standard diffusion (Chen et al., 2022),
because the CFG scores do not necessarily correspond to a valid diffusion forward process. The fundamental
issue (which is known, but still worth emphasizing) is that pt,γ(x|c) is not the same as the distribution
obtained by applying a forward diffusion process to the gamma-powered data distribution p0,γ(x|c). That is,
letting Nt[p] denote the distribution produced by starting from a distribution p and running the diffusion
forward process up to time t, we have

pt,γ(x|c) := Nt[p0(x|c)]γ ·Nt[p0(x)]1−γ (3)
̸= Nt

[
p0(x|c)γp0(x)1−γ

]
. (4)

Since the distributions {pt,γ(x|c)}t do not correspond to any known forward diffusion process, we cannot
properly interpret the CFG score (1) as a denoising direction; and using the CFG score in a sampling loop
like DDPM or DDIM is no longer theoretically guaranteed to produce a sample from p0,γ(x|c) or any other
known distribution. The theoretical foundations of CFG are thus unclear, and important questions remain
open: Is there a principled way to think about why CFG works? And what does it even mean for CFG to
“work” – what problem is CFG solving? We make progress towards understanding the foundations of CFG,
and in the process we uncover several new aspects and connections to other methods.

1. First, we disprove common misconceptions about CFG by counterexample. We show that the
DDPM and DDIM variants of CFG can generate different distributions, neither of which is the
gamma-powered data distribution p0(x)1−γp0(x|c)γ .
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2. We define a family of methods called predictor-corrector guidance (PCG), as a natural way to
approximately sample from gamma-powered distributions. PCG alternates between denoising steps
and Langevin dynamics steps. In contrast to Song et al. (2020), where the predictor and corrector
both target the conditional distribution, in PCG the predictor anneals using conditional diffusion
paths, while the corrector mixes towards the (sharpened) gamma-powered distribution.

3. We prove that in the continuous-time limit, CFG is equivalent to PCG with a careful choice of
parameters. This gives a principled way to interpret CFG: it is implicitly an annealed Langevin
dynamics.

4. For demonstration purposes, we implement the PCG sampler for Stable Diffusion XL and observe
that it produces samples qualitatively similar to CFG, with guidance scales determined by our theory.
Further, we explore the design axes exposed by the PCG framework, namely guidance strength and
Langevin iterations, to clarify their respective effects.

We do not intend to propose PCG as a practical sampling method (since with certain parameters it is
equivalent to CFG, but far less efficient), but rather as a tool for understanding CFG. The main goal of this
paper is to demonstrate a theoretical equivalence between CFG and PCG, in order to place CFG on a firmer
theoretical footing as a kind of annealed Langevin dynamics on the gamma-powered distribution.

2 Preliminaries

We adopt the continuous-time stochastic differential equation (SDE) formalism of diffusion from Song et al.
(2020). These continuous-time results can be translated to discrete-time algorithms; we give explicit algorithm
descriptions for our experiments.

2.1 Diffusion Samplers

Forward diffusion processes start with a conditional data distribution p0(x|c) and gradually corrupt it with
Gaussian noise, with pt(x|c) denoting the noisy distribution at time t. The forward diffusion runs up to a time
T large enough that pT is approximately pure noise. To sample from the data distribution, we first sample
from the Gaussian distribution pT and then run the diffusion process in reverse (which requires an estimate
of the score, usually learned by a neural network). A variety of samplers have been developed to perform this
reversal. DDPM (Ho et al., 2020) and DDIM (Song et al., 2021) are standard samplers that correspond to
discretizations of a reverse-SDE and reverse-ODE, respectively. Due to this correspondence, we refer to the
reverse-SDE as DDPM and the reverse-ODE as DDIM for short. The forward process, reverse-SDE, and
equivalent reverse-ODE (Song et al., 2020) for the variance-preserving (VP) (Ho et al., 2020) conditional
diffusion are

Forward SDE : dx = −1
2βtxdt +

√
βtdw. (5)

DDPM SDE : dx = −1
2βtx dt− βt∇x log pt(x|c)dt +

√
βtdw̄ (6)

DDIM ODE : dx = −1
2βtx dt− 1

2βt∇x log pt(x|c)dt. (7)

The unconditional version of each sampler simply replaces pt(x|c) with pt(x). Note that the score ∇x log pt(x|c)
appears in both (6) and (7). Intuitively, the score points in a direction toward higher probability, and so
it helps to reverse the forward diffusion process. The score is unknown in general, but can be learned via
standard diffusion training methods.
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2.2 Classifier-Free Guidance

CFG replaces the usual conditional score ∇x log pt(x|c) in (6) or (7) at each timestep t with the alternative
score ∇x log pt,γ(x|c). In SDE form, the CFG updates are

CFGDDPM : dx = −1
2βtx dt− βt∇x log pt,γ(x|c)dt +

√
βtdw̄ (8)

CFGDDIM : dx = −1
2βtx dt− 1

2βt∇ log pt,γ(x|c)dt, (9)

where ∇x log pt,γ(x|c) = (1− γ)∇x log pt(x) + γ∇x log pt(x|c).

2.3 Langevin Dynamics

Langevin dynamics (Rossky et al., 1978; Parisi, 1981) is another sampling method, which starts from an
arbitrary initial distribution and iteratively transforms it into a desired one. Langevin dynamics (LD) is
given by the following SDE (Robert et al., 1999)

dx = ε

2∇ log ρ(x)dt +
√

εdw. (10)

LD converges (under some assumptions) to the steady-state ρ(x) (Roberts & Tweedie, 1996). That is, letting
ρs(x) denote the solution of LD at time s, we have lims→∞ ρs(x) = ρ(x). Similar to diffusion sampling, LD
requires the score of the desired distribution ρ (or a learned estimate of it).

3 Misconceptions about CFG

We first observe that the exact definition of CFG matters: specifically, the sampler with which it used.
Without CFG, DDPM and DDIM generate equivalent distributions. However, we will prove that with CFG,
DDPM and DDIM can generate different distributions. We provide informal statements of our claims below,
to convey the main intuitions. The formal statement and proof is provided in Appendix A.1, as Theorem A.3.
Theorem 3.1 (CFGDDIM ≠ CFGDDPM; informal). Consider generating a sample via CFG using either DDPM
or DDIM as the sampler. There exists a particular data distribution for which the generations of CFG differ
depending on the choice of sampler. In particular, for large guidance scale γ ≫ 1, CFGDDPM and CFGDDPM
approximately generate the following distributions, respectively:

p̂ddpm ≈ N (0, γ−1), p̂ddim ≈ N (0, 2−γ).

Next, we disprove the misconception that CFG generates the gamma-powered distribution data:
Theorem 3.2 (CFG ̸= gamma-sharpening, informal). There exists a data distribution p0 such that for any
γ > 0, neither CFGDDIM nor CFGDDPM produces the gamma-powered distribution p0,γ(x|c) ∝ p0(x)1−γp0(x|c)γ .

Both claims are proven using a simple Gaussian construction, as outlined in the next section.

3.1 Counterexample 1

We first present a setting that allows us to exactly solve the ODE and SDE dynamics of CFG in closed-form,
and hence to find the exact distribution sampled by running CFG. This would be intractable in general, but
it is possible for a specific problem, as follows.

