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ABSTRACT

Singular Value Decomposition (SVD) has become an important technique for re-
ducing the computational burden of Vision Language Models (VLMs), which play
a central role in tasks such as image captioning and visual question answering. Al-
though multiple prior works have proposed efficient SVD variants to enable low-
rank operations, we find that in practice it remains difficult to achieve substantial
latency reduction during model execution. To address this limitation, we intro-
duce a new computational pattern and apply SVD at a finer granularity, enabling
real and measurable improvements in execution latency. Furthermore, recognizing
that weight elements differ in their relative importance, we adaptively allocate rel-
ative importance to each element during SVD process to better preserve accuracy,
then extend this framework with quantization applied to both weights and acti-
vations, resulting in a highly efficient VLM. Collectively, we introduce Weighted
SVD (WSVD), which outperforms other approaches by achieving over 1.8× de-
coding speedup while preserving the accuracy performance.

1 INTRODUCTION

Vision–language models (VLMs) represent a key frontier in artificial intelligence, as they connect
visual recognition with natural language comprehension. By jointly processing imagery and text,
these models enable diverse applications, including automatic image description (Zhou et al., 2020;
Hu et al., 2022; Chen et al., 2022; Dzabraev et al., 2024), visual question answering (Chappuis et al.,
2022; Bazi et al., 2023; Wang et al., 2024b), and semantic search over multimodal data (Li et al.,
2024b; Sun et al., 2025). However, the impressive capabilities of VLMs come at the expense of
significant resource demands. The joint encoding of large-scale visual and linguistic inputs requires
heavy computation, and the autoregressive generation of tokens further stresses memory bandwidth,
introducing major inference bottlenecks.

To reduce the computational cost of large models, low-rank decomposition has recently attracted in-
creasing attention (Wang et al., 2025c; Yuan et al., 2023b; Wang et al., 2024d; Li et al., 2025; 2024c;
Chang et al.; Wang et al., 2025a). By factorizing the query (Q), key (K), and value (V) matrices
within self-attention blocks into low-rank components, prior work has shown significant reductions
in computational complexity and weight storage, thereby improving efficiency. However, based on
our practical system-level implementation, we observe that applying SVD-based decomposition to
the QKV matrices does not consistently yield latency improvements; in fact, it can sometimes incur
even higher computational costs for some VLMs.

To investigate this, we first evaluate the latency of VLMs and find that the root cause lies in the re-
computation of the KV vectors introduced by low-rank factorization, which requires multiple rounds
of memory access to the latent data and ultimately increases memory traffic. To overcome this lim-
itation, we propose a new computational pattern that applies SVD at a finer granularity, thereby
achieving tangible and measurable improvements in execution latency.

Furthermore, building on prior work (Yu et al., 2024b) demonstrating that certain weight elements
play a critical role in VLM accuracy, we note that standard SVD operations treat all weights equally
when truncating them for low-rank approximation. To address this, we adaptively allocate relative
importance for each weight element during SVD to better preserve performance. To further enhance
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Figure 1: (a) Architecture of vision-language model. (b) Overview of WSVD framework.

computational efficiency, we apply low-precision quantization to the low-rank VLM and finetune
it to mitigate accuracy loss. Collectively, these steps yield a low-precision, low-rank VLM with
exceptionally low execution latency. Our contributions are summarized as follows:

• The WSVD scheme applies SVD separately to each attention head, fundamentally reduc-
ing memory access and computational cost during the decoding stage, and resulting in
significantly lower VLM execution latency compared to prior solutions.

• To mitigate the accuracy drop introduced by the per-head SVD scheme, WSVD incor-
porates local weighted finetuning, where an importance score is assigned to each weight
element during the SVD stage. This weighted decomposition produces low-rank weight
matrices with minimal impact on VLM accuracy.

• WSVD applies quantization alongside SVD decomposition to both the weights and activa-
tions of the VLM. To further enhance efficiency, it incorporates an outlier elimination strat-
egy within the SVD framework and locally finetunes the decomposed matrices, achieving
improved accuracy while substantially reducing memory and computational cost.

2 RELATED WORK

2.1 VISION LANGUAGE MODEL

Vision–Language Models (VLMs) (Li et al., 2022; 2023; Liu et al., 2023; Dai et al., 2023; Beyer
et al., 2024; Grattafiori et al., 2024; Wang et al., 2024c) build on the foundation of Large Lan-
guage Models (LLMs) by incorporating visual signals in addition to textual input, thereby enabling
multimodal tasks such as image captioning and visual question answering (VQA). Representative
systems like BLIP and InstructBLIP (Li et al., 2022; 2023) leverage large-scale data curation and
visual instruction tuning to better align their responses with human intent, particularly under zero-
shot evaluation. A widely adopted framework, shown in Figure 1 (a), encodes images into visual
tokens via a vision backbone, concatenates them with text tokens, and feeds the combined sequence
into a language model for output generation. This simple yet effective concatenation strategy un-
derpins popular VLMs such as the LLaVA family (Liu et al., 2023), SmolVLM (Marafioti et al.,
2025), PaLI-Gemma (Beyer et al., 2024), and Qwen-VL (Wang et al., 2024c). Despite their strong
performance, these models are often computationally heavy and difficult to deploy on devices with
limited resources. To address this, compact designs have been introduced. TinyGPT-V (Yuan et al.,
2023a) and TinyLLaVA (Zhou et al., 2024) pursue scaled-down yet efficient alternatives, while
SmolVLM (Marafioti et al., 2025) presents a family of lightweight models with one to three billion
parameters that preserve competitive accuracy while significantly lowering hardware requirements.

2.2 SINGULAR VALUE DECOMPOSITION FOR LARGE MODELS

Singular Value Decomposition (SVD) (Jolliffe & Cadima, 2016) is a fundamental tool in matrix
factorization that represents a matrix W ∈ Rm×n as W = UΣV T , where U and V are orthogonal
matrices containing the left and right singular vectors, and Σ is a diagonal matrix with non-negative
singular values sorted in descending order. By retaining only the leading r singular values and their
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associated vectors, one obtains a compact rank-r approximation:

W ≈ UrΣrV
T
r (1)

with Ur ∈ Rm×r, Σr ∈ Rr×r, and Vr ∈ Rn×r. This form can equivalently be written as W ≈ AB,
where A = UrΣ

1/2
r and B = Σ

1/2
r V T

r . Such low-rank approximations capture the dominant struc-
ture of W , allowing dimensionality reduction, compression, and faster computation. SVD has been
extensively studied as a compression strategy for LLMs (Wang et al., 2025c; Yuan et al., 2023b;
Wang et al., 2024d; Li et al., 2025; 2024c; Chang et al.; Wang et al., 2025a). Early work (Noach &
Goldberg, 2020) applied vanilla SVD directly to weight matrices, but the method suffered from con-
siderable approximation errors. Subsequent techniques refined this approach: FWSVD (Hsu et al.,
2022) incorporates Fisher information (Ly et al., 2017) to rank parameter importance, ASVD (Yuan
et al., 2023b) accounts for activation outliers, and SVD-LLM (Wang et al., 2024d) explicitly mini-
mizes the loss introduced by discarded singular values.

