
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WSVD: WEIGHTED LOW-RANK APPROXIMATION FOR
FAST AND EFFICIENT EXECUTION OF LOW-PRECISION
VISION-LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Singular Value Decomposition (SVD) has become an important technique for re-
ducing the computational burden of Vision Language Models (VLMs), which play
a central role in tasks such as image captioning and visual question answering. Al-
though multiple prior works have proposed efficient SVD variants to enable low-
rank operations, we find that in practice it remains difficult to achieve substantial
latency reduction during model execution. To address this limitation, we intro-
duce a new computational pattern and apply SVD at a finer granularity, enabling
real and measurable improvements in execution latency. Furthermore, recognizing
that weight elements differ in their relative importance, we adaptively allocate rel-
ative importance to each element during SVD process to better preserve accuracy,
then extend this framework with quantization applied to both weights and acti-
vations, resulting in a highly efficient VLM. Collectively, we introduce Weighted
SVD (WSVD), which outperforms other approaches by achieving over 1.8× de-
coding speedup while preserving the accuracy performance.

1 INTRODUCTION

Vision–language models (VLMs) represent a key frontier in artificial intelligence, as they connect
visual recognition with natural language comprehension. By jointly processing imagery and text,
these models enable diverse applications, including automatic image description (Zhou et al., 2020;
Hu et al., 2022; Chen et al., 2022; Dzabraev et al., 2024), visual question answering (Chappuis et al.,
2022; Bazi et al., 2023; Wang et al., 2024b), and semantic search over multimodal data (Li et al.,
2024b; Sun et al., 2025). However, the impressive capabilities of VLMs come at the expense of
significant resource demands. The joint encoding of large-scale visual and linguistic inputs requires
heavy computation, and the autoregressive generation of tokens further stresses memory bandwidth,
introducing major inference bottlenecks.

To reduce the computational cost of large models, low-rank decomposition has recently attracted in-
creasing attention (Wang et al., 2025c; Yuan et al., 2023b; Wang et al., 2024d; Li et al., 2025; 2024c;
Chang et al.; Wang et al., 2025a). By factorizing the query (Q), key (K), and value (V) matrices
within self-attention blocks into low-rank components, prior work has shown significant reductions
in computational complexity and weight storage, thereby improving efficiency. However, based on
our practical system-level implementation, we observe that applying SVD-based decomposition to
the QKV matrices does not consistently yield latency improvements; in fact, it can sometimes incur
even higher computational costs for some VLMs.

To investigate this, we first evaluate the latency of VLMs and find that the root cause lies in the re-
computation of the KV vectors introduced by low-rank factorization, which requires multiple rounds
of memory access to the latent data and ultimately increases memory traffic. To overcome this lim-
itation, we propose a new computational pattern that applies SVD at a finer granularity, thereby
achieving tangible and measurable improvements in execution latency.

Furthermore, building on prior work (Yu et al., 2024b) demonstrating that certain weight elements
play a critical role in VLM accuracy, we note that standard SVD operations treat all weights equally
when truncating them for low-rank approximation. To address this, we adaptively allocate relative
importance for each weight element during SVD to better preserve performance. To further enhance

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step 1:
Fine-grained SVD operation 

Ck
R

H

…

r H

…r H

r H

……

✕

ri

Step 2: Weighted SVD with 
dynamic importance score 

Step 3:
Quantization-aware finetuning 

over low-rank weights

Quantization

Outlier smoothing

Q: What animal 
this is?

Q: How many 
dogs in it? Im

ageTe
xt

Visual encoderEmbedding
Projection

Calibration dataset

Language model

WSVD Framework

(a) (b)
Figure 1: (a) Architecture of vision-language model. (b) Overview of WSVD framework.

computational efficiency, we apply low-precision quantization to the low-rank VLM and finetune
it to mitigate accuracy loss. Collectively, these steps yield a low-precision, low-rank VLM with
exceptionally low execution latency. Our contributions are summarized as follows:

• The WSVD scheme applies SVD separately to each attention head, fundamentally reduc-
ing memory access and computational cost during the decoding stage, and resulting in
significantly lower VLM execution latency compared to prior solutions.

• To mitigate the accuracy drop introduced by the per-head SVD scheme, WSVD incor-
porates local weighted finetuning, where an importance score is assigned to each weight
element during the SVD stage. This weighted decomposition produces low-rank weight
matrices with minimal impact on VLM accuracy.

• WSVD applies quantization alongside SVD decomposition to both the weights and activa-
tions of the VLM. To further enhance efficiency, it incorporates an outlier elimination strat-
egy within the SVD framework and locally finetunes the decomposed matrices, achieving
improved accuracy while substantially reducing memory and computational cost.

2 RELATED WORK

2.1 VISION LANGUAGE MODEL

Vision–Language Models (VLMs) (Li et al., 2022; 2023; Liu et al., 2023; Dai et al., 2023; Beyer
et al., 2024; Grattafiori et al., 2024; Wang et al., 2024c) build on the foundation of Large Lan-
guage Models (LLMs) by incorporating visual signals in addition to textual input, thereby enabling
multimodal tasks such as image captioning and visual question answering (VQA). Representative
systems like BLIP and InstructBLIP (Li et al., 2022; 2023) leverage large-scale data curation and
visual instruction tuning to better align their responses with human intent, particularly under zero-
shot evaluation. A widely adopted framework, shown in Figure 1 (a), encodes images into visual
tokens via a vision backbone, concatenates them with text tokens, and feeds the combined sequence
into a language model for output generation. This simple yet effective concatenation strategy un-
derpins popular VLMs such as the LLaVA family (Liu et al., 2023), SmolVLM (Marafioti et al.,
2025), PaLI-Gemma (Beyer et al., 2024), and Qwen-VL (Wang et al., 2024c). Despite their strong
performance, these models are often computationally heavy and difficult to deploy on devices with
limited resources. To address this, compact designs have been introduced. TinyGPT-V (Yuan et al.,
2023a) and TinyLLaVA (Zhou et al., 2024) pursue scaled-down yet efficient alternatives, while
SmolVLM (Marafioti et al., 2025) presents a family of lightweight models with one to three billion
parameters that preserve competitive accuracy while significantly lowering hardware requirements.

2.2 SINGULAR VALUE DECOMPOSITION FOR LARGE MODELS

Singular Value Decomposition (SVD) (Jolliffe & Cadima, 2016) is a fundamental tool in matrix
factorization that represents a matrix W ∈ Rm×n as W = UΣV T , where U and V are orthogonal
matrices containing the left and right singular vectors, and Σ is a diagonal matrix with non-negative
singular values sorted in descending order. By retaining only the leading r singular values and their

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

associated vectors, one obtains a compact rank-r approximation:

W ≈ UrΣrV
T
r (1)

with Ur ∈ Rm×r, Σr ∈ Rr×r, and Vr ∈ Rn×r. This form can equivalently be written as W ≈ AB,
where A = UrΣ

1/2
r and B = Σ

1/2
r V T

r . Such low-rank approximations capture the dominant struc-
ture of W , allowing dimensionality reduction, compression, and faster computation. SVD has been
extensively studied as a compression strategy for LLMs (Wang et al., 2025c; Yuan et al., 2023b;
Wang et al., 2024d; Li et al., 2025; 2024c; Chang et al.; Wang et al., 2025a). Early work (Noach &
Goldberg, 2020) applied vanilla SVD directly to weight matrices, but the method suffered from con-
siderable approximation errors. Subsequent techniques refined this approach: FWSVD (Hsu et al.,
2022) incorporates Fisher information (Ly et al., 2017) to rank parameter importance, ASVD (Yuan
et al., 2023b) accounts for activation outliers, and SVD-LLM (Wang et al., 2024d) explicitly mini-
mizes the loss introduced by discarded singular values.

While most efforts have focused on compressing model weights, it can also be used for KV cache
compression (Chang et al., 2024; Yu et al., 2024a). In particular, the key and value projection
matrices can be factorized as WK = AKBK and WV = AV BV . For a given input X , this allows
the KV cache to store only the low-dimensional latent vectors CK = XAK and CV = XAV ,
thereby reducing cache size. During decoding, the original KV representations are reconstructed via
K = CKBK and V = CV BV . More recent innovations include AdaSVD (Li et al., 2025), which
dynamically adjusts compression rates based on per-layer sensitivity, and SVD-LLM2 (Wang et al.,
2025c), which optimizes truncation strategies using theoretical error analysis.