Consider a setting where p0(x) and p0(x|c = 0) are both zero-mean Gaussians, but with different variances.
Specifically, (x0, c) are jointly Gaussian, with p(c) = N (0, 1), p0(x|c) = c +N (0, 1). Therefore

p0(x) = N (0, 2)
p0(x|c = 0) = N (0, 1)

p0,γ(x|c = 0) = N (0,
2

γ + 1) (11)
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Figure 2: Counterexamples: CFGDDIM ≠ CFGDDPM ≠ gamma-powered. CFGDDIM and CFGDDPM do not
generate the same output distribution, even when using the same score function. Moreover, neither generated
distribution is the gamma-powered distribution p0,γ(x|c). (Left) Counterexample 1 (section 3.1): CFGDDIM
yields a sharper distribution than CFGDDPM, and both are sharper than p0,γ(x|c). (Right) Counterexample 2
(section 3.2): Neither CFGDDIM nor CFGDDPM yield even a scaled version of the gamma-powered distribution
p0,γ(x|c) = N (−3, 1). The CFGDDPM distribution is mean-shifted relative to p0,γ(x|c). The CFGDDIM
distribution is mean-shifted and not even Gaussian (note the asymmetrical shape).

For this problem, we can solve CFGDDIM (9) and CFGDDPM (8) analytically; that is, we solve initial-value
problems for the reversed dynamics to find the sampled distribution of x̂t in terms of the initial-value xT .
Applying these results to t = 0 and averaging over the known Gaussian distribution of xT gives the exact
distribution of x̂0 that CFG samples. The full derivation is in Appendix A.1. The final CFG-sampled
distributions are:

CFGDDPM : x̂0 ∼ N
(

0,
2− 22−2γ

2γ − 1

)
(12)

CFGDDIM : x̂0 ∼ N
(
0, 21−γ

)
. (13)

This shows that for any γ > 1, the CFGDDIM distribution is sharper than the CFGDDPM distribution, and both
are sharper than the gamma-powered distribution p0,γ(x|c = 0). (Even though the distributions all have the
same mean, their different variances make them distinct.) In fact, for γ ≫ 1, the variance of DDPM-CFG is
approximately 2

2γ−1 , which is about twice the variance of p0,γ(x|c = 0). In Figure 2, we compare the CFGDDIM
and CFGDDPM distributions – sampled using an exact denoiser (see Appendix A.6) within DDIM/DDPM
sampling loops – to the unconditional, conditional, and gamma-powered distributions.

3.2 Counterexample 2

In the above counterexample, the CFGDDIM, CFGDDPM, and gamma-powered distributions had different
variances but the same Gaussian form, so one might wonder whether the distributions differ only by a scale
factor in general. This is not the case, as we can see in a different counterexample that reveals greater
qualitative differences, in particular a symmetry-breaking behavior of CFG.
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In Counterexample 2, the unconditional distribution is a Gaussian mixture with two clusters with equal
weights and variances, and means at ±µ.

c ∈ {0, 1}, p(c = 0) = 1
2

p0(x0|c = 0) = N (−µ, 1), p0(x0|c = 1) = N (µ, 1)

p0(x0) = 1
2p0(x0|c = 0) + 1

2p0(x0|c = 1) (14)

If the means are sufficiently separated (µ ≫ 1), then the gamma-powered distribution for γ ≥ 1 is ap-
proximately equal to the conditional distribution, i.e. p0,γ(x|c) ≈ p0(x|c), due to the near-zero-probability
valley between the conditional densities (see Appendix A.2). However, for sufficiently high noise the clusters
begin to merge, and pt,γ(x|c) ̸= pt(x|c). In particular, p0,γ(x|c) is approximately Gaussian with mean ±µ,
but pt,γ(x|c) ̸= pt(x|c) is not. Although we cannot solve the CFG ODE and SDE in this case, we can
empirically sample the CFGDDIM and CFGDDPM distributions using an exact denoiser and compare them to the
gamma-powered distribution. In particular, we see that neither CFGDDIM nor CFGDDPM is Gaussian with mean
±µ, hence neither is a scaled version of the gamma-powered distribution. The results are shown in Figure
2. Concurrent work by Chidambaram et al. (2024) offers a theoretical analysis confirming our qualitative
observations in the two-cluster case, while Wu et al. (2024) conduct an analysis of similar GMM settings.

4 CFG as a predictor-corrector

The previous sections illustrated the subtlety in understanding CFG. We can now state our main structural
characterization, that CFG is equivalent to a special kind of predictor-corrector method (Song et al., 2020).

4.1 Predictor-Corrector Guidance

As a warm-up, suppose we actually wanted to sample from the gamma-powered distribution:

pγ(x|c) ∝ p(x)1−γp(x|c)γ . (15)

A natural strategy is to run Langevin dynamics w.r.t. pγ . This is possible in theory because we can compute
the score of pγ from the known scores of p(x) and p(x|c):

∇x log pγ(x|c) = (1− γ)∇x log p(x) + γ∇x log p(x|c).

However this won’t work in practice, due to the well-known issue that vanilla Langevin dynamics has
impractically slow mixing times for many distributions of interest (Song & Ermon, 2019). The usual remedy
for this is to use some kind of annealing, and the success of diffusion teaches us that the diffusion process
defines a good annealing path (Song et al., 2020; Du et al., 2023). Combining these ideas yields an algorithm
remarkably similar to the predictor-corrector methods introduced in Song et al. (2020). For example, consider
the following diffusion-like iteration, starting from xT ∼ N (0, σT ) at t = T . At timestep t,

1. Predictor: Take one diffusion denoising step (e.g. DDIM or DDPM) w.r.t. pt(x|c), using score
∇x log pt(x|c), to move to time t′ = t−∆t.

2. Corrector: Take K ≥ 1 Langevin dynamics steps w.r.t. distribution pt′,γ , using the score
∇x log pt′,γ(x|c) = (1− γ)∇x log pt′(x) + γ∇x log pt′(x|c).

It is reasonable to expect that running this iteration down to t = 0 will produce a sample from approximately
pγ(x|c), since the iteration can be thought of as a type of annealed Langevin dynamics, with time t playing
the role of temperature (c.f. Remark 4.1 below). We name this algorithm predictor-corrector guidance (PCG).
Remarkably, it turns out that for specific choices of the denoising predictor and Langevin step size, PCG
is equivalent (in the SDE limit) to CFG, but with a different γ. We will formalize and prove this in the
subsequent section.
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Figure 3: CFG is equivalent to PCG for particular parameter choices.

Algorithm 1 PCGDDIM, Theory. (See Algorithm 2 for practical implementation.)
Require: Conditioning c, guidance weight γ ≥ 0.
Require: Schedule βt := β(t) from Song et al. (2020), number of Langevin iterations K ∈ N.

