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Abstract—As many recent real-time applications (e.g., Aug-
mented/Virtual Reality, cognitive assistance) rely on Deep Neural
Networks (DNNs) for inference tasks, edge computing has ap-
peared as a key enabler to deploy such applications as closest to
the data sources, helping meet stringent latency and throughput
demands. However, the limited resources typically available at
the edge create significant challenges for efficiently managing
inference workloads. Thus, a trade-off between network and
processing time should be considered when it comes to end-to-
end delay requirements. In this paper, we focus on the problem
of scheduling inference jobs of DNN models in such edge-cloud
continuum at short timescales (i.e., a few milliseconds). Through
simulations, we analyze several policies in the realistic network
settings and workloads of a large ISP, highlighting the need
for a dynamic scheduling policy that can adapt to varying
network conditions and workload demands. To this end, we
propose ASET, a Reinforcement Learning (RL)-based scheduling
algorithm able to dynamically adapt its decisions according to
the system conditions. Our results show that ASET effectively
provides the best performance compared to a set of static policies
when scheduling over a distributed pool of edge-cloud resources.

Index Terms—job scheduling, reinforcement learning, edge
cloud continuum

I. INTRODUCTION

The popularity of Deep Neural Networks (DNNs) has
increased in recent years, particularly in applications like
Augmented/Virtual Reality (AR/VR), cognitive assistance, and
video surveillance. DNN model training is typically done of-
fline in centralized data-centers or distributed. However, DNN
inference task is usually performed online with constraints
in terms of accuracy, throughput, and latency, which may
significantly differ across applications. Providing an inference
service requires addressing several challenges, such as select-
ing the appropriate model variant, processing unit, and nodes
and resources [1], [2]. This requires management at different
timescales, with schedulers selecting computing instances for
new requests and orchestrators optimizing model placement
across nodes.

Edge computing is considered a key enabler to deploy
DNN-based applications with stringent delay or bandwidth
requirements. Due to the less availability of resources at edge,
multiple inference models of different capacities should be
considered, and end-to-end delay requirements may lead to
considering a trade-off between network delay and processing

time. For these reasons, the optimal selection of inference
models while scheduling real-time requests at the edge is still a
challenging task. Recent work [3], [4] combines edge comput-
ing and deep learning, but none analyzes inference workload
optimization considering different application constraints in
realistic edge network settings.

In this paper, we focus on the problem of scheduling DNN
inference requests in both edge and cloud infrastructures, while
taking into account not only accuracy (i.e., model selection)
but also throughput and latency constraints under realistic
edge deployment settings. First, we model our edge-cloud
continuum inference system and provide a definition of the
scheduling problem, and propose several static scheduling
policies both original and from literature. From evaluating
static policies, we observe that different applications may
benefit differently from each scheduling policy. Based on the
insights derived by this analysis we propose ASET (Adaptive
Scheduling of Edge Tasks), an adaptive scheduling algorithm
based on Reinforcement Learning, which dynamically moni-
tors system conditions and apps requirements optimizing its
decisions accordingly. We evaluate ASET simulating three
topologies based on the realistic network of a large ISP and a
real GPU-equipped dc-cloud, showing that ASET outperforms
static policies when resources are distributed across the edge
network.

II. RELATED WORK

The provisioning of on-demand inference services has been
investigated in several recent works.
Cloud inference workload. Most solutions address the
scheduling of inference queries over the resources of a Data
Center by proposing algorithms and strategies to improve
the performance. The most complete solutions is provided
by INFaaS [2], which focuses on ease of use, providing
transparent scheduling of incoming queries over available
model variants, and autoscaling of deployed models based
on load thresholds. However, all the previous works address
the scheduling problem only from the boundaries of a data
center, considering neither (i) network latency, thus becoming
no suitable in scenarios with real-time constraints, nor (ii)
resource constrained clusters.
Edge inference workload. Fewer and more recent are the
trends that combine DNN with edge computing [3], with the
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TABLE I: Comparative analysis against the most recent works on scheduling inference workloads at the edge.

aim of overcoming scalability and latency limitations of cloud
computing. In [10], authors propose an approach to schedule
tasks across multiple edge servers, seeking minimization of
end-to-end latency; whereas VideoEdge [4] study the problem
of processing data streams from scattered devices, exploiting
the geographically distributed edge/cloud clusters. However,
neither processing nor network latencies are taken as con-
straints, thus making this approach not suitable for interactive
or critical scenarios.