While most efforts have focused on compressing model weights, it can also be used for KV cache
compression (Chang et al., 2024; Yu et al., 2024a). In particular, the key and value projection
matrices can be factorized as WK = AKBK and WV = AV BV . For a given input X , this allows
the KV cache to store only the low-dimensional latent vectors CK = XAK and CV = XAV ,
thereby reducing cache size. During decoding, the original KV representations are reconstructed via
K = CKBK and V = CV BV . More recent innovations include AdaSVD (Li et al., 2025), which
dynamically adjusts compression rates based on per-layer sensitivity, and SVD-LLM2 (Wang et al.,
2025c), which optimizes truncation strategies using theoretical error analysis.

2.3 FISHER-BASED IMPORTANCE AND WEIGHTED MATRIX FACTORIZATION

Fisher information has been widely used as a measure of parameter importance in continual learn-
ing (Kirkpatrick et al., 2017) and in pruning and compression (Liu et al., 2021; Singh & Alistarh,
2020). Weighted low-rank approximation has been explored in matrix completion and recommen-
dation, where each entry carries a confidence weight (Srebro & Jaakkola, 2003). More recently,
FWSVD (Hsu et al., 2022) incorporates Fisher information into low-rank factorization by assign-
ing a single Fisher-based weight to each row and applying SVD to a pre-scaled matrix, yielding a
coarse row-wise weighting. On the interpretability side, gradient-based attribution and layer-wise
relevance propagation methods (Ancona et al., 2017; Bach et al., 2015) also use importance weights,
but primarily for explanation rather than compression. In contrast, WSVD uses element-wise Fisher
weights to directly guide both local fine-tuning and quantization-aware training.

2.4 FLASH DECODING

FlashAttention (Dao et al., 2022) is an IO-aware attention algorithm that leverages tiling and kernel
fusion to reduce memory traffic and improve GPU utilization. By keeping query, key, and value tiles
in on-chip memory and streaming them through a fused kernel, FlashAttention avoids materializing
large intermediate attention matrices, thereby lowering memory footprint and achieving substantial
speedups in training and inference.

Building on this idea, Flash Decoding (Dao et al., 2023) extends FlashAttention to the autoregressive
decoding setting. Instead of materializing and reloading the entire KV cache for each step, it streams
K and V in sequence tiles and incrementally updates online softmax statistics. This block-wise
processing exposes additional parallelism along the sequence length dimension, complementing the
existing head- and batch-level parallelism in FlashAttention, and thereby improves GPU utilization.
As a result, Flash Decoding achieves both lower memory traffic and higher throughput, and has
become the de facto baseline for efficient inference in large language and vision-language models.
Our WSVD system further builds on Flash Decoding by integrating low-rank reconstruction into the
fused kernel pipeline, reducing memory overhead while preserving its efficiency (see Section 3.4).

3 METHOD

An overview of WSVD is presented in Figure 1 (b), which consists of three key components: (i)
Per-head SVD operations for reduced latency (Section 3.1), (ii) WSVD with dynamic importance
scoring (Section 3.2), and (iii) quantization-aware finetuning for low-rank VLMs (Section 3.3).
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Figure 2: (a) Latency evaluation of VLM including self-attention (SA) and feed-forward (FFN)
modules. (b) Conventional SVD: the left side illustrates SVD of Wk, and the right side shows the
reconstruction of Kh from the shared latent. (c) Per-head SVD: the left side illustrates per-head
SVD of WKh, and right side shows per-head reconstruction of Kh from per-head latent.

3.1 FINE-GRAINED PER-HEAD SVD OPERATION FOR REDUCED LATENCY

Prior studies have shown that VLM decoding is predominantly memory-bound, as long image-token
sequences enlarge the KV cache and each generated token requires accessing the large KV cache,
with overall latency bottlenecked by memory access. As discussed in Section 2.2, conventional
SVD-based approaches (Chang et al.; Wang et al., 2025d; 2024d) address this by decomposing
projection matrices (e.g., Q, K, and V ), thereby reducing parameter count and storing low-rank
latent representations CK and CV . This strategy not only decreases computation and runtime in the
prefill stage but also reduces cache size, offering potential I/O savings during the decoding stage.

However, in practice, we find that reconstructing K and V from low-rank latents introduces sub-
stantial overhead, leading to even higher decoding latency than the original uncompressed model.
Specifically, we profile the single-layer decoding latency of LLaVA-Next 7B (Zhou et al., 2024) on
an RTX 4090, comparing standard flash decoding without SVD against an SVD baseline that caches
low-rank latents. In this baseline, both the rank ratio and cache size are reduced to 50% as before.
With a batch size of 16 and a KV cache length of 8192, the results (Figure 2 (a)) show that SVD
scheme incurs substantially higher latency compared to flash decoding.

To pinpoint the cause of this latency growth, we observe that the overhead arises from decomposing
the entire K and V matrices. Taking K as an example, after SVD we obtain WK = AKBK , where
AK ∈ RE×R and BK ∈ RR×E , with E denoting the embedding dimension and R the truncated
rank. For each head h, the key projection is computed as WKh = AKBKh, where BKh ∈ RR×H

and H is the head dimension (Figure 2(b)). During inference, the latent representation CK =
XAK ∈ RL×R is cached across sequence length L, and each head’s key vector is reconstructed
as Kh = CKBKh. This reconstruction introduces a computational cost of γsvd = LRH per head.
Compared with directly storing the K matrix of size LE, although caching CK reduces storage
to LR, reconstructing WKh for each head requires accessing the entire CK , which has a size
LR. As a result, the effective memory footprint becomes ηsvd = LR per head, thereby increasing
decoding latency. Similar argument holds trues for the computation of value vector V .

To mitigate this overhead, our WSVD approach applies SVD directly to the submatrices of WK

and WV corresponding to each head, rather than decomposing the entire matrices, as illustrated in
Figure 2 (c). Specifically, for head h, the submatrix WKh ∈ RE×H is decomposed as WKh =
AKhBKh, where AKh ∈ RE×r and BKh ∈ Rr×H . The rank r is obtained by truncating the H
singular values of WKh. Since H ≪ E, the per-head rank r is typically much smaller than R. For
each head h, the latent representation is computed as CKh = XAKh ∈ RL×r and stored in the
cache. During decoding, the corresponding key vector is reconstructed as Kh = CKhBKh. Unlike
the conventional SVD approach shown in Figure 2 (b), this design eliminates the need to repeatedly
load a large shared latent representation CK , since each head can be reconstructed directly from
its own latent CKh. With this design, the memory footprint is reduced to ηwsvd = Lr, since only
the latent vector CKh needs to be stored, and the computational cost of reconstructing Kh becomes
γwsvd = LrH , where r ≪ R. A similar computation applies to the reconstruction of V .