2.3 FISHER-BASED IMPORTANCE AND WEIGHTED MATRIX FACTORIZATION

Fisher information has been widely used as a measure of parameter importance in continual learn-
ing (Kirkpatrick et al., 2017) and in pruning and compression (Liu et al., 2021; Singh & Alistarh,
2020). Weighted low-rank approximation has been explored in matrix completion and recommen-
dation, where each entry carries a confidence weight (Srebro & Jaakkola, 2003). More recently,
FWSVD (Hsu et al., 2022) incorporates Fisher information into low-rank factorization by assign-
ing a single Fisher-based weight to each row and applying SVD to a pre-scaled matrix, yielding a
coarse row-wise weighting. On the interpretability side, gradient-based attribution and layer-wise
relevance propagation methods (Ancona et al., 2017; Bach et al., 2015) also use importance weights,
but primarily for explanation rather than compression. In contrast, WSVD uses element-wise Fisher
weights to directly guide both local fine-tuning and quantization-aware training.

2.4 FLASH DECODING

FlashAttention (Dao et al., 2022) is an IO-aware attention algorithm that leverages tiling and kernel
fusion to reduce memory traffic and improve GPU utilization. By keeping query, key, and value tiles
in on-chip memory and streaming them through a fused kernel, FlashAttention avoids materializing
large intermediate attention matrices, thereby lowering memory footprint and achieving substantial
speedups in training and inference.

Building on this idea, Flash Decoding (Dao et al., 2023) extends FlashAttention to the autoregressive
decoding setting. Instead of materializing and reloading the entire KV cache for each step, it streams
K and V in sequence tiles and incrementally updates online softmax statistics. This block-wise
processing exposes additional parallelism along the sequence length dimension, complementing the
existing head- and batch-level parallelism in FlashAttention, and thereby improves GPU utilization.
As a result, Flash Decoding achieves both lower memory traffic and higher throughput, and has
become the de facto baseline for efficient inference in large language and vision-language models.
Our WSVD system further builds on Flash Decoding by integrating low-rank reconstruction into the
fused kernel pipeline, reducing memory overhead while preserving its efficiency (see Section 3.4).

3 METHOD

An overview of WSVD is presented in Figure 1 (b), which consists of three key components: (i)
Per-head SVD operations for reduced latency (Section 3.1), (ii) WSVD with dynamic importance
scoring (Section 3.2), and (iii) quantization-aware finetuning for low-rank VLMs (Section 3.3).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

r H Kh1Ckh1

…

Kh2

Khn

r HCkh2

r HCkhn

……E

H

Wkh

r
H

E

r

Ah

✕
Bh

E

E

Wk

… Ck
R

H Kh1

…

Kh2

Khn

H
R

A

✕

Bh

E R …

…

…

(b) (c)

Flash
Decoding

SVD
0

10

20

30
Attention FFN

(a)

La
te

nc
y E

(b) (c)

Flash
Decoding

SVD
0

10

20

30
Attention FFN

(a)

La
te

nc
y

E

E

… Ck

Kh1

…

Khn

H
R

✕E R …

…

…
E

✕

✕

=

=

…

AWk Bh

B1

Bn

Kh1Ckh1

…

Kh2

Khn

Ckh2

Ckhn

E

H

r
H

E

r

✕Wkh

✕ =

✕ =

✕ =

……

Ah
Bh

B1

B2

Bn

(b) (c)

Flash
Decoding

SVD
0

10

20

30
Attention FFN

(a)

La
te

nc
y

E

E

… CK

Kh1

…

Khn

H
R

✕E R …

…

…
E

✕

✕

=

=

…

AWK Bh

B1

Bn

Kh1CKh1

…
Kh2

Khn

CKh2

CKhn

E

H

r
H

E

r

✕WKh

✕ =

✕ =

✕ =
……

Ah
Bh

B1

B2

Bn

Figure 2: (a) Latency evaluation of VLM including self-attention (SA) and feed-forward (FFN)
modules. (b) Conventional SVD: the left side illustrates SVD of Wk, and the right side shows the
reconstruction of Kh from the shared latent. (c) Per-head SVD: the left side illustrates per-head
SVD of WKh, and right side shows per-head reconstruction of Kh from per-head latent.

3.1 FINE-GRAINED PER-HEAD SVD OPERATION FOR REDUCED LATENCY

Prior studies have shown that VLM decoding is predominantly memory-bound, as long image-token
sequences enlarge the KV cache and each generated token requires accessing the large KV cache,
with overall latency bottlenecked by memory access. As discussed in Section 2.2, conventional
SVD-based approaches (Chang et al.; Wang et al., 2025d; 2024d) address this by decomposing
projection matrices (e.g., Q, K, and V ), thereby reducing parameter count and storing low-rank
latent representations CK and CV . This strategy not only decreases computation and runtime in the
prefill stage but also reduces cache size, offering potential I/O savings during the decoding stage.

However, in practice, we find that reconstructing K and V from low-rank latents introduces sub-
stantial overhead, leading to even higher decoding latency than the original uncompressed model.
Specifically, we profile the single-layer decoding latency of LLaVA-Next 7B (Zhou et al., 2024) on
an RTX 4090, comparing standard flash decoding without SVD against an SVD baseline that caches
low-rank latents. In this baseline, both the rank ratio and cache size are reduced to 50% as before.
With a batch size of 16 and a KV cache length of 8192, the results (Figure 2 (a)) show that SVD
scheme incurs substantially higher latency compared to flash decoding.

To pinpoint the cause of this latency growth, we observe that the overhead arises from decomposing
the entire K and V matrices. Taking K as an example, after SVD we obtain WK = AKBK , where
AK ∈ RE×R and BK ∈ RR×E , with E denoting the embedding dimension and R the truncated
rank. For each head h, the key projection is computed as WKh = AKBKh, where BKh ∈ RR×H

and H is the head dimension (Figure 2(b)). During inference, the latent representation CK =
XAK ∈ RL×R is cached across sequence length L, and each head’s key vector is reconstructed
as Kh = CKBKh. This reconstruction introduces a computational cost of γsvd = LRH per head.
Compared with directly storing the K matrix of size LE, although caching CK reduces storage
to LR, reconstructing WKh for each head requires accessing the entire CK , which has a size
LR. As a result, the effective memory footprint becomes ηsvd = LR per head, thereby increasing
decoding latency. Similar argument holds trues for the computation of value vector V .

To mitigate this overhead, our WSVD approach applies SVD directly to the submatrices of WK

and WV corresponding to each head, rather than decomposing the entire matrices, as illustrated in
Figure 2 (c). Specifically, for head h, the submatrix WKh ∈ RE×H is decomposed as WKh =
AKhBKh, where AKh ∈ RE×r and BKh ∈ Rr×H . The rank r is obtained by truncating the H
singular values of WKh. Since H ≪ E, the per-head rank r is typically much smaller than R. For
each head h, the latent representation is computed as CKh = XAKh ∈ RL×r and stored in the
cache. During decoding, the corresponding key vector is reconstructed as Kh = CKhBKh. Unlike
the conventional SVD approach shown in Figure 2 (b), this design eliminates the need to repeatedly
load a large shared latent representation CK , since each head can be reconstructed directly from
its own latent CKh. With this design, the memory footprint is reduced to ηwsvd = Lr, since only
the latent vector CKh needs to be stored, and the computational cost of reconstructing Kh becomes
γwsvd = LrH , where r ≪ R. A similar computation applies to the reconstruction of V .

To evaluate the saving analytically, the per-head SVD scheme shown in Figure 2 (c) reduces both
memory traffic and computational cost, thereby enabling practical decoding acceleration, as demon-
strated in Section 4.4. In particular,

γwsvd
γsvd

=
ηwsvd
ηsvd

=
r

R
, r ≪ R. (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, both computational cost and memory footprint for latent storage are reduced by a factor of
r/R. Compared to the original SVD-based scheme, WSVD further reduces the weight parameter
count from αorig = EH per head to αwsvd = Er + rH , and lowers the KV-cache size from ηorig =
LH to ηwsvd = Lr. These improvements are quantified by the parameter size ratio ρ1 and the cache
size ratio ρ2 for KV vector storage.

