

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FASTFIT: ACCELERATING MULTI-REFERENCE VIRTUAL TRY-ON VIA CACHEABLE DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

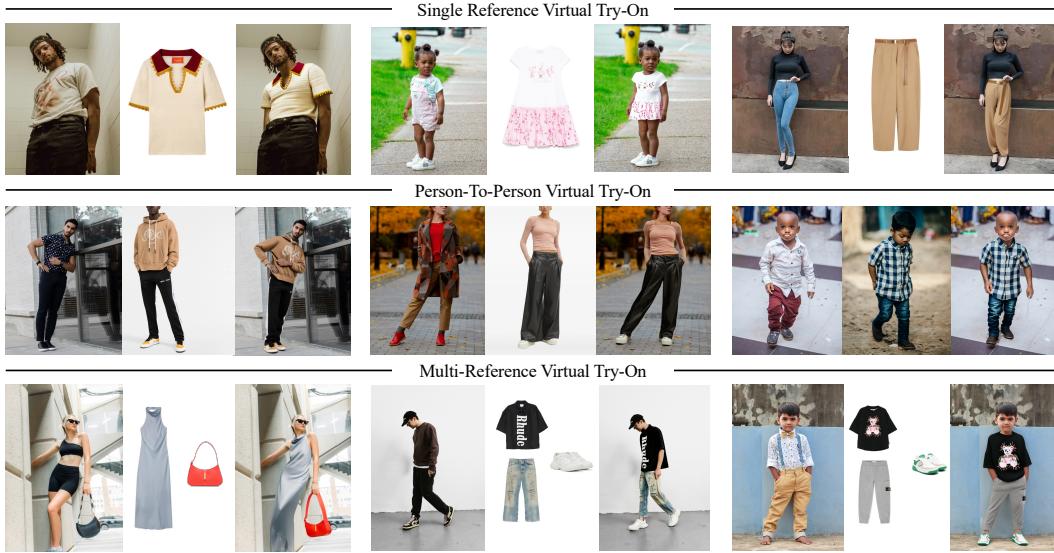


Figure 1: FastFit provides an accelerated solution for diverse virtual try-on tasks, including single-reference, person-to-person, and our primary focus, multi-reference composition. By decoupling the reference images from the denoising process, our cacheable diffusion architecture delivers high-fidelity virtual try-on across multiple challenging scenarios at a much faster speed.

ABSTRACT

Despite its great potential, virtual try-on technology is hindered from real-world application by two major challenges: the inability of current methods to support multi-reference outfit compositions (including garments and accessories), and their significant inefficiency stemming from the redundant re-computation of reference features during denoising. To address these challenges, we propose FastFit, a high-speed multi-reference virtual try-on framework based on a novel cacheable diffusion architecture. By combining the Semi-Attention mechanism and substituting traditional timestep embeddings with class embeddings for reference items, our model fully decouples reference feature encoding from the denoising process with negligible parameter overhead. This allows reference features to be computed only once and losslessly reused across all steps, fundamentally breaking the efficiency bottleneck and achieving an average $3.5\times$ speedup over comparable methods. Furthermore, to facilitate research on complex, multi-reference virtual try-on, we introduce DressCode-MR, a new large-scale dataset. It comprises 28,179 sets of high-quality, paired images covering five key categories (tops, bottoms, dresses, shoes, and bags), constructed through a pipeline of expert models and human feedback refinement. Extensive experiments on the VITON-HD, DressCode, and DressCode-MR datasets show that FastFit surpasses state-of-the-art methods on key fidelity metrics while offering its significant advantage in inference efficiency.

054 1 INTRODUCTION

056 Generative AI-based virtual try-on has recently
 057 made remarkable progress. An ideal virtual try-
 058 on system—one that could revolutionize online re-
 059 tail and power applications like intelligent outfit vi-
 060 sualization—would allow users to seamlessly mix
 061 and match various garments and accessories, rapidly
 062 generating photorealistic results to enable an inter-
 063 active experience. However, two major challenges
 064 hinder current methods from achieving this vision.
 065 Firstly, most existing methods (Xie et al., 2022;
 066 Wang et al., 2018; Xu et al., 2024; Choi et al., 2024;
 067 Chong et al., 2024; Jiang et al., 2024) are designed
 068 for a single reference garment (e.g., a top or a dress),
 069 requiring a complete multi-item outfit to be ren-
 070 dered through iterative passes, leading to both in-
 071 flated computation time and the risk of accumulated
 072 synthesis errors. Furthermore, the general lack of
 073 support for essential accessories like shoes and bags
 074 prevents the generation of truly holistic and realis-
 075 tic outfits. Secondly, the computational inefficiency
 076 of current methods stems from two competing yet
 077 flawed strategies, as illustrated in Figure 2. **On the**
 078 **other hand, in-context learning-based methods (Guo**
 079 **et al., 2025; Chong et al., 2024; Huang et al., 2024a)**
 080 **repeatedly process the concatenated reference and**
 081 **person features at each of the N denoising steps**
 082 **(Figure 2 (b)), causing significant computational re-**
 083 **dundancy due to the reprocessing of static reference**
 084 **features. On the other hand, ReferenceNet-based methods (Huang et al., 2024b; Choi et al., 2024;**
 085 **Xu et al., 2024; Zhang et al., 2024b; Zhou et al., 2024; Jiang et al., 2024) employ a separate network**
 086 **to encode references (Figure 2 (a)). While this explicit separation avoids the aforementioned com-**
 087 **putational redundancy, it introduces substantial parameter overhead, increasing both training and**
 088 **inference costs.**

089 To overcome these limitations, we introduce FastFit, a high-speed framework that enables coher-
 090 ent multi-reference virtual try-on through a novel cacheable diffusion architecture. Our proposed
 091 Cacheable UNet decouples the reference feature encoding from the iterative denoising process,
 092 which is achieved by introducing a Reference Class Embedding and a Semi-Attention mechanism.
 093 This structure enables a Reference KV Cache during inference, which allows reference features to be
 094 computed only once and losslessly reused in all subsequent steps, fundamentally breaking the effi-
 095 ciency bottleneck and achieving an average $3.5 \times$ speedup over comparable methods with negligible
 096 parameter overhead. Furthermore, observing the lack of datasets with complete outfit pairings, we
 097 construct DressCode-MR, a large-scale multi-reference try-on dataset based on Morelli et al. (2022).
 098 We developed a data-generation pipeline that trains expert models based on Chong et al. (2024) and
 099 Labs (2024) to recover canonical images of individual items, and utilizes human feedback to ensure
 100 high quality. This results in 28,179 multi-reference image sets spanning five key categories: tops,
 101 bottoms, dresses, shoes, and bags.

102 In summary, the contributions of this work include:

- 103 • We propose FastFit, a novel framework for high-speed, multi-reference virtual try-on. It is
 104 the first to enable coherent multi-reference virtual try-on across five key categories, includ-
 105 ing tops, bottoms, dresses, shoes, and bags, while achieving an average $3.5 \times$ speedup over
 106 comparable methods.
- 107 • We design a novel Cacheable UNet structure featuring a Reference Class Embedding and
 108 a Semi-Attention mechanism. This design decouples reference feature encoding from the
 109 denoising process, enabling a lossless Reference KV Cache that breaks the core efficiency
 110 bottleneck of subject-driven generation architectures.

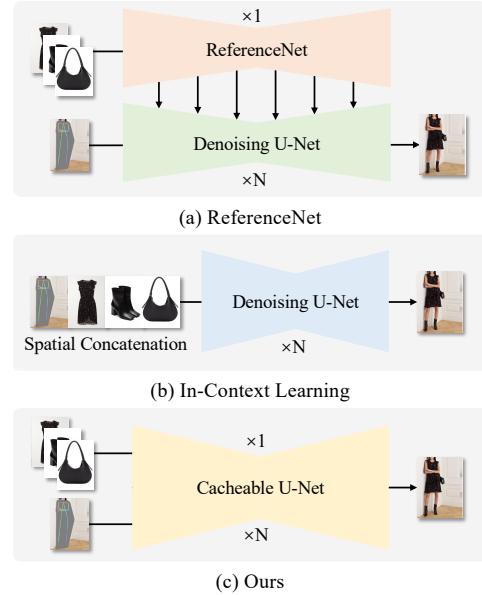


Figure 2: Architectural comparison of multi-reference try-on methods. Our cacheable U-Net (c) avoids the parameter overhead of ReferenceNet (a) and the computational redundancy of In-Context Learning (b).