1: x1 ∼ N (0, I).
2: for (t = 1−∆t; t ≥ 0; t← t−∆t) do
3: st+∆t := ∇ log pt+∆t(xt+∆t|c)
4: xt ← xt+∆t + 1

2 βt(xt+∆t + st+∆t)∆t ▷ DDIM step for pt+∆t(x|c)→ pt(x|c)
5: ε := βt∆t ▷ Langevin step size, matching DDPM noise scale βt

6: for k = 1, . . . K do ▷ Langevin dynamics on pt,γ(x|c)
7: η ∼ N (0, Id)
8: st,γ := (1− γ)∇ log pt(xt) + γ∇ log pt(xt|c)
9: xt ← xt + ε

2 st,γ +
√

εη
10: end for
11: end for
12: Return: x0

Remark 4.1 (Langevin Dynamics). The standard annealed Langevin dynamics corresponds to a predictor-
corrector where the predictor is an identity function: it only reduces the “temperature” t→ t−∆t without
changing the current sample xt. The iteration above uses an intuitively better predictor that moves xt along
the diffusion path, which is the “correct” way to reduce temperature (at least in the conditional diffusion
setting).
Remark 4.2 (Mixing). Why do we expect PCG to sample from approximately pγ(x|c)? For the same reason
we expect annealed Langevin dynamics to work: in the limit of many Langevin steps (K →∞), the corrector
will fully mix to the distribution pt′,γ at each time t′. In reality we may take only K = 1 Langevin step at
each iteration, which will at least move the sample distribution towards the target distribution pt′,γ(x|c),
even if it does not fully mix.
Remark 4.3 (Predictor-Corrector). PCG technically differs from the predictor-corrector algorithms in Song
et al. (2020), because our predictor and corrector operate w.r.t. different distributions (pt vs. pt,γ). (Similarly,
some early works with classifier guidance (Chen et al., 2023; Bansal et al., 2023) also used different predictor
and corrector distributions.) However, conceptually all of these methods can be thought of as variants of
annealed Langevin dynamics (as described in Remark 4.1), with different annealing choices.

4.2 SDE limit of PCG

Consider the version of PCG defined in Algorithm 1, which uses DDIM as predictor and a particular LD on
the gamma-powered distribution as corrector. We take K = 1, i.e. a single LD step per iteration. Crucially,
we set the LD step size such that the Langevin noise scale exactly matches the noise scale of a (hypothetical)
DDPM step at the current time (similar to Du et al. (2023)). In the limit as ∆t→ 0, Algorithm 1 becomes
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the following SDE (see Appendix B):

dx = ∆DDIM(x, t)︸ ︷︷ ︸
Predictor

+ ∆LDG(x, t, γ)︸ ︷︷ ︸
Corrector

(16)

=: ∆PCGDDIM(x, t, γ), (17)

where ∆DDIM(x, t) = −1
2βt(x +∇ log pt(x|c))dt

∆LDG(x, t, γ) = −1
2βt∇ log pt,γ(x|c)dt +

√
βtdw̄.

Above, ∆DDIM(x, t) is the differential of the DDIM ODE (7), i.e. the ODE can be written as dx =
∆DDIM(x, t). And ∆LDG(x, t, γ), where G stands for “guidance”, is the limit as ∆t → 0 of the Langevin
dynamics step in PCG, which behaves like a differential of LD (see Appendix B).

We can now show that the PCG SDE (17) matches CFG with DDPM, but with a different γ. In the statement,
∆CFGDDPM(x, t, γ) denotes the differential of the CFGDDPM SDE (8), similar to the notation above. This
result is trivial to prove using our definitions, but the statement itself appears to be novel. 1

Theorem 4.4 (CFG is predictor-corrector). In the SDE limit, CFG with DDPM is equivalent to a predictor-
corrector. That is, the following differentials are equal:

∆CFGDDPM(x, t, γ) = ∆DDIM(x, t) + ∆LDG(x, t, 2γ − 1)
=: ∆PCGDDIM(x, t, 2γ − 1) (18)

Notably, the guidance scales of CFG and the above Langevin dynamics are not identical.

Proof.

∆PCGDDIM(x, t, γ)
= ∆DDIM(x, t) + ∆LDG(x, t, γ)

= −1
2βt

(
x + (1− γ)∇ log pt(x)

)
dt

− 1
2βt(1 + γ)∇ log pt(x|c)dt +

√
βtdw̄

= −1
2βtx∆t− βt∇x log pt,γ′(x|c)∆t +

√
βtdw̄

= ∆CFGDDPM(x, t, γ′),

where γ′ := γ
2 + 1

2 .

5 Discussion

There have been many recent works toward understanding CFG. To better situate our work, it helps to first
discuss the overall research agenda.

5.1 Understanding CFG: The Big Picture

We want to study the question of why CFG helps in practice: specifically, why it improves both image quality
and prompt adherence, compared to conditional sampling. We can approach this question by applying a
standard generalization decomposition. Let p(x|c) be the “ground truth” population distribution; let p∗

γ(x|c)
be the distribution generated by the ideal CFG sampler, which exactly solves the CFG reverse SDE for the

1Notice that taking γ = 1 in Theorem 4.4 recovers the standard fact that DDPM is equivalent, in the limit, to DDIM
interleaved with LD (e.g. Karras et al. (2022)). This is because for γ = 1, CFGDDPM is just DDPM, so Theorem 4.4 reduces to:
∆DDPM(x, t) = ∆DDIM(x, t) + ∆LDG(x, t, 1).
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ground-truth scores (note that at γ = 1, p∗
1(x|c) = p(x|c)); and let p̂γ(x|c) denote the distribution of the real

CFG sampler, with learnt scores and finite discretization. Now, for any image distribution q, let PQ[q] ∈ R
denote a measure of perceived quality of this distribution to humans. We cannot mathematically specify this
notion of quality, but we will assume it exists for analysis. Notably, PQ is not a measurement of how close a
distribution is to the ground-truth p(x|c) — it is possible for a generated distribution to appear even “higher
quality” than the ground-truth, for example. We can now decompose:

PQ[p̂γ ]︸ ︷︷ ︸
Real CFG

= PQ[p∗
γ ]︸ ︷︷ ︸

Ideal CFG

−
(
PQ[p∗

γ ]− PQ[p̂γ ]
)︸ ︷︷ ︸

Generalization Gap

. (19)

Therefore, if the LHS increases with γ, it must be because at least one of the two occurs:

1. The ideal CFG sampler improves in quality with increasing γ. That is, CFG distorts the population
distribution in a favorable way (e.g. by sharpening it, or otherwise).

2. The generalization gap decreases with increasing γ. That is, CFG has a type of regularization effect,
bringing population and empirical processes closer.

In fact, it is likely that both occur. The original motivation for CG and CFG involved the first effect: CFG
was intended to produce “lower-temperature” samples from a sharpened population distribution (Dhariwal
& Nichol, 2021; Ho & Salimans, 2022). This is particularly relevant if the model is trained on poor-quality
datasets (e.g. cluttered images from the web), so we want to use guidance to sample from a higher-quality
distribution (e.g. images of an isolated subject). On the other hand, recent studies have given evidence for the
second effect. For example, Karras et al. (2024a) argues that unguided diffusion sampling produces “outliers,”
which are avoided when using guidance — this can be thought of as guidance reducing the generalization
gap, rather than improving the ideal sampling distribution. Another interpretation of the second effect is
that guidance could enforce a good inductive bias: it “simplifies” the family of possible output distributions
in some sense, and thus simplifies the learning problem, reducing the generalization gap. Figure 6 shows a
example where this occurs. Finally, this generalization decomposition applies to any intervention to the SDE,
not just increasing guidance strength. For example, increasing the Langevin steps in PCG (parameter K)
also shrinks the generalization gap, since it reduces the discretization error.

