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Abstract: Large, high-capacity models trained on diverse datasets have shown1

remarkable successes on efficiently tackling downstream applications. In domains2

from NLP to Computer Vision, this has led to a consolidation of pretrained models,3

with general pretrained backbones serving as a starting point for many applications.4

Can such a consolidation happen in robotics? Conventionally, robotic learning5

methods train a separate model for every application, every robot, and even every6

environment. Can we instead train “generalist” X-robot policy that can be adapted7

efficiently to new robots, tasks, and environments? In this paper, we provide8

datasets in standardized data formats and models to make it possible to explore this9

possibility in the context of robotic manipulation, alongside experimental results10

that provide an example of effective X-robot policies. We assemble a dataset11

from 22 different robots collected through a collaboration between 21 institutions,12

demonstrating 527 skills (160266 tasks). We show that a high-capacity model13

trained on this data, which we call RT-X, exhibits positive transfer and improves14

the capabilities of multiple robots by leveraging experience from other platforms.

Figure 1: We propose an open, large-scale dataset for robot learning curated from 21 institutions across the
globe. The dataset represents diverse behaviors, robot embodiments and environments.15

1 Introduction16

A central lesson from advances in machine learning and artificial intelligence is that large-scale17

learning from broad and diverse datasets can enable capable AI systems by providing for general-18

purpose pretrained models. In fact, large-scale general-purpose models typically trained on large and19

diverse datasets can often outperform their narrowly targeted counterparts trained on smaller but20

more task-specific data. For instance, open-vocabulary image classifiers (e.g., CLIP [1]) trained on21

large datasets scraped from the web tend to outperform fixed-vocabulary models trained on more22

limited datasets, and large language models [2, 3] trained on massive text corpora tend to outperform23

systems that are only trained on narrow task-specific datasets. Increasingly, the most effective way to24

tackle a given narrow task (e.g., in vision or NLP) is to adapt a general-purpose model. However,25

these lessons are difficult to apply in robotics: any single robotic domain might be too narrow, and26
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while computer vision and NLP can leverage large datasets sourced from the web, comparably large27

and broad datasets for robotic interaction are hard to come by. Even the largest data collection efforts28

still end up with datasets that are a fraction of the size and diversity of benchmark datasets in vision29

(5-18M) [4, 5] and NLP (1.5B-4.5B) [6, 7]. More importantly, such datasets are often still narrow30

along some axes of variation, either focusing on a single environment, a single set of objects, or a31

narrow range of tasks. How can we overcome these challenges in robotics and move the field of32

robotic learning toward the kind of large data regime that has been so successful in other domains?33

Inspired by the generalization made possible by pretraining large vision or language models on34

diverse data, we take the perspective that the goal of training generalizable robot policies requires35

X-embodiment training, i.e., with data from multiple robotic platforms. While each individual36

robotic learning dataset might be too narrow, their union provide a better coverage of variations in37

environments and robots. Learning generalizable robot policies requires developing methods that38

can utilize X-embodiment data, tapping into datasets from many labs, robots, and settings. Even if39

such datasets in their current size and coverage are insufficient to attain the impressive generalization40

results that have been demonstrated by large language models, in the future, the union of such data41

can potentially provide this kind of coverage. Because of this, we believe that enabling research42

into X-embodiment robotic learning is critical at the present juncture.43

Following this rationale, our work has two goals: (1) Demonstrate that policies trained on data44

from many different robots and environments enjoy the benefits of positive transfer, attaining better45

performance than policies trained only on data from each evaluation setup. (2) Provide datasets, data46

formats and models for the robotics community to enable future research on X-embodiment models.47

Addressing goal (1), we demonstrate that several recent robotic learning methods, with minimal48

modification, can utilize X-embodiment data and enable positive transfer. Specifically, we train49

the RT-1 [8] and RT-2 [9] models on 9 different robotic manipulators. We show that the resulting50

models, which we call RT-X, can improve over policies trained only on data from the evaluation51

domain, exhibiting better generalization and new capabilities. Addressing (2), we provide the Open52

X-Embodiment (OXE) Repository, which includes a dataset with 22 different robotic embodiments53

from 21 different institutions that can enable the robotics community to pursue further research on54

X-embodiment models, along with open-source tools to facilitate such research. Our aim is not to55

innovate in terms of the particular architectures and algorithms, but rather to provide the model that56

we trained together with data and tools to energize research around X-embodiment robotic learning.57