Figure 3: Illustrative examples from our proposed DressCode-MR dataset. Each sample provides a pairing of a full-body person image with a set of corresponding canonical images for each item.

- We construct DressCode-MR, the first large-scale dataset specifically for multi-reference virtual try-on. It comprises 28,179 high-quality image sets, providing a solid foundation to foster future research in complex outfit generation.
- We conduct extensive experiments on VITON-HD, DressCode, and DressCode-MR datasets, demonstrating that FastFit surpasses state-of-the-art methods in image fidelity while maintaining its significant efficiency advantage.

2 RELATED WORK

2.1 SUBJECT-DRIVEN IMAGE GENERATION

To enable finer-grained control, subject-driven image generation has become a key research focus. Early efforts primarily centered on single reference images, injecting specific subject identities or artistic styles by fine-tuning model weights (Ruiz et al., 2022; Yang et al., 2022; Hu et al., 2021; Huang et al., 2024a) or utilizing lightweight adapters (Ye et al., 2023; Mou et al., 2023; Chen et al., 2023). However, the former approach requires training a separate model for each subject, limiting its practical flexibility, while the latter, despite being convenient, often faces challenges in maintaining high fidelity to the reference image. Some methods based on in-context learning, such as IC-LoRA (Huang et al., 2024a) and OminiControl (Tan et al., 2025a), achieve superior detail preservation by concatenating the reference image with noise along the spatial dimension. The trade-off is that the reference must participate in every denoising step, which is the root cause for significantly increasing inference time and computational cost. EasyControl (Zhang et al., 2025) and OminiControl2 (Tan et al., 2025b) achieve further acceleration through feature reuse by adjusting the attention map. However, they require creating additional trainable branches for each condition. This architectural dependency on separate branches makes scaling to multiple references cumbersome and computationally expensive. Consequently, some works have begun to explore multi-reference generation; for instance, IC-Custom (Li et al., 2025) inputs multiple images as a single concatenated map for multi-concept composition, and MultiRef (Chen et al., 2025) provides a systematic definition and benchmark for multi-reference generation. Nevertheless, in the domain of virtual try-on, multi-reference generation remains an under-explored area. How to harmoniously compose visual information from multiple references while mitigating the heightened computational or parameter burden from increased inputs remains a significant and open challenge.

2.2 IMAGE-BASED VIRTUAL TRY-ON

Image-based virtual try-on aims to realistically synthesize a person wearing target garments. Classic paradigms centered on a warp-and-fuse method, which explicitly deforms the garment using either geometric transformations or learned appearance flows before the blending stage (Wang et al., 2018; Han et al., 2018; Choi et al., 2021; Han et al., 2019; Ge et al., 2021; Xie et al., 2021; 2023; Gou et al., 2023; Chong & Mo, 2022); however, these approaches are frequently hampered by visual artifacts from inaccurate warping. Subsequently, the advent of diffusion models revolutionized the field by reframing the task as end-to-end conditional image generation, bypassing the error-prone warping step. The dominant strategy in these modern models involves injecting high-fidelity garment features into the denoising process via sophisticated conditioning mechanisms, such as parallel encoder branches (i.e., ReferenceNets) or ControlNet(Zhang et al., 2023)-like structures, a technique employed by a vast body of recent work (Zhu et al., 2023; Morelli et al., 2023; Kim et al., 2023; Xu et al., 2024; Wang et al., 2024; Choi et al., 2024; Sun et al., 2024; Zhou et al., 2024; Zhang et al., 2024a; Kim et al., 2024). Recent innovations further push the boundaries by exploring alternative backbones like Diffusion Transformers (Peebles & Xie, 2022) or introducing novel control

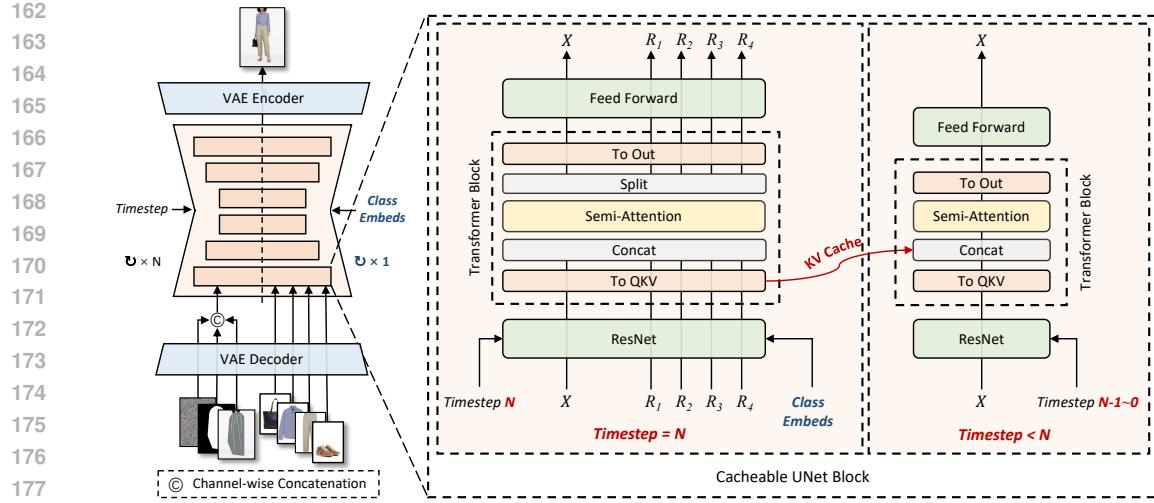


Figure 4: Overview of the FastFit Inference Pipeline. The left side depicts the overall flow, consisting of a VAE Encoder, a Cacheable UNet, and a VAE Decoder. The input to the UNet, denoted as X , is a concatenation of the noisy latent z_n and person conditions c_p . The right side details the proposed Cacheable UNet Block. This block operates in two modes: at the initial timestep N , it computes and caches features from reference inputs $R_1 \dots R_4$; at subsequent timesteps ($t < N$), it reuses these cached features via Semi-Attention to accelerate the denoising process.

modalities such as textual prompts and more generalized conditioning schemes (Guo et al., 2025; Jiang et al., 2024). Despite achieving unprecedented realism, their inference speed and general limitation to single garments have become key bottlenecks, hindering the technology’s application in real-world scenarios that demand rapid feedback and multi-item outfit composition.

3 METHODS

3.1 OVERVIEW

The overall framework of FastFit is built upon the foundation of Latent Diffusion Models (LDMs) (Rombach et al., 2021) and is designed to achieve high-speed, multi-reference virtual try-on through a novel conditioning cacheable UNet architecture. To clarify the data flow during inference, the entire pipeline is depicted in Figure 4, with the detailed mechanism of our core component shown on the right side. To ensure the generated image preserves the person’s identity and pose while accurately rendering the new garments, we prepare two sets of conditions:

Person Conditioning c_p : To accurately preserve the person’s identity and body pose, we construct the person condition c_p . First, we utilize AutoMask (Chong et al., 2024) to generate a cloth-agnostic mask M_a from the input image I_p . Subsequently, a composite image, I_{comp} , is created by combining the human pose skeleton extracted via DWPose (Yang et al., 2023) with the person image masked by M_a . c_p is formed as:

$$c_p = \text{Concat}(\text{Interpolate}(M_a), \mathcal{E}(I_{comp})) \quad (1)$$

where \mathcal{E} is the VAE encoder, Interpolate is a downsampling function that resizes the mask M_a , and Concat denotes the channel-wise concatenation. Finally, the main input to the UNet, denoted as X in Figure 4, is obtained by concatenating the person condition c_p and the Gaussian noise z_N along the channel dimension:

$$X = \text{Concat}(z_N, c_p) \quad (2)$$

Reference Conditioning $\{R_i\}_{i=1}^K$: To capture the detailed appearance of the target garments, we extract a set of reference latents $\{R_i\}_{i=1}^K$ from the corresponding reference images $\{I_{R_i}\}_{i=1}^K$, which is defined as:

$$\{R_i\}_{i=1}^K = \{\mathcal{E}(I_{R_i})\}_{i=1}^K \quad (3)$$

216 In the detailed block diagram of Figure 4, we illustrate this with $K = 4$ examples ($R_1 \dots R_4$) for
 217 visual clarity.

218 The image generation process is guided by a denoising UNet ϵ_θ , which predicts the noise $\tilde{\epsilon}_t$ at each
 219 timestep t . As shown in the right panel of Figure 4, we replace standard UNet blocks with our
 220 **Cacheable UNet Blocks** to enable efficient multi-reference processing. Our key innovation is to
 221 conceptually partition the function of ϵ_θ into two streams: a time-independent path for reference
 222 inputs and a time-dependent path for the denoising process.