In this framework, our work makes progress towards understanding both terms on the RHS of Equation 19, in
different ways. For the first term, we identify structural properties of ideal CFG, by showing that p∗

γ can be
equivalently generated by a standard technique (an annealed Langevin dynamics). For the second term, the
PCG framework highlights the ways in which errors in the learned score can contribute to a generalization
gap, during both the denoising step and the LD step (the latter would move toward an inaccurate steady-state
distribution).

5.2 Open Questions and Limitations

In addition to the above, there are a number of other questions left open by our work. First, we study only
the stochastic variant of CFG (i.e. CFGDDPM), and it is not clear how to adapt our analysis to the more
commonly used deterministic variant (CFGDDIM). This is subtle because the two CFG variants can behave
very differently in theory, but appear to behave similarly in practice. It is thus open to identify plausible
theoretical conditions which explain this similarity2; we give a suggestive experiment in Figure 5. More
broadly, it is open to find more explicit characterizations of CFG’s output distribution, in terms of the original
p(x) and p(x|c).

Finally, we presented PCG primarily as a tool to understand CFG, not as a practical algorithm in itself.
Nevertheless, the PCG framework outlines a broad family of guided samplers, which may be promising to
explore in practice. For example, the predictor can be any diffusion denoiser, including CFG itself. The
corrector can operate on any distribution with a known score, including compositional distributions as in Du

2Curiously, CFGDDIM is the correct probability-flow ODE for CFGDDPM if and only if the true intermediate distribution at
time t is pt,γ . However we know this is not the true distribution in general, from Section 3.
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et al. (2023), the sharpening distribution proposed by Karras et al. (2024a), which replaces the unconditional
score with the score of a “weaker” model, or any other distribution that might help sharpen or otherwise
improve on the conditional distribution. Finally, the number of Langevin steps could be adapted to the
timestep, similar to Kynkäänniemi et al. (2024), or alternative samplers could be considered (Du et al., 2023;
Neal, 2012; Ma et al., 2015).

5.3 Stable Diffusion Examples

Figure 4: Effect of Guidance and Correction. Each grid shows SDXL samples using PCGDDIM, as the
guidance strength γ and Langevin iterations K are varied. Left: “photograph of a dog drinking coffee with
his friends”. Right: “a tree reflected in the hood of a blue car”. (Zoom in to view).

We include several examples running predictor-corrector guidance on Stable Diffusion XL (Podell et al., 2023).
These serve primarily to sanity-check our theory, not as a suggestion for practice. For all experiments, we use
PCGDDIM as implemented explicitly in Algorithm 2. Note that PCG offers a more flexible design space than
standard CFG; e.g. we can run multiple corrector steps for each denoising step to improve the quality of
samples (controlled by parameter K in Algorithm 2).

CFG vs. PCG. Figure 1 illustrates the equivalence of Theorem 4.4: we compare CFGDDPM with guidance
γ to PCGDDIM with exponent γ′ := (2γ − 1). We run CFGDDPM with 200 denoising steps, and PCGDDIM with
100 denoising steps and K = 1 Langevin step per denoising step. Corresponding samples appear to have
qualitatively similar guidance strengths, consistent with our theory.

Effects of Guidance and Corrector. In Figure 4 we show samples from PCGDDIM, varying the guidance
strength and Langevin iterations (i.e. parameters γ and K respectively in Algorithm 2). We also include
standard CFGDDIM samples for comparison. All samples used 1000 denoising steps for the base predictor.
Overall, we observed that increasing Langevin steps tends to improve the overall image quality, while increasing
guidance strength tends to improve prompt adherence. In particular, sufficiently many Langevin steps can
sometimes yield high-quality conditional samples, even without any guidance (γ = 1); see Figure 7 in the
Appendix for another such example. This is consistent with the observations of Song et al. (2020) on unguided
predictor-corrector methods. It is also related to the findings of Du et al. (2023) on MCMC methods: Du
et al. (2023) similarly use an annealed Langevin dynamics with reverse-diffusion annealing, although they
focus on general compositions of distributions rather than the specific gamma-powered distribution of CFG.

10
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Method γ = 1 γ = 1.1 γ = 1.3 γ = 1.5
CFGDDPM 5.99 3.90 2.71 3.33
CFGDDIM 7.11 4.61 2.55 2.47
PCGDDIM (K = 1) 5.87115 4.72043 3.37 3.16
PCGDDIM (K = 3) 4.79793 3.49296 3.71 6.10
PCGDDIM (K = 5) 4.51476 3.35029 4.87 8.86

Table 1: FID Scores on ImageNet (lower is better), using DDPM, DDIM, and PCG samplers. We vary
the guidance weight γ and the number of LD steps K. We used a direct discretization of Algorithm 1 for
γ = 1.3, 1.5 (all K) and an alternative discretization described in Appendix D for γ = 1.0, 1.1 (all K) (we
found that the latter empirically performs better at low γ). Complete FID, FD-DINOv2, and Inception
Scores provided for both discretizations in Tables 2 and 3.

Notice that in Figure 4, increasing the number of Langevin steps appears to also increase the “effective”
guidance strength. This is because the dynamics does not fully mix: one Langevin step (K = 1) does not
suffice to fully converge the intermediate distributions to pt,γ .

5.4 ImageNet Experiments

For completeness, we also include experiments comparing variants of PCG and CFG on ImageNet (Rus-
sakovsky et al., 2015). Table 1 shows FID scores (Heusel et al., 2017) on ImageNet, using EDM2 pre-
trained diffusion models (Karras et al., 2024b). Metrics are calculated using 50,000 samples and 200
sampling steps, generated using EDM2 checkpoints edm2-img512-s-2147483-0.025 (conditional) and
edm2-img512-xs-uncond-2147483-0.025 (unconditional).

• For all samplers, there is a “sweet spot” of guidance scale γ; quality starts to degrade when γ is too
low or too high. This is a well-known behavior of CFG, and also occurs for PCG.

• For PCG methods, increasing the number of LD steps does not always improve FID — it depends on
the guidance scale. More LD steps helps at γ = 1.1 for example, but starts to hurt at higher γ. This
may seem surprising, but is explained by the same mechanism we saw in Figure 4: increasing the LD
steps corresponds to increasing the “effective” guidance strength, because a single step does not fully
mix the Langevin dynamics.

• CFGDDPM and PCGDDIM (LD=1) have different optimal guidance scales γ. The FID of CFGDDPM is
minimized at γ ≈ 1.3, while PCGDDIM is minimized at ≥ 1.5. This is roughly in line with Theorem 4.4,
where the equivalence between PCG and CFG requires rescaling γ.

• Finally, for γ = 1, both PCGDDIM and CFGDDPM are equivalent to standard DDPM in the SDE
limit. However, PCGDDIM has significantly worse FID in the above finite-stepsize experiment. This
discrepancy can thus be attributed to different discretization strategies of the same SDE — similar
to how DDPM is a more sophisticated discretization than Euler–Maruyama for the reverse-diffusion
SDE (e.g. Lu et al. (2022b)).

