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Multi-Reference Virtual Try-On

Person-To-Person Virtual Try-On 

Single Reference Virtual Try-On 

Figure 1: FastFit provides an accelerated solution for diverse virtual try-on tasks, including single-
reference, person-to-person, and our primary focus, multi-reference composition. By decoupling
the reference images from the denoising process, our cacheable diffusion architecture delivers high-
fidelity virtual try-on across multiple challenging scenarios at a much faster speed.

ABSTRACT

Despite its great potential, virtual try-on technology is hindered from real-world
application by two major challenges: the inability of current methods to sup-
port multi-reference outfit compositions (including garments and accessories), and
their significant inefficiency stemming from the redundant re-computation of ref-
erence features during denoising. To address these challenges, we propose FastFit,
a high-speed multi-reference virtual try-on framework based on a novel cacheable
diffusion architecture. By combining the Semi-Attention mechanism and substi-
tuting traditional timestep embeddings with class embeddings for reference items,
our model fully decouples reference feature encoding from the denoising process
with negligible parameter overhead. This allows reference features to be com-
puted only once and losslessly reused across all steps, fundamentally breaking
the efficiency bottleneck and achieving an average 3.5× speedup over compara-
ble methods. Furthermore, to facilitate research on complex, multi-reference vir-
tual try-on, we introduce DressCode-MR, a new large-scale dataset. It comprises
28,179 sets of high-quality, paired images covering five key categories (tops, bot-
toms, dresses, shoes, and bags), constructed through a pipeline of expert mod-
els and human feedback refinement. Extensive experiments on the VITON-HD,
DressCode, and DressCode-MR datasets show that FastFit surpasses state-of-the-
art methods on key fidelity metrics while offering its significant advantage in in-
ference efficiency.
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1 INTRODUCTION

ReferenceNet

Denoising U-Net

(a) ReferenceNet

×N

Denoising U-Net

Spatial Concatenation ×N

×1

(b) In-Context Learning 

(c) Ours 

Cacheable U-Net

×1

×N

Figure 2: Architectural comparison of multi-
reference try-on methods. Our cacheable
U-Net (c) avoids the parameter overhead of
ReferenceNet (a) and the computational re-
dundancy of In-Context Learning (b).

Generative AI-based virtual try-on has recently
made remarkable progress. An ideal virtual try-
on system—one that could revolutionize online re-
tail and power applications like intelligent outfit vi-
sualization—would allow users to seamlessly mix
and match various garments and accessories, rapidly
generating photorealistic results to enable an inter-
active experience. However, two major challenges
hinder current methods from achieving this vision.
Firstly, most existing methods (Xie et al., 2022;
Wang et al., 2018; Xu et al., 2024; Choi et al., 2024;
Chong et al., 2024; Jiang et al., 2024) are designed
for a single reference garment (e.g., a top or a dress),
requiring a complete multi-item outfit to be ren-
dered through iterative passes, leading to both in-
flated computation time and the risk of accumulated
synthesis errors. Furthermore, the general lack of
support for essential accessories like shoes and bags
prevents the generation of truly holistic and realis-
tic outfits. Secondly, the computational inefficiency
of current methods stems from two competing yet
flawed strategies, as illustrated in Figure 2. On the
other hand, in-context learning-based methods (Guo
et al., 2025; Chong et al., 2024; Huang et al., 2024a)
repeatedly process the concatenated reference and
person features at each of the N denoising steps
(Figure 2 (b)), causing significant computational re-
dundancy due to the reprocessing of static reference
features. On the other hand, ReferenceNet-based methods (Huang et al., 2024b; Choi et al., 2024;
Xu et al., 2024; Zhang et al., 2024b; Zhou et al., 2024; Jiang et al., 2024) employ a separate network
to encode references (Figure 2 (a)). While this explicit separation avoids the aforementioned com-
putational redundancy, it introduces substantial parameter overhead, increasing both training and
inference costs.

To overcome these limitations, we introduce FastFit, a high-speed framework that enables coher-
ent multi-reference virtual try-on through a novel cacheable diffusion architecture. Our proposed
Cacheable UNet decouples the reference feature encoding from the iterative denoising process,
which is achieved by introducing a Reference Class Embedding and a Semi-Attention mechanism.
This structure enables a Reference KV Cache during inference, which allows reference features to be
computed only once and losslessly reused in all subsequent steps, fundamentally breaking the effi-
ciency bottleneck and achieving an average 3.5× speedup over comparable methods with negligible
parameter overhead. Furthermore, observing the lack of datasets with complete outfit pairings, we
construct DressCode-MR, a large-scale multi-reference try-on dataset based on Morelli et al. (2022).
We developed a data-generation pipeline that trains expert models based on Chong et al. (2024) and
Labs (2024) to recover canonical images of individual items, and utilizes human feedback to ensure
high quality. This results in 28,179 multi-reference image sets spanning five key categories: tops,
bottoms, dresses, shoes, and bags.

In summary, the contributions of this work include:

• We propose FastFit, a novel framework for high-speed, multi-reference virtual try-on. It is
the first to enable coherent multi-reference virtual try-on across five key categories, includ-
ing tops, bottoms, dresses, shoes, and bags, while achieving an average 3.5× speedup over
comparable methods.