Tasks scheduling. With the rapid and increasing number of
real-time applications that require powerful resources and fast
processing time, e.g., augmented reality, smart healthcare, and
autonomous driving, the proliferation of workloads scheduling
techniques for edge computing has emerged [11]. In this
context, Muri [5] proposes an adaptation of the Blossom
algorithm to group DL training (over GPUs) jobs by exploiting
multi-resource interleaving of these tasks to achieve high
resource utilization and reduce job completion time; whereas
Oakestra [8], a hierarchical orchestration framework designed
for edge computing aimed at supporting applications’s SLAs
at the dynamic edge variations.

Deep Reinforcement Learning (DRL) has risen as a power-
ful approach for real-time decision-making, allowing adaptive
and efficient optimization even for online task scheduling
and resource allocation [12], [13]. Recently, TapFinger [7]
trains a multi-agent reinforcement learning (MARL) algorithm
in combination with heterogeneous attention network graphs
(HAN) to support each agent’s optimal decision by providing
all the necessary input features (e.g., resource requirements,
edge components); whereas Zheng et al. [6]introduce a model
employing a DRL with a Deep Q-Network (DQN) approach,
utilizing the servers’ state, networks, and tasks as inputs
for the scheduling process. To avoid the requirement of a
training dataset, a meta-RL solution has been proposed in [9],
where the RL algorithm does not use any initial training set
but explores possible combination paths where the model’s
accuracy is low in order to gain more experience.

As summarized in Table I, to the best of our knowl-
edge, none of the existing works addresses the problem
simultaneously considering (i) end-to-end latency, accuracy,
and throughput constraints, (ii) edge-cloud computing and
multi-cluster deployment, (iii) real-time job dispatching, (iv)
optimization on model variant selection for ML inference
workloads [14].

III. SCHEDULING IN EDGE-CLOUD INFRASTRUCTURE
A. System modeling

Applications and data-streaming sources. We consider a set
of sources running a variety of applications, each relying on
one or more DNN inference tasks. Every application generates
queries to be processed, i.e., each query represents the request
to perform a specific inference task j € J, where J is the set
of inference tasks supported by the system. Since applications
often require more than one query to be processed, we treat
sequential queries as streams. Therefore, each query ¢ belongs
to a stream ¢ € I, being I the entire set of streams currently
served by the system. Every stream has a set of requirements
such as a maximum end-to-end delay D?, and a minimum
required accuracy A°.

DNN Models and Variants. Every inference task j can be
served using a Deep Neural Network (DNN) model m among
the set of M7 models that are trained for task j. Therefore, the
system provides a total of Ny, = > . ; |M 7| DNN models.
Using object detection as an example application, a model m
represents a particular pre-trained Neural Network architecture
(e.g., yolo-v3, ssd-mobilenet-v1l) with an accuracy A,, (mean
average precision - mAP). A model m can be deployed and
run through different setups and underlying hardware (e.g.,
SSD Mobilenet vl on (i) Tensorflow-GPU with batch size 8,
or on (ii) Opencv-CPU batch size 1 and 2 replicas, and more),
thus obtaining a set V'™ of different model variants. A model
variant v features a given processing delay D, throughput
capacity C, (i.e., the maximum number of queries it can
process per second), and resource usage 7., € R’i.

Network topology and computing clusters. We consider a
geographically distributed cloud-edge infrastructure composed
by N, computing clusters (e.g., a centralized data center, a
telco regional cloud, an eNodeB) typically organized in a
hierarchical topology. Each cluster potentially provides dif-
ferent resources. We denote ¢, € Rﬁ the overall capacity
of cluster n, with ¢, representing the amount of resource
k € N available on cluster n. On a long timescale, an
orchestrator selects the appropriate set of model variants to
deploy, optimizes their placement across the clusters, and
allocates the appropriate resources.

B. Scheduling problem definition

We assume a scheduler is located at the nearest compute
cluster available to existing stream sources, i.e., antenna/eN-
odeB or the home gateway/central office. It follows every
stream source is served by a scheduler s among N, different
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Fig. 1: The scheduler dispatches streams of queries on available model variants
based on their constraints and geographical position of clusters.