To evaluate the saving analytically, the per-head SVD scheme shown in Figure 2 (c) reduces both
memory traffic and computational cost, thereby enabling practical decoding acceleration, as demon-
strated in Section 4.4. In particular,

γwsvd
γsvd

=
ηwsvd
ηsvd

=
r

R
, r ≪ R. (2)
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Thus, both computational cost and memory footprint for latent storage are reduced by a factor of
r/R. Compared to the original SVD-based scheme, WSVD further reduces the weight parameter
count from αorig = EH per head to αwsvd = Er + rH , and lowers the KV-cache size from ηorig =
LH to ηwsvd = Lr. These improvements are quantified by the parameter size ratio ρ1 and the cache
size ratio ρ2 for KV vector storage.

ρ1 =
αwsvd
αorig

=
(E +H)× r

E ×H
= (1 +

H

E
) · r

H
, ρ2 =

ηwsvd
ηorig

=
r

H
. (3)

However, the per-head SVD in the WSVD scheme also amplifies approximation errors, making
accuracy degradation harder to control compared to conventional SVD applied to the full Wk. Next,
we describe a local weighted finetuning scheme to mitigate the accuracy drop.

3.2 SVD WITH LOCAL WEIGHTED FINETUNING

Conventional SVD converts a full-rank input matrix into a low-rank representation, but one limita-
tion is that it cannot control the relative contribution of different weights after decomposition. Prior
work (Yu et al., 2024b) has shown that in large models, weights vary significantly in their impor-
tance to final accuracy. In particular, some “superweights” are highly sensitive, where even small
changes in magnitude can cause a substantial drop in accuracy. Therefore, it is crucial to incorporate
this notion of importance when performing SVD, resulting in a weighted low-rank decomposition.

The first question is how to evaluate the importance of a weight element. To formalize this, let
D denote the data distribution over calibration samples x, and let ℓ(W ;x) denote the training loss
of sample x. The importance score of each element in WK with respect to final accuracy can be
estimated as:

GK = Ex∼D
[
∇WK

ℓ(W ;x)
]
. (4)

A weight entry with a large gradient magnitude indicates that even a small change in this element
has a substantial effect on the expected model loss. Accordingly, GK can be interpreted as an
importance score that links parameter updates to their impact on performance.

This estimation of training loss impact can be refined using the Fisher Information Matrix (FIM),
which quantifies parameter importance as the expected sensitivity of the log-likelihood with respect
to model parameters. A second-order Taylor expansion of the expected loss around the current
parameter values yields:

∆L = Ex∼D
[
ℓ(W +∆W ;x)− ℓ(W ;x)

]
(5)

≈ 1
2 ∆W⊤

(
Ex

[
∇2

W ℓ(W ;x)
])

∆W. (6)

To make the computation of the Hessian tractable, it can be approximated by a diagonal matrix,
where each diagonal entry corresponds to the Fisher importance score of the parameter. For example,
the vector of Fisher information score FK for WK can be computed as:

FK = Ex∼D
[
gK(x)⊙ gK(x)

]
, gK(x) = ∇WK

ℓ(W ;x) (7)

where ⊙ denotes elementwise multiplication. Motivated by these observations, we propose a
weighted local fine-tuning mechanism that performs SVD while incorporating the relative impor-
tance of each weight element, quantified by its Fisher information score. Specifically, the objective
function can be described as:

min
AK ,BK

∥∥F 1/2
K ⊙ (WK −AKBK)

∥∥2

F
(8)

where AK , BK are the low-rank decomposition to estimate WK . In the context of per-head SVD
described in Section 3.1, this optimization can be applied across the SVD for the weight matrices
for each head h, and the objective function can be depicted as:

min
AKh,BKh

∑
h

∥∥F 1/2
Kh ⊙ (WKh −AKhBKh)

∥∥2

F
(9)

where AKh and BKh denote the low-rank approximation of WKh. Since no analytical solution
exists for this problem, it is solved by fine-tuning AKh and BKh until convergence. The same loss
formulation can be applied to other projection matrices in the model (e.g., WQ, WV , or feed-forward
layers), providing a general framework for gradient-weighted fine-tuning after SVD truncation. The
WSVD procedure is summarized in Algorithm 1.
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Figure 3: (a) Naive reconstruction requires materializing and writing back full Kh to VRAM (global
GPU memory), leading to excessive memory usage and I/O. (b) Our fused kernel consumes CKh

and CV h tiles on-chip with flash decoding, reducing both peak memory footprint and I/O traffic. All
the step numbers are shown in circle.

3.3 LOCAL QUANTIZATION-AWARE TRAINING FOR LOW-PRECISION WSVD

To further reduce model size and cache footprint, we apply low-precision quantization to the low-
rank model parameters and the input and mitigate accuracy loss using local quantization-aware
training (QAT). To address channel-wise outliers in the input X and latent representations CK , CV ,
we follow (Ashkboos et al., 2024) and introduce two orthogonal matrices S1 and S2, and S1 is
also a Hadamard matrix with predefined binary elements. With these transformations, the Q,K, V
computation for each head h and its quantized counterpart can be reformulated as:

Yh = XAhBh → Yh = (XS⊤
1 )(S1AhS

⊤
2 )(S2Bh) ≈ Q(XS⊤

1 )Q(S1AhS
⊤
2 )Q(S2Bh) (10)

where S⊤
1 S1 = S⊤

2 S2 = I , Q(·) denotes the quantization operator, and we omit the QKV subscripts
for simplicity of presentation. We further finetune the rotational matrices S2 together with Ah, Bh to
minimize the change on the low-rank weights caused by quantization, with the objective as follows:

min
S2,Ah,Bh

∥∥ (F ′
h)

1/2 ⊙
[
S1Wh −Q(S1AhS

⊤
2 )Q(S2Bh)

] ∥∥
2
, (11)

where F ′
h ≈ Ex∼D[(S1g(x)) ⊙ (S1g(x))]. F ′

h is the Fisher information matrix associated with
the transformed weight S1Wh, computed element-wise as the root of the expected squared gradient
S1g(x) over the calibration dataset D. This acts as an importance weight, emphasizing parame-
ters with higher sensitivity and guiding the QAT objective to more effectively preserve accuracy
under quantization. During QAT, we jointly update Ah, S2, and Bh, while S1 is fixed as an exact
Hadamard matrix of size E × E, determined by the model embedding dimension E. This update
design enables the factorized components to flexibly adapt to quantization noise while preserving
the orthogonal transformation imposed by S1, thereby maintaining the low-rank structure and im-
proving the approximation accuracy and stability of low-precision training. Since this procedure is
QAT performed locally, it incurs much lower time and memory overhead than end-to-end finetuning.