6 Conclusion

We have shown that while CFG is not a diffusion sampler on the gamma-powered data distribution
p0(x)1−γp0(x|c)γ , it can be understood as a particular kind of predictor-corrector, where the predictor
is a DDIM denoiser, and the corrector at each step t is one step of Langevin dynamics on the gamma-powered
noisy distribution pt(x)1−γ′

pt(x|c)γ′ , with γ′ = (2γ − 1). Although Song et al. (2020)’s Predictor-Corrector
algorithm has not been widely adopted in practice, perhaps due to its computation expense relative to
samplers like DPM++ (Lu et al., 2022b), it turns out to provide a lens to understand the unreasonable
practical success of CFG. On a practical note, PCG encompasses a rich design space of possible predictors
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and correctors for future exploration, that may help improve the prompt-alignment, diversity, and quality of
diffusion generation.

7 Extensions and Impact

Since the original release of this preprint, a number of other works have built upon it, filling in some of
the questions we left open, and proposing interesting new directions. For example, subsequent to our work,
there have been theoretical advancements in understanding guidance (Chidambaram et al., 2024), geometric
tempering (Chehab et al., 2024), and denoising Markov models (Chehab et al., 2024). Our PCG framework
and discussion of “misconceptions about CFG” have also helped inform the development of many new
practical methods to improve conditional sampling (unlike PCG, which was originally intended primarily as a
theoretical tool, and perhaps an inspiration for new methods). Some works have explored Sequential Monte
Carlo/Feynman-Kac approaches to enable precise sampling from a desired distribution (as CFG fails to do):
Lee et al. (2025); Thornton et al. (2025); Skreta et al. (2024; 2025). Others have developed guidance methods
for flow and bridge models: Jiao et al. (2025); Fan et al. (2025); Zhu et al.. Finally, many new methods have
been proposed as alternatives to CFG (helping to address some of its shortcomings discussed in this paper):
Gao et al. (2025); Xia et al. (2024); Kadkhodaie et al. (2024); Noroozi et al. (2025); Zhou et al. (2025).
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Figure 5: (Left) For Counterexample 1 (section 3.1), we plot the empirical and theoretical variance of
the gamma-powered, CFGDDIM, and CFGDDPM distributions, over a range of values of γ. The theoretical
predictions are given by equations (13) and (12), and the empirical distributions are sampled using an exact
denoiser. This verifies the theoretical predictions and illustrates the decreasing variance from p0,γ to CFGDDPM
to CFGDDIM. (Right) For counterexample 3 (section A.3 with different choices of variance (σ = 1 and σ = 2),
we compare CFGDDIM and CFGDDPM. Increasing the variance makes the two CFG samplers more similar.
Also note that the CFGDDIM distribution is symmetric around the center cluster, but asymmetric around the
side clusters. This experiment suggests that multiple clusters and greater overlap between classes can help
symmetrize and reduce the difference between CFGDDIM and CFGDDPM

A 1D Gaussian Counterexamples

In this section, we formalize and prove Theorems 3.1 and 3.2. We will work with a variance-exploding (VE)
process, so we begin by defining CFG for the VE process (analogous to the SDE (8) and ODE (9) for the VP
process).
Definition A.1 (CFG, variance-exploding). Given a data distribution p0(x, c), define the noisy distribution
pt(x) for any t ∈ R+ as the result of running the VE forward diffusion SDE dx = dw, up to time t, with
initial distribution p0(x) at t = 0. Explicitly, this is the convolution pt := p0 ⋆ N (0, t). Similarly define
pt(x|c) := p0(x|c) ⋆N (0, t).

For all γ ∈ R and c ∈ R, define the CFG SDEs for DDPM and DDIM, respectively, as

CFGDDPM : dx = −∇x log pt,γ(x|c)dt + dw̄, (20)

CFGDDIM : dx

dt
= −1

2∇x log pt,γ(x|c), (21)

where pt,γ(x|c) := pt(x|c)γpt(x)1−γ/Z, and Z ∈ R+ is the appropriate normalization constant.

The SDE and ODE above specify the dynamics of the CFG sampler in the VE setting. Specifically, in order
to sample via CFG, we start with a Gaussian sample xT ∼ N (0, T ) for some T ≫ 0, and then run the SDE
or ODE from time t = T down to time t = 0, to generate a sample x0. We call the resulting distribution of
samples x0 the generated distribution, and adopt the following notation:

Definition A.2 (CFG generated distributions). Denote by p
(T )
DDPM(x|c), p

(T )
DDIM(x|c) the probability densities

of the distributions generated by the CFGDDPM SDE (20), CFGDDIM ODE (21), respectively; that is, the
solutions to the SDE, ODE, respectively, at time t = 0 with initial conditions xT ∼ N (0, T ), for any terminal
times T ∈ R+ and conditioning c ∈ R.
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We will mainly be interested in the limits of the generated distributions as we let the terminal time T →∞,
which corresponds to allowing the diffusion process to fully mix. We can now formalize Theorems 3.1 and 3.2
as follows:

Theorem A.3 (Counterexample for which CFGDDIM ̸= CFGDDPM ̸= gamma-sharpening). In the setting of
Definitions A.1 and A.2, there exists a data distribution such that the distributions generated by CFGDDPM
and CFGDDIM are different, and neither is equal to the gamma-powered distribution. Specifically, define a data
distribution p0(x, c), over inputs x ∈ R and conditioning c ∈ R, as:

p0(c) = N (c; 0, 1), p0(x|c) = N (x; c, 1).

In particular, (x, c) ∈ R2 is jointly Gaussian and p0(x|c = 0) = N (x; 0, 1).

Then, for all x, γ ∈ R, the limiting generated distributions for c = 0 are:

lim
T →∞

p
(T )
DDPM(x|c = 0) = N

(
x; 0,

2− 22−2γ

2γ − 1

)
(22)

lim
T →∞

p
(T )
DDIM(x|c = 0) = N

(
x; 0, 21−γ

)
. (23)

Furthermore, the gamma-powered distribution for c = 0 is given by p0,γ(x|c = 0) = N (x; 0, 2
γ+1 ). Therefore,

lim
T →∞

p
(T )
DDPM(x|c = 0) ̸= lim

T →∞
p

(T )
DDIM(x|c = 0) ̸= p0,γ(x|c = 0).

Note that variance of the generated distributions depends on the guidance weight γ (Equations 22 and 22),
and is exponentially different between DDIM and DDPM when γ ≫ 1. The proof follows directly from the
calculations in the next section (A.1), which characterize the density evolution of CFG in this setting.

A.1 Counterexample 1

Counterexample 1 (equation 11) has

p(c) = N (0, 1)
p0(x|c) = N (c, 1)

=⇒ p0(x) ∼ N (0, 2)
p0(x|c = 0) ∼ N (0, 1).

The γ-powered distribution is

p0,γ(x|c = 0) = p0(x|c)γpc=0(x)1−γ

∝ e− γx2
2 e− (1−γ)x2

4 = e− (γ+1)x2
4

∼ N (0,
2

γ + 1).

We consider a simple variance-exploding (VE) diffusion defined by the SDE

dx = dw. (24)

The DDIM sampler is a discretization of the reverse ODE

dx

dt
= −1

2∇x log pt(x),

and the DDPM sampler is a discretization of the reverse SDE

dx = −∇x log pt(x)dt + dw̄.
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For CFGDDIM or CFGDDPM, we replace the score with CFG score ∇x log pt,γ(x).