223 **Phase 1: Caching at Timestep N .** As illustrated in the ‘Timestep N ’ path of the block diagram,
 224 each reference latent R_i is processed individually along with the denoising input X , conditioned
 225 on its corresponding Class Embedding E_i . This allows us to compute and cache a separate feature
 226 representation, $\mathcal{R}_{\text{cache}}^{(i)}$, for each item. This operation is performed for all $i \in \{1, \dots, K\}$:

$$\mathcal{R}_{\text{cache}}^{(i)} = \epsilon_\theta(R_i, E_i) \quad \text{for } i = 1, \dots, K \quad (4)$$

229 The resulting set of cached features, $\{\mathcal{R}_{\text{cache}}^{(i)}\}_{i=1}^K$, is stored for reuse.

230 **Phase 2: Reuse at Timestep $t < N$.** For the subsequent denoising steps $t = N - 1 \dots 0$, as shown
 231 in the ‘Timestep $N - 1 \sim 0$ ’ path, the UNet only processes the time-dependent input X . It integrates
 232 the static reference information by reading the pre-computed set of cached features, $\{\mathcal{R}_{\text{cache}}^{(i)}\}_{i=1}^K$, via
 233 a Semi-Attention mechanism (detailed in Section 3.2):

$$\tilde{\epsilon}_t = \epsilon_\theta(z_t, c_p, \gamma(t), \{\mathcal{R}_{\text{cache}}^{(i)}\}_{i=1}^K) \quad (5)$$

235 This decomposition of the denoising process is the key to FastFit’s efficiency, as it shifts the expen-
 236 sive computation for multiple reference features entirely out of the iterative loop. Once the process
 237 concludes at $t = 0$, the final clean latent, z_0 , is mapped back to the pixel space using the VAE
 238 decoder \mathcal{D} , to produce the high-resolution output image, I_{out} :

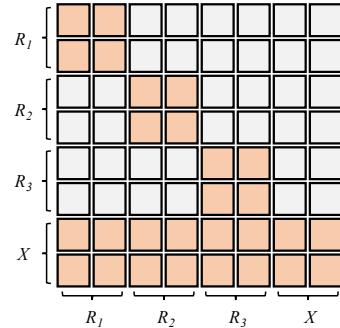
$$I_{\text{out}} = \mathcal{D}(z_0) \quad (6)$$

242 3.2 CACHEABLE UNET FOR EFFICIENT CONDITIONING

243 The primary bottleneck in existing subject-driven diffusion models is the repeated computation of
 244 reference features at every denoising step. This is because the reference conditioning is typically
 245 dependent on the timestep t , making the features dynamic. Our key innovation, the Cacheable UNet,
 246 fundamentally breaks this dependency, enabling reference features to be computed once and reused.
 247 This is achieved through two core components: Reference Class Embedding and a Semi-Attention
 248 mechanism, as illustrated in Figure 4 (b).

249 **Reference Class Embedding.** To decouple the refer-
 250 ence features from the denoising timestep t , we replace
 251 the conventional timestep embedding with a static, learn-
 252 able Reference Class Embedding for the reference items.
 253 Specifically, for a set of K reference items $\{R_1, \dots, R_K\}$,
 254 each belonging to a certain category (e.g., ‘top’, ‘shoes’),
 255 we introduce a corresponding set of learnable class embed-
 256 dings $\{E_1, \dots, E_K\}$. The features for each reference item
 257 R_i are conditioned on its class embedding E_i instead of
 258 the shared timestep embedding $\gamma(t)$ used by the denoising
 259 features X . The reference class embedding is injected in
 260 the same manner as the timestep embedding; both modu-
 261 late the features within the ResNet blocks through an scal-
 262 ing operation. Since the class embeddings are constant
 263 throughout the entire denoising process, the resulting refer-
 264 ence features become static and independent of the cur-
 265 rent timestep t , making them inherently cacheable.

266 **Semi-Attention Mechanism.** Having made reference
 267 features static, we need a mechanism to inject their informa-
 268 tion into the denoising process without compromis-
 269 ing their static nature. A standard full self-attention would allow information to flow
 270 from the step-dependent denoising features X back to the reference features R_i , thereby “contam-
 271 inating” them and breaking the condition for caching. To solve this, we propose a Semi-Attention
 272 mechanism, visualized in Figure 5. In this design, we treat both the denoising features X and all



273 Figure 5: Visualization of the Semi-
 274 Attention Mask. Denoising feature X attend to all features, while each refer-
 275 ence feature R_i is restricted to its own.

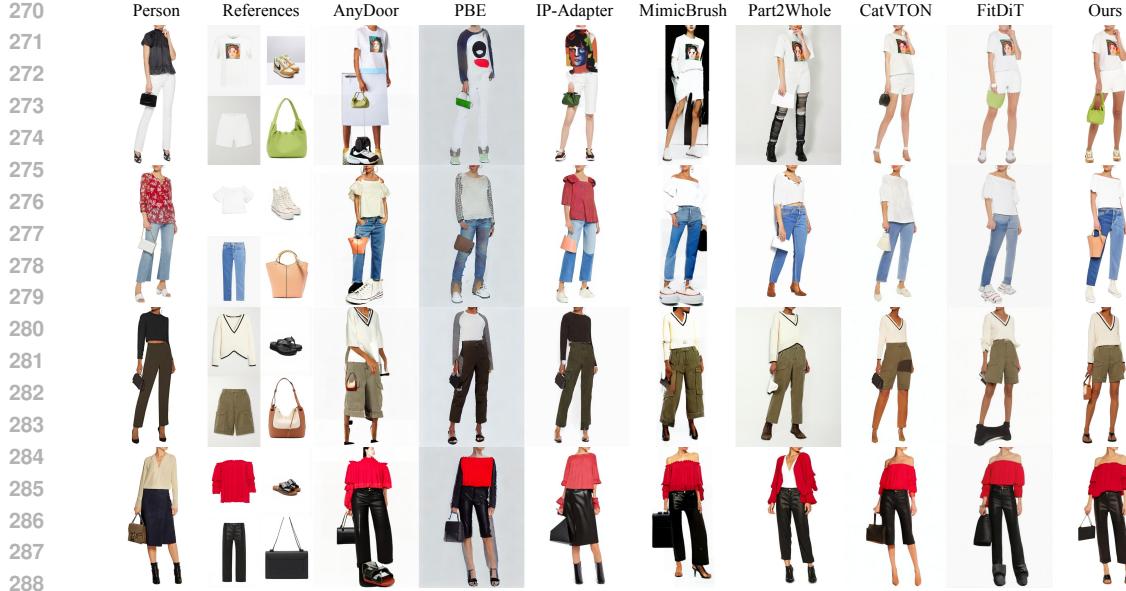


Figure 6: Qualitative comparison on the DressCode-MR dataset. See Section 5 for more results. Please zoom in for more details.

reference features $\{R_i\}$ as a single sequence of tokens. The attention calculation is governed by a specific mask that controls the information flow: **(1) Denoising-to-All:** The tokens of the denoising feature X are allowed to attend to all tokens in the sequence (i.e., to itself and to all reference features R_i). This allows the model to effectively "read" the appearance information from each garment and apply it to the person. **(2) Reference-to-Self:** The tokens of each reference feature R_i are only allowed to attend to themselves. They cannot attend to the denoising features X or to any other reference feature R_j (where $j \neq i$). This attention mask ensures that the reference features act as a static, read-only source of information for the denoising process. Their representations are never updated by the dynamic features of X , thus preserving their cacheability across all timesteps.

OminiControl2 (Tan et al., 2025b) and EasyControl (Zhang et al., 2025) also employ a semi-attention-like mechanism for KV caching. However, their reliance on dedicated trainable branches and treat reference encoding statically by fixing the timestep to zero, thus failing to utilize this input slot for fine-grained control. Our Cacheable UNet addresses this by replacing the uninformative zero-timestep embedding with informative class embeddings, which allows the a single model to explicitly attend to specific garment types or regions based on the input category, as demonstrated by the ablation results in Fig. 9.

3.3 INFERENCE ACCELERATION WITH REFERENCE KV CACHE

The design of our Cacheable UNet enables a highly efficient inference pipeline via a Reference KV Cache. As depicted in Figure 4(b), the process is split into two stages:

Pre-computation and Caching (One-time Cost). Before the iterative denoising loop begins, we perform a single forward pass for each reference item R_i through the UNet ϵ_θ . For each Semi-Attention layer, we then compute and store its corresponding Key (K_i^{cache}) and Value (V_i^{cache}) matrices. This pre-computation step is performed only once per generation request.