3.4 WSVD SYSTEM IMPLEMENTATION

A naive PyTorch implementation of WSVD results in excessive memory consumption during the re-
construction of K and V , as illustrated in Figure 3 (a). Taking the key Kh of head h as an example,
with Kh = CKhBKh where CKh ∈ RL×r and BKh ∈ Rr×H , the GPU operation proceeds as fol-
lows. First, the latent representation CKh is loaded from VRAM. Next, reconstruction CKhBKh is
performed, materializing the full Kh ∈ RL×H in VRAM. The reconstructed Kh is then written back
to VRAM and later reloaded for attention. Since Kh and Vh cannot fit into limited on-chip buffers,
they must be stored along with the latent CKh, CV h, which largely increases I/O traffic and peak
memory usage, in some cases exceeding that of the original model without low-rank decomposition.

To address this problem, we design a fused kernel in Triton (Tillet et al., 2019) that integrates low-
rank reconstruction directly into the flash decoding pipeline, as shown in Figure 3 (b). At tile
granularity, the kernel streams a tile t of CKh, denoted CKh,t ∈ Rl×r, from VRAM (step 1),
where l is the tile size along the sequence dimension L that fits into on-chip memory. The up-
projection weight BKh is then loaded once into on-chip storage (step 2), and the temporary key
tile Kh,t = CKh,tBKh is formed in registers or shared memory (step 3). This process is executed
within a single fused kernel that proceeds directly into the flash decoding pipeline: the temporary

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Kh,t is immediately contracted with the query tile qh to compute qhK⊤
h,t, update the online softmax

statistics, and apply the normalized attention weights to the corresponding value tile CV h,t (step 4).

In this design, both CKh and CV h are consumed in place, and all intermediate tensors remain on-
chip without being written back to VRAM. The fused kernel integrates reconstruction, qK⊤ ac-
cumulation, softmax normalization, and the V multiplication into a single workflow, eliminating
redundant kernel launches and memory transfers. Memory usage now scales only with the tile size
(l× r and BKh), which significantly reduces peak footprint and I/O traffic while preserving the effi-
ciency of flash decoding. The design exposes parallelism at two levels: across tiles, where multiple
tiles are processed concurrently within each head, and across heads, where different heads execute
in parallel, fully utilizing GPU compute resources in accordance with flash decoding scheduling.
Finally, the V -path up-projection BV h is fused into the output projection, which avoids explicit
reconstruction of Vh, following Palu (Chang et al., 2024). Collectively, these optimizations elimi-
nate redundant memory operations while maintaining high parallelism, enabling WSVD to achieve
practical inference acceleration without any loss of accuracy.

Wu
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CKh, CVh

AKh CKh

AVh CVh

BQh

CKh

CVh
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Figure 4: WSVD decoding pipeline. Each
token is down-projected to low-rank latents,
and K and V latents are appended to the
cache, while Q latent is up-projected and
consumed together with cached CKh, CV h

in the fused kernel.

Beyond kernel fusion, WSVD applies per-head SVD
to the Query, Key, and Value projections to reduce
parameters and improve efficiency. Decomposing
WK and WV decreases model size and accelerates
both prefilling and decoding, while decomposing
WQ further reduces parameters and speeds up pre-
filling. During prefilling, the input sequence is pro-
jected into low-rank Q,K, V latents, with K,V la-
tents stored as cache.

During the decoding stage, as shown in Figure 4,
each new token is processed through per-head down-
projections to generate low-rank latents for Q, K,
and V . The latents of K and V are stored in the
cache, while the latent of Q is immediately up-
projected to form q for the current attention step. The kernel then loads the cached latents CKh

and CV h together with the current qh, performing highly parallelized computation that integrates
low-rank reconstruction with flash decoding. This unified pipeline eliminates redundant material-
ization of full K and V , preserves compact latent caches throughout decoding, and enables efficient
attention computation with a reduced memory footprint.

4 EVALUATION

We conduct experiments on five representative vision–language models: LLaVA-v1.5 7B (Liu et al.,
2023), LLaVA-v1.5 13B, LLaVA-Next 7B, LLaVA-Next 13B, and SmolVLM-Instruct (Marafioti
et al., 2025). For local weighted fine-tuning and QAT, we use 256 samples randomly drawn from
the ScienceQA training split (Lu et al., 2022), following the procedures described in Section 3.2 and
Section 3.3. Evaluation is conducted on two widely used benchmarks, ScienceQA (Lu et al., 2022)
and SEED-Bench-IMG (Li et al., 2024a), consistent with prior studies on VLMs such as LLaVA,
using VLMEvalKit (Duan et al., 2024) tool. For comparison, WSVD is benchmarked against sev-
eral baselines, including SVD-based approaches (ASVD (Yuan et al., 2023b), SVD-LLM (Wang
et al., 2024d), QSVD (Wang et al., 2025d)) and quantization-based techniques (DuQuant (Lin et al.,
2024), QVLM (Wang et al., 2024a)). For ASVD, SVD-LLM and QSVD, we follow their official
implementations and apply SVD independently to the Q,K, V matrices to ensure a fair comparison
with WSVD, while leaving other linear layers unchanged. More results are shown in the Appendix.

To isolate the impact of SVD from quantization, we introduce WSVD-noQ (Section 3.2), which
applies only the SVD techniques described in Sections 3.1 and 3.2. We compare it with ASVD,
SVD-LLM, and QSVD-noQ (unquantized version of QSVD). We then apply QAT in Section 3.3 on
top of WSVD-noQ, benchmarking against DuQuant, QVLM, and QSVD. We also evaluate QASVD,
which applies QuaRot (Ashkboos et al., 2024) to the SVD-truncated VLMs produced by ASVD. For
fine-tuning and QAT, we adopt lightweight local optimization to minimize overhead. Ah and Bh

are updated with Adam (Kingma & Ba, 2014) (learning rate 1× 10−4 for fine-tuning and 1× 10−5

for QAT), while S2 is updated during QAT using the Cayley optimizer (Wen & Yin, 2013). Local
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Table 1: Accuracy evaluation of different methods under FP16 (detailed results in Appendix A.3).

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

ASVD 49.93% 50.12% 47.10% 36.69% 19.19% 54.27% 53.53% 48.35% 37.17% 24.17% 42.05%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53% 57.89% 57.50% 55.33% 54.64% 55.31% 58.47%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37% 59.84% 59.07% 59.78% 59.00% 58.23% 62.64%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49% 60.10% 60.17% 59.89% 60.18% 60.46% 63.54%
FP16 Accuracy: 68.01% Accuracy: 60.18% 64.10%

L
L

aV
A

-N
ex

t
13

B

ASVD 71.24% 70.60% 71.44% 71.38% 69.81% 70.88% 70.26% 70.01% 69.69% 69.01% 70.43%
SVD-LLM 72.53% 72.24% 71.74% 71.15% 70.55% 70.76% 70.63% 70.25% 69.96% 69.58% 70.94%
QSVD-noQ 71.94% 72.14% 71.74% 72.14% 71.79% 71.23% 71.02% 71.06% 70.92% 70.40% 71.44%
WSVD-noQ 72.88% 72.98% 73.57% 73.48% 73.28% 71.29% 71.17% 71.25% 70.95% 70.81% 72.17%
FP16 Accuracy: 73.23% Accuracy: 71.30% 72.27%

Sm
ol

V
L

M
2B

ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 90% ρ1 : 80% ρ1 : 70%

ASVD 29.30% 3.97% 0.20% 17.85% 1.50% 0.95% 8.96%
SVD-LLM 40.06% 17.20% 3.82% 32.49% 15.89% 4.60% 19.01%
QSVD-noQ 77.00% 62.77% 42.59% 64.80% 50.46% 36.24% 55.64%
WSVD-noQ 76.30% 71.74% 60.93% 65.78% 63.29% 54.45% 65.42%
FP16 Accuracy: 84.53% Accuracy: 68.47% 76.53%

fine-tuning is performed for 100 steps and QAT for 50 steps, ensuring effective adaptation while
keeping the additional latency negligible. All experiments are conducted on NVIDIA H100 GPUs.