At inference time we choose an initial sample xT ∼ N (0, T ) and run CFGDDIM from t = T → 0 to obtain a final
sample x0. Note that the true distribution generated by the forward process in our setting is pT = N (0, T +1),
which becomes close to our inference-time terminal distribution N (0, T ) for large T . Taking the limit of
T →∞ in our setting thus corresponds to allowing the forward diffusion process to fully mix.

CFGDDIM For Counterexample 1, the CFGDDIM ODE has a closed-form solution (derivation in section A.5):

CFGDDIM : dx

dt
= −1

2∇x log pt,γ(x)

= xt

(
γ

2(1 + t) + (1− γ)
2(2 + t)

)
=⇒ xt = xT

√
(t + 1)γ(t + 2)1−γ

(T + 1)γ(T + 2)1−γ
.

That is, for a particular initial sample xT , CFGDDIM produces the sample xt at time t. Evaluating at t = 0
and taking the limit as T →∞ yields the ideal denoised x0 sampled by CFGDDIM given an initial sample xT :

x̂CFGDDIM
0 (xT ) = xT

√
21−γ

(T + 1)γ(T + 2)1−γ

→ xT

√
21−γ

T
as T →∞.

To get the denoised distribution obtained by reverse-sampling with CFGDDIM, we need to average over the
distribution of xT :

E
xT ∼N (0,T )

[x̂CFGDDIM
0 (xT )] = N (0, T

21−γ

T
) = N

(
0, 21−γ

)
.

which is equation 13 in the main text.

CFGDDPM CFGDDPM also has a closed-form solution (derived in section A.5):

dx = −∇x log pt,γ(x)dt + dw̄

= x

(
γ

(1 + t) + (1− γ)
(2 + t)

)
dt + dw̄

=⇒ x(t) = xT
(1 + t)γ(2 + t)1−γ

(1 + T )γ(2 + T )1−γ
+ (1 + t)γ(2 + t)1−γ

√
1

2γ − 1

√(
t + 1
t + 2

)1−2γ

−
(

T + 1
T + 2

)1−2γ

ξ.

Similar to the CFGDDIM argument, we can obtain the final denoised distribution as follows:

x̂CFGDDPM
0 (xT ) = xT

21−γ

(1 + T )γ(2 + T )1−γ
+ 21−γ

√
1

2γ − 1

√
22γ−1 −

(
T + 1
T + 2

)1−2γ

ξ

→ xT
21−γ

T
+

√
2− 22−2γ

2γ − 1 ξ as T →∞

=⇒ E
xT ∼N (0,T )

[x̂CFGDDPM
0 (xT )] = N

(
0, T

(
21−γ

T

)2

+ 2− 22−2γ

2γ − 1

)

→ N
(

0,
2− 22−2γ

2γ − 1

)
,
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which is equation 12 in the main text, and for γ ≫ 1 becomes approximately

E
xT ∼N (0,T )

[x̂CFGDDPM
0 (xT )] ≈ N

(
0,

2
2γ − 1

)
.

In Figure 5, we confirm results (12, 13) empirically.

A.2 Counterexample 2

Counterexample 2 (11) is a Gaussian mixture with equal weights and variances.

c ∈ {0, 1}, p(c = 0) = 1
2

p0(x0|c) ∼ N (µ(c), 1), µ(0) = −µ, µ(1) = µ

p0(x0) ∼ 1
2p0(x0|c = 0) + 1

2p0(x0|c = 1).

We noted in the main text that if µ is sufficiently large enough that the clusters are approximately disjoint,
and γ ≥ 1, then p0,γ(x|c) ≈ p0(x|c). To see this note that

p0(x0) ≈ 1
2p0(x0|0)1x>0 + 1

2p0(x0|1)1x>0

p0,γ(x|c) ∝ p0(x|c)γp0(x)1−γ

= p0(x)
(

p0(x|c)
p0(x)

)γ

∝ p0(x)
(
1sign(x)=µ(c)

)γ

≈ p0(x|c) for γ ≥ 1.

However, pt,γ(x|c) ̸= pt(x|c) since the noisy distributions do overlap/interact.

We don’t have complete closed-form solutions for this problem like we did for Counterexample 1. We have the
solution for conditional DDIM for the basic VE process dx = dw (using the results from the previous section):

DDIM on pt(x|c): dx

dt
= −1

2∇x log pt(x|c)

= − 1
2(1 + t) (µ(c) − xt)

=⇒ x(t) = µ(c) + (xT − µ(c))
√

1 + t

1 + T
,

but otherwise have to rely on empirical results. We do however have access to the ideal conditional and
unconditional denoisers via the scores (Appendix A.6):

∇x log pt(x|c) = − 1
2(1 + t) (µ(c) − xt)

∇x log pt(x) = ∇xpt(x)
pt(x) =

1
2
∑

c=0,1∇xpt(x|c)
pt(x) .

A.3 Counterexample 3

We consider a 3-cluster problem to investigate why CFGDDIM and CFGDDPM often appear similar in practice
despite being different in theory. Counterexample 3 (11) is a Gaussian mixture with equal weights and
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variances. We vary the variance to investigate its effect on CFG.

c ∈ {0, 1, 2}, p(c) = 1
3 ∀c

p0(x0|c) ∼ N (µ(c), σ), µ(0) = −3, µ(1) = 0, µ(2) = 3

p0(x0) ∼ 1
3p0(x0|c = 0) + 1

3p0(x0|c = 1) + 1
3p0(x0|c = 2).

We run CFGDDIM and CFGDDPM with γ = 3, for σ = 1 and σ = 2. Results are shown in Figure 5.

A.4 Generalization Example 4

4 3 2 1 0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
p0(x)
p0(x|c = 0)

4 3 2 1 0 1 2 3 4
30

20

10

0

10

20

30
exact uncond score
exact cond score
learned uncond score
learned cond score

Figure 6: An example where guidance benefits generalization. (Top left) Conditional p0(x|c = 0)
(purple) and unconditional p0(x) (green) distributions for Example 4 (equation 25). The unconditional
distribution is approximately uniform, while the conditional distribution for c = 0 is a GMM with several
clusters with equal variances, and equal weights except for a single “dominant” cluster with a higher weight.
(Top right) We train small MLPs to predict the conditional and unconditional scores, with early-stopping so
that the fit is imperfect. We plot the exact (orange) vs. learned (blue) conditional and unconditional scores:
the unconditional scores are learned accurately, while the conditional scores are learned accurately near the
dominant cluster but poorly elsewhere. (Bottom left) We sample with DDPM on the conditional distribution
(no guidance) using learned scores (blue) vs. exact scores (orange). We expect DDPM to generate the
conditional distribution p0(x|c = 0) (purple). However, DDPM-with-learned-scores samples less accurately
than DDPM-with-exact-scores away from the dominant cluster (where the learned scores are inaccurate)
(compare the increased blue vs. orange sampling in low-probability regions). (Bottom right) With guidance
γ = 3, p0,γ(x|c) (red) and both samplers concentrate around the dominant cluster (where the learned scores
are accurate), reducing the generalization gap between the learned and exact models.
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We consider a multi-cluster problem to explore the impact of guidance on generalization:

p0(x) ∼ N (0, 10)

p0(x|c = 0) ∼
∑

i

wiN (µi, σ) (25)

µ = (−3,−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5)
wi = 0.0476 ∀i ̸= 6; w6 = 0.476
σ = 0.1

Note that the unconditional distribution is wide enough to be essentially uniform within the numerical
support of the conditional distribution. The conditional distribution is a GMM with evenly spaced clusters of
equal variance, and all equal weights, except for a “dominant" cluster in the middle with higher weight. The
results are shown in Figure 6.