• We design a novel Cacheable UNet structure featuring a Reference Class Embedding and
a Semi-Attention mechanism. This design decouples reference feature encoding from the
denoising process, enabling a lossless Reference KV Cache that breaks the core efficiency
bottleneck of subject-driven generation architectures.
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Figure 3: Illustrative examples from our proposed DressCode-MR dataset. Each sample provides a
pairing of a full-body person image with a set of corresponding canonical images for each item.

• We construct DressCode-MR, the first large-scale dataset specifically for multi-reference
virtual try-on. It comprises 28,179 high-quality image sets, providing a solid foundation to
foster future research in complex outfit generation.

• We conduct extensive experiments on VITON-HD, DressCode, and DressCode-MR
datasets, demonstrating that FastFit surpasses state-of-the-art methods in image fidelity
while maintaining its significant efficiency advantage.

2 RELATED WORK

2.1 SUBJECT-DRIVEN IMAGE GENERATION

To enable finer-grained control, subject-driven image generation has become a key research focus.
Early efforts primarily centered on single reference images, injecting specific subject identities or
artistic styles by fine-tuning model weights (Ruiz et al., 2022; Yang et al., 2022; Hu et al., 2021;
Huang et al., 2024a) or utilizing lightweight adapters (Ye et al., 2023; Mou et al., 2023; Chen et al.,
2023). However, the former approach requires training a separate model for each subject, limiting
its practical flexibility, while the latter, despite being convenient, often faces challenges in main-
taining high fidelity to the reference image. Some methods based on in-context learning, such as
IC-LoRA (Huang et al., 2024a) and OminiControl (Tan et al., 2025a), achieve superior detail preser-
vation by concatenating the reference image with noise along the spatial dimension. The trade-off is
that the reference must participate in every denoising step, which is the root cause for significantly
increasing inference time and computational cost. EasyControl (Zhang et al., 2025) and OminiCon-
trol2 (Tan et al., 2025b) achieve further acceleration through feature reuse by adjusting the attention
map. However, they require creating additional trainable branches for each condition. This archi-
tectural dependency on separate branches makes scaling to multiple references cumbersome and
computationally expensive. Consequently, some works have begun to explore multi-reference gen-
eration; for instance, IC-Custom (Li et al., 2025) inputs multiple images as a single concatenated
map for multi-concept composition, and MultiRef (Chen et al., 2025) provides a systematic defini-
tion and benchmark for multi-reference generation. Nevertheless, in the domain of virtual try-on,
multi-reference generation remains an under-explored area. How to harmoniously compose visual
information from multiple references while mitigating the heightened computational or parameter
burden from increased inputs remains a significant and open challenge.

2.2 IMAGE-BASED VIRTUAL TRY-ON

Image-based virtual try-on aims to realistically synthesize a person wearing target garments. Classic
paradigms centered on a warp-and-fuse method, which explicitly deforms the garment using either
geometric transformations or learned appearance flows before the blending stage (Wang et al., 2018;
Han et al., 2018; Choi et al., 2021; Han et al., 2019; Ge et al., 2021; Xie et al., 2021; 2023; Gou
et al., 2023; Chong & Mo, 2022); however, these approaches are frequently hampered by visual arti-
facts from inaccurate warping. Subsequently, the advent of diffusion models revolutionized the field
by reframing the task as end-to-end conditional image generation, bypassing the error-prone warp-
ing step. The dominant strategy in these modern models involves injecting high-fidelity garment
features into the denoising process via sophisticated conditioning mechanisms, such as parallel en-
coder branches (i.e., ReferenceNets) or ControlNet(Zhang et al., 2023)-like structures, a technique
employed by a vast body of recent work (Zhu et al., 2023; Morelli et al., 2023; Kim et al., 2023;
Xu et al., 2024; Wang et al., 2024; Choi et al., 2024; Sun et al., 2024; Zhou et al., 2024; Zhang
et al., 2024a; Kim et al., 2024). Recent innovations further push the boundaries by exploring alter-
native backbones like Diffusion Transformers (Peebles & Xie, 2022) or introducing novel control

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

©

Cacheable UNet Block

Timestep N 𝑋

To QKV

ResNet

Concat

Split

To Out

Feed Forward

𝑋

Semi-Attention

To QKV

ResNet

To Out

Feed Forward

Concat

Semi-Attention

Timestep N-1~0R1 R2 R3 R4 𝑋

𝑋

Class
Embeds

Tr
an

sf
or

m
er

 B
lo

ck

Tr
an

sf
or

m
er

 B
lo

ck

VAE Encoder

Class
Embeds

↻ × 1

Timestep

↻ × N

R1 R2 R3 R4

Timestep = N Timestep < N

VAE Decoder

© Channel-wise Concatenation

Figure 4: Overview of the FastFit Inference Pipeline. The left side depicts the overall flow, con-
sisting of a VAE Encoder, a Cacheable UNet, and a VAE Decoder. The input to the UNet, denoted
as X , is a concatenation of the noisy latent zn and person conditions cp. The right side details the
proposed Cacheable UNet Block. This block operates in two modes: at the initial timestep N , it
computes and caches features from reference inputs R1 . . . R4; at subsequent timesteps (t < N ), it
reuses these cached features via Semi-Attention to accelerate the denoising process.

modalities such as textual prompts and more generalized conditioning schemes (Guo et al., 2025;
Jiang et al., 2024). Despite achieving unprecedented realism, their inference speed and general lim-
itation to single garments have become key bottlenecks, hindering the technology’s application in
real-world scenarios that demand rapid feedback and multi-item outfit composition.