ρ1 =
αwsvd
αorig

=
(E +H)× r

E ×H
= (1 +

H

E
) · r

H
, ρ2 =

ηwsvd
ηorig

=
r

H
. (3)

However, the per-head SVD in the WSVD scheme also amplifies approximation errors, making
accuracy degradation harder to control compared to conventional SVD applied to the full Wk. Next,
we describe a local weighted finetuning scheme to mitigate the accuracy drop.

3.2 SVD WITH LOCAL WEIGHTED FINETUNING

Conventional SVD converts a full-rank input matrix into a low-rank representation, but one limita-
tion is that it cannot control the relative contribution of different weights after decomposition. Prior
work (Yu et al., 2024b) has shown that in large models, weights vary significantly in their impor-
tance to final accuracy. In particular, some “superweights” are highly sensitive, where even small
changes in magnitude can cause a substantial drop in accuracy. Therefore, it is crucial to incorporate
this notion of importance when performing SVD, resulting in a weighted low-rank decomposition.

The first question is how to evaluate the importance of a weight element. To formalize this, let
D denote the data distribution over calibration samples x, and let ℓ(W ;x) denote the training loss
of sample x. The importance score of each element in WK with respect to final accuracy can be
estimated as:

GK = Ex∼D
[
∇WK

ℓ(W ;x)
]
. (4)

A weight entry with a large gradient magnitude indicates that even a small change in this element
has a substantial effect on the expected model loss. Accordingly, GK can be interpreted as an
importance score that links parameter updates to their impact on performance.

This estimation of training loss impact can be refined using the Fisher Information Matrix (FIM),
which quantifies parameter importance as the expected sensitivity of the log-likelihood with respect
to model parameters. A second-order Taylor expansion of the expected loss around the current
parameter values yields:

∆L = Ex∼D
[
ℓ(W +∆W ;x)− ℓ(W ;x)

]
(5)

≈ 1
2 ∆W⊤

(
Ex

[
∇2

W ℓ(W ;x)
])

∆W. (6)

To make the computation of the Hessian tractable, it can be approximated by a diagonal matrix,
where each diagonal entry corresponds to the Fisher importance score of the parameter. For example,
the vector of Fisher information score FK for WK can be computed as:

FK = Ex∼D
[
gK(x)⊙ gK(x)

]
, gK(x) = ∇WK

ℓ(W ;x) (7)

where ⊙ denotes elementwise multiplication. Motivated by these observations, we propose a
weighted local fine-tuning mechanism that performs SVD while incorporating the relative impor-
tance of each weight element, quantified by its Fisher information score. Specifically, the objective
function can be described as:

min
AK ,BK

∥∥F 1/2
K ⊙ (WK −AKBK)

∥∥2

F
(8)

where AK , BK are the low-rank decomposition to estimate WK . In the context of per-head SVD
described in Section 3.1, this optimization can be applied across the SVD for the weight matrices
for each head h, and the objective function can be depicted as:

min
AKh,BKh

∑
h

∥∥F 1/2
Kh ⊙ (WKh −AKhBKh)

∥∥2

F
(9)

where AKh and BKh denote the low-rank approximation of WKh. Since no analytical solution
exists for this problem, it is solved by fine-tuning AKh and BKh until convergence. The same loss
formulation can be applied to other projection matrices in the model (e.g., WQ, WV , or feed-forward
layers), providing a general framework for gradient-weighted fine-tuning after SVD truncation. The
WSVD procedure is summarized in Algorithm 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Ckh

VRAM On-chip
Buffer

1 2

Ckh

VRAM

On-chip
Buffer

4 3

Kh

VRAM On-chip
Buffer

Ckh Tile

Cvh Tile
Bh

Ckh

Cvh

1 2
On-chip
Buffer
qh Tile

Cvh Tile
Kh Tile

3

Flash 
D

ecoding

4

(a) (b)

Reconstruct Kh 
(MatMul)

Reconstruct Kh 
(MatMul) R

econstruct
K

h Tile

CKh

VRAM On-chip
Buffer

1 2

CKh

VRAM

On-chip
Buffer

4 3

Kh

VRAM On-chip
Buffer

CKh Tile

CVh Tile
BKh

CKh

CVh

1 2
On-chip
Buffer
qh Tile

CVh Tile
Kh Tile

3
Flash 

D
ecoding

4

(a) (b)

Reconstruct Kh 
(MatMul)

Reconstruct Kh 
(MatMul) R

econstruct
K

h Tile

Figure 3: (a) Naive reconstruction requires materializing and writing back full Kh to VRAM (global
GPU memory), leading to excessive memory usage and I/O. (b) Our fused kernel consumes CKh

and CV h tiles on-chip with flash decoding, reducing both peak memory footprint and I/O traffic. All
the step numbers are shown in circle.

3.3 LOCAL QUANTIZATION-AWARE TRAINING FOR LOW-PRECISION WSVD

To further reduce model size and cache footprint, we apply low-precision quantization to the low-
rank model parameters and the input and mitigate accuracy loss using local quantization-aware
training (QAT). To address channel-wise outliers in the input X and latent representations CK , CV ,
we follow (Ashkboos et al., 2024) and introduce two orthogonal matrices S1 and S2, and S1 is
also a Hadamard matrix with predefined binary elements. With these transformations, the Q,K, V
computation for each head h and its quantized counterpart can be reformulated as:

Yh = XAhBh → Yh = (XS⊤
1 )(S1AhS

⊤
2 )(S2Bh) ≈ Q(XS⊤

1 )Q(S1AhS
⊤
2 )Q(S2Bh) (10)

where S⊤
1 S1 = S⊤

2 S2 = I , Q(·) denotes the quantization operator, and we omit the QKV subscripts
for simplicity of presentation. We further finetune the rotational matrices S2 together with Ah, Bh to
minimize the change on the low-rank weights caused by quantization, with the objective as follows:

min
S2,Ah,Bh

∥∥ (F ′
h)

1/2 ⊙
[
S1Wh −Q(S1AhS

⊤
2 )Q(S2Bh)

] ∥∥
2
, (11)

where F ′
h ≈ Ex∼D[(S1g(x)) ⊙ (S1g(x))]. F ′

h is the Fisher information matrix associated with
the transformed weight S1Wh, computed element-wise as the root of the expected squared gradient
S1g(x) over the calibration dataset D. This acts as an importance weight, emphasizing parame-
ters with higher sensitivity and guiding the QAT objective to more effectively preserve accuracy
under quantization. During QAT, we jointly update Ah, S2, and Bh, while S1 is fixed as an exact
Hadamard matrix of size E × E, determined by the model embedding dimension E. This update
design enables the factorized components to flexibly adapt to quantization noise while preserving
the orthogonal transformation imposed by S1, thereby maintaining the low-rank structure and im-
proving the approximation accuracy and stability of low-precision training. Since this procedure is
QAT performed locally, it incurs much lower time and memory overhead than end-to-end finetuning.

3.4 WSVD SYSTEM IMPLEMENTATION

A naive PyTorch implementation of WSVD results in excessive memory consumption during the re-
construction of K and V , as illustrated in Figure 3 (a). Taking the key Kh of head h as an example,
with Kh = CKhBKh where CKh ∈ RL×r and BKh ∈ Rr×H , the GPU operation proceeds as fol-
lows. First, the latent representation CKh is loaded from VRAM. Next, reconstruction CKhBKh is
performed, materializing the full Kh ∈ RL×H in VRAM. The reconstructed Kh is then written back
to VRAM and later reloaded for attention. Since Kh and Vh cannot fit into limited on-chip buffers,
they must be stored along with the latent CKh, CV h, which largely increases I/O traffic and peak
memory usage, in some cases exceeding that of the original model without low-rank decomposition.