4.1 ACCURACY EVALUATION ON WSVD-NOQ

We first evaluate the FP16 performance of WSVD-noQ under different rank budgets. To ensure
fairness, we align the parameter ratio ρ1 across all methods. For WSVD, ρ1 is defined in Equation 3,
while for other SVD-based baselines, ρ1 is defined as the proportion of parameters relative to the
original model after SVD is applied.

The evaluation results are summarized in Table 1 (details in Appendix A.3). Under the same pa-
rameter ratio ρ1, WSVD-noQ surpasses ASVD, SVD-LLM, and QSVD-noQ in accuracy in most
cases. On large-scale models such as LLaVA-v1.5 13B and LLaVA-Next 13B, WSVD-noQ incurs
less than a 1% accuracy drop on ScienceQA-IMG and SEED-Bench compared to the FP16 base-
line. Notably, for LLaVA-Next 13B, when ρ1 ≤ 70%, WSVD-noQ even outperforms the FP16
model on ScienceQA-IMG. For example, at ρ1 = 70%, WSVD-noQ reaches 73.57% accuracy,
exceeding the FP16 baseline by more than 0.3%. This suggests that low-rank approximation may
implicitly mitigate hallucinations (Liu et al., 2024a), though further validation is required. Fur-
thermore, WSVD-noQ delivers consistently higher average accuracy across datasets and parameter
ratios. The advantage over other baselines becomes increasingly evident as ρ1 decreases. For ex-
ample, on SmolVLM, WSVD-noQ attains over 60% accuracy on ScienceQA-IMG, while baselines
fail to yield usable results under the same parameter ratio settings.

4.2 ACCURACY EVALUATION OF WSVD

We present results under two weight–activation quantization configurations: W8A8 for WSVD with
rank settings ρ1 = 50% and ρ2 ≈ 50%, and W8A4 for all other baselines. This design keeps cache
size and parameter size comparable across methods, while WSVD’s rank truncation further reduces
its parameter budget, ensuring fairness in comparison.

For activation quantization, we adopt per-token symmetric quantization. For weight quantization,
we employ round-to-nearest (RTN) with per-channel symmetric scaling and a learnable clipping
ratio, where the clipping value is selected via linear search to minimize squared error, following
QuaRot (Ashkboos et al., 2024). This quantization scheme is applied to the per-head Q/K/V weight
matrices and all remaining attention and feed-forward modules, ensuring that the dominant matrix
multiplications in each transformer block are executed in low precision. As shown in Table 2,
WSVD consistently outperforms the baselines in most cases, despite using a smaller parameter
budget and the same cache size. On average across models and datasets, WSVD incurs only a
modest accuracy drop of just over 1% relative to the FP16 baseline, while reducing cache size to
25% of the FP16 model. At the same time, WSVD achieves more than 1% higher average accuracy
than all baselines, demonstrating that the integration of per-head SVD and quantization with WSVD
only lead to minimized accuracy loss.
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Table 2: Accuracy evaluation of different methods under low-precision on LLaVA-v1.5 7B, LLaVA-
v1.5 13B, LLaVA-Next 7B and LLaVA-Next 13B.

Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
v1.5 7B v1.5 13B Next 7B Next 13B v1.5 7B v1.5 13B Next 7B Next 13B

DuQuant 57.36% 67.22% 66.34% 70.20% 54.11% 61.43% 63.64% 66.15% 63.31%
QVLM 55.24% 66.46% 60.60% 65.28% 50.13% 59.22% 50.38% 65.39% 59.09%
QASVD 41.92% 65.34% 49.37% 64.85% 41.26% 59.30% 49.63% 66.54% 54.78%
QSVD 65.61% 70.12% 66.10% 70.43% 58.49% 62.95% 65.63% 69.21% 66.07%
WSVD 64.25% 72.14% 66.94% 73.08% 60.23% 62.01% 67.49% 70.67% 67.10%
FP16 68.10% 71.83% 69.60% 73.23% 60.18% 62.54% 69.02% 71.30% 68.23%

Table 3: Results of weighted finetuning ablation under different ρ1 settings.

Acc. Method ρ1=90% ρ1=70% ρ1=50%

v1
.5

7B

FP16 68.01%

WSVD-noFT 67.82% 66.82% 65.09%
WSVD-noQ 68.17% 67.28% 65.49%

Acc. Method ρ1=90% ρ1=70% ρ1=50%

N
ex

t
7B

FP16 69.60%

WSVD-noFT 69.76% 68.61% 66.46%
WSVD-noQ 69.81% 69.36% 67.87%

4.3 ABLATION STUDY

Effectiveness of Weighted Local Finetuning We evaluate the impact of WSVD fine-tuning, as
described in Section 3.2, on accuracy performance using ScienceQA-IMG for WSVD-noQ. The
comparison is made against the WSVD-noQ baseline, which applies standard SVD without account-
ing for the relative importance of weight elements, while keeping all other settings identical. As
shown in Table 3, WSVD-noQ consistently outperforms the no-finetuning variant (WSVD-noFT),
demonstrating that incorporating relative weight importance during the SVD process leads to signif-
icantly improved performance over standard SVD.

Table 4: Results of local QAT ablation.

Method ScienceQA-IMG ↑ Avg. ↑
v1.5 7B v1.5 13B Next 7B Next 13B

W/o QAT 63.91% 71.99% 66.59% 72.68% 68.79%
WSVD 64.25% 72.14% 66.94% 73.08% 69.10%

Effectiveness of QAT We further examine
the impact of local QAT on the low-rank model,
as described in Section 3.3. Specifically, we
compare WSVD against a baseline that uses the
same quantization settings but does not fine-
tune S2, Ah, or Bh mentioned in Section 3.3,
while keeping all other settings identical. As
shown in Table 4, under A8W8, WSVD consistently surpasses the baseline across all models. These
results demonstrate that local QAT effectively recovers the performance lost due to low-precision
quantization.

4.4 SYSTEM EVALUATION ON VLM
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Figure 5: Latency evaluation and normalized latency on:
(a) RTX 4090 and (b) RTX 5090.