Accelerated Denoising Loop. For every subsequent denoising step from $t = N - 1$ down to 0, we completely bypass the computation for the reference branches. Instead, for each Semi-Attention layer, we only compute the Query (Q_X), Key (K_X), and Value (V_X) from the current denoising features X_t . We then construct the full key and value matrices, K_{full} and V_{full} , by concatenating these dynamic tensors with all the cached keys $\{K_i^{\text{cache}}\}_{i=1}^K$ and values $\{V_i^{\text{cache}}\}_{i=1}^K$, respectively:

$$K_{\text{full}} = \text{Concat}(K_X, K_1^{\text{cache}}, \dots, K_K^{\text{cache}}) \quad (7)$$

$$V_{\text{full}} = \text{Concat}(V_X, V_1^{\text{cache}}, \dots, V_K^{\text{cache}}) \quad (8)$$

Figure 7: Qualitative comparison on the VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022) dataset. See Section 5 for more results. Please zoom in for more details.

The final attention output is then calculated only for the denoising query Q_X :

$$\text{Attention}(Q_X, K_{\text{full}}, V_{\text{full}}) = \text{softmax} \left(\frac{Q_X K_{\text{full}}^T}{\sqrt{d_k}} \right) V_{\text{full}} \quad (9)$$

This strategy effectively reduces the computational cost of attention at each step to be dependent only on the denoising features, regardless of the number or complexity of reference items. This fundamentally resolves the efficiency bottleneck, leading to a substantial reduction in inference latency, especially in the multi-reference setting central to our work.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our model on three datasets, VITON-HD (Choi et al., 2021), DressCode (Morelli et al., 2022), and our newly proposed DressCode-MR, all at 1024x768 resolution. VITON-HD (Choi et al., 2021) provides 13,679 image pairs for upper-body virtual try-on (11,647 train / 2,032 test). DressCode (Morelli et al., 2022) dataset features 53,792 full-body pairs (48,392 train / 5,400 test) covering tops, bottoms, and dresses. To facilitate multi-reference research, we introduce DressCode-MR, built upon DressCode. As illustrated in Figure 3, it contains 28,179 samples (25,779 train / 2,400 test), each pairing a person with a complete outfit from up to five categories: tops, bottoms, dresses, shoes, and bags. We constructed this dataset by training five expert restoration models (based on CatVTON (Chong et al., 2024) and FLUX (Labs, 2024)) using VITON-HD, DressCode, and a small set of internet-sourced shoe and bag pairs. These models were used to recover the canonical images for items worn in DressCode, and the final high-quality samples were selected through human feedback.

4.2 IMPLEMENTATION DETAILS

We train our single-reference try-on model based on the pretrained StableDiffusion v1.5 (Rombach et al., 2021) inpainting on the DressCode (Morelli et al., 2022) and VITON-HD (Choi et al., 2021) datasets for 64,000 steps with a batch size of 32 and a resolution of 1024×768. This version is used for all single-reference quantitative evaluations. Building upon the single-reference model, we fine-tune it on our proposed DressCode-MR dataset for 16,000 steps with the same resolution and batch size. We utilized the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning rate of 1×10^{-5} for both training stages. To enable classifier-free guidance, 20% of the reference

378 images were randomly dropped during the training. All experiments were conducted on 8 NVIDIA
 379 H100 GPUs.
 380

381 4.3 METRICS

382 We evaluate our model’s performance on two fronts: image fidelity and computational efficiency.
 383

384 **Image Fidelity.** We use two settings. In the paired setting, where ground-truth images are available,
 385 we measure similarity using the Structural Similarity Index (SSIM) (Wang et al., 2004), Learned Perceptual
 386 Image Patch Similarity (LPIPS) (Zhang et al., 2018), Fréchet Inception Distance (FID) (Seitzer, 2020), and Kernel Inception Distance (KID) (Bińkowski et al., 2021). In the
 387 unpaired setting, we assess overall realism and diversity by comparing the distribution of our generated
 388 samples to that of real images using FID and KID.
 389

390 **Computational Efficiency.** We report the total parameters, inference latency, and peak memory
 391 usage. These metrics are benchmarked by averaging 100 runs on a single NVIDIA H100 GPU, with
 392 each run configured for 20 denoising steps and with classifier-free guidance (CFG) (Ho & Salimans,
 393 2022) enabled.
 394

395 4.4 QUANTITATIVE COMPARISON

396 **Single-Reference Virtual Try-On.** We conducted a quantitative comparison against current
 397 state-of-the-art virtual try-on methods (Guo et al., 2025; Kim et al., 2024; Jiang et al.,
 398 2024; Choi et al., 2024; Chong et al., 2024; Xu et al., 2024) on VITON-HD (Choi et al.,
 399 2021) and DressCode (Morelli et al., 2022) datasets. As shown in Table 3, FastFit achieves
 400 competitive results across both datasets under paired and unpaired settings, demonstrating
 401 its superior capability in generating high-quality images. Table 1 highlights the efficiency
 402 of FastFit, which achieves an average 3.5× speedup over comparable methods while
 403 remaining competitive in terms of parameters and memory usage.
 404

405 4.5 Multi-Reference Virtual Try-On.

406 Table 2 shows our multi-reference try-on results. In the absence of methods designed for simultaneous
 407 multi-reference generation, we adapt strong baselines from subject-driven generation
 408 (Ye et al., 2023; Yang et al., 2022; Chen et al., 2023; 2024) and multi-
 409 category try-on (Jiang et al., 2024; Chong et al., 2024; Huang et al., 2024b) via sequential single-reference inference.
 410 FastFit achieves state-of-the-art scores across quality metrics and is also the most efficient method.
 411 This demonstrates its superior ability to cohesively synthesize multiple references with high fidelity.
 412

Table 1: Quantitative comparison of model efficiency. Best and second-best results are in **bold** and underlined, respectively. All methods are evaluated on a single H100 GPU with 20 steps. Red indicates newly added data.

Method	Params(M)↓	Time(s)↓	Memory(M)↓
OmniTry (Feng et al., 2025)	17043.63	51.16	36276
Any2AnyTryon (Guo et al., 2025)	16786.78	12.19	35218
PromptDresser (Kim et al., 2024)	<u>6011.03</u>	4.29	17364
ITA-MDT (Hong et al., 2025)	1891.90	3.44	28910
Leffa (Zhou et al., 2024)	1802.72	3.32	7996
IDM-VTON (Choi et al., 2024)	7086.91	2.76	19072
FitDiT (Jiang et al., 2024)	5870.80	2.00	15992
OOTDiffusion (Xu et al., 2024)	2229.73	<u>1.93</u>	10154
IMAGDressing (Shen et al., 2024)	2973.81	2.68	9240
CatVTON (Chong et al., 2024)	899.06	2.10	5500
FastFit	904.86	1.16	6944

Table 2: Quantitative comparison on DressCode-MR for multi-reference try-on. Best and second-best results are in **bold** and underlined, respectively. Red indicates newly added data.

Method	Time(s)↓	Paired					Unpair	
		FID↓	KID↓	SSIM↑	LPIPS↓	DISTS↓	FID↓	KID↓
AnyDoor (Chen et al., 2023)	12.08	37.138	22.571	0.768	0.235	0.229	44.068	23.958
OmniTry (Feng et al., 2025)	87.32	<u>33.041</u>	17.870	0.781	<u>0.198</u>	0.195	37.864	21.345
PBE (Yang et al., 2022)	5.22	28.296	16.092	0.796	0.215	0.225	31.135	17.887
MimicBrush (Chen et al., 2024)	6.62	21.074	9.858	0.800	0.173	0.206	22.111	9.992
Part2Whole (Huang et al., 2024b)	5.73	20.313	8.200	0.807	0.187	0.179	24.564	10.581
CatVTON (Chong et al., 2024)	8.94	16.131	6.980	0.856	0.106	0.147	18.339	7.458
IP-Adapter (Ye et al., 2023)	5.62	<u>14.459</u>	<u>4.144</u>	0.861	<u>0.089</u>	0.143	24.139	10.783
FitDiT (Jiang et al., 2024)	<u>3.38</u>	14.722	5.471	0.850	0.122	0.162	<u>15.956</u>	<u>5.645</u>
FastFit	1.90	9.311	1.512	<u>0.859</u>	0.079	0.117	12.060	2.124

FastFit achieves state-of-the-art scores across quality metrics and is also the most efficient method.
 This demonstrates its superior ability to cohesively synthesize multiple references with high fidelity.
 427

428 4.5 QUALITATIVE COMPARISON

429 **Single-Reference Virtual Try-On.** Figure 7 shows the qualitative comparison for the single-
 430 reference try-on task. On the VITON-HD (Choi et al., 2021) dataset, our method excels at preserv-
 431 ing fine-grained details, such as the text “REBEL” on T-shirts, where other methods often produce
 blurred results. FastFit also realistically renders challenging materials, like the sheer polka-dot top.
 432

432 Table 3: Quantitative comparison for single-reference virtual try-on on the VITON-HD (Choi et al.,
 433 2021) and DressCode (Morelli et al., 2022) datasets. All metrics are rounded to four decimal places.
 434 Best and second-best results in each column are in **bold** and underlined, respectively. **Red** indicates
 435 newly added data.