To address this problem, we design a fused kernel in Triton (Tillet et al., 2019) that integrates low-
rank reconstruction directly into the flash decoding pipeline, as shown in Figure 3 (b). At tile
granularity, the kernel streams a tile t of CKh, denoted CKh,t ∈ Rl×r, from VRAM (step 1),
where l is the tile size along the sequence dimension L that fits into on-chip memory. The up-
projection weight BKh is then loaded once into on-chip storage (step 2), and the temporary key
tile Kh,t = CKh,tBKh is formed in registers or shared memory (step 3). This process is executed
within a single fused kernel that proceeds directly into the flash decoding pipeline: the temporary

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Kh,t is immediately contracted with the query tile qh to compute qhK⊤
h,t, update the online softmax

statistics, and apply the normalized attention weights to the corresponding value tile CV h,t (step 4).

In this design, both CKh and CV h are consumed in place, and all intermediate tensors remain on-
chip without being written back to VRAM. The fused kernel integrates reconstruction, qK⊤ ac-
cumulation, softmax normalization, and the V multiplication into a single workflow, eliminating
redundant kernel launches and memory transfers. Memory usage now scales only with the tile size
(l× r and BKh), which significantly reduces peak footprint and I/O traffic while preserving the effi-
ciency of flash decoding. The design exposes parallelism at two levels: across tiles, where multiple
tiles are processed concurrently within each head, and across heads, where different heads execute
in parallel, fully utilizing GPU compute resources in accordance with flash decoding scheduling.
Finally, the V -path up-projection BV h is fused into the output projection, which avoids explicit
reconstruction of Vh, following Palu (Chang et al., 2024). Collectively, these optimizations elimi-
nate redundant memory operations while maintaining high parallelism, enabling WSVD to achieve
practical inference acceleration without any loss of accuracy.

Wu
v

X

AQh

Latent 
Cache

CKh, CVh

AKh CKh

AVh CVh

BQh

CKh

CVh

BKh

S
oftm

ax

@CVh …

qh
Kernel

Ch ChDown-
Projection

New 
Cache

Stored 
Cache

Figure 4: WSVD decoding pipeline. Each
token is down-projected to low-rank latents,
and K and V latents are appended to the
cache, while Q latent is up-projected and
consumed together with cached CKh, CV h

in the fused kernel.

Beyond kernel fusion, WSVD applies per-head SVD
to the Query, Key, and Value projections to reduce
parameters and improve efficiency. Decomposing
WK and WV decreases model size and accelerates
both prefilling and decoding, while decomposing
WQ further reduces parameters and speeds up pre-
filling. During prefilling, the input sequence is pro-
jected into low-rank Q,K, V latents, with K,V la-
tents stored as cache.

During the decoding stage, as shown in Figure 4,
each new token is processed through per-head down-
projections to generate low-rank latents for Q, K,
and V . The latents of K and V are stored in the
cache, while the latent of Q is immediately up-
projected to form q for the current attention step. The kernel then loads the cached latents CKh

and CV h together with the current qh, performing highly parallelized computation that integrates
low-rank reconstruction with flash decoding. This unified pipeline eliminates redundant material-
ization of full K and V , preserves compact latent caches throughout decoding, and enables efficient
attention computation with a reduced memory footprint.

4 EVALUATION

We conduct experiments on five representative vision–language models: LLaVA-v1.5 7B (Liu et al.,
2023), LLaVA-v1.5 13B, LLaVA-Next 7B, LLaVA-Next 13B, and SmolVLM-Instruct (Marafioti
et al., 2025). For local weighted fine-tuning and QAT, we use 256 samples randomly drawn from
the ScienceQA training split (Lu et al., 2022), following the procedures described in Section 3.2 and
Section 3.3. Evaluation is conducted on two widely used benchmarks, ScienceQA (Lu et al., 2022)
and SEED-Bench-IMG (Li et al., 2024a), consistent with prior studies on VLMs such as LLaVA,
using VLMEvalKit (Duan et al., 2024) tool. For comparison, WSVD is benchmarked against sev-
eral baselines, including SVD-based approaches (ASVD (Yuan et al., 2023b), SVD-LLM (Wang
et al., 2024d), QSVD (Wang et al., 2025d)) and quantization-based techniques (DuQuant (Lin et al.,
2024), QVLM (Wang et al., 2024a)). For ASVD, SVD-LLM and QSVD, we follow their official
implementations and apply SVD independently to the Q,K, V matrices to ensure a fair comparison
with WSVD, while leaving other linear layers unchanged. More results are shown in the Appendix.

To isolate the impact of SVD from quantization, we introduce WSVD-noQ (Section 3.2), which
applies only the SVD techniques described in Sections 3.1 and 3.2. We compare it with ASVD,
SVD-LLM, and QSVD-noQ (unquantized version of QSVD). We then apply QAT in Section 3.3 on
top of WSVD-noQ, benchmarking against DuQuant, QVLM, and QSVD. We also evaluate QASVD,
which applies QuaRot (Ashkboos et al., 2024) to the SVD-truncated VLMs produced by ASVD. For
fine-tuning and QAT, we adopt lightweight local optimization to minimize overhead. Ah and Bh

are updated with Adam (Kingma & Ba, 2014) (learning rate 1× 10−4 for fine-tuning and 1× 10−5

for QAT), while S2 is updated during QAT using the Cayley optimizer (Wen & Yin, 2013). Local

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy evaluation of different methods under FP16 (detailed results in Appendix A.3).

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

ASVD 49.93% 50.12% 47.10% 36.69% 19.19% 54.27% 53.53% 48.35% 37.17% 24.17% 42.05%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53% 57.89% 57.50% 55.33% 54.64% 55.31% 58.47%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37% 59.84% 59.07% 59.78% 59.00% 58.23% 62.64%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49% 60.10% 60.17% 59.89% 60.18% 60.46% 63.54%
FP16 Accuracy: 68.01% Accuracy: 60.18% 64.10%

L
L

aV
A

-N
ex

t
13

B

ASVD 71.24% 70.60% 71.44% 71.38% 69.81% 70.88% 70.26% 70.01% 69.69% 69.01% 70.43%
SVD-LLM 72.53% 72.24% 71.74% 71.15% 70.55% 70.76% 70.63% 70.25% 69.96% 69.58% 70.94%
QSVD-noQ 71.94% 72.14% 71.74% 72.14% 71.79% 71.23% 71.02% 71.06% 70.92% 70.40% 71.44%
WSVD-noQ 72.88% 72.98% 73.57% 73.48% 73.28% 71.29% 71.17% 71.25% 70.95% 70.81% 72.17%
FP16 Accuracy: 73.23% Accuracy: 71.30% 72.27%

Sm
ol

V
L

M
2B

ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 90% ρ1 : 80% ρ1 : 70%

ASVD 29.30% 3.97% 0.20% 17.85% 1.50% 0.95% 8.96%
SVD-LLM 40.06% 17.20% 3.82% 32.49% 15.89% 4.60% 19.01%
QSVD-noQ 77.00% 62.77% 42.59% 64.80% 50.46% 36.24% 55.64%
WSVD-noQ 76.30% 71.74% 60.93% 65.78% 63.29% 54.45% 65.42%
FP16 Accuracy: 84.53% Accuracy: 68.47% 76.53%

fine-tuning is performed for 100 steps and QAT for 50 steps, ensuring effective adaptation while
keeping the additional latency negligible. All experiments are conducted on NVIDIA H100 GPUs.

4.1 ACCURACY EVALUATION ON WSVD-NOQ

We first evaluate the FP16 performance of WSVD-noQ under different rank budgets. To ensure
fairness, we align the parameter ratio ρ1 across all methods. For WSVD, ρ1 is defined in Equation 3,
while for other SVD-based baselines, ρ1 is defined as the proportion of parameters relative to the
original model after SVD is applied.

The evaluation results are summarized in Table 1 (details in Appendix A.3). Under the same pa-
rameter ratio ρ1, WSVD-noQ surpasses ASVD, SVD-LLM, and QSVD-noQ in accuracy in most
cases. On large-scale models such as LLaVA-v1.5 13B and LLaVA-Next 13B, WSVD-noQ incurs
less than a 1% accuracy drop on ScienceQA-IMG and SEED-Bench compared to the FP16 base-
line. Notably, for LLaVA-Next 13B, when ρ1 ≤ 70%, WSVD-noQ even outperforms the FP16
model on ScienceQA-IMG. For example, at ρ1 = 70%, WSVD-noQ reaches 73.57% accuracy,
exceeding the FP16 baseline by more than 0.3%. This suggests that low-rank approximation may
implicitly mitigate hallucinations (Liu et al., 2024a), though further validation is required. Fur-
thermore, WSVD-noQ delivers consistently higher average accuracy across datasets and parameter
ratios. The advantage over other baselines becomes increasingly evident as ρ1 decreases. For ex-
ample, on SmolVLM, WSVD-noQ attains over 60% accuracy on ScienceQA-IMG, while baselines
fail to yield usable results under the same parameter ratio settings.