2 Related Work58

Transfer across embodiments. A number of prior works have studied methods for transfer across59

robot embodiments in simulation [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and on real60

robots [23, 24, 25, 26, 27, 28, 29]. These methods often introduce mechanisms specifically designed61

to address the embodiment gap between different robots, such as shared action representations [14, 30],62

incorporating representation learning objectives [17, 26], adapting the learned policy on embodiment63

information [30, 31, 11, 18, 15], and decoupling robot and environment representations [24]. Prior64

work has provided initial demonstrations of X-embodiment training [27] and transfer [25, 32, 29]65

with transformer models. We investigate complementary architectures and provide complementary66

analyses, and, in particular, study the interaction between X-embodiment transfer and web-scale67

pretraining. Similarly, methods for transfer across human and robot embodiments also often employ68

techniques for reducing the embodiment gap, i.e. by translating between domains or learning69

transferable representations [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Alternatively, some works70

focus on sub-aspects of the problem such as learning transferable reward functions [44, 17, 45, 46, 47,71

48], goals [49], dynamics models [50], or visual representations [51, 52, 53, 54, 55, 56, 57, 58] from72

human video data. Unlike most of these prior works, we directly train a policy on X-embodiment data,73

without any mechanisms to reduce the embodiment gap, and observe positive transfer by leveraging74

that data.75
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Figure 2: RT-1-X and RT-2-X both take images and a text instruction as input and output discretized end-effector
actions. RT-1-X is an architecture designed for robotics, with a FiLM [113] conditioned EfficientNet [114] and a
Transformer [115]. RT-2-X builds on a VLM backbone by representing actions as another language, and training
action text tokens together with vision-language data.

Large-scale robot learning datasets. The robot learning community has created open-source76

robot learning datasets, spanning grasping [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], pushing77

interactions [71, 72, 73, 23], sets of objects and models [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84],78

and teleoperated demonstrations [85, 86, 87, 8, 88, 89, 90, 91]. With the exception of RoboNet [23],79

these datasets contain data of robots of the same type, whereas we focus on data spanning multiple80

embodiments. The goal of our data repository is complementary to these efforts: we process and81

aggregate a large number of prior datasets into a single, standardized repository, called Open X-82

Embodiment, which shows how robot learning datasets can be shared in a meaningul and useful83

way.84

Language-conditioned robot learning. Prior work has aimed to endow robots and other agents85

with the ability to understand and follow language instructions [92, 93, 94, 95, 96, 97], often86

by learning language-conditioned policies [45, 98, 99, 100, 101, 40, 102, 8]. We train language-87

conditioned policies via imitation learning like many of these prior works but do so using large-88

scale multi-embodiment demonstration data. Following previous works that leverage pre-trained89

language embeddings [103, 45, 104, 99, 40, 105, 106, 8, 107, 108] and pre-trained vision-language90

models [109, 110, 111, 9] in robotic imitation learning, we study both forms of pre-training in our91

experiments, specifically following the recipes of RT-1 [8] and RT-2 [9].92

3 The Open X-Embodiment Repository93

We introduce the Open X-Embodiment Repository – an open-source repository which includes94

large-scale data along with pre-trained model checkpoints for X-embodied robot learning research.95

More specifically, we provide and maintain the following open-source resources to the broader96

community: (1) Open X-Embodiment Dataset: robot learning dataset with 1M+ robot trajectories97

from 22 robot embodiments (2) Pre-Trained Checkpoints: a selection of RT-X model checkpoints98

ready for inference and finetuning.99

We intend for these resources to form a foundation for X-embodiment research in robot learning,100

but they are just the start. Open X-Embodiment is a community-driven effort, currently involving101

21 institutions from around the world, and we hope to further broaden participation and grow the102

initial Open X-Embodiment Dataset over time. The Open X-Embodiment Dataset contains 1M+103

real robot trajectories spanning 22 robot embodiments, from single robot arms to bi-manual robots104

and quadrupeds. The dataset was constructed by pooling 60 existing robot datasets from 34 robotic105

research labs around the world and converting them into a consistent data format for easy download106

and usage. We use the RLDS data format [112], which saves data in serialized tfrecord files and107

accommodates the various action spaces and input modalities of different robot setups.108

4 RT-X Design109

To evaluate how much X-embodiment training can improve the performance of learned policies on110

individual robots, we require models that have sufficient capacity to productively make use of such111

large and heterogeneous datasets. To that end, our experiments will build on two recently proposed112
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Figure 3: RT-1-X mean success rate is 50% higher than that of either the Original Method or RT-1. RT-1 and
RT-1-X have the same network architecture. Therefore the performance increase can be attributed to co-training
on the robotics data mixture. The lab logos indicate the physical location of real robot evaluation, and the robot
pictures indicate the embodiment used for the evaluation.