We assess the system-level perfor-
mance of WSVD-noQ, with a focus on
decoding-stage acceleration. Specifi-
cally, we measure the layer-wise decod-
ing latency of LLaVA-Next 7B across
the attention and feed-forward modules
using our fused kernel implementation
described in Section 3.4 on RTX 4090
and 5090 GPUs. For comparison, we
include Eager Attention without Flash Decoding, Palu (Chang et al., 2024), and Flash Decod-
ing (Dao et al., 2023) as the baseline algorithms. For Flash Decoding, we adopt scaled dot-product
attention (SDPA), while Palu is evaluated using its official repository. Both Eager Attention and
Flash Decoding operate on the full KV cache, while Palu and WSVD-noQ restrict the latent size
to ρ2 = 50%, corresponding to ρ1 ≈ 51.5% for WSVD. All measurements are conducted with a
batch size of 16 and a sequence length of 8192. Since Palu supports only batch size 1, we use an
equivalent sequence length of 16× 8192 for fair comparison. In addition, we report latency results
of full-matrix SVD and per-head SVD in Appendix A.7.
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As shown in Figure 5, WSVD-noQ consistently outperforms all baselines on both GPUs in latency.
Relative to Flash Decoding, it achieves up to 1.8× speedup, driven by reduced I/O overhead and
negligible reconstruction cost enabled by our scheme. Compared with Palu, WSVD-noQ attains
lower latency through two advantages: algorithmically, per-head SVD provides finer-grained com-
pression than Palu’s group-head SVD; system-wise, our fused kernel is fully integrated into the flash
decoding pipeline. These results demonstrate that WSVD, together with our fused kernel design, of-
fers an effective system-level solution that alleviates I/O bottlenecks and enables practical decoding
acceleration in VLMs while maintaining accuracy performance as the original model.

Table 5: Latency (ms) on RTX 4090 (left) and RTX 5090 (right) for different sequence lengths.

Seq Len 1024 2048 4096 8192 16K 32K

Flash Decoding 0.92 1.21 1.77 2.92 5.14 9.64
WSVD-noQ 0.70 0.83 1.12 1.66 2.89 5.28
Speedup 1.3× 1.5× 1.6× 1.8× 1.8× 1.8×

Seq Len 1024 2048 4096 8192 16K 32K

Flash Decoding 0.65 0.86 1.28 2.14 3.81 7.18
WSVD-noQ 0.58 0.66 0.83 1.15 1.79 3.06
Speedup 1.1× 1.3× 1.5× 1.9× 2.1× 2.3×

Table 6: Latency (ms) on RTX 4090 (left) and RTX 5090 (right) for different batch sizes.

Batch Size 4 8 16 32 64

Flash Decoding 1.13 1.71 2.92 5.11 9.67
WSVD-noQ 0.82 1.11 1.66 2.91 5.33
Speedup 1.4× 1.5× 1.8× 1.8× 1.8×

Batch Size 4 8 16 32 64

Flash Decoding 0.75 1.07 2.14 3.38 5.97
WSVD-noQ 0.66 0.84 1.15 1.79 3.11
Speedup 1.1× 1.3× 1.9× 1.9× 1.9×

Impact of Sequence Length and Batch Size We further perform an ablation over various se-
quence lengths (Table 5) and batch sizes (Table 6) for LLaVA-Next 7B under the same setting as
Section 4.4, and report the layer-wise decoding latency of Flash Decoding baseline and WSVD-noQ
on RTX 4090 and RTX 5090 GPUs. With batch size 16, as the sequence length grows from 1024
to 32K tokens, WSVD-noQ improves over FP16 Flash Decoding by about 1.3× to 1.8× on RTX
4090 and up to 2.35× on RTX 5090. For a fixed 8192 sequence context, increasing batch size from
4 to 64 yields roughly 1.4× to 1.9× speedups on both GPUs. This trend reflects that longer contexts
make KV-cache I/O increasingly dominant, so our WSVD-based compression and decoding kernel
delivers larger relative gains.

Impact of Rank Ratio Using the same setting as Section 4.4, we vary the rank ratio ρ2 ∈
{90%, 70%, 50%} for WSVD-noQ and measure the latency on RTX 4090 and RTX 5090 GPUs.
Table 7 summarizes the impact of rank ratio on decoding latency. Smaller ρ2 values (i.e., lower
ranks) consistently yield lower latency, demonstrating that WSVD’s fused kernel can effectively
translate rank reduction into tangible decoding speedups over the Flash Decoding baseline.

Table 7: Latency (ms) under different ρ2.

GPU Flash Dec. ρ2:90% ρ2:70% ρ2:50%

4090 2.92 2.83 2.53 1.66
5090 2.14 1.87 1.75 1.15

Table 8: Latency (ms) on RTX 3060 (ρ2 : 50%).

Seq Len 1024 2048 4096 8192 16K

Flash Decoding 3.37 4.88 7.81 13.27 24.59
WSVD-noQ 2.18 2.68 3.62 5.54 9.49
Speedup 1.5× 1.8× 2.2× 2.4× 2.6×

Speedup on Low-end GPU To evaluate our method on more modest hardware, we benchmark
the latency of LLaVA-Next 7B with WSVD-noQ on an RTX 3060 (Table 8) under the same setting,
and compare it with the Flash Decoding baseline. On RTX 3060, WSVD-noQ reduces latency from
3.37 ms to 2.18 ms at 1K tokens (1.55×) and from 24.59 ms to 9.49 ms at 16K tokens (2.59×). These
speedups are larger than on 4090/5090-class GPUs because the lower memory bandwidth of RTX
3060 makes KV-cache I/O more dominant. By shrinking the KV cache and using a fused decoding
kernel, WSVD reduces memory traffic and achieves larger latency gains on low-end devices.

5 CONCLUSION

In this work, we present WSVD, a weighted low-rank approximation framework that integrates
per-head SVD, weighted fine-tuning, and quantization-aware training to compress and accelerate
vision–language models. By aligning algorithmic design with system-level optimization through
our fused kernel, WSVD achieves up to 1.8× decoding speedup while preserving accuracy under
aggressive compression.
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ETHICS STATEMENT

This work focuses on model compression and acceleration techniques for vision–language mod-
els. All datasets used in this study (ScienceQA-IMG and SEED-Bench) are publicly available and
widely adopted in the community. Our research does not involve human subjects, private or sensitive
data, or personally identifiable information. The proposed method aims to improve the efficiency
of large models, which may contribute to reducing the computational and environmental costs of
deployment. We are not aware of any direct ethical concerns specific to this work.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide the following details:

• Code and models: We will release the full implementation of WSVD, including training
and inference code, as well as evaluation scripts, upon publication.

• Datasets: All datasets used in this work are publicly available. In particular, we evaluate
on ScienceQA-IMG and SEED-Bench, both of which can be accessed without restriction.
We will also provide preprocessing scripts to reproduce the exact input formats used in our
experiments.

• Experimental setup: Hyperparameters, optimization settings, and evaluation protocols are
described in detail in Section 4.

• Randomness: All experiments are run with fixed random seeds in the scripts, to ensure
consistent results.

• Compute resources: Our experiments are conducted on NVIDIA H100, RTX 4090 and
RTX 5090 GPUs as described in Section 4.