4.2 ACCURACY EVALUATION OF WSVD

We present results under two weight–activation quantization configurations: W8A8 for WSVD with
rank settings ρ1 = 50% and ρ2 ≈ 50%, and W8A4 for all other baselines. This design keeps cache
size and parameter size comparable across methods, while WSVD’s rank truncation further reduces
its parameter budget, ensuring fairness in comparison.

For activation quantization, we adopt per-token symmetric quantization. For weight quantization,
we employ round-to-nearest (RTN) with per-channel symmetric scaling and a learnable clipping
ratio, where the clipping value is selected via linear search to minimize squared error, following
QuaRot (Ashkboos et al., 2024). This quantization scheme is applied to the per-head Q/K/V weight
matrices and all remaining attention and feed-forward modules, ensuring that the dominant matrix
multiplications in each transformer block are executed in low precision. As shown in Table 2,
WSVD consistently outperforms the baselines in most cases, despite using a smaller parameter
budget and the same cache size. On average across models and datasets, WSVD incurs only a
modest accuracy drop of just over 1% relative to the FP16 baseline, while reducing cache size to
25% of the FP16 model. At the same time, WSVD achieves more than 1% higher average accuracy
than all baselines, demonstrating that the integration of per-head SVD and quantization with WSVD
only lead to minimized accuracy loss.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Accuracy evaluation of different methods under low-precision on LLaVA-v1.5 7B, LLaVA-
v1.5 13B, LLaVA-Next 7B and LLaVA-Next 13B.

Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
v1.5 7B v1.5 13B Next 7B Next 13B v1.5 7B v1.5 13B Next 7B Next 13B

DuQuant 57.36% 67.22% 66.34% 70.20% 54.11% 61.43% 63.64% 66.15% 63.31%
QVLM 55.24% 66.46% 60.60% 65.28% 50.13% 59.22% 50.38% 65.39% 59.09%
QASVD 41.92% 65.34% 49.37% 64.85% 41.26% 59.30% 49.63% 66.54% 54.78%
QSVD 65.61% 70.12% 66.10% 70.43% 58.49% 62.95% 65.63% 69.21% 66.07%
WSVD 64.25% 72.14% 66.94% 73.08% 60.23% 62.01% 67.49% 70.67% 67.10%
FP16 68.10% 71.83% 69.60% 73.23% 60.18% 62.54% 69.02% 71.30% 68.23%

Table 3: Results of weighted finetuning ablation under different ρ1 settings.

Acc. Method ρ1=90% ρ1=70% ρ1=50%

v1
.5

7B

FP16 68.01%

WSVD-noFT 67.82% 66.82% 65.09%
WSVD-noQ 68.17% 67.28% 65.49%

Acc. Method ρ1=90% ρ1=70% ρ1=50%

N
ex

t
7B

FP16 69.60%

WSVD-noFT 69.76% 68.61% 66.46%
WSVD-noQ 69.81% 69.36% 67.87%

4.3 ABLATION STUDY

Effectiveness of Weighted Local Finetuning We evaluate the impact of WSVD fine-tuning, as
described in Section 3.2, on accuracy performance using ScienceQA-IMG for WSVD-noQ. The
comparison is made against the WSVD-noQ baseline, which applies standard SVD without account-
ing for the relative importance of weight elements, while keeping all other settings identical. As
shown in Table 3, WSVD-noQ consistently outperforms the no-finetuning variant (WSVD-noFT),
demonstrating that incorporating relative weight importance during the SVD process leads to signif-
icantly improved performance over standard SVD.

Table 4: Results of local QAT ablation.

Method ScienceQA-IMG ↑ Avg. ↑
v1.5 7B v1.5 13B Next 7B Next 13B

W/o QAT 63.91% 71.99% 66.59% 72.68% 68.79%
WSVD 64.25% 72.14% 66.94% 73.08% 69.10%

Effectiveness of QAT We further examine
the impact of local QAT on the low-rank model,
as described in Section 3.3. Specifically, we
compare WSVD against a baseline that uses the
same quantization settings but does not fine-
tune S2, Ah, or Bh mentioned in Section 3.3,
while keeping all other settings identical. As
shown in Table 4, under A8W8, WSVD consistently surpasses the baseline across all models. These
results demonstrate that local QAT effectively recovers the performance lost due to low-precision
quantization.

4.4 SYSTEM EVALUATION ON VLM

Eager
Attention Palu Flash

Decoding
WSVD-

noQ

0
3
6
9

12
15
18

La
te

nc
y 

(m
s)

1✕1.8✕

3.8✕

10.5✕

(a)

Eager
Attention Palu Flash

Decoding
WSVD-

noQ

0

3

6

9

12

La
te

nc
y 

(m
s)

1✕
1.9✕

4.3✕

9.5✕

(b)
Figure 5: Latency evaluation and normalized latency on:
(a) RTX 4090 and (b) RTX 5090.

We assess the system-level perfor-
mance of WSVD-noQ, with a focus on
decoding-stage acceleration. Specifi-
cally, we measure the layer-wise decod-
ing latency of LLaVA-Next 7B across
the attention and feed-forward modules
using our fused kernel implementation
described in Section 3.4 on RTX 4090
and 5090 GPUs. For comparison, we
include Eager Attention without Flash Decoding, Palu (Chang et al., 2024), and Flash Decod-
ing (Dao et al., 2023) as the baseline algorithms. For Flash Decoding, we adopt scaled dot-product
attention (SDPA), while Palu is evaluated using its official repository. Both Eager Attention and
Flash Decoding operate on the full KV cache, while Palu and WSVD-noQ restrict the latent size
to ρ2 = 50%, corresponding to ρ1 ≈ 51.5% for WSVD. All measurements are conducted with a
batch size of 16 and a sequence length of 8192. Since Palu supports only batch size 1, we use an
equivalent sequence length of 16× 8192 for fair comparison. In addition, we report latency results
of full-matrix SVD and per-head SVD in Appendix A.7.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

As shown in Figure 5, WSVD-noQ consistently outperforms all baselines on both GPUs in latency.
Relative to Flash Decoding, it achieves up to 1.8× speedup, driven by reduced I/O overhead and
negligible reconstruction cost enabled by our scheme. Compared with Palu, WSVD-noQ attains
lower latency through two advantages: algorithmically, per-head SVD provides finer-grained com-
pression than Palu’s group-head SVD; system-wise, our fused kernel is fully integrated into the flash
decoding pipeline. These results demonstrate that WSVD, together with our fused kernel design, of-
fers an effective system-level solution that alleviates I/O bottlenecks and enables practical decoding
acceleration in VLMs while maintaining accuracy performance as the original model.

Table 5: Latency (ms) on RTX 4090 (left) and RTX 5090 (right) for different sequence lengths.

Seq Len 1024 2048 4096 8192 16K 32K

Flash Decoding 0.92 1.21 1.77 2.92 5.14 9.64
WSVD-noQ 0.70 0.83 1.12 1.66 2.89 5.28
Speedup 1.3× 1.5× 1.6× 1.8× 1.8× 1.8×

Seq Len 1024 2048 4096 8192 16K 32K

Flash Decoding 0.65 0.86 1.28 2.14 3.81 7.18
WSVD-noQ 0.58 0.66 0.83 1.15 1.79 3.06
Speedup 1.1× 1.3× 1.5× 1.9× 2.1× 2.3×

Table 6: Latency (ms) on RTX 4090 (left) and RTX 5090 (right) for different batch sizes.