3 METHODS

3.1 OVERVIEW

The overall framework of FastFit is built upon the foundation of Latent Diffusion Models (LDMs)
(Rombach et al., 2021) and is designed to achieve high-speed, multi-reference virtual try-on through
a novel conditioning cacheable UNet architecture. To clarify the data flow during inference, the
entire pipeline is depicted in Figure 4, with the detailed mechanism of our core component shown
on the right side. To ensure the generated image preserves the person’s identity and pose while
accurately rendering the new garments, we prepare two sets of conditions:
Person Conditioning cp: To accurately preserve the person’s identity and body pose, we construct
the person condition cp. First, we utilize AutoMask (Chong et al., 2024) to generate a cloth-agnostic
mask Ma from the input image Ip. Subsequently, a composite image, Icomp, is created by com-
bining the human pose skeleton extracted via DWPose (Yang et al., 2023) with the person image
masked by Ma. cp is formed as:

cp = Concat(Interpolate(Ma), E(Icomp)) (1)

where E is the VAE encoder, Interpolate is a downsampling function that resizes the mask Ma, and
Concat denotes the channel-wise concatenation. Finally, the main input to the UNet, denoted as X
in Figure 4, is obtained by concatenating the person condition cp and the Gaussian noise zN along
the channel dimension:

X = Concat(zN , cp) (2)

Reference Conditioning {Ri}Ki=1: To capture the detailed appearance of the target garments, we
extract a set of reference latents {Ri}Ki=1 from the corresponding reference images {IRi

}Ki=1, which
is defined as:

{Ri}Ki=1 = {E(IRi)}Ki=1 (3)

4
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In the detailed block diagram of Figure 4, we illustrate this with K = 4 examples (R1 . . . R4) for
visual clarity.
The image generation process is guided by a denoising UNet ϵθ, which predicts the noise ϵ̃t at each
timestep t. As shown in the right panel of Figure 4, we replace standard UNet blocks with our
Cacheable UNet Blocks to enable efficient multi-reference processing. our key innovation is to
conceptually partition the function of ϵθ into two streams: a time-independent path for reference
inputs and a time-dependent path for the denoising process.
Phase 1: Caching at Timestep N . As illustrated in the ‘Timestep N ’ path of the block diagram,
each reference latent Ri is processed individually along with the denoising input X , conditioned
on its corresponding Class Embedding Ei. This allows us to compute and cache a separate feature
representation, R(i)

cache, for each item. This operation is performed for all i ∈ {1, . . . ,K}:

R(i)
cache = ϵθ(Ri, Ei) for i = 1, . . . ,K (4)

The resulting set of cached features, {R(i)
cache}Ki=1, is stored for reuse.

Phase 2: Reuse at Timestep t < N . For the subsequent denoising steps t = N − 1 . . . 0, as shown
in the ‘Timestep N−1 ∼ 0’ path, the UNet only processes the time-dependent input X . It integrates
the static reference information by reading the pre-computed set of cached features, {R(i)

cache}Ki=1, via
a Semi-Attention mechanism (detailed in Section 3.2):

ϵ̃t = ϵθ(zt, cp, γ(t), {R(i)
cache}

K
i=1) (5)

This decomposition of the denoising process is the key to FastFit’s efficiency, as it shifts the expen-
sive computation for multiple reference features entirely out of the iterative loop. Once the process
concludes at t = 0, the final clean latent, z0, is mapped back to the pixel space using the VAE
decoder D, to produce the high-resolution output image, Iout:

Iout = D(z0) (6)

3.2 CACHEABLE UNET FOR EFFICIENT CONDITIONING

The primary bottleneck in existing subject-driven diffusion models is the repeated computation of
reference features at every denoising step. This is because the reference conditioning is typically
dependent on the timestep t, making the features dynamic. Our key innovation, the Cacheable UNet,
fundamentally breaks this dependency, enabling reference features to be computed once and reused.
This is achieved through two core components: Reference Class Embedding and a Semi-Attention
mechanism, as illustrated in Figure 4 (b).

R1

R2

R3

X

R1 R2 R3 X

Figure 5: Visualization of the Semi-
Attention Mask. Denosing feature X
attend to all features, while each refer-
ence feature Ri is restricted to its own.