• Limitations: Some large-scale experiments (e.g., on 13B-parameter models) require ac-
cess to high-end GPUs, which may limit reproducibility for groups without such resources.

We believe that with the released code, scripts, and dataset accessibility, other researchers will be
able to reproduce our results and build upon our method.
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A APPENDIX

A.1 THE USE OF LLMS

Large language models (LLMs), such as ChatGPT, were used exclusively for language polishing and
minor stylistic editing of the manuscript. All technical ideas, analyses, and experimental results were
conceived, implemented, and verified by the authors. The authors carefully reviewed and validated
all text to ensure accuracy.

A.2 WSVD ALGORITHM

Algorithm 1 Weighted SVD Fine-tuning (WSVD) pseudo code

Require: Calibration dataset X , model parameters {W}, rank r
Ensure: Fine-tuned low-rank factors {A,B}

1: for each sample xi ∈ X do
2: Compute forward pass and loss L(xi)
3: Backpropagate to obtain gradients {∇WL}
4: Accumulate importance weights F ←

∑
X(∇WL)2

5: end for
6: for each weight matrix W ∈ {WQ,WK ,WV , . . . } do
7: Compute SVD: Wh ≈ AhBh, with Ah ∈ Rm×r, Bh ∈ Rr×n

8: Define weighted loss:

LWSVD(Ah, Bh) =
∥∥F 1/2

h ⊙ (Wh −AhBh)
∥∥2
F

where Fh,Wh, Ah and Bh is each head’s importance weight, weight, decomposed matrices.
9: Locally fine-tune Ah, Bh using LWSVD

10: end for
11: return Fine-tuned low-rank factors {Ah, Bh} for all matrices

A.3 DETAILED RESULTS OF WSVD-NOQ

We inlcude the detailed results of WSVD-noQ and other baselines in Table 9.

Table 9: Accuracy evaluation of different methods under FP16.

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

ASVD 49.93% 50.12% 47.10% 36.69% 19.19% 54.27% 53.53% 48.35% 37.17% 24.17% 42.05%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53% 57.89% 57.50% 55.33% 54.64% 55.31% 58.47%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37% 59.84% 59.07% 59.78% 59.00% 58.23% 62.64%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49% 60.10% 60.17% 59.89% 60.18% 60.46% 63.54%
FP16 Accuracy: 68.01% Accuracy: 60.18% 64.10%

L
L

aV
A

-v
1.

5
13

B

ASVD 71.39% 71.59% 70.00% 70.25% 69.51% 61.92% 61.91% 61.54% 61.51% 60.71% 66.03%
SVD-LLM 71.05% 70.85% 70.30% 70.35% 70.30% 62.28% 62.34% 62.25% 62.08% 63.01% 66.48%
QSVD-noQ 71.89% 71.99% 71.49% 71.54% 71.39% 62.61% 62.64% 62.82% 62.63% 62.52% 67.15%
WSVD-noQ 71.99% 71.84% 72.53% 71.59% 71.44% 62.52% 62.68% 62.38% 62.37% 62.37% 67.17%
FP16 Accuracy: 71.83% Accuracy: 62.53% 67.18%

L
L

aV
A

-N
ex

t
7B

ASVD 64.20% 63.36% 62.07% 60.19% 55.28% 67.38% 66.96% 66.24% 65.13% 61.52% 63.23%
SVD-LLM 68.27% 67.92% 66.58% 66.39% 65.54% 68.50% 68.31% 67.65% 67.45% 66.28% 67.29%
QSVD-noQ 70.10% 69.16% 69.01% 68.27% 66.19% 68.86% 68.95% 68.44% 67.98% 67.27% 68.42%
WSVD-noQ 69.81% 69.56% 69.36% 68.22% 67.87% 69.18% 69.27% 69.15% 69.16% 68.59% 69.02%
FP16 Accuracy: 69.60% Accuracy: 69.02% 69.31%

L
L

aV
A

-N
ex

t
13

B

ASVD 71.24% 70.60% 71.44% 71.38% 69.81% 70.88% 70.26% 70.01% 69.69% 69.01% 70.43%
SVD-LLM 72.53% 72.24% 71.74% 71.15% 70.55% 70.76% 70.63% 70.25% 69.96% 69.58% 70.94%
QSVD-noQ 71.94% 72.14% 71.74% 72.14% 71.79% 71.23% 71.02% 71.06% 70.92% 70.40% 71.44%
WSVD-noQ 72.88% 72.98% 73.57% 73.48% 73.28% 71.29% 71.17% 71.25% 70.95% 70.81% 72.17%
FP16 Accuracy: 73.23% Accuracy: 71.30% 72.27%

Sm
ol

V
L

M
2B

ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 90% ρ1 : 80% ρ1 : 70%

ASVD 29.30% 3.97% 0.20% 17.85% 1.50% 0.95% 8.96%
SVD-LLM 40.06% 17.20% 3.82% 32.49% 15.89% 4.60% 19.01%
QSVD-noQ 77.00% 62.77% 42.59% 64.80% 50.46% 36.24% 55.64%
WSVD-noQ 76.30% 71.74% 60.93% 65.78% 63.29% 54.45% 65.42%
FP16 Accuracy: 84.53% Accuracy: 68.47% 76.53%
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A.4 COMPARISON WITH DOBISVD

For completeness, we additionally evaluate DobiSVD on LLaVA-v1.5 7B using the ScienceQA-
IMG benchmark. Following the official implementation, DobiSVD is applied to the Q,K, V ma-
trices while leaving other linear layers unchanged. Calibration is performed using the same set of
samples and initialized with the same random seed as in the main experiments to ensure fairness. As
shown in Table 10, WSVD-noQ achieves higher accuracy than DobiSVD under the same compres-
sion ratio.

Table 10: Accuracy evaluation of different methods under FP16.

Acc. Method ScienceQA-IMG ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

DobiSVD 67.19% 60.94% 59.38% 56.64% 54.69%
ASVD 49.93% 50.12% 47.10% 36.69% 19.19%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49%
FP16 Accuracy: 68.01%

A.5 SUPPLEMENTARY RESULTS ON MORE VLMS

We additionally apply WSVD to Qwen-VL 7B (Bai et al., 2023) and Molmo-7B-O (Deitke et al.,
2025) to further examine the generality of WSVD beyond the LLaVA family and SmolVLM. We fol-
low exactly the same experimental setting as Section 4 and evaluate the FP16 and SVD compressed
models on ScienceQA-IMG and SEED-Bench. As shown in Table 11, WSVD-noQ consistently out-
performs all SVD-based baselines (ASVD and SVDLLM) across all singular-value ratios, and it also
matches or slightly improves over the FP16 model. For example, on ScienceQA, WSVD-noQ im-
proves over SVDLLM and ASVD by up to 3–5%, and on SEED-Bench it yields the best/comparable
accuracy among all compressed variants at every ratio. These results indicate that WSVD transfers
well to VLMs with different vision–language fusion designs, supporting the general applicability of
our method.