Batch Size 4 8 16 32 64

Flash Decoding 1.13 1.71 2.92 5.11 9.67
WSVD-noQ 0.82 1.11 1.66 2.91 5.33
Speedup 1.4× 1.5× 1.8× 1.8× 1.8×

Batch Size 4 8 16 32 64

Flash Decoding 0.75 1.07 2.14 3.38 5.97
WSVD-noQ 0.66 0.84 1.15 1.79 3.11
Speedup 1.1× 1.3× 1.9× 1.9× 1.9×

Impact of Sequence Length and Batch Size We further perform an ablation over various se-
quence lengths (Table 5) and batch sizes (Table 6) for LLaVA-Next 7B under the same setting as
Section 4.4, and report the layer-wise decoding latency of Flash Decoding baseline and WSVD-noQ
on RTX 4090 and RTX 5090 GPUs. With batch size 16, as the sequence length grows from 1024
to 32K tokens, WSVD-noQ improves over FP16 Flash Decoding by about 1.3× to 1.8× on RTX
4090 and up to 2.35× on RTX 5090. For a fixed 8192 sequence context, increasing batch size from
4 to 64 yields roughly 1.4× to 1.9× speedups on both GPUs. This trend reflects that longer contexts
make KV-cache I/O increasingly dominant, so our WSVD-based compression and decoding kernel
delivers larger relative gains.

Impact of Rank Ratio Using the same setting as Section 4.4, we vary the rank ratio ρ2 ∈
{90%, 70%, 50%} for WSVD-noQ and measure the latency on RTX 4090 and RTX 5090 GPUs.
Table 7 summarizes the impact of rank ratio on decoding latency. Smaller ρ2 values (i.e., lower
ranks) consistently yield lower latency, demonstrating that WSVD’s fused kernel can effectively
translate rank reduction into tangible decoding speedups over the Flash Decoding baseline.

Table 7: Latency (ms) under different ρ2.

GPU Flash Dec. ρ2:90% ρ2:70% ρ2:50%

4090 2.92 2.83 2.53 1.66
5090 2.14 1.87 1.75 1.15

Table 8: Latency (ms) on RTX 3060 (ρ2 : 50%).

Seq Len 1024 2048 4096 8192 16K

Flash Decoding 3.37 4.88 7.81 13.27 24.59
WSVD-noQ 2.18 2.68 3.62 5.54 9.49
Speedup 1.5× 1.8× 2.2× 2.4× 2.6×

Speedup on Low-end GPU To evaluate our method on more modest hardware, we benchmark
the latency of LLaVA-Next 7B with WSVD-noQ on an RTX 3060 (Table 8) under the same setting,
and compare it with the Flash Decoding baseline. On RTX 3060, WSVD-noQ reduces latency from
3.37 ms to 2.18 ms at 1K tokens (1.55×) and from 24.59 ms to 9.49 ms at 16K tokens (2.59×). These
speedups are larger than on 4090/5090-class GPUs because the lower memory bandwidth of RTX
3060 makes KV-cache I/O more dominant. By shrinking the KV cache and using a fused decoding
kernel, WSVD reduces memory traffic and achieves larger latency gains on low-end devices.

5 CONCLUSION

In this work, we present WSVD, a weighted low-rank approximation framework that integrates
per-head SVD, weighted fine-tuning, and quantization-aware training to compress and accelerate
vision–language models. By aligning algorithmic design with system-level optimization through
our fused kernel, WSVD achieves up to 1.8× decoding speedup while preserving accuracy under
aggressive compression.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on model compression and acceleration techniques for vision–language mod-
els. All datasets used in this study (ScienceQA-IMG and SEED-Bench) are publicly available and
widely adopted in the community. Our research does not involve human subjects, private or sensitive
data, or personally identifiable information. The proposed method aims to improve the efficiency
of large models, which may contribute to reducing the computational and environmental costs of
deployment. We are not aware of any direct ethical concerns specific to this work.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide the following details:

• Code and models: We will release the full implementation of WSVD, including training
and inference code, as well as evaluation scripts, upon publication.

• Datasets: All datasets used in this work are publicly available. In particular, we evaluate
on ScienceQA-IMG and SEED-Bench, both of which can be accessed without restriction.
We will also provide preprocessing scripts to reproduce the exact input formats used in our
experiments.

• Experimental setup: Hyperparameters, optimization settings, and evaluation protocols are
described in detail in Section 4.

• Randomness: All experiments are run with fixed random seeds in the scripts, to ensure
consistent results.

• Compute resources: Our experiments are conducted on NVIDIA H100, RTX 4090 and
RTX 5090 GPUs as described in Section 4.

• Limitations: Some large-scale experiments (e.g., on 13B-parameter models) require ac-
cess to high-end GPUs, which may limit reproducibility for groups without such resources.

We believe that with the released code, scripts, and dataset accessibility, other researchers will be
able to reproduce our results and build upon our method.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104,
2017.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Yakoub Bazi, Mohamad Mahmoud Al Rahhal, Laila Bashmal, and Mansour Zuair. Vision–language
model for visual question answering in medical imagery. Bioengineering, 10(3):380, 2023.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. CoRR, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Kv-cache
compression with low-rank projection. In The Thirteenth International Conference on Learning
Representations.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Christel Chappuis, Valérie Zermatten, Sylvain Lobry, Bertrand Le Saux, and Devis Tuia. Prompt-
rsvqa: Prompting visual context to a language model for remote sensing visual question answer-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1372–1381, 2022.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adap-
tation of pretrained language models for image captioning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 18030–18040, 2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: towards general-purpose vision-language
models with instruction tuning. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context
inference. https://pytorch.org/blog/flash-decoding/, October 2023. Accessed:
2025-09-22.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art vision-language models. In Proceedings of the Com-
puter Vision and Pattern Recognition Conference, pp. 91–104, 2025.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
ing large multi-modality models. In Proceedings of the 32nd ACM International Conference on
Multimedia, pp. 11198–11201, 2024.

12

https://pytorch.org/blog/flash-decoding/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maksim Dzabraev, Alexander Kunitsyn, and Andrei Ivaniuta. Vlrm: Vision-language models act as
reward models for image captioning. arXiv preprint arXiv:2404.01911, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Scaling up vision-language pre-training for image captioning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 17980–17989, 2022.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
Seed-bench: Benchmarking multimodal large language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13299–13308, 2024a.

Chuanhao Li, Zhen Li, Chenchen Jing, Shuo Liu, Wenqi Shao, Yuwei Wu, Ping Luo, Yu Qiao, and
Kaipeng Zhang. Searchlvlms: A plug-and-play framework for augmenting large vision-language
models by searching up-to-date internet knowledge. arXiv preprint arXiv:2405.14554, 2024b.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdqunat: Absorbing outliers by low-rank components for 4-bit
diffusion models. arXiv preprint arXiv:2411.05007, 2024c.

Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and Xiaokang
Yang. Adasvd: Adaptive singular value decomposition for large language models. arXiv preprint
arXiv:2502.01403, 2025.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. Advances in Neural Information Processing Systems, 37:87766–87800, 2024.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. arXiv
preprint arXiv:2402.00253, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 26296–26306, 2024b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning, pp. 7021–7032. PMLR,
2021.

Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
multimodal models. Science China Information Sciences, 67(12):220102, 2024c.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmak-
ers. A tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Za-
kka, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, et al. Smolvlm: Redefining small and
efficient multimodal models. arXiv preprint arXiv:2504.05299, 2025.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix de-
composition. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th International Joint Conference on Natural Language
Processing, pp. 884–889, 2020.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings of the 20th
international conference on machine learning (ICML-03), pp. 720–727, 2003.

Zelong Sun, Dong Jing, Guoxing Yang, Nanyi Fei, and Zhiwu Lu. Leveraging large vision-language
model as user intent-aware encoder for composed image retrieval. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 7149–7157, 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Q-vlm: Post-
training quantization for large vision-language models. arXiv preprint arXiv:2410.08119, 2024a.

Guankun Wang, Long Bai, Wan Jun Nah, Jie Wang, Zhaoxi Zhang, Zhen Chen, Jinlin Wu, Mo-
barakol Islam, Hongbin Liu, and Hongliang Ren. Surgical-lvlm: Learning to adapt large vision-
language model for grounded visual question answering in robotic surgery. arXiv preprint
arXiv:2405.10948, 2024b.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024c.