ones (one per each lower layer cluster). Each scheduler s
has a given average network delay d; towards each cluster
n; we also model the associated delay deviation as o). We
denote §; the additional access delay that affects stream 4.
Every scheduler is aware of each model variant v currently
available on each cluster n, each with its current load L., (t)
(measured in terms of incoming queries per second). Based on
the current conditions, for every stream ¢ it serves, a scheduler
s decides which model variant v on which cluster n should be
used to process stream ¢ based on application requirements.
Specifically, it considers the stream data size (;, its data rate p;,
its bit rate b;, the maximum tolerated end-to-end delay D? and
the minimum required accuracy A°, satisfying the following
constraints:
(1) the selected model variant v is a valid implementation of
task j required by i, v € V™ Am € M7,
(2) the load capacity of the chosen model variant is not
exceeded, Ly, (t) + nip; < C,, where ! the fractional load
of stream 7 for model variant v;
(3) the sum of expected network delay and processing time
does not exceed the maximum tolerated delay, 2(d; + df, +
20%) + b;¢; + D, (¢;) < D*, where the addendum are round-
trip propagation time, transmission delay for one query and
the time needed to process the query,respectively;
(4) the selected model provides an adequate accuracy.

A graphical representation of the scheduling problem is
depicted in Figure 1 and be formally defined as follows:

Definition 1. (scheduling policy). Let us consider a stream i to
be processed through a task j on an edge-cloud infrastructure
that features a set of V'™ compatible model variants over N,
clusters (|N| = N, ). A scheduling policy is any function

B: I V™ N (1)

that binds stream i to a feasible model variant v € V™
deployed on cluster n € N, so that Constraints (1), (2), (3),
and (4) are satisfied.

Based on the scheduling decisions, in a given time instant ¢
the stream 7 will feature a reject ratio ql*(t) € [0,1], i.e., the
fraction of queries from stream ¢ that have not been processed
by the system because of resource unavailability, and a failure
ratio qF' (t) € [0,1], i.e. the fraction of queries that have been
served violating one or more application requirements (i.e.,
delivered out of maximum tolerated delay). Therefore, the

scheduler aims to maximize the fraction of queries that are
served successfully, i.e., to minimize the sum of reject ratio
and failure ratio.

C. Static scheduling policies

The following original and state-of-the-art static scheduling
policies are considered:

1) closest: bind stream i to any feasible model variant v* lo-
cated on the cluster n* that features the lower network latency
to serving scheduler s, i.e., n* = argmin, ¢y (d} + 207).
This policy may lead to the early saturation of smaller clusters
at the very edge, as they are always preferred [15].

2) load balancing: bind the input stream to model variant v*
on cluster n* such that (v*,n*) = argmin,, ,cymy y Lon(t)-
This policy may lead to unfair allocation when latency-
sensitive applications are in the minority.

3) farthest: bind stream 7 to any feasible model variant
v* located on the cluster n* with the highest (still feasible)
network latency, i.e. n* = argmax,en (d 4 20%). This
policy preserves smaller clusters at the very edge for those
apps that really need them [16].

4) cheaper: bind stream ¢ to model variant v* on cluster
n* such that the expected end-to-end delay is maximized,
Le. (v',n%) = argmax, ey (2(d5 +205) + Dy(G)).
We designed this policy as an improvement over farthest, as
it additionally tries to preserve the most performing model
variants.

5) random-proportional latency: bind stream ¢ to model
variant v on cluster n with probability 1/(2(d3 + 203) +
D,(¢;)). This guarantees that, on a large enough number of
streams, bindings are proportionate to end-to-end delays [17].

6) random-proportional load: bind stream ¢ to model variant
v on cluster n with probability C\, /L, (t). This guarantees
that, on a large enough number of streams, bindings are
proportional to the capacity of each model variant.

7) least impedance: bind stream ¢ to model variant v* on
cluster n* such that end-to-end latency to s is minimized, i.e.,
(v, n*) = argmin, ey (2(d5 +203) + Dy(G) (171,
This greedy policy leads to the best performance when the
overall load is low, but may suffer from a high rejection rate
once the closest and fastest model variants are saturated.

IV. ASET SCHEDULING ALGORITHM

Our adaptive scheduling approach aims to learn the optimal
policy depending on current system conditions, e.g, current
applications, network topology, and stream arrivals that vary
over time. Due to the lack of labeled data, the optimal
policy learning is formulated as a Reinforcement Learning
(RL) problem; hence, an intelligent agent tries to learn the
optimal policy selection strategy according to the observed
state of the environment and the maximization of a reward
(typically maximizing the fraction of queries that are served
successfully), as shown in Figure 2.

