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Abstract

Deep learning is renowned for its theory–practice gap, whereby principled theory1

typically fails to provide much beneficial guidance for implementation in practice.2

This has been highlighted recently by the benign overfitting phenomenon: when3

neural networks become sufficiently large to interpolate the dataset perfectly,4

model performance appears to improve with increasing model size, in apparent5

contradiction with the well-known bias–variance tradeoff. While such phenomena6

have proven challenging to theoretically study for general models, the recently7

proposed Interpolating Information Criterion (IIC) provides a valuable theoretical8

framework to examine performance for overparameterized models. Using the IIC,9

a PAC-Bayes bound is obtained for a general class of models, characterizing factors10

which influence generalization performance in the interpolating regime. From11

the provided bound, we quantify how the test error for overparameterized models12

achieving effectively zero training error depends on the quality of the implicit13

regularization imposed by e.g. the combination of model, optimizer, and parameter-14

initialization scheme; the spectrum of the empirical neural tangent kernel; curvature15

of the loss landscape; and noise present in the data.16

1 Introduction17

A prominent curiosity in modern machine learning is the occurrence of strong generalization per-18

formance, even in the overparameterized setting where the number of parameters exceeds the size19

of the training set and models can interpolate even noisy data [8, 51]. This is at odds with classical20

theoretical arguments in line with the bias–variance tradeoff, as interpolators are typically thought to21

correspond to high-variance estimators in the presence of data noise, and therefore should perform22

poorly [19, §2.9]. Such observations have sparked renewed interest in interpolating estimators and23

the occurrence of benign overfitting [5, 14, 46]. One of the more celebrated realizations of benign24

overfitting is the double descent curve particularly pronounced in linear regression [8, 12, 18, 28],25

where model mean-squared error decreases monotonically in the overparameterized regime. This26

surprising behaviour arises due to the implicit regularization present in the choice of estimator [37].27

However, rigorous theoretical examination of these phenomena beyond the linear setting remains28

a significant challenge. For example, analogous curves can become arbitrarily complicated in the29

kernel regression setting [10, 27, 30].30

The problem of model selection becomes exacerbated in the overparameterized setting: how do31

we compare between interpolators? Classically, model selection is conducted using an information32

criterion, the most prominent of which are the AIC and BIC [26], although these all break down for33

overparameterized models. One recent approach to model selection in the general overparameterized34

setting is presented in [22] with the Interpolating Information Criterion (IIC).1 Adopting a Bayesian35

1This is related to but substantially more general than previous work in the linear/kernel setting [21].
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setup, performance for the IIC is measured in terms of the marginal likelihood. Similar to [17],36

the interpolating regime is examined through the cold posterior scenario, where the temperature37

of the likelihood is decreased to concentrate posterior mass onto the zero-loss set of parameters.38

The IIC itself relies on a novel (and broadly applicable) principle of Bayesian duality [22]: for any39

overparameterized model, there exists a corresponding underparameterized model with the same40

marginal likelihood. Conveniently, this corresponding underparameterized model is often amenable41

to asymptotic approximations via Laplace’s method, resulting in a tractable form of the marginal42

likelihood, even for complex models.43

The IIC is theoretically interesting, but its utility may not be immediately obvious. While the marginal44

likelihood is a standard in Bayesian statistics, it is not often a metric of choice for machine learning45

practitioners. Several deficiencies in the marginal likelihood have been raised as detrimental to46

accurate examination of model quality [32]. Instead, a more popular framework for assessing model47

performance using Bayesian ideas is that of PAC-Bayes bounds [3]. These bounds on the true risk are48

often more straightforward to interpret in practice, and provide the tightest estimates of the test error49

to date [13, 31]. However, PAC-Bayes bounds are often limited by their requirement of a tractable50

choice of prior. Hence, previous bounds have only been capable of revealing coarse attributes (such51

as norm-based metrics [38, 39]) linked to generalization through specific choices of the prior [24].52

Using techniques from the derivation of the IIC in [22], we construct a PAC-Bayes bound that holds53

for a very wide class of models and priors in the general overparameterized setting. In doing so,54

we provide a precise and complete characterization of how model performance for interpolators55

depends on the quality of the implicit regularization, the sharpness of the model about the estimator,56

the curvature of the zero-loss region in the loss landscape, and the noise of the data. While earlier57

attempts have been made to develop PAC-Bayesian generalization bounds in the cold posterior setting58

[41], these are again limited by strong simplifying assumptions. In constrast, our PAC-Bayes bound59

holds for a general class of interpolators, with minimal assumptions on the regularity of the model.60