Reference Class Embedding. To decouple the refer-
ence features from the denoising timestep t, we replace
the conventional timestep embedding with a static, learn-
able Reference Class Embedding for the reference items.
Specifically, for a set of K reference items {R1, . . . , RK},
each belonging to a certain category (e.g., ’top’, ’shoes’),
we introduce a corresponding set of learnable class embed-
dings {E1, . . . , EK}. The features for each reference item
Ri are conditioned on its class embedding Ei instead of
the shared timestep embedding γ(t) used by the denoising
features X . The reference class embedding is injected in
the same manner as the timestep embedding; both modu-
late the features within the ResNet blocks through an scal-
ing operation. Since the class embeddings are constant
throughout the entire denoising process, the resulting ref-
erence features become static and independent of the cur-
rent timestep t, making them inherently cacheable.
Semi-Attention Mechanism. Having made reference
features static, we need a mechanism to inject their information into the denoising process with-
out compromising their static nature. A standard full self-attention would allow information to flow
from the step-dependent denoising features X back to the reference features Ri, thereby ”contam-
inating” them and breaking the condition for caching. To solve this, we propose a Semi-Attention
mechanism, visualized in Figure 5. In this design, we treat both the denoising features X and all
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AnyDoor PBE IP-Adapter MimicBrush Part2Whole CatVTON FitDiT OursReferencesPerson

Figure 6: Qualitative comparison on the DressCode-MR dataset. See Section 5 for more results.
Please zoom in for more details.

reference features {Ri} as a single sequence of tokens. The attention calculation is governed by a
specific mask that controls the information flow: (1) Denoising-to-All: The tokens of the denois-
ing feature X are allowed to attend to all tokens in the sequence (i.e., to itself and to all reference
features Ri). This allows the model to effectively ”read” the appearance information from each gar-
ment and apply it to the person. (2) Reference-to-Self: The tokens of each reference feature Ri are
only allowed to attend to themselves. They cannot attend to the denoising features X or to any other
reference feature Rj (where j ̸= i). This attention mask ensures that the reference features act as
a static, read-only source of information for the denoising process. Their representations are never
updated by the dynamic features of X , thus preserving their cacheability across all timesteps.

OminiControl2 (Tan et al., 2025b) and EasyControl (Zhang et al., 2025) also employ a semi-
attention-like mechanism for KV caching. However, their reliance on dedicated trainable branches
and treat reference encoding statically by fixing the timestep to zero, thus failing to utilize this input
slot for fine-grained control. Our Cacheable UNet addresses this by replacing the uninformative
zero-timestep embedding with informative class embeddings, which allows the a single model to
explicitly attend to specific garment types or regions based on the input category, as demonstrated
by the ablation results in Fig. 9.

3.3 INFERENCE ACCELERATION WITH REFERENCE KV CACHE

The design of our Cacheable UNet enables a highly efficient inference pipeline via a Reference KV
Cache. As depicted in Figure 4(b), the process is split into two stages:

Pre-computation and Caching (One-time Cost). Before the iterative denoising loop begins, we
perform a single forward pass for each reference item Ri through the UNet ϵθ. For each Semi-
Attention layer, we then compute and store its corresponding Key (Kcache

i ) and Value (V cache
i ) matri-

ces. This pre-computation step is performed only once per generation request.

Accelerated Denoising Loop. For every subsequent denoising step from t = N − 1 down to 0,
we completely bypass the computation for the reference branches. Instead, for each Semi-Attention
layer, we only compute the Query (QX ), Key (KX ), and Value (VX ) from the current denoising
features Xt. We then construct the full key and value matrices, Kfull and Vfull, by concatenating
these dynamic tensors with all the cached keys {Kcache

i }Ki=1 and values {V cache
i }Ki=1, respectively:

Kfull = Concat(KX ,Kcache
1 , . . . ,Kcache

K ) (7)

Vfull = Concat(VX , V cache
1 , . . . , V cache

K ) (8)
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Figure 7: Qualitative comparison on the VITON-HD (Choi et al., 2021) and DressCode (Morelli
et al., 2022) dataset. See Section 5 for more results. Please zoom in for more details.

The final attention output is then calculated only for the denoising query QX :

Attention(QX ,Kfull, Vfull) = softmax
(
QXKT

full√
dk

)
Vfull (9)

This strategy effectively reduces the computational cost of attention at each step to be dependent
only on the denoising features, regardless of the number or complexity of reference items. This fun-
damentally resolves the efficiency bottleneck, leading to a substantial reduction in inference latency,
especially in the multi-reference setting central to our work.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our model on three datasets, VITON-HD (Choi et al., 2021), DressCode (Morelli et al.,
2022), and our newly proposed DressCode-MR, all at 1024×768 resolution. VITON-HD (Choi
et al., 2021) provides 13,679 image pairs for upper-body virtual try-on (11,647 train / 2,032 test).
DressCode (Morelli et al., 2022) dataset features 53,792 full-body pairs (48,392 train / 5,400 test)
covering tops, bottoms, and dresses. To facilitate multi-reference research, we introduce DressCode-
MR, built upon DressCode. As illustrated in Figure 3, it contains 28,179 samples (25,779 train /
2,400 test), each pairing a person with a complete outfit from up to five categories: tops, bottoms,
dresses, shoes, and bags. We constructed this dataset by training five expert restoration models
(based on CatVTON (Chong et al., 2024) and FLUX (Labs, 2024)) using VITON-HD, DressCode,
and a small set of internet-sourced shoe and bag pairs. These models were used to recover the
canonical images for items worn in DressCode, and the final high-quality samples were selected
through human feedback.