The proposed adaptive scheduling aims to optimize static
network scheduling policies by maximizing the percentage of
successfully dispatched streams. The agent interacts with the
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Fig. 3: The ASET RL agent infers the optimal policy sequence based on the
system conditions, seeking an optimal binding between workloads and model
variants that maximizes the percentage of success queries. Plots show two
runs on a cloud-based topology and on an edge-based one (see Section V).

environment at discrete time steps t, collecting observations
from edge-cloud infrastructure to build up the current state
Sy € S of the environment, being .S the set of possible states.
The agent evaluates a set of actions and chooses an action A; €
A from available network scheduling policies 3. Every time
the agent takes an action, the environment state is observed,
and a reward score is used as feedback to improve policy
selection. Rewards 7, ; are defined as a linear combination of
failed queries and rejected queries due to resource constraints.
The particular policy S, selected by the agent at time ¢, is used
to dispatch all incoming streams during the subsequent time
window [t,t 4+ T|. Therefore, given the corresponding states
sequence S = [So, ST, Sor, ..., Spr| With k € N, the resulting
overall scheduling policy 3(S) = [Bo, BT, Bor, -, BiT)
dynamically maps, with the corresponding baseline policies
Bt, a stream ¢ to a model variant v and its deployment on
cluster n. The intuition of this behavior is provided in Figure 3.

A. Deep Q-Learning policy optimization

Our RL agent has to cope with a discrete set of actions,
with A C N and modeled as a stochastic process with no
memory, which is a Markov Decision Process [18] (MDP).
In this work, our MDP defined by tuples (S, A,7T,R,v)
represents states comprised of partial observations from the
system. Nonetheless, the model parameters of such MDP are
unknown, i.e., the transition probabilities T (s’|a,s) and the
rewards R(s|a, s) of taking the action A; = a and moving
from state S; = s to state S; 1 = s'. In Q-Learning, the
optimal pair values (s, a), i.e., those yielding to the sequence
of optimal actions, are generally called Quality-Values (Q-
Values) and noted as Q*(s,a) [19]. They correspond to the

sum of weighted rewards that the RL agent can expect on
average after performing action a on state s. It is also known
as the expected return of actions,

Q(s,a) = Ep= oy {Ge|St = 5, A¢ = a} . 2)

where G(t) is the expected return of rewards over time.

Bellman [18] showed that if an agent’s trajectory follows
the highest Q-Values, then its policy is optimal and leads to
the highest G(t) as well. In fact, Q-Learning is an adaptation
of Bellman’s value iteration algorithm, where a policy is im-
plicitly, or off-line, learned by following trajectories yielding
to the highest Q-Values [19]. In order to scale for large MDPs
with a large number of states, a solution is to approximate
the optimal Q*(s,a) using a Deep Neural Network, named
Deep Q-Network (DQN) [20], to get an estimate Q(s, a; @) =~
Q*(s,a), where ¢ stands for the parameters of the DQN
model.

B. State Encoding

We model the state in a continuous fashion, representing
the environment in a given time ¢ as a set of some particular
features sampled from the system and averaged along a time
window of size T'. Features are evaluated separately for each
available worker w € W ,and are as follows: (i) the number
|I,| of streams currently served by worker w, being I, =
{i € I| B(i) = (v,m)}; (ii) the current throughput R,,(t) of
worker w, in terms of responses delivered at the time instant
t; (iii) the current load L, (), measured in terms queries per
second normalized on input size (as defined in Section III-B);
(iv) number of incoming instant queries grouped by stream
characteristics, e.g., queries of all streams that require end-to-
end delay within a given range [0, %[ and features a data rate
in the interval [p*, +ool, i.e, Y,cq, , piv Where I1q = {i €
I| D' € [§Y,82[Ap; € [p?, +o0[}.

C. Training

The proposed RL scheduling agent is trained over a series
of episodes that resemble various scenarios. Each episode
corresponds to a different workload execution with given
parameters, e.g. requirements from tasks, number of clients
per minute (\) or the seed value ({) for random number
generation (RNG), and is concluded when the percentage of
success queries, qf , falls below a given threshold # or when a
timeout H is reached. This allows us to speed up the training
by terminating unsuccessful or steady episodes quickly. At
every time step ¢, a reward r; scores the rate of successful
queries normalized by corresponding time window. Addition-
ally, we employ an e-greedy exploration policy with parameter
€ dynamically updated. The architecture of our DQN consists
of a stacking of convolutional layers that extracts temporal
correlations from the state tensor and many outputs as different
static policies f.

V. PERFORMANCE EVALUATION
A. Evaluation settings

System Prototype demonstrates edge inference system func-
tionalities, with a Master deploying workers, a Docker con-
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tainer running worker pipelines, and a Monitoring agent col-
lecting stats on model variant usage and performance. This
prototype is used to profile pre-trained inference models’
resource usage and performance.