A.5 Closed-form ODE/SDE solutions

First, we want to solve equations of the general form dx
dt = −a(t)x + b(t), which will encompass the ODEs

and SDEs of interest to us. All we need for the ODEs is the special b(t) = a(t)c, which is easier.

The main results are
dx

dt
= a(t)(c− x)

=⇒ x(t) = c + (xT − c)eA(T )−A(t) (26)

where A(t) =
∫

a(t)dt

and
dx

dt
= −a(t)x + b(t)

=⇒ x(t) = e−A(t)(B(t)−B(T )) + xT eA(T )−A(t) (27)

where A(t) =
∫

a(t)dt, B(t) =
∫

eA(t)b(t)dt.

First let’s consider the special case b(t) = a(t)c, which is easier. We can solve it (formally) by separable
equations:

dx

dt
= a(t)(c− x)

=⇒
∫ 1

c− x
dx =

∫
a(t)dt = A(t)

=⇒ − log(c− x) = A(t) + C

=⇒ c− x = e−A(t)−C

=⇒ x(t) = c + Ce−A(t). (28)

Next we need to apply initial conditions to get the right constants. Remembering that we are actually
sampling backward in time from initialization xT , we can solve for the constant C as follows, to obtain result
(26):

xT = c + Ce−A(T )

=⇒ C = eA(T )(xT − c)
=⇒ x(t) = c + (xT − c)eA(T )−A(t).
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We will apply this result to CFGDDIM shortly, but for now we note that for a VE diffusion dx =
√

tdw on a
Gaussian data distribution p0(x) ∼ N (µ, σ) the above result implies the exact DDIM dynamics:

pt(x) ∼ N (µ, σ2 + t)

DDIM on pt(x): dx

dt
= −1

2∇x log pt(x)

= − 1
2(σ2 + t) (µ− x)

A(t) = −1
2 log(σ2 + t)

=⇒ xt = µ + (xT − µ)eA(T )−A(t)

= µ + (xT − µ)
√

σ2 + t

σ2 + T
.

(which makes sense since xt=T = xT and
√

σ2√
σ2+T

≈ 0 =⇒ xt=0 ≈ µ).

Now let’s return to the general problem with arbitrary b(t) (we need this for the SDEs). We can use an
integrating factor to get a formal solution:

dx

dt
= −a(t)x + b(t)

Integrating factor: eA(t), A(t) =
∫

a(t)dt

d

dt
(x(t)eA(t)) = (x′(t) + a(t)x(t)) eA(t)

= b(t)eA(t)

=⇒ eA(t)x(t) =
∫

eA(t)b(t)dt + C

=⇒ x(t) = e−A(t)
∫

eA(t)b(t)dt + Ce−A(t). (29)

Note that if b(t) = a(t)c this reduces to (28):∫
e−A(t)eA(t)b(t)dt = ce−A(t)

∫
a(t)eA(t)dt = c

=⇒ x(t) = c + Ce−A(t).

Again, we need to apply boundary conditions to get the constant, and remember that we are actually sampling
backward in time from initialization xT to obtain result (27):

dx

dt
= −a(t)x + b(t)

xT = e−A(T )B(T ) + Ce−A(T ), B(t) :=
∫

eA(t)b(t)dt

=⇒ C = eA(T )xT −B(T )
=⇒ x(t) = e−A(t)B(t) + (eA(T )xT −B(T ))e−A(t)

= e−A(t)(B(t)−B(T )) + xT eA(T )−A(t).

Note that for b(t) = a(t)c this reduces (26):

b(t) = a(t)c =⇒ B(t) = ceA(t)

=⇒ x(t) = −ce−A(t)(eA(t) − eA(T )) + xT eA(T )−A(t)

= c + (xT − c)eA(T )−A(t).
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Counterexample 1 solutions To solve the CFGDDIM ODE for Counterexample 1 (Equation 11) we apply
result (26):

dx

dt
= a(t)(c− x) =⇒ x(t) = c + (xT − c)eA(T )−A(t)

a(t) = − γ

2(1 + t) −
(1− γ)
2(2 + t) , c = 0

A(t) = −1
2

∫
γ

(1 + t) + (1− γ)
(2 + t) dt

= −1
2(γ log(t + 1) + (γ − 1) log(t + 2))

=⇒ xt = xT

√
(t + 1)γ(t + 2)1−γ

(T + 1)γ(T + 2)1−γ
.

To solve the CFGDDPM SDE for Counterexample 1 (Equation 11), we first apply (27) to the SDE with
b(t) = −ξ(t):

dx

dt
= −a(t)x− ξ(t), ⟨ξ(t)⟩ = 0, ⟨ξ(t), ξ(t′)⟩ = δ(t− t′)

=⇒ x(t) = xT eA(T )−A(t) + e−A(t)(B(t)−B(T )), A(t) =
∫

a(t)dt, B(t) = −
∫

eA(t)ξ(t)dt

= xT eA(T )−A(t) + e−A(t)

√∫ T

t

e2A(t)dtξ.

Now, plugging in the DDPM drift term we find that

a(t) = − γ

(1 + t) −
(1− γ)
(2 + t)

A(t) = −γ log(1 + t)− (1− γ) log(2 + t)
eA(t) = (1 + t)−γ(2 + t)−1+γ∫

e2A(t)dt =
∫

(1 + t)−2γ(2 + t)−2+2γdt

= − 1
2γ − 1

(
t + 1
t + 2

)1−2γ

x(t) = xT eA(T )−A(t) + e−A(t)

√∫ T

t

e2A(t)dtξ

= xT
(1 + t)γ(2 + t)1−γ

(1 + T )γ(2 + T )1−γ
+ (1 + t)γ(2 + t)1−γ

√
1

2γ − 1

√(
t + 1
t + 2

)1−2γ

−
(

T + 1
T + 2

)1−2γ

ξ.

A.6 Exact Denoiser for GMM

For the experiments in Figure 2, we used an exact denoiser, for which we require exact conditional and
unconditional scores. Exact scores are available for any GMM as follows. This is well-known (e.g. Karras
et al. (2024a)) but repeated here for convenience.
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p(x) =
∑

wiϕ(x; µi, σi), where ϕ(x; µ, σ2) := 1√
2πσ

e− (x−µ)2

2σ2

=⇒ ∇ log p(x) = ∇p(x)
p(x)

=
∑

wi∇ϕ(µi, σi)∑
wiϕ(µi, σi)

= −

∑
wi

(
x−µi

σ2
i

)
ϕ(x; µi, σ2

i )∑
wiϕ(µi, σi)

.

B PCG SDE

We want to show that the SDE limit of Algorithm 1 with K = 1 is

dx = ∆DDIM(x, t) + ∆LDG(x, t, γ).