Method	VITON-HD								DressCode							
	Paired				Unpaired				Paired				Unpaired			
	FID ↓	KID ↓	SSIM ↑	LPIPS ↓	DISTS ↓	FID ↓	KID ↓	SSIM ↑	LPIPS ↓	DISTS ↓	FID ↓	KID ↓	SSIM ↑	LPIPS ↓	DISTS ↓	
OmniTry (Feng et al., 2025)	15.2550	6.1404	0.7635	0.2108	0.1946	15.1601	5.8627	4.1814	0.8845	0.8805	0.0675	0.0862	6.4109	1.6295		
Any2AnyTryon (Guo et al., 2025)	9.9811	3.4964	0.8522	0.1173	0.0910	11.1953	2.8055	5.1107	1.2650	0.8966	0.0589	0.1871	6.7088	1.5797		
PromptDresser (Kim et al., 2024)	5.9344	0.5498	0.8460	0.0902	0.1246	8.8846	0.9090	9.5625	4.7948	0.8578	0.1039	0.0919	10.6181	4.9775		
ITA-MDT (Hong et al., 2025)	16.0473	12.0219	0.8477	0.1525	0.1566	16.4528	10.5733	11.6633	8.0956	0.8799	0.1255	0.1753	13.6714	9.1708		
Leffa (Zhou et al., 2024)	5.6673	0.6922	0.8570	0.0762	0.1151	10.4455	2.6397	7.1932	2.1135	0.8612	0.0838	0.0855	20.0985	13.5061		
IDM-VTON (Choi et al., 2024)	6.1121	1.1116	0.8655	0.0743	0.1026	9.2491	1.2672	7.1808	3.5242	0.8912	0.0695	0.0905	9.1666	4.4888		
FitDiT (Jiang et al., 2024)	8.1763	1.0783	0.8383	0.0957	0.0917	9.9789	1.4779	5.5706	1.9007	0.8992	0.0579	0.1054	4.8045	0.7120		
IMAGDressing (Shen et al., 2024)	8.4526	1.9560	0.8207	0.1292	0.1268	12.8017	3.9151	10.9586	5.6359	0.8526	0.1274	0.1665	15.1638	9.0085		
OOTDiffusion (Xu et al., 2024)	5.7620	0.2665	0.8434	0.0724	0.1067	9.0820	0.7020	6.9754	2.0141	0.8728	0.0772	0.0833	8.1209	2.8861		
CatVTON (Chong et al., 2024)	6.7382	1.3201	0.8814	0.0877	0.0916	10.5517	2.2724	3.7101	1.0104	0.9092	0.0619	0.0950	5.8715	1.6056		
FastFit	5.6294	0.5046	0.8851	0.0778	0.0822	8.6288	0.6654	2.8361	0.3902	0.9065	0.0571	0.0850	4.3974	0.5525		

446
 447 Table 4: Ablation study of the key components in our model on DressCode (Morelli et al., 2022)
 448 dataset. The best and second-best results are demonstrated in **bold** and underlined, respectively.

Variants	Params(M)↓	Time (s)↓	Memory (M)↓	Paired				Unpaired			
				FID↓	KID↓	SSIM↑	LPIPS↓	FID↓	KID↓	SSIM↑	LPIPS↓
w/o KV Cache	904.86	<u>1.92</u>	6944	2.8585	0.3737	0.9057	0.0588	4.4206	0.5903		
w/ Full Attention	904.86	<u>2.17</u>	6944	3.1847	0.5426	0.9056	0.0606	4.6221	<u>0.6533</u>		
w/o Class Embed	904.85	1.16	6944	2.9146	0.4000	0.9056	<u>0.0591</u>	4.4624	0.5929		
w/ ReferenceNet	1729.92	<u>1.16</u>	8770	2.8474	0.3577	0.9054	0.0588	4.4365	0.5741		
FastFit	904.86	1.16	6944	2.8585	0.3737	0.9057	0.0588	4.4206	0.5903		

456
 457 On the DressCode (Morelli et al., 2022) dataset, our model accurately captures the correct shape and
 458 style of complex garments like the high-slit dress.

459 **Multi-Reference Virtual Try-On.** We further evaluate FastFit on the more challenging multi-
 460 reference virtual try-on task, with results presented in Figure 6. The comparison clearly demon-
 461 strates our model’s superior capability. FastFit successfully synthesizes a coherent and realistic final
 462 image by seamlessly combining multiple reference items. In contrast, most existing methods, such
 463 as AnyDoor (Chen et al., 2023) and PBE (Yang et al., 2022), often fail to properly compose the
 464 different garments or produce significant artifacts. Our method, however, maintains the identity and
 465 details of each piece of clothing, resulting in a natural and believable complete outfit.

4.6 ABLATION STUDIES

466 The results in Table 4 validate our key design choices. Firstly, the Reference KV Cache is crucial
 467 for efficiency; disabling it increases inference time from 1.16s to 1.92s. **It is important to clarify that**
 468 **this $\sim 1.66 \times$ ($\sim 40\%$ saving) speedup is attributed solely to the caching mechanism.** When combined
 469 with our holistic architectural lightweighting, FastFit achieves an aggregate $\sim 3.5 \times$ average infer-
 470 ence speedup compared to standard diffusion-based baselines in Table 1. Crucially, this acceleration
 471 comes with no loss in generation quality, as the performance metrics are identical. Secondly, our
 472 parameter-sharing strategy is highly effective. Introducing a separate ReferenceNet nearly doubles
 473 the parameters ($904.86M \rightarrow 1729.9M$) and increases memory usage, but yields no corresponding
 474 performance improvement. Furthermore, replacing Semi-Attention with Full Attention is detri-
 475 mental, as it not only slows inference to 2.17s but also degrades generation quality (e.g., FID increases
 476 to 3.1847). We hypothesize this is because full interaction disrupts the consistency of reference
 477 features. Finally, removing the Class Embedding causes a slight performance drop, and its effectiveness
 478 in guiding region-specific attention is presented in Section 5. All ablation experiments follow the
 479 settings described in Section 4.2, trained for 32K steps, and are evaluated on the DressCode (Morelli
 480 et al., 2022) dataset.

4.7 FAILURE CASE ANALYSIS

481 As visualized in Figure 8, we analyze specific limitations when handling Out-of-Distribution (OOD)
 482 scenarios:

Figure 8: Failure cases. (Left) Physical Ambiguity: Accessories (e.g., bags) may lack physical grounding when the pose offers no clear interaction cues. (Middle) Structural Bias: Niche styles (e.g., Kimonos) are occasionally mapped to standard Western clothing topologies due to dataset bias. (Right) Material Loss: Complex textures (e.g., transparent plastic) may lose high-frequency details due to their sparsity in training data.

Physical Interaction (Left Col.): Without explicit 3D collision modeling, the model may generate accessories (e.g., bags) with unnatural placement when the target pose lacks clear interaction cues.

Structural Bias (Middle Col.): For niche styles like Kimonos or Sarees, the model occasionally overfits to standard Western clothing topologies found in training data, resulting in inaccurate sleeve shapes or draping.

Material Fidelity (Right Col.): Challenging materials such as transparent plastic or intricate lace may exhibit texture smoothing or detail loss, primarily due to their sparsity in public datasets like VITON-HD.