Simulation Setup uses a simulated environment to evaluate a
large-scale approach. Workers simulate inference tasks based
on model variant profiling information, generating empty
responses for each batch of queries after simulating processing
and network delays. Other system components are deployed
using their prototype implementation, ensuring a realistic
timescale operation.

Network topology assesses scheduling performance in a
large ISP network topology using a cloud-to-edge topology
with clusters of different sizes deployed hierarchically. The
topology provides computation capabilities at different layers,
including network access, central offices, operator data centers,
and remote cloud. The simulations focus on three scenarios:
dc-cloud, co-dc-cloud, and full-edge topology. The evaluation
assumes 5G radio access technology with network/transmis-
sion delays ranging from a few milliseconds to ten millisec-
onds.

Requests workload are generated using a Poisson distribution,
with each generator running on average clients per time.
Each client requests a stream with randomized characteristics,
including frame rate, latency, model accuracy, and frame sizes.
Modeling metrics capture realistic queries characteristics, with
a generator causing almost 1000 queries per second on the
antenna.

Computing clusters and model variant assumes a hard-
ware distribution across clusters, with computing capabilities
increasing from the access network to the cloud. It focuses
on DNN models for object detection, a challenging and
computation-intensive inference service. The prototype pro-
files MobileNet-SSD, Yolo-v3, and Tinyyolo-v2 models with
CPU and GPU variants, batch sizes, and resource allocation.
Simulations are run on top of these topologies, scaling workers
up to resource saturation.

B. Experimental Results

We compare the performance of the baseline policies dis-
tinguishing results for different applications [21], [22]. As a
performance metric we consider the percentage of queries that
are successfully processed by the system satisfying the appli-
cation QoS requirements. Figure 4 shows results of multiple
runs with dynamic client rate. Results suggest that there is
no one-size-fits-all policy, as various applications may benefit
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differently from each policy. In the following, we compare the
performance of the ASET RL scheduling approach with the
performance of static policies, evaluating the benefits it can
introduce in the various scenarios.

Cloud deployment. When all the available resources are
located in a few centralized clusters, the various static policies
have small differences in performance and a dynamic approach
has little room for improvement. Results for the dc-cloud
topology are shown in Figures Sab. In particular, Figure 5a
plots, for every moment of the simulation (time axis), the
percentage of queries that are handled successfully, averaging
multiple runs with different workloads. The graph shows that,
for this topology, ASET does not improve over static policies,
and it even performs worse for higher lambdas. We then repli-
cated the dc-cloud experiments on a real deployment scenario
configured with the RTX-2070-SUPER GPUs, reporting the
percentage of successful queries over time in Figure 5b. As
visible from the figure, we can observe that (i) ASET performs
better than the static policies and that (ii) the obtained pattern
is consistent with the simulated results (Figure 5a). This result
is crucial and validates the strong correlation between the
emulated and real environment, thus validating the accuracy
of the simulation and subsequent observations. Figures Scd
shows that moving some resources to Central Offices (co-dc-
cloud topology) makes a huge difference: in general, all the
policies achieve a higher success ratio on this configuration
(Figure 5c), as they can exploit the additional lower latency
spots, and the higher level of distribution gives to ASET a
certain margin of improvement.

Edge deployment. The results so far suggest that a good
distribution of computing resources is a key factor to improve
against static scheduling policies. As shown in Figure 6, the
benefits of using a dynamic scheduling approach become more
concrete in a full-edge topology, where resources are better
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distributed on multiple smaller clusters in different locations.
In fact, Figure 6a shows that the dynamic approach of ASET is
able to achieve a constant improvement over any static policy,
with a higher success ratio over time. In particular, Figures 6¢d
show that, while maintaining the same rejection rate as the best
static-policy, ASET effectively reduces the number of queries
that are handled violating one or more QoS requirements.
Moreover, Figure 6b shows that an ASET agent trained only
for A = 60 can also generalize on different requests rate, even
supporting a load of more than 1600 queries per second (A =
100) on a single antenna.

VI. CONCLUSIONS

The paper introduces ASET, an adaptive algorithm based on
Reinforcement Learning, for scheduling inference workloads
at the network edge. It solves the problem of exploiting
scattered clusters of resources to serve inference queries from
multiple edge applications. ASET optimizes the binding be-
tween inference stream requests and available DNN models,
maximizing throughput and satisfying inference accuracy and
end-to-end delay requirements. The approach was evaluated
over a large ISP network topology and heterogeneous edge
applications, showing that ASET improves performance com-
pared to static policies when resources are deployed across the
entire edge-cloud infrastructure.
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