To see this, note that a single iteration of Algorithm 1 with K = 1 expands to

xt = xt+∆t−
1
2βt(xt+∆t −∇ log pt+∆t(xt+∆t|c))∆t︸ ︷︷ ︸

DDIM step on pt+∆t(x+∆t|c)

+ βt∆t

2 ∇ log pt,γ(xt|c) +
√

βt∆tN (0, Id)︸ ︷︷ ︸
Langevin dynamics on pt,γ (x|c)

=⇒ dx = lim
∆t→0

xt − xt+∆t = −1
2βt(xt −∇ log pt(xt|c))dt︸ ︷︷ ︸

∆DDIM(x,t)

+ 1
2βt∇ log pt,γ(xt|c)dt +

√
βtdw̄︸ ︷︷ ︸

∆LDG(x,t,γ)

.

This concludes the proof.

A subtle point in the argument above is that ∆LDG(x, t, γ) represents the result of the Langevin step in the
PCG corrector update, rather than the differential of an SDE. In Algorithm 1, t remains constant during the
LD iteration, and so the SDE corresponding to the LD iteration is

dx = 1
2βt∇ log pt,γ(xt|c)ds +

√
βtdw̄, (30)

where s is an LD time-axis that is distinct from the denoising time t, which is fixed during the LD iteration.
Thus ∆LDG(x, t, γ) is not the differential of (30) (the difference is dt vs ds). However, when we take an LD
step of length dt as required for the PCG corrector, the result is∫ dt

0
−βt

2 ∇ log pt,γds +
√

βtdw̄ = −βt

2 ∇ log pt,γdt +
√

βtdw̄ = ∆LDG(x, t, γ),

so ∆LDG(x, t, γ) represents the result of the PCG corrector update in the limit as ∆t→ 0.

C Additional Samples and Metrics

D An alternative discretization

In this section we empirically study an alternative discretization of PCG. The equivalence between PCG and
CFG holds in the SDE limit as ∆t→ 0, so PCG should be thought of as an SDE for which Algorithm 1 is
one choice of discretization. However, other discretizations are possible. In this section we explore one of
these. In particular, we make a single change to Algorithm 1: we modify the LD loop by changing the order
of operations: we first add noise, and then compute and step in the direction of the score; specifically, the
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Figure 7: Effect of Langevin Dynamics. PCG generations with γ = 1 (no guidance) fixed and number of
Langevin steps K varied. The prompt is “photograph of a panda eating pizza”. Increasing the number of
Langevin steps can qualitatively improve image quality, even without guidance.

Table 2: Metrics for DDPM, DDIM, and PCG over γ and number of LD steps. LD discretization per
Algorithm 1. See also alternative discretization metrics in Table 3.

FID γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

CFGDDPM 5.99 3.90 2.71 3.33
CFGDDIM 7.11 4.61 2.55 2.47
PCGDDIM (K = 1) 7.77 5.54 3.37 3.16
PCGDDIM (K = 3) 7.42 4.11 3.71 6.10
PCGDDIM (K = 5) 7.23 3.80 4.87 8.86

FD-DINOv2 γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

DDPM-CFG 161.72 125.71 84.65 65.44
DDIM-CFG 189.76 152.04 104.17 79.07
PCG LD steps = 1 188.83 155.19 109.11 83.50
PCG LD steps = 3 174.97 119.87 73.38 70.80
PCG LD steps = 5 166.38 110.27 71.08 93.21

Inception Score γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

DDPM-CFG 108.2628 126.8507 157.0371 178.0676
DDIM-CFG 100.0823 116.3814 144.7761 164.6486
PCG LD steps = 1 101.2306 113.6755 133.1969 147.5756
PCG LD steps = 3 105.2118 126.9752 152.2398 160.9198
PCG LD steps = 5 107.1457 139.8954 155.7239 149.6180

inner loop LD becomes:

xt ← xt +
√

εη, η ∼ N (0, Id)
st,γ := (1− γ)∇ log pt(xt) + γ∇ log pt(xt|c)

xt ← xt + ε

2st,γ (31)

This is similar to the “churn” operation in Karras et al. (2022)’s stochastic sampler, and conceptually similar
to a noise-then-denoise step in Lugmayr et al. (2022). We generally find that this change improves the PCG
metrics (more closely matching the DDPM metrics) for smaller γ’s, while worsening the metrics for larger
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Table 3: Metrics for DDPM, DDIM, and PCG over γ and number of LD steps. Alternative LD discretization
(Equation 31).

FID γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

CFGDDPM 5.99 3.90 2.71 3.33
CFGDDIM 7.11 4.61 2.55 2.47
PCG LD steps = 1 5.87115 4.72043 4.15484 4.74044
PCG LD steps = 3 4.79793 3.49296 4.82135 7.69348
PCG LD steps = 5 4.51476 3.35029 6.04134 10.6716

FD-DINOv2 γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

DDPM-CFG 161.72 125.71 84.65 65.44
DDIM-CFG 189.76 152.04 104.17 79.07
PCG LD steps = 1 156.854 132.605 102.107 88.2433
PCG LD steps = 3 137.502 100.912 76.9214 86.1473
PCG LD steps = 5 129.782 89.3722 79.0756 112.229

Inception Score γ = 1 γ = 1.1 γ = 1.3 γ = 1.5

DDPM-CFG 108.2628 126.8507 157.0371 178.0676
DDIM-CFG 100.0823 116.3814 144.7761 164.6486
PCG LD steps = 1 107.7871 117.3694 132.3872 141.6556
PCG LD steps = 3 115.4412 131.1285 148.9654 152.2574
PCG LD steps = 5 117.5658 136.5819 150.1884 138.9601

Algorithm 2 PCGDDIM, explicit.
Require: Conditioning c, guidance weight γ ≥ 0.
Require: Constants: {αt}, {ᾱt}, {βt} from Ho et al. (2020)

1: x1 ∼ N (0, I).
2: for (t = 1−∆t; t ≥ 0; t← t−∆t) do
3: ε, εc := NoisePredictionModel(xt+∆t, c)
4: x̂0 := (xt+∆t −

√1− ᾱt+∆tεc)/√ᾱt+∆t ▷ DDIM step pt+∆t(x|c)→ pt(x|c)
5: xt :=

√
ᾱtx̂0 +

√
1− ᾱtεc

6: for k = 1, . . . K do ▷ Langevin dynamics on pt,γ(x|c)
7: ε, εc := NoisePredictionModel(xt, c)
8: xt ← xt − βt

2
√

1−ᾱt
((1− γ)ε + γεc) +

√
βtη

9: end for
10: end for
11: Return: x0

γ’s, as shown in Table 3. We are not sure why this is, but it is well-known that diffusion models are sensitive
to discretization choices in practice (Jolicoeur-Martineau et al., 2021; Lu et al., 2022a).

E Algorithms

Algorithm 2 provides an explicit, practical implementation of PCG. Note that Algorithm 1 and 2 have
slightly different DDIM steps, but this just corresponds to two different discretizations of the same process.
Algorithm 1 uses the first-order Euler–Maruyama discretization known as “reverse SDE” (Song et al., 2020),
which is convenient for our mathematical analysis. Algorithm 2 uses the original DDIM discretization (Song
et al., 2021), equivalent to a more sophisticated integrator (Lu et al., 2022a), which is more common in
practice.
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