Transformer-based robotic policies: RT-1 [8] and RT-2 [9]. We briefly summarize the design of113

these models in this section, and discuss how we adapted them to the X-embodiment setting in our114

experiments.115

4.1 Data format consolidation116

One challenge of creating X-embodiment models is that observation and action spaces vary signifi-117

cantly across robots. We use a coarsely aligned action and observation space across datasets. The118

model receives a history of recent images and language instructions as observations and predicts a119

7-dimensional action vector controlling the end-effector (x, y, z, roll, pitch, yaw, and gripper opening120

or the rates of these quantities). We select one canonical camera view from each dataset as the input121

image, resize it to a common resolution and convert the original action set into a 7 DoF end-effector122

action. We normalize each dataset’s actions prior to discretization. This way, an output of the model123

can be interpreted (de-normalized) differently depending on the embodiment used. It should be noted124

that despite this coarse alignment, the camera observations still vary substantially across datasets,125

e.g. due to differing camera poses relative to the robot or differing camera properties, see Figure 2.126

Similarly, for the action space, we do not align the coordinate frames across datasets in which the127

end-effector is controlled, and allow action values to represent either absolute or relative positions or128

velocities, as per the original control scheme chosen for each robot. Thus, the same action vector129

may induce very different motions for different robots.130

4.2 Policy architectures131

We consider two model architectures in our experiments: (1) RT-1 [8], an efficient Transformer-based132

architecture designed for robotic control, and (2) RT-2 [9] a large vision-language model co-fine-133

tuned to output robot actions as natural language tokens. Both models take in a visual input and134

natural language instruction describing the task, and output a tokenized action. For each model,135

the action is tokenized into 256 bins uniformly distributed along each of eight dimensions; one136

dimension for terminating the episode and seven dimensions for end-effector movement. Although137

both architectures are described in detail in their original papers [8, 9], we provide a short summary138

of each below:139

RT-1 [8] is a 35M parameter network built on a Transformer architecture [115] and designed for140

robotic control, as shown in Fig. 2. It takes in a history of 15 images along with the natural language.141

Each image is processed through an ImageNet-pretrained EfficientNet [114] and the natural language142

instruction is transformed into a USE [116] embedding. The visual and language representations are143

then interwoven via FiLM [113] layers, producing 81 vision-language tokens. These tokens are fed144

into a decoder-only Transformer, which outputs the tokenized actions.145

RT-2 [9] is a family of large vision-language-action models (VLAs) trained on Internet-scale vision146

and language data along with robotic control data. RT-2 casts the tokenized actions to text tokens,147

e.g., a possible action may be “1 128 91 241 5 101 127”. As such, any pretrained vision-language148

model (VLM [117, 118, 119]) can be finetuned for robotic control, thus leveraging the backbone149

of VLMs and transferring some of their generalization properties. In this work, we focus on the150
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Evaluation Setting Bridge Bridge RT-1 paper 6 skills

Evaluation Location IRIS (Stanford) RAIL Lab (UCB) Google Robotic Lab
Robot Embodiment WidowX WidowX Google Robot
Original Method LCBC [122] LCBC [122] -

Original Method 13% 13% -
RT-1 40% 30% 92%
RT-1-X 27% 27% 73%
RT-2-X (55B) 50% 30% 91%

Table 1: Parameter count scaling experiment to assess the impact of capacity on absorbing large-scale diverse
embodiment data. For these large-scale datasets (Bridge and RT-1 paper data), RT-1-X underfits and performs
worse than the Original Method and RT-1. RT-2-X model with significantly many more parameters can obtain
strong performance in these two evaluation scenarios.

RT-2-PaLI-X variant [117] built on a backbone of a visual model, ViT [120], and a language model,151

UL2 [121], and pretrained primarily on the WebLI [117] dataset.152

4.3 Training and inference details153

Both models use a standard categorical cross-entropy objective over their output space (discrete154

buckets for RT-1 and all possible language tokens for RT-2).155

We define the robotics data mixture used across all of the experiments as the data from 9 manipulators,156

and taken from RT-1 [8], QT-Opt [65], Bridge [122], Task Agnostic Robot Play [123, 124], Jaco157

Play [125], Cable Routing [126], RoboTurk [127], NYU VINN [128], Austin VIOLA [129], Berkeley158