5 CONCLUSION

In this paper, we proposed FastFit, a high-speed multi-reference virtual try-on framework designed to break the critical trade-offs between versatility, efficiency, and quality in existing technologies. Through an innovative Cacheable UNet, which combines a Class Embedding and a Semi-Attention mechanism, we decoupled reference feature encoding from the denoising process. This design enables a Reference KV Cache that allows reference features to be computed once and reused losslessly across all steps, fundamentally eliminating the computational redundancy that plagues current methods. Experimental results show that FastFit achieves a significant efficiency advantage—an average $3.5\times$ speedup over comparable methods—without sacrificing generation quality. For the first time, it enables coherent, synergistic try-on for up to 5 key categories: tops, bottoms, dresses, shoes, and bags. Furthermore, the DressCode-MR dataset we constructed provides a valuable foundation for future research in complex outfit generation. In summary, FastFit represents a promising advance towards a more realistic, efficient, and diverse virtual try-on experience, significantly lowering the barriers for its widespread application in e-commerce and intelligent outfit visualization.

Limitations and Future Work. Despite the model’s strong performance, several areas present opportunities for future exploration. To further enhance realism, the modeling of complex physical interactions and layering among garments could be improved. Expanding the DressCode-MR dataset with such complex interaction pairs would be a valuable direction. Another important research path is improving generalization to underrepresented apparel, such as styles with unique topologies or challenging materials. Finally, while our framework significantly accelerates inference, a gap remains toward achieving real-time interaction. Exploring techniques such as guidance and step distillation, combined with more advanced caching mechanisms, offers a promising path to bridge this gap and enable applications like interactive real-time outfit visualization.

540
541 **ETHICS STATEMENT**

542 We recognize the ethical implications associated with generative models and datasets involving hu-
 543 man imagery. Our work is built upon publicly available datasets, specifically VITON-HD and Dress-
 544 Code, and we adhere to the ethical guidelines established by their original authors. For our newly
 545 constructed DressCode-MR dataset, all source images are derived from the publicly available and
 546 curated DressCode dataset, thus respecting the original data subjects' privacy and usage agreements.
 547 Our framework, FastFit, is intended for beneficial applications in virtual e-commerce and interactive
 548 outfit visualization, aiming to enhance the user shopping experience. We strongly oppose any po-
 549 tential misuse of this technology, such as the generation of misleading or unauthorized images. We
 550 acknowledge that image-based person datasets may contain inherent biases related to demographic
 551 representation (e.g., body shape, skin tone, clothing style). While the scope of this work is method-
 552 ological, we recognize the importance of fairness and diversity and commit to actively addressing
 553 and mitigating these biases in future research and dataset construction efforts. All methodologies
 554 and results are presented with full transparency to maintain research integrity.

555 **REPRODUCIBILITY STATEMENT**

556 To ensure reproducibility, we provide this anonymous link, including our source code, model
 557 weights and DressCode-MR dataset. The methods described in Section 3 offer a clear technical
 558 blueprint for implementing our architecture. Detailed implementation specifics, such as training
 559 configurations, optimizer settings, and hyperparameters, are provided in Section 4.2. Using the in-
 560 formation in these sections and the code provided, we believe that an independent researcher can
 561 reproduce our experimental results presented in Section 4.4 and Section 4.6.

562 **LLM USAGE**

563 We acknowledge the use of LLMs as a writing assistant. The LLMs are utilized solely to assist with
 564 proofreading, grammatical correction, and minor stylistic refinements of the manuscript.

565 **REFERENCES**

566
 567 Mikolaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
 568 gans, 2021. URL <https://arxiv.org/abs/1801.01401>.

569
 570 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 571 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 572 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 573 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 574 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

575
 576 Ruoxi Chen, Siyuan Wu, Dongping Chen, Shiyun Lang, Petr Sushko, Gaoyang Jiang, Sinan Wang,
 577 Yao Wan, and Ranjay Krishna. Multiref: Controllable image generation with multiple visual
 578 references. In *Synthetic Data for Computer Vision Workshop @ CVPR 2025*, 2025. URL <https://openreview.net/forum?id=TZwQU36KFd>.

579
 580 Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-
 581 shot object-level image customization. *arXiv preprint arXiv:2307.09481*, 2023.

582
 583 Xi Chen, Yutong Feng, Mengting Chen, Yiyang Wang, Shilong Zhang, Yu Liu, Yujun Shen, and
 584 Hengshuang Zhao. Zero-shot image editing with reference imitation, 2024. URL <https://arxiv.org/abs/2406.07547>.

585
 586 Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul Choo. Viton-hd: High-resolution virtual
 587 try-on via misalignment-aware normalization. In *Proc. of the IEEE conference on computer vision
 588 and pattern recognition (CVPR)*, 2021.

589
 590 Yisol Choi, Sangkyung Kwak, Kyungmin Lee, Hyungwon Choi, and Jinwoo Shin. Improving dif-
 591 fusion models for virtual try-on. *arXiv preprint arXiv:2403.05139*, 2024.

592
 593 Zheng Chong and Lingfei Mo. St-vton: Self-supervised vision transformer for image-based virtual
 594 try-on. *Signal Processing*, 2022.

594 Zheng Chong, Xiao Dong, Haoxiang Li, Shiyue Zhang, Wenqing Zhang, Xujie Zhang, Hanqing
595 Zhao, and Xiaodan Liang. Catvton: Concatenation is all you need for virtual try-on with diffusion
596 models, 2024. URL <https://arxiv.org/abs/2407.15886>.

597

598 Yutong Feng, Linlin Zhang, Hengyuan Cao, Yiming Chen, Xiaoduan Feng, Jian Cao, Yux-
599 iong Wu, and Bin Wang. Omnitry: Virtual try-on anything without masks. *arXiv preprint*
600 *arXiv:2508.13632*, 2025.

601 Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei Liu, and Ping Luo. Parser-free virtual
602 try-on via distilling appearance flows. *arXiv preprint arXiv:2103.04559*, 2021.

603

604 Junhong Gou, Siyu Sun, Jianfu Zhang, Jianlou Si, Chen Qian, and Liqing Zhang. Taming the power
605 of diffusion models for high-quality virtual try-on with appearance flow. In *Proceedings of the*
606 *31st ACM International Conference on Multimedia*, 2023.

607 Hailong Guo, Bohan Zeng, Yiren Song, Wentao Zhang, Chuang Zhang, and Jiaming Liu.
608 Any2anytryon: Leveraging adaptive position embeddings for versatile virtual clothing tasks,
609 2025. URL <https://arxiv.org/abs/2501.15891>.

610

611 Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An image-based virtual
612 try-on network. In *CVPR*, 2018.

613

614 Xintong Han, Xiaojun Hu, Weilin Huang, and Matthew R Scott. Clothflow: A flow-based model
615 for clothed person generation. In *Proceedings of the IEEE/CVF International Conference on*
616 *Computer Vision*, pp. 10471–10480, 2019.

617

618 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

619

620 Ji Woo Hong, Tri Ton, Trung X Pham, Gwanhyeong Koo, Sunjae Yoon, and Chang D Yoo. Ita-mdt:
621 Image-timestep-adaptive masked diffusion transformer framework for image-based virtual try-on.
622 *arXiv preprint arXiv:2503.20418*, 2025.

623

624 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
625 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

626

627 Lianghua Huang et al. In-context lora for diffusion transformers, 2024a. *arXiv preprint*
628 *arXiv:2410.23775*.

629

630 Zehuan Huang, Hongxing Fan, Lipeng Wang, and Lu Sheng. From parts to whole: A unified
631 reference framework for controllable human image generation, 2024b.

632

633 Boyuan Jiang, Xiaobin Hu, Donghao Luo, Qingdong He, Chengming Xu, Jinlong Peng, Jiangning
634 Zhang, Chengjie Wang, Yunsheng Wu, and Yanwei Fu. Fitdit: Advancing the authentic gar-
635 ment details for high-fidelity virtual try-on, 2024. URL <https://arxiv.org/abs/2411.10499>.

636

637 Jeongho Kim, Gyojung Gu, Minho Park, Sunghyun Park, and Jaegul Choo. Stableviton: Learning
638 semantic correspondence with latent diffusion model for virtual try-on, 2023.

639

640 Jeongho Kim, Hoiyeong Jin, Sunghyun Park, and Jaegul Choo. Promptdresser: Improving the
641 quality and controllability of virtual try-on via generative textual prompt and prompt-aware mask,
642 2024. URL <https://arxiv.org/abs/2412.16978>.

643

644 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

645

646 Yaowei Li, Xiaoyu Li, Zhaoyang Zhang, Yuxuan Bian, Gan Liu, Xinyuan Li, Jiale Xu, Wenbo Hu,
647 Yating Liu, Lingen Li, Jing Cai, Yuexian Zou, Yancheng He, and Ying Shan. Ic-custom: Diverse
648 image customization via in-context learning, 2025. URL <https://arxiv.org/abs/2507.01926>.