4.2 IMPLEMENTATION DETAILS

We train our single-reference try-on model based on the pretrained StableDiffusion v1.5 (Rombach
et al., 2021) inpainting on the DressCode (Morelli et al., 2022) and VITON-HD (Choi et al., 2021)
datasets for 64,000 steps with a batch size of 32 and a resolution of 1024×768. This version is
used for all single-reference quantitative evaluations. Building upon the single-reference model, we
fine-tune it on our proposed DressCode-MR dataset for 16,000 steps with the same resolution and
batch size. We utilized the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning
rate of 1 × 10−5 for both training stages. To enable classifier-free guidance, 20% of the reference

7
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images were randomly dropped during the training. All experiments were conducted on 8 NVIDIA
H100 GPUs.

4.3 METRICS

We evaluate our model’s performance on two fronts: image fidelity and computational efficiency.
Image Fidelity. We use two settings. In the paired setting, where ground-truth images are avail-
able, we measure similarity using the Structural Similarity Index (SSIM) (Wang et al., 2004),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Fréchet Inception Dis-
tance (FID) (Seitzer, 2020), and Kernel Inception Distance (KID) (Bińkowski et al., 2021). In the
unpaired setting, we assess overall realism and diversity by comparing the distribution of our gener-
ated samples to that of real images using FID and KID.
Computational Efficiency. We report the total parameters, inference latency, and peak memory
usage. These metrics are benchmarked by averaging 100 runs on a single NVIDIA H100 GPU, with
each run configured for 20 denoising steps and with classifier-free guidance (CFG) (Ho & Salimans,
2022) enabled.

4.4 QUANTITATIVE COMPARISON

Table 1: Quantitative comparison of model effi-
ciency. Best and second-best results are in bold
and underlined, respectively. All methods are eval-
uated on a single H100 GPU with 20 steps. Red
indicates newly added data.

Method Params(M)↓ Time(s)↓ Memory(M)↓
OmniTry Feng et al. (2025) 17043.63 51.16 36276
Any2AnyTryon (Guo et al., 2025) 16786.78 12.19 35218
PromptDresser (Kim et al., 2024) 6011.03 4.29 17364
ITA-MDT (Hong et al., 2025) 1891.90 3.44 28910
Leffa (Zhou et al., 2024) 1802.72 3.32 7996
IDM-VTON (Choi et al., 2024) 7086.91 2.76 19072
FitDiT (Jiang et al., 2024) 5870.80 2.00 15992
OOTDiffusion (Xu et al., 2024) 2229.73 1.93 10154
IMAGDressing (Shen et al., 2024) 2973.81 2.68 9240
CatVTON (Chong et al., 2024) 899.06 2.10 5500

FastFit 904.86 1.16 6944

Single-Reference Virtual Try-On. We con-
ducted a quantitative comparison against cur-
rent state-of-the-art virtual try-on methods
(Guo et al., 2025; Kim et al., 2024; Jiang et al.,
2024; Choi et al., 2024; Chong et al., 2024;
Xu et al., 2024) on VITON-HD (Choi et al.,
2021) and DressCode (Morelli et al., 2022)
datasets. As shown in Table 3, FastFit achieves
competitive results across both datasets un-
der paired and unpaired settings, demonstrat-
ing its superior capability in generating high-
quality images. Table 1 highlights the effi-
ciency of FastFit, which achieves an average
3.5× speedup over comparable methods while
remaining competitive in terms of parameters
and memory usage.

Table 2: Quantitative comparison on DressCode-MR for multi-reference
try-on. Best and second-best results are in bold and underlined, respec-
tively. Red indicates newly added data.

Method Time(s)↓ Paired Unpair

FID↓ KID↓ SSIM↑ LPIPS↓ DISTS↓ FID↓ KID↓
AnyDoor (Chen et al., 2023) 12.08 37.138 22.571 0.768 0.235 0.229 44.068 23.958
OmniTry (Feng et al., 2025) 87.32 33.041 17.870 0.781 0.198 0.195 37.864 21.345
PBE (Yang et al., 2022) 5.22 28.296 16.092 0.796 0.215 0.225 31.135 17.887
MimicBrush (Chen et al., 2024) 6.62 21.074 9.858 0.800 0.173 0.206 22.111 9.992
Part2Whole (Huang et al., 2024b) 5.73 20.313 8.200 0.807 0.187 0.179 24.564 10.581
CatVTON (Chong et al., 2024) 8.94 16.131 6.980 0.856 0.106 0.147 18.339 7.458
IP-Adapter (Ye et al., 2023) 5.62 14.459 4.144 0.861 0.089 0.143 24.139 10.783
FitDiT (Jiang et al., 2024) 3.38 14.722 5.471 0.850 0.122 0.162 15.956 5.645

FastFit 1.90 9.311 1.512 0.859 0.079 0.117 12.060 2.124

Multi-Reference Vir-
tual Try-On. Ta-
ble 2 shows our multi-
reference try-on results.
In the absence of meth-
ods designed for simul-
taneous multi-reference
generation, we adapt
strong baselines from
subject-driven generation
(Ye et al., 2023; Yang
et al., 2022; Chen et al.,
2023; 2024) and multi-
category try-on (Jiang
et al., 2024; Chong et al., 2024; Huang et al., 2024b) via sequential single-reference inference.
FastFit achieves state-of-the-art scores across quality metrics and is also the most efficient method.
This demonstrates its superior ability to cohesively synthesize multiple references with high fidelity.