Autolab UR5 [130], TOTO [131] and Language Table [88] datasets. RT-1-X is trained on only robotics159

mixture data defined above, whereas RT-2-X is trained via co-fine-tuning (similarly to the original160

RT-2 [9]), with an approximately one to one split of the original VLM data and the robotics data161

mixture. Note that the robotics data mixture used in our experiments includes 9 embodiments which162

is fewer than the entire Open X-Embodiment dataset (22) – the practical reason for this difference163

is that we have continued to extend the dataset over time, and at the time of the experiments, the164

dataset above represented all of the data. In the future, we plan to continue training policies on165

the extended versions of the dataset as well as continue to grow the dataset together with the robot166

learning community.167

At inference time, each model is run at the rate required for the robot (3-10 Hz), with RT-1 run locally168

and RT-2 hosted on a cloud service and queried over the network.169

5 Experimental Results170

Our experiments answer three questions about the effect of X-embodiment training: (1) Can policies171

trained on our X-embodiment dataset effectively enable positive transfer, such that co-training on data172

collected on multiple robots improves performance on the training task? (2) Does co-training models173

on data from multiple platforms and tasks improve generalization to new, unseen tasks? (3) What174

is the influence of different design dimensions, such as model size, model architecture or dataset175

composition, on performance and generalization capabilities of the resulting policy? To answer these176

questions we conduct the total number of 3600 evaluation trials across 6 different robots.177

5.1 In-distribution performance across different embodiments178

To assess the ability of our RT-X model variants to learn from X-embodiment data, we evaluate their179

performance on in-distribution tasks. We split our evaluation into two types of use cases: evaluation180

on domains that only have small-scale datasets (Fig. 3), where we would expect transfer from larger181

datasets to significantly improve performance, and evaluation on domains that have large-scale182

datasets (Table 1), where we expect further improvement to be more challenging. Note that we use183

the same robotics data training mixture (defined in Sec. 4.3) for all the evaluations presented in184

this section. For small-scale dataset experiments, we consider Kitchen Manipulation [125], Cable185

Routing [126], NYU Door Opening [128], AUTOLab UR5 [130], and Robot Play [132]. We use186
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Figure 4: To assess transfer between embodiments, we evaluate the RT-2-X model on out-of-distribution skills.
These skills are in the Bridge dataset, but not in the Google Robot dataset (the embodiment they are evaluated
on).

the same evaluation and robot embodiment as in the respective publications. For large-scale dataset187

experiments, we consider Bridge [122] and RT-1 [8] for in-distribution evaluation and use their188

respective robots: WidowX and Google Robot.189

For each small dataset domain, we compare the performance of the RT-1-X model, and for each190

large dataset we consider both the RT-1-X and RT-2-X models. For all experiments, the models191

are co-trained on the full X-embodiment dataset. Throughout this evaluation we compare with192

two baseline models: (1) The model developed by the creators of the dataset trained only on that193

respective dataset. This constitutes a reasonable baseline insofar as it can be expected that the model194

has been optimized to work well with the associated data; we refer to this baseline model as the195

Original Method model. (2) An RT-1 model trained on the dataset in isolation; this baseline allows196

us to assess whether the RT-X model architectures have enough capacity to represent policies for197

multiple different robot platforms simultaneously, and whether co-training on multi-embodiment data198

leads to higher performance.199

Small-scale dataset domains (Fig. 3). RT-1-X outperforms Original Method trained on each of200

the robot-specific datasets on 4 of the 5 datasets, with a large average improvement, demonstrating201

domains with limited data benefit substantially from co-training on X-embodiment data.202

Large-scale dataset domains (Table 1). In the large-dataset setting, the RT-1-X model does not203

outperform the RT-1 baseline trained on only the embodiment-specific dataset, which indicates204

underfitting for that model class. However, the larger RT-2-X model outperforms both the Original205

Method and RT-1 suggesting that X-robot training can improve performance in the data-rich domains,206

but only when utilizing a sufficiently high-capacity architecture.207

5.2 Improved generalization to out-of-distribution settings208

We now examine how X-embodiment training can enable better generalization to out-of-distribution209

settings and more complex and novel instructions. These experiments focus on the high-data domains,210

and use the RT-2-X model.211

Unseen objects, backgrounds and environments. We first conduct the same evaluation of general-212

ization properties as proposed in [9], testing for the ability to manipulate unseen objects in unseen213

environments and against unseen backgrounds. We find that RT-2 and RT-2-X perform roughly on214

par (Table 2, rows (1) and (2), last column). This is not unexpected, since RT-2 already generalizes215

well (see [9]) along these dimensions due to its VLM backbone.216

Emergent skills evaluation. To investigate the transfer of knowledge across robots, we conduct217

experiments with the Google Robot, assessing the performance on tasks like the ones shown in Fig. 4.218
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Row Model Size History
Length Dataset Co-Trained