Table 11: Accuracy evaluation of different methods under FP16 on Qwen-VL 7B and Molmo-7B-O.

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60%

Q
w

en
-V

L
7B

ASVD 63.86% 63.11% 60.54% 59.49% 61.67% 61.00% 59.94% 58.69% 61.04%
SVD-LLM 65.29% 65.29% 64.55% 65.29% 62.99% 62.80% 62.69% 62.51% 63.93%
QSVD-noQ 66.78% 66.24% 66.68% 65.20% 63.25% 63.00% 62.06% 61.26% 64.31%
WSVD-noQ 68.77% 68.12% 67.23% 65.49% 63.32% 63.53% 63.60% 63.68% 65.47%
FP16 Accuracy: 68.32% Accuracy: 63.52% 65.92%

M
ol

m
o

7B
-O

ASVD 94.99% 95.19% 94.10% 93.06% 74.42% 74.21% 73.73% 73.62% 84.17%
SVD-LLM 95.09% 95.09% 94.99% 95.09% 74.68% 74.46% 74.23% 74.11% 84.72%
QSVD-noQ 95.54% 94.99% 94.59% 93.85% 74.47% 74.44% 74.41% 74.37% 84.58%
WSVD-noQ 95.59% 95.49% 95.34% 95.09% 74.61% 74.52% 74.48% 74.38% 84.94%
FP16 Accuracy: 95.78% Accuracy: 74.74% 85.26%

A.6 SUPPLEMENTARY RESULTS ON MORE DATASETS

To further assess generalization, we additionally evaluate LLaVA-Next 13B with WSVD-noQ on
two additional benchmarks: HRBench-4K (4K high-resolution images) (Wang et al., 2025b), and
OCRBench (text-centric images) (Liu et al., 2024c). Following Section 4, we reuse the same 256-
sample calibration set drawn from the ScienceQA training set and keep all other settings identical,
while sweeping the parameter ratios ρ1. As summarized in Table 12, WSVD-noQ consistently
matches or outperforms all baselines across nearly all ratios on these datasets, despite being cali-
brated only once on the ScienceQA training set. These results indicate that WSVD generalizes well
across tasks and datasets. Moreover, WSVD’s decoding speedup is independent of the evaluation
dataset: once the model is calibrated and compressed, runtime is determined solely by the resulting
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model size and context length, so a fixed compressed model yields essentially the same speedup
across benchmarks.

Table 12: Accuracy evaluation of different methods under FP16 on OCRBench and HRBench-4K.

Acc. Method OCRBench ↑ HRBench-4K ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-N
ex

t
13

B

ASVD 53.10% 52.50% 51.30% 50.50% 47.70% 44.00% 44.13% 43.88% 43.00% 42.00% 47.21%
SVD-LLM 52.10% 51.90% 51.00% 49.90% 48.20% 43.00% 44.25% 42.62% 43.75% 43.25% 47.00%
QSVD-noQ 52.80% 52.40% 52.40% 51.40% 48.90% 44.25% 44.88% 43.88% 43.37% 42.88% 47.72%
WSVD-noQ 53.30% 53.30% 53.50% 52.20% 48.70% 46.13% 44.88% 44.50% 44.88% 44.50% 48.59%
FP16 Accuracy: 53.30% Accuracy: 45.63% 49.47%

A.7 LATENCY COMPARISON OF FULL AND PER-HEAD SVD

We further compare the decoding latency of applying SVD to the full QKV matrices versus adopting
WSVD’s fine-grained per-head SVD. To enable this comparison, we minimally modify our kernel
to support reconstruction with larger matrix sizes under the full SVD setting (as discussed in Sec-
tion 3.2), while still fusing the reconstruction with flash decoding. This variant is denoted as “W/o
per-head.” Both approaches are evaluated under the same ρ2, ensuring equal overall cache size, with
batch size, sequence length and other settings kept identical to the setup described above.

Table 13: Decoding latency on RTX 4090.

ρ2 W/o per-head WSVD-noQ Speedup

90% 51.31 2.83 18.1×
80% 46.03 2.60 17.7×
70% 39.46 2.53 15.6×
60% 33.54 2.25 14.9×
50% 28.37 1.66 17.1×

Table 14: Decoding latency on RTX 5090.

ρ2 W/o per-head WSVD-noQ Speedup

90% 40.40 1.87 21.6×
80% 35.99 1.77 20.3×
70% 31.14 1.75 17.8×
60% 26.85 1.56 17.2×
50% 21.44 1.15 18.6×

As shown in Tables 13 and 14, WSVD-noQ consistently achieves more than an order-of-magnitude
speedup over the full-matrix SVD variant (“W/o per-head”) across all compression ratios ρ2. On
RTX 4090, the speedup ranges from 14.9× to 18.1×, while on RTX 5090 it further increases to
17.2×–21.6×. These results confirm that per-head SVD substantially reduces reconstruction over-
head and I/O traffic, enabling efficient decoding.

A.8 TRAINING COST OF WSVD

WSVD first applies SVDLLM’s whitening method (Wang et al., 2024d) to per-head weight matri-
ces before performing SVD, then uses QSVD’s importance-score-based rank allocation (Wang et al.,
2025d) to truncate the model, and subsequently performs lightweight, Fisher-information-based lo-
cal fine-tuning and local quantization-aware training on the truncated low-rank weights to better
preserve the most sensitive weight elements and to mitigate the degradation of per-head SVD and
low-precision inference.

Table 15: Calibration time breakdown for QSVD and WSVD.

QSVD WSVD

Step Time Step Time

Input calibration 1 min Input calibration 6 min
SVD on all layers 2 min 15 s SVD on all layers 1 min
Gradient collection & rank allocation 10 min 12 s Gradient collection & rank allocation 13 min 40 s
SVD results fusion 30 s Local FT 9 min
β tuning & quantization 82 min Local QAT & quantization 8 min

Total calibration time 96 min Total calibration time 38 min

We quantify the computational overhead of WSVD’s local fine-tuning and QAT and compare it
with QSVD on LLaVA-1.5 13B. We extract QSVD’s reported training time from its OpenReview
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page and, for fairness, benchmark WSVD on the same GPU type (A100). As shown in Table 15,
QSVD requires 96 minutes ≈ 1.6 A100 GPU-hours, whereas WSVD takes only 38 minutes ≈
0.63 A100 GPU-hours, about 2.5× less tuning time. The peak GPU memory usage of WSVD’s
local FT and QAT stages on LLaVA-1.5 13B is only 15 GB, since we only perform local updates on
low-rank weights rather than end-to-end fine-tuning and do not store full intermediate activations,
so the whole procedure fits comfortably on a single A100-80GB. For additional context, the official
LLaVA-1.5 report (Liu et al., 2024b) states that training the 13B model requires at least 204 A100
GPU-hours. Thus, WSVD’s tuning cost is only a small fraction of the original training cost, while
still delivering practical decoding speedups, indicating that the efficiency gains comfortably justify
the modest local fine-tuning and QAT overhead.
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