4.5 QUALITATIVE COMPARISON

Single-Reference Virtual Try-On. Figure 7 shows the qualitative comparison for the single-
reference try-on task. On the VITON-HD (Choi et al., 2021) dataset, our method excels at preserv-
ing fine-grained details, such as the text “REBEL” on T-shirts, where other methods often produce
blurred results. FastFit also realistically renders challenging materials, like the sheer polka-dot top.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Quantitative comparison for single-reference virtual try-on on the VITON-HD (Choi et al.,
2021) and DressCode (Morelli et al., 2022) datasets. All metrics are rounded to four decimal places.
Best and second-best results in each column are in bold and underlined, respectively. Red indicates
newly added data.

Method VITON-HD DressCode

Paired Unpaired Paired Unpaired

FID ↓ KID ↓ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ FID ↓ KID ↓ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
OmniTry (Feng et al., 2025) 15.2550 6.1404 0.7635 0.2108 0.1946 15.1601 5.8627 4.1814 0.8845 0.8805 0.0675 0.0862 6.4109 1.6295
Any2AnyTryon (Guo et al., 2025) 9.9811 3.4964 0.8522 0.1173 0.0910 11.1953 2.8055 5.1107 1.2650 0.8966 0.0589 0.1871 6.7088 1.5797
PromptDresser (Kim et al., 2024) 5.9344 0.5498 0.8460 0.0902 0.1246 8.8846 0.9090 9.5625 4.7948 0.8578 0.1039 0.0919 10.6181 4.9775
ITA-MDT (Hong et al., 2025) 16.0473 12.0219 0.8477 0.1525 0.1566 16.4528 10.5733 11.6633 8.0956 0.8799 0.1255 0.1753 13.6714 9.1708
Leffa (Zhou et al., 2024) 5.6673 0.6922 0.8570 0.0762 0.1151 10.4455 2.6397 7.1932 2.1135 0.8612 0.0838 0.0855 20.0985 13.5061
IDM-VTON (Choi et al., 2024) 6.1121 1.1116 0.8655 0.0743 0.1026 9.2491 1.2672 7.1808 3.5242 0.8912 0.0695 0.0905 9.1666 4.4888
FitDiT (Jiang et al., 2024) 8.1763 1.0785 0.8383 0.0957 0.0917 9.9789 1.4779 5.5706 1.9007 0.8992 0.0579 0.1054 4.8045 0.7120
IMAGDressing (Shen et al., 2024) 8.4526 1.9560 0.8207 0.1292 0.1268 12.8017 3.9151 10.9586 5.6359 0.8526 0.1274 0.1665 15.1638 9.0085
OOTDiffusion (Xu et al., 2024) 5.7620 0.2665 0.8434 0.0724 0.1067 9.0820 0.7020 6.9754 2.0141 0.8728 0.0772 0.0833 8.1209 2.8861
CatVTON (Chong et al., 2024) 6.7382 1.3201 0.8814 0.0877 0.0916 10.5517 2.2724 3.7101 1.0104 0.9092 0.0619 0.0950 5.8715 1.6056

FastFit 5.6294 0.5046 0.8851 0.0778 0.0822 8.6288 0.6654 2.8361 0.3902 0.9065 0.0571 0.0850 4.3974 0.5525

Table 4: Ablation study of the key components in our model on DressCode (Morelli et al., 2022)
dataset. The best and second-best results are demonstrated in bold and underlined, respectively.

Variants Params(M)↓ Time (s)↓ Memory (M)↓ Paired Unpaired

FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓
w/o KV Cache 904.86 1.92 6944 2.8585 0.3737 0.9057 0.0588 4.4206 0.5903
w/ Full Attention 904.86 2.17 6944 3.1847 0.5426 0.9056 0.0606 4.6221 0.6533
w/o Class Embed 904.85 1.16 6944 2.9146 0.4000 0.9056 0.0591 4.4624 0.5929
w/ ReferenceNet 1729.92 1.16 8770 2.8474 0.3577 0.9054 0.0588 4.4365 0.5741

FastFit 904.86 1.16 6944 2.8585 0.3737 0.9057 0.0588 4.4206 0.5903

On the DressCode (Morelli et al., 2022) dataset, our model accurately captures the correct shape and
style of complex garments like the high-slit dress.

Multi-Reference Virtual Try-On. We further evaluate FastFit on the more challenging multi-
reference virtual try-on task, with results presented in Figure 6. The comparison clearly demon-
strates our model’s superior capability. FastFit successfully synthesizes a coherent and realistic final
image by seamlessly combining multiple reference items. In contrast, most existing methods, such
as AnyDoor (Chen et al., 2023) and PBE (Yang et al., 2022), often fail to properly compose the
different garments or produce significant artifacts. Our method, however, maintains the identity and
details of each piece of clothing, resulting in a natural and believable complete outfit.