2 Interpolating Regime61

Parameter estimators for regression problems are typically minimizers of an empirical risk Ln:62

θ⋆ ∈ M := argmin
θ∈Θ

Ln(θ), where Ln(θ) =
1

n

n∑
i=1

ℓ(f(xi, θ), yi),

where x1, . . . , xn ∈ X are inputs, y1, . . . , yn ∈ Rm are the corresponding outputs, and Θ ⊂ Rd is63

the parameter space. For example, in deep learning, f : X × Rd → Rm prescribes a (nonlinear)64

neural network architecture with d weights and m outputs over the input space X . For simplicity,65

assume Θ = Rd and restrict our attention to the mean-squared loss ℓ(z, y) = ∥z − y∥2, although66

more general loss functions can also be considered.67

When the number of parameters d exceeds the size of the dataset mn and the model can interpolate68

the data exactly, M is often uncountable. So, which θ ∈ M should be chosen? A convenient69

approach is to select an estimator within M that is the solution to a constrained optimization problem70

involving a regularizer R [7].71

Definition 1. An interpolator is an estimator of the form θ⋆ = argminθ∈Θ R(θ) subject to f(xi, θ) =72

yi for all i = 1, . . . , n, where R : Rd → R.73

We assume that R has both a unique minimizer over Rd and a unique minimizer over M. As observed74

in [22], interpolators as prescribed in Definition 1 arise naturally in the Bayesian context, as we now75

demonstrate. To start, consider the usual Bayesian posterior ργ(θ) ∝ exp(− 1
γLn(θ))π(θ) formed76

from the Gibbs likelihood with temperature γ and prior π. In the limit as γ → 0+, ργ will concentrate77

around regions where Ln(θ) is minimized, namely M2. This is the cold posterior setting, which has78

surprisingly been observed to enhance predictive performance [48]. In this setting, the role of π in79

prescribing mass to estimators on M is enhanced. If we now choose π(θ) ∝ exp(− 1
τR(θ)) to be the80

Gibbs measure corresponding to R with temperature τ , then regions with high probability under π81

correspond to smaller values of R. In this way, R acts as a regularizer over the set of interpolators.82

By taking τ → 0+, the cold posterior concentrates on the minimizer θ⋆ of R on M.83

2This limiting behaviour in the posterior was quantified and investigated in [11].
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The order of the limits (γ → 0+, and then τ → 0+) is of great importance, as the limiting behaviour84

of ργ varies greatly depending on the relative rates with which these two limits are taken [15]. For85

example, if γ and τ reduce at the same rate, then ργ concentrates around a maximum a posteriori86

(MAP) estimator, and if τ → 0+ first, then ργ concentrates on the unique minimizer of R.87

In modern machine learning, the limit γ → 0+ corresponds to the procedure of optimizing the model88

to zero empirical risk. These asymptotics can be equally viable for models which achieve sufficiently89

small training error. If θ⋆ represents the trained weights, then R is the implicit regularizer of the90

model, comprising all the factors (choice and hyperparameters of the optimizer, initialization, etc.)91

which dictate the particular solution reached at the end of training. By examining the true risk over92

the posterior ργ under the limits γ → 0+, and then τ → 0+, we reveal a localized estimate of test93

error for large neural networks at the end of training. Within M, R is the primary measurement94

distinguishing between estimators, and plays an analogous role to the “risk” in the bound to follow.95

3 PAC-Bayes Bounds96

Performance in machine learning is typically analyzed through the true risk function, L(θ). Assuming97

that each (xi, yi) is an iid realization from a distribution D, we let L(θ) = E(x,y)∼Dℓ(f(x, θ), y).98

The difference between Ln(θ) and L(θ) is referred to as generalization error. A small value for the99

error for well-trained models is typically thought to be indicative of good real-world performance,100

and hence high model quality. A Bayesian analogue of the PAC framework, called PAC-Bayes theory,101

was first introduced by McAllester [36] and has become recognized as a promising approach for102

potentially-practical non-vacuous bounds on the generalization error [13]. Following [6], and letting103

KL(·∥·) denote the Kullback–Leibler divergence, the Donsker–Varadhan change of measure theorem104

[6, Lemma 3] applied to two probability measures, ρ and π, states that105

Eθ∼ρϕ(θ) ≤ KL(ρ∥π) + logEθ∼πe
ϕ(θ), for any ϕ : Θ → R.