Qinsi Wang, Jinghan Ke, Masayoshi Tomizuka, Yiran Chen, Kurt Keutzer, and Chenfeng Xu.
Dobi-svd: Differentiable svd for llm compression and some new perspectives. arXiv preprint
arXiv:2502.02723, 2025a.

Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, Wei Yu, and Dacheng
Tao. Divide, conquer and combine: A training-free framework for high-resolution image percep-
tion in multimodal large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 7907–7915, 2025b.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024d.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing sin-
gular value truncation for large language model compression. arXiv preprint arXiv:2503.12340,
2025c.

Yutong Wang, Haiyu Wang, and Sai Qian Zhang. Qsvd: Efficient low-rank approximation for
unified query-key-value weight compression in low-precision vision-language models. Advances
in Neural Information Processing Systems, 2025d.

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1):397–434, 2013.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024a.

Mengxia Yu, De Wang, Qi Shan, Colorado J Reed, and Alvin Wan. The super weight in large
language models. arXiv preprint arXiv:2411.07191, 2024b.

Zhengqing Yuan, Zhaoxu Li, Weiran Huang, Yanfang Ye, and Lichao Sun. Tinygpt-v: Efficient
multimodal large language model via small backbones. arXiv preprint arXiv:2312.16862, 2023a.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023b.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
A framework of small-scale large multimodal models. arXiv preprint arXiv:2402.14289, 2024.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified
vision-language pre-training for image captioning and vqa. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 13041–13049, 2020.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LLMS

Large language models (LLMs), such as ChatGPT, were used exclusively for language polishing and
minor stylistic editing of the manuscript. All technical ideas, analyses, and experimental results were
conceived, implemented, and verified by the authors. The authors carefully reviewed and validated
all text to ensure accuracy.

A.2 WSVD ALGORITHM

Algorithm 1 Weighted SVD Fine-tuning (WSVD) pseudo code

Require: Calibration dataset X , model parameters {W}, rank r
Ensure: Fine-tuned low-rank factors {A,B}

1: for each sample xi ∈ X do
2: Compute forward pass and loss L(xi)
3: Backpropagate to obtain gradients {∇WL}
4: Accumulate importance weights F ←

∑
X(∇WL)2

5: end for
6: for each weight matrix W ∈ {WQ,WK ,WV , . . . } do
7: Compute SVD: Wh ≈ AhBh, with Ah ∈ Rm×r, Bh ∈ Rr×n

8: Define weighted loss:

LWSVD(Ah, Bh) =
∥∥F 1/2

h ⊙ (Wh −AhBh)
∥∥2
F

where Fh,Wh, Ah and Bh is each head’s importance weight, weight, decomposed matrices.
9: Locally fine-tune Ah, Bh using LWSVD

10: end for
11: return Fine-tuned low-rank factors {Ah, Bh} for all matrices

A.3 DETAILED RESULTS OF WSVD-NOQ

We inlcude the detailed results of WSVD-noQ and other baselines in Table 9.

Table 9: Accuracy evaluation of different methods under FP16.

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

ASVD 49.93% 50.12% 47.10% 36.69% 19.19% 54.27% 53.53% 48.35% 37.17% 24.17% 42.05%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53% 57.89% 57.50% 55.33% 54.64% 55.31% 58.47%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37% 59.84% 59.07% 59.78% 59.00% 58.23% 62.64%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49% 60.10% 60.17% 59.89% 60.18% 60.46% 63.54%
FP16 Accuracy: 68.01% Accuracy: 60.18% 64.10%

L
L

aV
A

-v
1.

5
13

B

ASVD 71.39% 71.59% 70.00% 70.25% 69.51% 61.92% 61.91% 61.54% 61.51% 60.71% 66.03%
SVD-LLM 71.05% 70.85% 70.30% 70.35% 70.30% 62.28% 62.34% 62.25% 62.08% 63.01% 66.48%
QSVD-noQ 71.89% 71.99% 71.49% 71.54% 71.39% 62.61% 62.64% 62.82% 62.63% 62.52% 67.15%
WSVD-noQ 71.99% 71.84% 72.53% 71.59% 71.44% 62.52% 62.68% 62.38% 62.37% 62.37% 67.17%
FP16 Accuracy: 71.83% Accuracy: 62.53% 67.18%

L
L

aV
A

-N
ex

t
7B

ASVD 64.20% 63.36% 62.07% 60.19% 55.28% 67.38% 66.96% 66.24% 65.13% 61.52% 63.23%
SVD-LLM 68.27% 67.92% 66.58% 66.39% 65.54% 68.50% 68.31% 67.65% 67.45% 66.28% 67.29%
QSVD-noQ 70.10% 69.16% 69.01% 68.27% 66.19% 68.86% 68.95% 68.44% 67.98% 67.27% 68.42%
WSVD-noQ 69.81% 69.56% 69.36% 68.22% 67.87% 69.18% 69.27% 69.15% 69.16% 68.59% 69.02%
FP16 Accuracy: 69.60% Accuracy: 69.02% 69.31%

L
L

aV
A

-N
ex

t
13

B

ASVD 71.24% 70.60% 71.44% 71.38% 69.81% 70.88% 70.26% 70.01% 69.69% 69.01% 70.43%
SVD-LLM 72.53% 72.24% 71.74% 71.15% 70.55% 70.76% 70.63% 70.25% 69.96% 69.58% 70.94%
QSVD-noQ 71.94% 72.14% 71.74% 72.14% 71.79% 71.23% 71.02% 71.06% 70.92% 70.40% 71.44%
WSVD-noQ 72.88% 72.98% 73.57% 73.48% 73.28% 71.29% 71.17% 71.25% 70.95% 70.81% 72.17%
FP16 Accuracy: 73.23% Accuracy: 71.30% 72.27%

Sm
ol

V
L

M
2B

ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 90% ρ1 : 80% ρ1 : 70%

ASVD 29.30% 3.97% 0.20% 17.85% 1.50% 0.95% 8.96%
SVD-LLM 40.06% 17.20% 3.82% 32.49% 15.89% 4.60% 19.01%
QSVD-noQ 77.00% 62.77% 42.59% 64.80% 50.46% 36.24% 55.64%
WSVD-noQ 76.30% 71.74% 60.93% 65.78% 63.29% 54.45% 65.42%
FP16 Accuracy: 84.53% Accuracy: 68.47% 76.53%

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 COMPARISON WITH DOBISVD

For completeness, we additionally evaluate DobiSVD on LLaVA-v1.5 7B using the ScienceQA-
IMG benchmark. Following the official implementation, DobiSVD is applied to the Q,K, V ma-
trices while leaving other linear layers unchanged. Calibration is performed using the same set of
samples and initialized with the same random seed as in the main experiments to ensure fairness. As
shown in Table 10, WSVD-noQ achieves higher accuracy than DobiSVD under the same compres-
sion ratio.

Table 10: Accuracy evaluation of different methods under FP16.

Acc. Method ScienceQA-IMG ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-v
1.

5
7B

DobiSVD 67.19% 60.94% 59.38% 56.64% 54.69%
ASVD 49.93% 50.12% 47.10% 36.69% 19.19%
SVD-LLM 65.44% 63.71% 61.92% 57.41% 55.53%
QSVD-noQ 67.72% 68.22% 67.08% 65.05% 62.37%
WSVD-noQ 68.17% 67.72% 67.28% 65.89% 65.49%
FP16 Accuracy: 68.01%

A.5 SUPPLEMENTARY RESULTS ON MORE VLMS

We additionally apply WSVD to Qwen-VL 7B (Bai et al., 2023) and Molmo-7B-O (Deitke et al.,
2025) to further examine the generality of WSVD beyond the LLaVA family and SmolVLM. We fol-
low exactly the same experimental setting as Section 4 and evaluate the FP16 and SVD compressed
models on ScienceQA-IMG and SEED-Bench. As shown in Table 11, WSVD-noQ consistently out-
performs all SVD-based baselines (ASVD and SVDLLM) across all singular-value ratios, and it also
matches or slightly improves over the FP16 model. For example, on ScienceQA, WSVD-noQ im-
proves over SVDLLM and ASVD by up to 3–5%, and on SEED-Bench it yields the best/comparable
accuracy among all compressed variants at every ratio. These results indicate that WSVD transfers
well to VLMs with different vision–language fusion designs, supporting the general applicability of
our method.