649

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

648 Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio Cesari, and Rita Cucchiara.
 649 Dress code: High-resolution multi-category virtual try-on, 2022.
 650

651 Davide Morelli, Alberto Baldrati, Giuseppe Cartella, Marcella Cornia, Marco Bertini, and Rita Cuc-
 652 chiara. LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On. In *Proceed-
 653 ings of the ACM International Conference on Multimedia*, 2023.

654 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and
 655 Xiaohu Qie. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image
 656 diffusion models. *arXiv preprint arXiv:2302.08453*, 2023.

657 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint
 658 arXiv:2212.09748*, 2022.

659

660 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 661 resolution image synthesis with latent diffusion models, 2021.

662 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 663 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. 2022.

664

665 Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. <https://github.com/mseitzer/pytorch-fid>, August 2020. Version 0.3.0.

666

667 Fei Shen, Xin Jiang, Xin He, Hu Ye, Cong Wang, Xiaoyu Du, Zechao Li, and Jinhui Tang.
 668 Imagdressing-v1: Customizable virtual dressing. 2024.

669

670 Ke Sun, Jian Cao, Qi Wang, Linrui Tian, Xindi Zhang, Lian Zhuo, Bang Zhang, Liefeng Bo, Wenbo
 671 Zhou, Weiming Zhang, and Daiheng Gao. Outfitanyone: Ultra-high quality virtual try-on for any
 672 clothing and any person, 2024. URL <https://arxiv.org/abs/2407.16224>.

673

674 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
 675 imal and universal control for diffusion transformer. 2025a.

676

677 Zhenxiong Tan, Qiaochu Xue, Xingyi Yang, Songhua Liu, and Xinchao Wang. OminiControl2:
 678 Efficient Conditioning for Diffusion Transformers, March 2025b. URL <http://arxiv.org/abs/2503.08280>. arXiv:2503.08280 [cs] TLDR: OminiControl2 introduces two key innova-
 679 tions: a dynamic compression strategy that streamlines conditional inputs by preserving only the
 680 most semantically relevant tokens during generation, and a conditional feature reuse mechanism
 681 that computes condition token features only once and reuses them across denoising steps.

682

683 Bochao Wang, Huabin Zheng, Xiaodan Liang, Yimin Chen, and Liang Lin. Toward characteristic-
 684 preserving image-based virtual try-on network. In *Proceedings of the European Conference on
 Computer Vision (ECCV)*, pp. 589–604, 2018.

685

686 Rui Wang, Hailong Guo, Jiaming Liu, Huaxia Li, Haibo Zhao, Xu Tang, Yao Hu, Hao Tang,
 687 and Peipei Li. Stablegarment: Garment-centric generation via stable diffusion. *arXiv preprint
 arXiv:2403.10783*, 2024.

688

689 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 690 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 691 612, 2004.

692

693 Zhenyu Xie, Xujie Zhang, Fuwei Zhao, Haoye Dong, Michael C. Kampffmeyer, Haonan Yan, and
 694 Xiaodan Liang. Was-vton: Warping architecture search for virtual try-on network, 2021. URL
<https://arxiv.org/abs/2108.00386>.

695

696 Zhenyu Xie, Zaiyu Huang, Fuwei Zhao, Haoye Dong, Michael Kampffmeyer, Xin Dong, Feida Zhu,
 697 and Xiaodan Liang. Pasta-gan++: A versatile framework for high-resolution unpaired virtual try-
 698 on, 2022. URL <https://arxiv.org/abs/2207.13475>.

699

700 Zhenyu Xie, Zaiyu Huang, Xin Dong, Fuwei Zhao, Haoye Dong, Xijin Zhang, Feida Zhu, and
 701 Xiaodan Liang. Gp-vton: Towards general purpose virtual try-on via collaborative local-flow
 global-parsing learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition*, pp. 23550–23559, 2023.

702 Yuhao Xu, Tao Gu, Weifeng Chen, and Chengcai Chen. Ootdiffusion: Outfitting fusion based latent
 703 diffusion for controllable virtual try-on. *arXiv preprint arXiv:2403.01779*, 2024.

704

705 Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and
 706 Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. *arXiv
 707 preprint arXiv:2211.13227*, 2022.

708

709 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
 710 two-stages distillation. In *Proceedings of the IEEE/CVF International Conference on Computer
 711 Vision (ICCV) Workshops*, 2023. CV4Metaverse Workshop.

712

713 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 714 adapter for text-to-image diffusion models. 2023.

715

716 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 717 diffusion models, 2023.

718

719 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 720 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

721

722 Xuanpu Zhang, Dan Song, Pengxin Zhan, Qingguo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and
 723 Anan Liu. Boow-vton: Boosting in-the-wild virtual try-on via mask-free pseudo data training,
 724 2024a. URL <https://arxiv.org/abs/2408.06047>.

725

726 Xujie Zhang, Ente Lin, Xiu Li, Yuxuan Luo, Michael Kampffmeyer, Xin Dong, and Xiaodan Liang.
 727 Mmtryon: Multi-modal multi-reference control for high-quality fashion generation, 2024b. URL
 728 <https://arxiv.org/abs/2405.00448>.

729

730 Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding
 731 efficient and flexible control for diffusion transformer. *arXiv preprint arXiv:2503.07027*, 2025.

732

733 Zijian Zhou, Shikun Liu, Xiao Han, Haozhe Liu, Kam Woh Ng, Tian Xie, Yuren Cong, Hang
 734 Li, Mengmeng Xu, Juan-Manuel Pérez-Rúa, Aditya Patel, Tao Xiang, Miaojing Shi, and Sen
 735 He. Learning flow fields in attention for controllable person image generation. *arXiv preprint
 736 arXiv:2412.08486*, 2024.

737

738 Luyang Zhu, Dawei Yang, Tyler Zhu, Fitsum Reda, William Chan, Chitwan Saharia, Mohammad
 739 Norouzi, and Ira Kemelmacher-Shlizerman. Tryondiffusion: A tale of two unets, 2023.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A. QUANTITATIVE COMPARISON ACROSS GARMENT TYPES

For a more fine-grained analysis, Table 5 presents a quantitative comparison on the DressCode (Morelli et al., 2022) dataset, with results broken down by clothing category. The results highlight the robust and superior performance of our method across all tested categories, including upper, lower, and dresses. FastFit consistently achieves either the best or second-best scores in the vast majority of key metrics, demonstrating its strong and stable performance regardless of the garment type. This showcases the model’s excellent generalization capability for different clothing styles.

Table 5: Quantitative comparison on the DressCode dataset, with results broken down by category (Upper, Lower, and Dresses). The best results are marked in **bold** and the second-best are underlined. ↓ indicates lower is better, while ↑ indicates higher is better.

Methods	Upper				Lower				Dresses			
	FID↓	KID↓	SSIM↑	LPIPS↓	FID↓	KID↓	SSIM↑	LPIPS↓	FID↓	KID↓	SSIM↑	LPIPS↓
Any2AnyTryon	10.4741	1.7130	0.9206	0.0476	13.1152	2.8336	0.8896	0.0655	9.1124	1.6539	0.8796	0.0636
PromptDresser	9.2447	0.7174	0.9044	0.0678	32.9093	17.9749	0.8327	0.1352	16.8179	6.8932	0.8363	0.1087
Leffa	11.2549	2.0947	0.8908	0.0578	19.6834	5.8985	0.8594	0.0908	13.3859	2.3701	0.8335	0.1029
IDM-VTON	11.2283	3.3860	0.9174	0.0547	11.7878	3.4218	0.8978	0.0655	17.5135	8.3389	0.8585	0.0882
OOTDiffusion	9.5945	1.1055	0.9040	0.0528	19.6615	6.1217	0.8751	0.0827	14.8496	4.4567	0.8393	0.0963
CatVTON	7.8465	1.0851	0.9360	0.0504	<u>8.6135</u>	<u>1.6574</u>	0.9236	<u>0.0562</u>	8.9453	1.0575	0.8669	0.0791
FitDiT	8.0876	0.5789	0.9241	0.0417	24.5079	11.7225	0.8944	0.0758	7.2253	0.4768	0.8789	0.0562
FastFit	6.8354	0.2453	0.9318	0.0485	7.1311	0.7981	0.9207	0.0511	7.5890	0.2446	0.8671	0.0720

B. MORE VISUAL COMPARISONS

B.1. SINGLE-REFERENCE VIRTUAL TRY-ON

In the single-reference virtual try-on task, our method demonstrates robust performance across both the VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022) datasets. As illustrated in Figure 11, FastFit excels at preserving high-frequency details on the garments, such as intricate patterns and text logos. Furthermore, our model accurately renders the correct shape and length for various types of clothing. The final results show that the garments are naturally fused with the person’s body, effectively handling challenging poses and occlusions.