If ϕ is n-times the generalization error, then using Markov’s inequality, with probability at least 1− δ106

over the choice of (xi, yi)
iid∼ D, it holds that107

Eθ∼ρL(θ) ≤ Eθ∼ρLn(θ) +
1

n

[
KL(ρ∥π) + logE(x,y)∼Dζn + log(1/δ)

]
, (1)

where ζn = Eθ∼πe
n(L(θ)−Ln(θ)) encodes dispersion in the loss under the prior due to noise in the108

data. While (1) holds for arbitrary measures ρ and π, the bound is tightest when ρ is the posterior ργ109

with γ = 1/n [3, §2.1]. Equation (1) is the core PAC-Bayes bound: to minimize the true risk, one110

should optimize over the empirical risk, and choose a prior that is as close to the posterior as possible.111

Effective choices of priors have resulted in non-vacuous generalization bounds, even for moderately112

large-scale neural networks [13, 31]. However, the Kullback–Leibler term is often intractable for113

arbitrary priors, and so π is typically chosen to render the right-hand side explicitly computable.114

There are two major issues with this: (i) the true role of the implicit regularization—believed to be115

critical [37, 51]—remains opaque, as only a simplified version of this regularization can be examined;116

and (ii) the bound can only be as tight as one can approximate the optimal choice of prior.117

An alternative approach is to trade strict upper bounds for asymptotics in the interpolating regime118

using the techniques of [22], along with the observations of [16]. By doing so, a tractable PAC-Bayes119

bound is obtained for almost any choice of prior, opening the door to a more precise theoretical120

understanding of regularization, and potentially tighter bounds. The resulting PAC-Bayes bound121

depends on the performance of the interpolator θ⋆ under the regularizer R, and it makes explicit the122

dependence of model performance on three key factors:123

• Sharpness: S = log det(DF (θ⋆)DF (θ⋆)⊤); where DF (θ) is the nm × d Jacobian of F with124

rows (∇θF (xi, θ))
n
i=1. Sharpness measures are well-known to (sometimes [49]) correlate with125

performance [20, 25]. Note that S is the log-determinant of the empirical neural tangent kernel126

(NTK) [23, 40].127

• Dispersion: P = 2n−1 logE(x,y)∼De
n(L(θ0)−Ln(θ0)); where θ0 ∈ Rd is the assumed global128

minimizer of the regularizer R. Note that if ℓ(f(x, θ0), y) is normally distributed, then P is its129

variance. However, as P does not depend on the posterior, and so plays a limited role in our bound.130

• Curvature: K = log det+ ∇2
MR(θ⋆)− log det∇2R(θ0); where det+ is the pseudo-determinant131

(product of all non-zero eigenvalues) and ∇2
M is the manifold Hessian over M [1, §5.5]. The132
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manifold Hessian over M is well-defined according to the Implicit Function Theorem, which133

asserts that M is a submanifold of dimension d−mn if DF is continuous and full rank on Rd.134

The interpolating information criterion as presented in [22] is given in terms of these factors as135

IIC = log[R(θ⋆)−R(θ0)] +
S +K

mn
− log(mn), (2)

where a smaller IIC is indicative of better model performance. For more details on the nature of these136

factors, see [22, §5.1]. Following [22], our analysis operates under the following conditions. Of these,137

(F) is perhaps the most unusual condition, but is necessary to ensure that Eθ∼ργ
L(θ) ̸= 0.138

Assumptions. Assume the following conditions:139

(A) F and R are C∞-smooth on Rd140

(B) M is non-empty, and DF (θ) is full rank for all θ ∈ Rd141

(C) the function θ 7→ π(θ) det(DF (θ)DF (θ)⊤)−1/2 is integrable over Rd142

(D) the manifold Hessian ∇2
MR(θ⋆) is non-singular143

(E) R(θ) ≤ M∥θ∥p for all θ ∈ Rd for some M,p > 0144

(F) the normalizing constant for ργ is bounded as γ → 0+145

(G) R(θ⋆) is uniformly bounded for any n = 1, 2, . . .146

With these assumptions, we can establish the following theorem, our main result, the proof of which147

can be found in Appendix A.148

Theorem 1 (PAC-Bayes Bound for Interpolators). Consider the cold posterior ργ with prior π(θ) ∝149

exp(− 1
τR(θ)) under the choice of temperature τ = 2

mn [R(θ⋆)−R(θ0)]. Then for any 0 < δ < 1,150

with probability at least 1− δ, as γ → 0+, and then n → ∞,151

2Eθ∼ργ
L(θ) ≤ m log(R(θ∗)−R(θ0)) +

1

n
S +

1

n
K + P

+m
(
1− log

mn

2π

)
+

1

n
log
(
δ−2
)
+O(n−2) +O(γ). (3)