4.6 ABLATION STUDIES

The results in Table 4 validate our key design choices. Firstly, the Reference KV Cache is crucial
for efficiency; disabling it increases inference time from 1.16s to 1.92s. It is important to clarify that
this ∼1.66× (∼40% saving) speedup is attributed solely to the caching mechanism. When combined
with our holistic architectural lightweighting, FastFit achieves an aggregate ∼3.5× average infer-
ence speedup compared to standard diffusion-based baselines in Table 1. Crucially, this acceleration
comes with no loss in generation quality, as the performance metrics are identical. Secondly, our
parameter-sharing strategy is highly effective. Introducing a separate ReferenceNet nearly doubles
the parameters (904.86M → 1729.9M) and increases memory usage, but yields no corresponding
performance improvement. Furthermore, replacing Semi-Attention with Full Attention is detrimen-
tal, as it not only slows inference to 2.17s but also degrades generation quality (e.g., FID increases
to 3.1847). We hypothesize this is because full interaction disrupts the consistency of reference fea-
tures. Finally, removing the Class Embedding causes a slight performance drop, and its effectiveness
in guiding region-specific attention is presented in Section 5. All ablation experiments follow the
settings described in Section 4.2, trained for 32K steps, and are evaluated on the DressCode (Morelli
et al., 2022) dataset.

4.7 FAILURE CASE ANALYSIS

As visualized in Figure 8, we analyze specific limitations when handling Out-of-Distribution (OOD)
scenarios:
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Figure 8: Failure cases. (Left) Physical Ambiguity: Accessories (e.g., bags) may lack physical
grounding when the pose offers no clear interaction cues. (Middle) Structural Bias: Niche styles
(e.g., Kimonos) are occasionally mapped to standard Western topologies due to dataset bias. (Right)
Material Loss: Complex textures (e.g., transparent plastic) may lose high-frequency details due to
their sparsity in training data.

Physical Interaction (Left Col.): Without explicit 3D collision modeling, the model may generate
accessories (e.g., bags) with unnatural placement when the target pose lacks clear interaction cues.
Structural Bias (Middle Col.): For niche styles like Kimonos or Sarees, the model occasionally
overfits to standard Western clothing topologies found in training data, resulting in inaccurate sleeve
shapes or draping.
Material Fidelity (Right Col.): Challenging materials such as transparent plastic or intricate lace
may exhibit texture smoothing or detail loss, primarily due to their sparsity in public datasets like
VITON-HD.
5 CONCLUSION

In this paper, we proposed FastFit, a high-speed multi-reference virtual try-on framework designed
to break the critical trade-offs between versatility, efficiency, and quality in existing technologies.
Through an innovative Cacheable UNet, which combines a Class Embedding and a Semi-Attention
mechanism, we decoupled reference feature encoding from the denoising process. This design en-
ables a Reference KV Cache that allows reference features to be computed once and reused loss-
lessly across all steps, fundamentally eliminating the computational redundancy that plagues current
methods. Experimental results show that FastFit achieves a significant efficiency advantage—an av-
erage 3.5× speedup over comparable methods—without sacrificing generation quality. For the first
time, it enables coherent, synergistic try-on for up to 5 key categories: tops, bottoms, dresses, shoes,
and bags. Furthermore, the DressCode-MR dataset we constructed provides a valuable foundation
for future research in complex outfit generation. In summary, FastFit represents a promising advance
towards a more realistic, efficient, and diverse virtual try-on experience, significantly lowering the
barriers for its widespread application in e-commerce and intelligent outfit visualization.

Limitations and Future Work. Despite the model’s strong performance, several areas present
opportunities for future exploration. To further enhance realism, the modeling of complex physi-
cal interactions and layering among garments could be improved. Expanding the DressCode-MR
dataset with such complex interaction pairs would be a valuable direction. Another important re-
search path is improving generalization to underrepresented apparel, such as styles with unique
topologies or challenging materials. Finally, while our framework significantly accelerates infer-
ence, a gap remains toward achieving real-time interaction. Exploring techniques such as guidance
and step distillation, combined with more advanced caching mechanisms, offers a promising path to
bridge this gap and enable applications like interactive real-time outfit visualization.
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APPENDIX

A. QUANTITATIVE COMPARISON ACROSS GARMENT TYPES

For a more fine-grained analysis, Table 5 presents a quantitative comparison on the DressCode
(Morelli et al., 2022) dataset, with results broken down by clothing category. The results highlight
the robust and superior performance of our method across all tested categories, including upper,
lower, and dresses. FastFit consistently achieves either the best or second-best scores in the vast
majority of key metrics, demonstrating its strong and stable performance regardless of the garment
type. This showcases the model’s excellent generalization capability for different clothing styles.

Table 5: Quantitative comparison on the DressCode dataset, with results broken down by category
(Upper, Lower, and Dresses). The best results are marked in bold and the second-best are underlined.
↓ indicates lower is better, while ↑ indicates higher is better.