B.2. MULTI-REFERENCE VIRTUAL TRY-ON

For the more challenging multi-reference task, FastFit exhibits a significant advantage over competing methods. Figure 12 showcases our model’s unique ability to seamlessly combine multiple, distinct reference items into a single, coherent outfit. Notably, even during this complex composition process, FastFit faithfully preserves the fine-grained details and logos of each individual item (e.g., ”SPAS”, ”CHIUS”). This capability to generate complete and detailed ensembles in complex scenarios highlights its superiority where other methods often struggle.

B.3. QUALITATIVE COMPARISONS WITH CLOSED-SOURCE MODELS

To more comprehensively evaluate our model’s performance, we conducted qualitative comparisons with mainstream closed-source models, including Nano Banana, GPT-4o, and FLUX.1 Kontext (Black Forest Labs et al., 2025) [Pro], on the multi-reference virtual try-on task. Due to their input limitations, we stitched the source person and multiple reference images into a single composite image. We then used the prompt, ”Dress the person on the left with the garments and accessories on the right,” to obtain the results. Furthermore, given the non-deterministic nature of their outputs, we generated four results for each example and selected the most plausible one for display. As seen in Figure 9, our method is better at preserving the original person’s pose and background environment, and more consistently integrates details from the various reference images.

C. VISUAL ANALYSIS OF THE EFFECTIVENESS OF CLASS EMBEDDINGS

To visually validate the effectiveness of the Reference Class Embedding as a key control mechanism in our model, we conducted an additional ablation study. As shown in Figure 10, the experiment is designed to isolate the influence of the class embedding. For each example row, we provide the model with the exact same source person and reference image. The only variable changed across the columns is the specific class embedding provided (e.g., ’Upper’, ’Lower’, ’Dresses’, ’Shoes’,

Figure 9: Qualitative comparison with mainstream closed-source models on multi-reference virtual try-on. This figure provides a direct visual comparison of our model against several top-tier closed-source models (Nano Banana, GPT-4o, FLUX.1 Kontext (Black Forest Labs et al., 2025) [Pro]) on the multi-reference virtual try-on task.

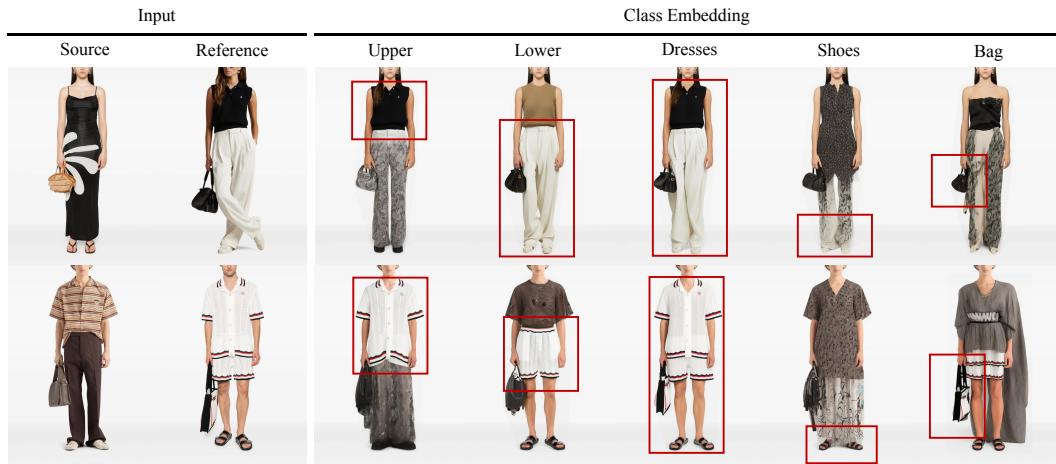


Figure 10: Demonstration of the visual effect of class embeddings. By providing different class embeddings (e.g., 'Upper', 'Lower', 'Dresses', 'Shoes', 'Bag') for the same reference image, our model can be directed to selectively transfer the corresponding item to the source person.

'Bag'). The results demonstrate that the class embedding provides fine-grained, semantic control over the try-on process. The model is able to interpret the embedding and selectively transfer the corresponding item from the reference image, even when multiple items are present. This experiment confirms that by applying a Class Embedding, the model's attention is effectively guided to the corresponding region of the reference image, which is crucial for preventing the features of different reference items from being conflated in a multi-reference scenario.

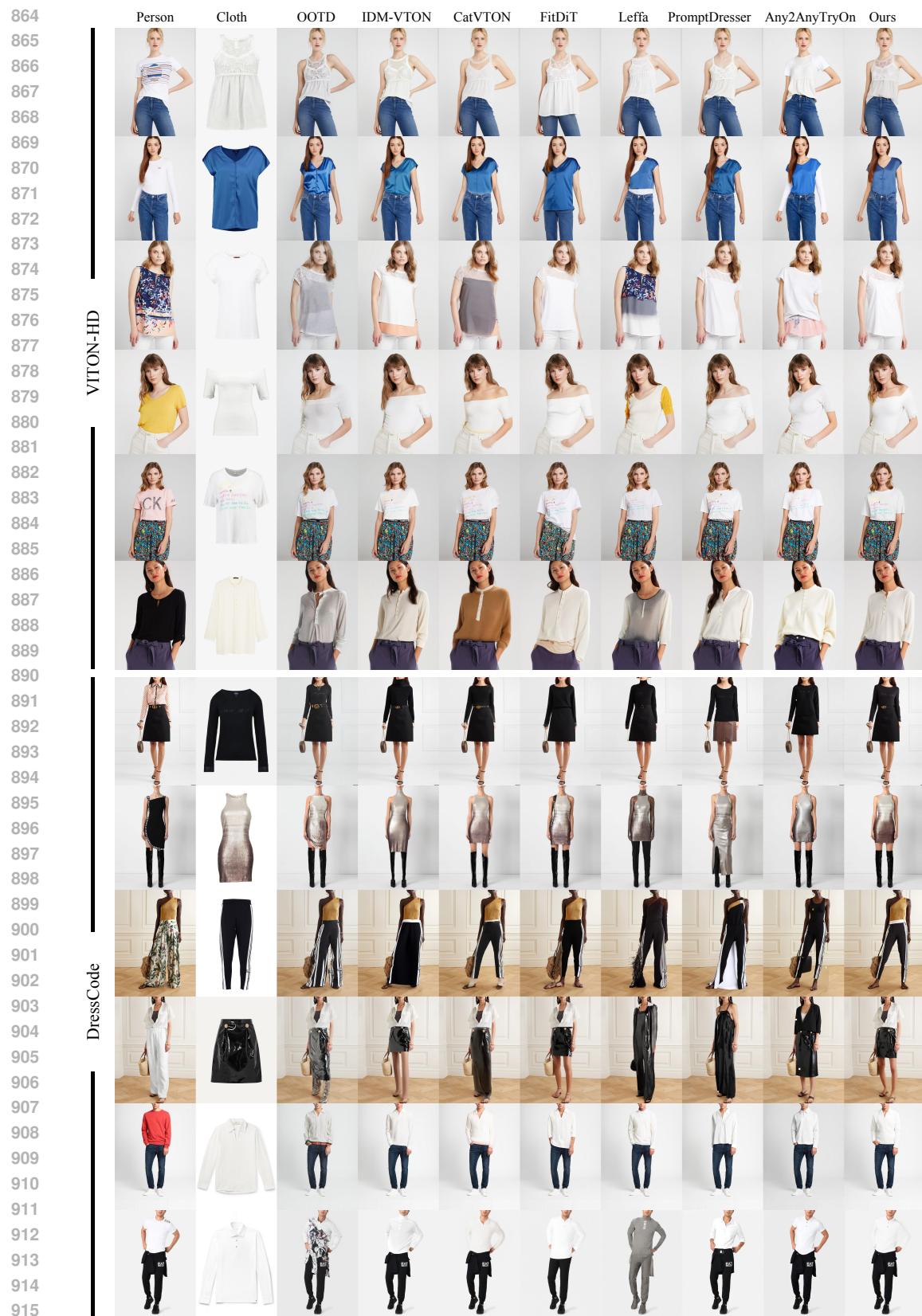


Figure 11: More visual comparisons on the VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022) dataset with baseline methods. Please zoom in for more details.