Table 11: Accuracy evaluation of different methods under FP16 on Qwen-VL 7B and Molmo-7B-O.

Acc. Method ScienceQA-IMG ↑ SEED-Bench ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60%

Q
w

en
-V

L
7B

ASVD 63.86% 63.11% 60.54% 59.49% 61.67% 61.00% 59.94% 58.69% 61.04%
SVD-LLM 65.29% 65.29% 64.55% 65.29% 62.99% 62.80% 62.69% 62.51% 63.93%
QSVD-noQ 66.78% 66.24% 66.68% 65.20% 63.25% 63.00% 62.06% 61.26% 64.31%
WSVD-noQ 68.77% 68.12% 67.23% 65.49% 63.32% 63.53% 63.60% 63.68% 65.47%
FP16 Accuracy: 68.32% Accuracy: 63.52% 65.92%

M
ol

m
o

7B
-O

ASVD 94.99% 95.19% 94.10% 93.06% 74.42% 74.21% 73.73% 73.62% 84.17%
SVD-LLM 95.09% 95.09% 94.99% 95.09% 74.68% 74.46% 74.23% 74.11% 84.72%
QSVD-noQ 95.54% 94.99% 94.59% 93.85% 74.47% 74.44% 74.41% 74.37% 84.58%
WSVD-noQ 95.59% 95.49% 95.34% 95.09% 74.61% 74.52% 74.48% 74.38% 84.94%
FP16 Accuracy: 95.78% Accuracy: 74.74% 85.26%

A.6 SUPPLEMENTARY RESULTS ON MORE DATASETS

To further assess generalization, we additionally evaluate LLaVA-Next 13B with WSVD-noQ on
two additional benchmarks: HRBench-4K (4K high-resolution images) (Wang et al., 2025b), and
OCRBench (text-centric images) (Liu et al., 2024c). Following Section 4, we reuse the same 256-
sample calibration set drawn from the ScienceQA training set and keep all other settings identical,
while sweeping the parameter ratios ρ1. As summarized in Table 12, WSVD-noQ consistently
matches or outperforms all baselines across nearly all ratios on these datasets, despite being cali-
brated only once on the ScienceQA training set. These results indicate that WSVD generalizes well
across tasks and datasets. Moreover, WSVD’s decoding speedup is independent of the evaluation
dataset: once the model is calibrated and compressed, runtime is determined solely by the resulting

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

model size and context length, so a fixed compressed model yields essentially the same speedup
across benchmarks.

Table 12: Accuracy evaluation of different methods under FP16 on OCRBench and HRBench-4K.

Acc. Method OCRBench ↑ HRBench-4K ↑ Avg. ↑
ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50% ρ1 : 90% ρ1 : 80% ρ1 : 70% ρ1 : 60% ρ1 : 50%

L
L

aV
A

-N
ex

t
13

B

ASVD 53.10% 52.50% 51.30% 50.50% 47.70% 44.00% 44.13% 43.88% 43.00% 42.00% 47.21%
SVD-LLM 52.10% 51.90% 51.00% 49.90% 48.20% 43.00% 44.25% 42.62% 43.75% 43.25% 47.00%
QSVD-noQ 52.80% 52.40% 52.40% 51.40% 48.90% 44.25% 44.88% 43.88% 43.37% 42.88% 47.72%
WSVD-noQ 53.30% 53.30% 53.50% 52.20% 48.70% 46.13% 44.88% 44.50% 44.88% 44.50% 48.59%
FP16 Accuracy: 53.30% Accuracy: 45.63% 49.47%

A.7 LATENCY COMPARISON OF FULL AND PER-HEAD SVD

We further compare the decoding latency of applying SVD to the full QKV matrices versus adopting
WSVD’s fine-grained per-head SVD. To enable this comparison, we minimally modify our kernel
to support reconstruction with larger matrix sizes under the full SVD setting (as discussed in Sec-
tion 3.2), while still fusing the reconstruction with flash decoding. This variant is denoted as “W/o
per-head.” Both approaches are evaluated under the same ρ2, ensuring equal overall cache size, with
batch size, sequence length and other settings kept identical to the setup described above.

Table 13: Decoding latency on RTX 4090.

ρ2 W/o per-head WSVD-noQ Speedup

90% 51.31 2.83 18.1×
80% 46.03 2.60 17.7×
70% 39.46 2.53 15.6×
60% 33.54 2.25 14.9×
50% 28.37 1.66 17.1×

Table 14: Decoding latency on RTX 5090.

ρ2 W/o per-head WSVD-noQ Speedup

90% 40.40 1.87 21.6×
80% 35.99 1.77 20.3×
70% 31.14 1.75 17.8×
60% 26.85 1.56 17.2×
50% 21.44 1.15 18.6×

As shown in Tables 13 and 14, WSVD-noQ consistently achieves more than an order-of-magnitude
speedup over the full-matrix SVD variant (“W/o per-head”) across all compression ratios ρ2. On
RTX 4090, the speedup ranges from 14.9× to 18.1×, while on RTX 5090 it further increases to
17.2×–21.6×. These results confirm that per-head SVD substantially reduces reconstruction over-
head and I/O traffic, enabling efficient decoding.

A.8 TRAINING COST OF WSVD

WSVD first applies SVDLLM’s whitening method (Wang et al., 2024d) to per-head weight matri-
ces before performing SVD, then uses QSVD’s importance-score-based rank allocation (Wang et al.,
2025d) to truncate the model, and subsequently performs lightweight, Fisher-information-based lo-
cal fine-tuning and local quantization-aware training on the truncated low-rank weights to better
preserve the most sensitive weight elements and to mitigate the degradation of per-head SVD and
low-precision inference.

Table 15: Calibration time breakdown for QSVD and WSVD.

QSVD WSVD

Step Time Step Time

Input calibration 1 min Input calibration 6 min
SVD on all layers 2 min 15 s SVD on all layers 1 min
Gradient collection & rank allocation 10 min 12 s Gradient collection & rank allocation 13 min 40 s
SVD results fusion 30 s Local FT 9 min
β tuning & quantization 82 min Local QAT & quantization 8 min

Total calibration time 96 min Total calibration time 38 min

We quantify the computational overhead of WSVD’s local fine-tuning and QAT and compare it
with QSVD on LLaVA-1.5 13B. We extract QSVD’s reported training time from its OpenReview

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

page and, for fairness, benchmark WSVD on the same GPU type (A100). As shown in Table 15,
QSVD requires 96 minutes ≈ 1.6 A100 GPU-hours, whereas WSVD takes only 38 minutes ≈
0.63 A100 GPU-hours, about 2.5× less tuning time. The peak GPU memory usage of WSVD’s
local FT and QAT stages on LLaVA-1.5 13B is only 15 GB, since we only perform local updates on
low-rank weights rather than end-to-end fine-tuning and do not store full intermediate activations,
so the whole procedure fits comfortably on a single A100-80GB. For additional context, the official
LLaVA-1.5 report (Liu et al., 2024b) states that training the 13B model requires at least 204 A100
GPU-hours. Thus, WSVD’s tuning cost is only a small fraction of the original training cost, while
still delivering practical decoding speedups, indicating that the efficiency gains comfortably justify
the modest local fine-tuning and QAT overhead.

19


	Introduction
	Related Work
	Vision Language Model
	Singular Value Decomposition for Large Models
	Fisher-Based Importance and Weighted Matrix Factorization
	Flash Decoding

	Method
	Fine-grained Per-Head SVD Operation for Reduced Latency
	SVD with Local Weighted Finetuning
	Local Quantization-aware Training for Low-Precision WSVD
	WSVD System Implementation

	Evaluation
	Accuracy Evaluation on WSVD-noQ
	Accuracy Evaluation of WSVD
	Ablation Study
	System Evaluation on VLM

	Conclusion
	Appendix
	The Use of LLMs
	WSVD algorithm
	Detailed Results of WSVD-noQ
	Comparison with DobiSVD
	Supplementary Results on More VLMs
	Supplementary Results on More Datasets
	Latency Comparison of Full and Per-Head SVD
	Training Cost of WSVD