Methods Upper Lower Dresses

FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓ SSIM↑ LPIPS↓
Any2AnyTryon 10.4741 1.7130 0.9206 0.0476 13.1152 2.8336 0.8896 0.0655 9.1124 1.6539 0.8796 0.0636
PromptDresser 9.2447 0.7174 0.9044 0.0678 32.9093 17.9749 0.8327 0.1352 16.8179 6.8932 0.8363 0.1087
Leffa 11.2549 2.0947 0.8908 0.0578 19.6834 5.8985 0.8594 0.0908 13.3859 2.3701 0.8335 0.1029
IDM-VTON 11.2283 3.3860 0.9174 0.0547 11.7878 3.4218 0.8978 0.0655 17.5135 8.3389 0.8585 0.0882
OOTDiffusion 9.5945 1.1055 0.9040 0.0528 19.6615 6.1217 0.8751 0.0827 14.8496 4.4567 0.8393 0.0963
CatVTON 7.8465 1.0851 0.9360 0.0504 8.6135 1.6574 0.9236 0.0562 8.9453 1.0575 0.8669 0.0791
FitDiT 8.0876 0.5789 0.9241 0.0417 24.5079 11.7225 0.8944 0.0758 7.2253 0.4768 0.8789 0.0562

FastFit 6.8354 0.2453 0.9318 0.0485 7.1311 0.7981 0.9207 0.0511 7.5890 0.2446 0.8671 0.0720

B. MORE VISUAL COMPARISONS

B.1. SINGLE-REFERENCE VIRTUAL TRY-ON

In the single-reference virtual try-on task, our method demonstrates robust performance across both
the VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022) datasets. As illustrated
in Figure 11, FastFit excels at preserving high-frequency details on the garments, such as intricate
patterns and text logos. Furthermore, our model accurately renders the correct shape and length
for various types of clothing. The final results show that the garments are naturally fused with the
person’s body, effectively handling challenging poses and occlusions.

B.2. MULTI-REFERENCE VIRTUAL TRY-ON

For the more challenging multi-reference task, FastFit exhibits a significant advantage over com-
peting methods. Figure 12 showcases our model’s unique ability to seamlessly combine multiple,
distinct reference items into a single, coherent outfit. Notably, even during this complex composi-
tion process, FastFit faithfully preserves the fine-grained details and logos of each individual item
(e.g., ”SPAS”, ”CHIUS”). This capability to generate complete and detailed ensembles in complex
scenarios highlights its superiority where other methods often struggle.

B.3. QUALITATIVE COMPARISONS WITH CLOSED-SOURCE MODELS

To more comprehensively evaluate our model’s performance, we conducted qualitative comparisons
with mainstream closed-source models, including Nano Banana, GPT-4o, and FLUX.1 Kontext
(Black Forest Labs et al., 2025) [Pro], on the multi-reference virtual try-on task. Due to their input
limitations, we stitched the source person and multiple reference images into a single composite
image. We then used the prompt, ”Dress the person on the left with the garments and accessories on
the right,” to obtain the results. Furthermore, given the non-deterministic nature of their outputs, we
generated four results for each example and selected the most plausible one for display. As seen in
Figure 9, our method is better at preserving the original person’s pose and background environment,
and more consistently integrates details from the various reference images.

C. VISUAL ANALYSIS OF THE EFFECTIVENESS OF CLASS EMBEDDINGS

To visually validate the effectiveness of the Reference Class Embedding as a key control mechanism
in our model, we conducted an additional ablation study. As shown in Figure 10, the experiment
is designed to isolate the influence of the class embedding. For each example row, we provide the
model with the exact same source person and reference image. The only variable changed across
the columns is the specific class embedding provided (e.g., ’Upper’, ’Lower’, ’Dresses’, ’Shoes’,
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Nano
Banana GPT-4o FLUX.1 

Kontext [Pro] OursReferencesPerson Nano
Banana GPT-4o FLUX.1 

Kontext [Pro] OursReferencesPerson

Figure 9: Qualitative comparison with mainstream closed-source models on multi-reference virtual
try-on. This figure provides a direct visual comparison of our model against several top-tier closed-
source models (Nano Banana, GPT-4o, FLUX.1 Kontext (Black Forest Labs et al., 2025) [Pro]) on
the multi-reference virtual try-on task.

UpperSource Reference

Input Class Embedding

Lower Dresses Shoes Bag

Figure 10: Demonstration of the visual effect of class embeddings. By providing different class
embeddings (e.g., ’Upper’, ’Lower’, ’Dresses’, ’Shoes’, ’Bag’) for the same reference image, our
model can be directed to selectively transfer the corresponding item to the source person.

’Bag’). The results demonstrate that the class embedding provides fine-grained, semantic control
over the try-on process. The model is able to interpret the embedding and selectively transfer the
corresponding item from the reference image, even when multiple items are present. This experi-
ment confirms that by applying a Class Embedding, the model’s attention is effectively guided to the
corresponding region of the reference image, which is crucial for preventing the features of different
reference items from being conflated in a multi-reference scenario.
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Figure 11: More visual comparisons on the VITON-HD (Choi et al., 2021) and DressCode (Morelli
et al., 2022) dataset with baseline methods. Please zoom in for more details.
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AnyDoor PBE IP-Adapter MimicBrush Part2Whole CatVTON FitDiT OursReferencesPerson

Figure 12: More visual comparisons on the DressCode-MR dataset with baseline methods. Please
zoom in for more details.
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