Web
Initial

Checkpoint

Emergent
Skills

Evaluation

RT-2
Generalization

Evaluation

(1) RT-2 55B none Google Robot action Yes Web-pretrained 27.3% 62%
(2) RT-2-X 55B none Robotics data Yes Web-pretrained 75.8% 61%
(3) RT-2-X 55B none Robotics data except Bridge Yes Web-pretrained 42.8% 54%
(4) RT-2-X 5B 2 Robotics data Yes Web-pretrained 44.4% 52%
(5) RT-2-X 5B none Robotics data Yes Web-pretrained 14.5% 30%
(6) RT-2-X 5B 2 Robotics data No From scratch 0% 1%
(7) RT-2-X 5B 2 Robotics data No Web-pretrained 48.7% 47%

Table 2: Ablations to show the impact of design decisions on generalization (to unseen objects, backgrounds,
and environments) and emergent skills (skills from other datasets on the Google Robot), showing the importance
of Web-pretraining, model size, and history.

These tasks involve objects and skills that are not present in the RT-2 dataset but occur in the Bridge219

dataset [122] for a different robot (the WidowX robot). Results are shown in Table 2, Emergent Skills220

Evaluation column. Comparing rows (1) and (2), we find that RT-2-X outperforms RT-2 by ∼ 3×,221

suggesting that incorporating data from other robots into the training improves the range of tasks222

that can be performed even by a robot that already has large amounts of data available. Our results223

suggest that co-training with data from other platforms imbues the RT-2-X controller with additional224

skills for the platform that are not present in that platform’s original dataset.225

Our next ablation involves removing the Bridge dataset from RT-2-X training: Row (3) shows the226

results for RT-2-X that includes all data used for RT-2-X except the Bridge dataset. This variation227

significantly reduces performance on the hold-out tasks, suggesting that transfer from the WidowX228

data may indeed be responsible for the additional skills that can be performed by RT-2-X with the229

Google Robot.230

5.3 Design decisions231

Lastly, we perform ablations to measure the influence of different design decisions on the gener-232

alization capabilities of our most performant RT-2-X model, which are presented in Table 2. We233

note that including a short history of images significantly improves generalization performance (row234

(4) vs row (5)). Similarly to the conclusions in the RT-2 paper [9], Web-based pre-training of the235

model is critical to achieving a high performance for the large models (row (4) vs row (6)). We also236

note that the 55B model has significantly higher success rate in the Emergent Skills compared to the237

5B model (row (2) vs row (4)), demonstrating that higher model capacity enables higher degree of238

transfer across robotic datasets. Contrary to previous RT-2 findings, co-fine-tuning and fine-tuning239

have similar performance in both the Emergent Skills and Generalization Evaluation (row (4) vs row240

(7)), which we attribute to the fact that the robotics data used in RT-2-X is much more diverse than241

the previously used robotics datasets.242

6 Discussion, Future Work, and Open Problems243

We presented a consolidated dataset that combines data from 22 robotic embodiments collected244

through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We also245

presented an experimental demonstration that Transformer-based policies trained on this data can246

exhibit significant positive transfer between the different robots in the dataset. Our results showed247

that the RT-1-X policy has a 50% higher success rate than the original, state-of-the-art methods248

contributed by different collaborating institutions, while the bigger vision-language-model-based249

version (RT-2-X) demonstrated ∼ 3× generalization improvements over a model trained only on250

data from the evaluation embodiment. In addition, we provided multiple resources for the robotics251

community to explore the X-embodiment robot learning research, including: the unified X-robot and252

X-institution dataset, sample code showing how to use the data, and the RT-1-X model to serve as a253

foundation for future exploration.254

While RT-X demonstrates a step towards a X-embodied robot generalist, there are many more steps255

needed to make this future a reality. Our experiments have a number of limitations: it does not256
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consider robots with very different sensing and actuation modalities, it does not study generalization257

to new robots, and it does not provide a decision criterion for when positive transfer does or does not258

happen. Studying these questions is an important direction for future work. We hope that this work259

will serve not only as an example that X-robot learning is feasible and practical, but also provide the260

tools to advance research in this direction in the future.261
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