In Theorem 1, the temperature τ is chosen so as to minimize the bound, excluding higher-order terms.152

The bound (3) has a similar interpretation to the IIC in [22] and so most of the discussion there is153

also relevant here. Indeed, in terms of the IIC in (2), the bound (3) becomes154

2Eθ∼ργ
L(θ) ≤ m · (1 + log(2π) + IIC) + P + n−1 log(δ−2) +O(n−2) +O(γ).

4 Discussion and Conclusions155

A PAC-Bayesian bound is presented in Theorem 1 for interpolators in the overparameterized regime,156

using the results of the IIC [22]. Our bound is quite general, imposing few restrictions on the model157

and the form of its implicit regularization. This is particularly advantageous in the setting of deep158

learning, where the precise nature of the model and the training process is often complex.159

Drawing particular attention to the factor S, recall sharpness of the loss landscape is typically160

quantified in terms of the Hessian of the loss [50]. Multiple examinations have reported limitations to161

sharpness metrics computed involving the Hessian [4, 43]. One possibility for this deficiency is that162

the entire spectrum of the Hessian (and not only the top part) matters. The log-determinant depends163

not only on the largest eigenvalue, but on the decay rate of all the eigenvalues as well. However,164

for large neural networks, the Hessian is almost inevitably singular, and so its log-determinant is165

undefined [47, 52]. Our presented form of S has no such issues, and its relation to the Hessian166

is well studied [29, 43, 44]. This representation of sharpness should prove valuable in further167

explorations of the correlation between the eigenspectra and test performance as seen in heavy-tailed168

self-regularization theory [33–35] and other linearized analyses [2, 5, 42].169

Finally, we remark that in view of the vast literature investigating implicit regularization of stochastic170

optimizers [9, 37, 45], the form of the regularizer R for neural network interpolators is a fertile171

ground for future research.172
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A Appendix314

Proof of Theorem 1. Let J(θ) = DF (θ)DF (θ)⊤ ∈ Rmn×mn denote the empirical NTK. We start315

from the core PAC-Bayes bound (1)316

EρL(θ) ≤ EρLn(θ) +
logEDζn

n
+

KL(ρ∥π)
n

+
log(1/δ)

n
,

where dummy variables in the expectations have been dropped for brevity. First, since Ln(θ) = 0 on317

M, EρLn(θ) = O(γ). Next, taking π(θ) ∝ exp(− 1
τR(θ)), applying Laplace’s method twice,318

ζn =

∫
Θ

en(L(θ)−Ln(θ))π(θ)dθ =

∫
Θ
en(L(θ)−Ln(θ))e−

1
τ R(θ)dθ∫

Θ
e−

1
τ R(θ)dθ

= en(L(θ0)−Ln(θ0)) +O(τ),

and so logEDζn = 1
2nP +O(τ). Observe that319

KL(ρ∥π) =
∫
Rd

log

(
ρ(θ)

π(θ)

)
ρ(θ)dθ

=
1

Zγ

∫
Rd

log

(
π(θ)e−

n
γ Ln(θ)

π(θ)Zγ

)
π(θ)e−

n
γ Ln(θ)dθ

=
1

Zγ

∫
Rd

(
− logZγ − n

γ
Ln(θ)

)
π(θ)e−

n
γ Ln(θ)dθ

= − logZγ − n

γ
EρLn(θ)

≤ − logZγ .

From the proof of [22, Theorem 1],320

− logZγ =
1

τ
[R(θ⋆)−R(θ0)] +

mn

2
log(πτ) +

S +K

2
+O(τ).

In line with [22], choosing τ = 2
mn [R(θ⋆)−R(θ0)], since R(θ⋆) = O(1), τ = O(n−1) and321

− logZγ =
mn

2

(
1 + log

2π

mn
+ log[R(θ⋆)−R(θ0)]

)
+

S +K

2
+O(n−1).

Altogether,322

EρL(θ) ≤
P

2
− logZγ

n
+

log(1/δ)

n
+O(τ) +O(γ)

≤ P

2
+

m

2

(
1 + log

2π

mn

)
+

m

2
log[R(θ⋆)−R(θ0)]

+
S +K

2n
+

log(1/δ)

n
+O(n−2) +O(γ).

323
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