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ABSTRACT

Training an energy-based model (EBM) with maximum likelihood is challenging
due to the intractable normalisation constant. Traditional methods rely on expensive
Markov chain Monte Carlo (MCMC) sampling to estimate the gradient of logartihm
of the normalisation constant. We propose a novel objective called self-normalised
log-likelihood (SNL) that introduces a single additional learnable parameter repre-
senting the normalisation constant compared to the regular log-likelihood. SNL
is a lower bound of the log-likelihood, and its optimum corresponds to both the
maximum likelihood estimate of the model parameters and the normalisation con-
stant. We show that the SNL objective is concave in the model parameters for
exponential family distributions. Unlike the regular log-likelihood, the SNL can
be directly optimised using stochastic gradient techniques by sampling from a
crude proposal distribution. We validate the effectiveness of our proposed method
on various density estimation tasks as well as EBMs for regression. Our results
show that the proposed method, while simpler to implement and tune, outperforms
existing techniques.

1 INTRODUCTION

θ

b

`SNL(θ, b)

Figure 1: The SNL for a Gaussian with
unknown mean θ ∈ R and unit variance.
The SNL a function of both θ and the
additional parameter b, estimating the
normalising constant. The black line
corresponds to maximising b for each
given θ, which exactly recovers the log-
likelihood. The red star is the maximum
log-likelihood, that is also the maximum
of ℓSNL(θ, b), see details in Appendix B.

Energy-based models (EBMs) specify a probability den-
sity over a space X through a parameterised energy func-
tion Eθ : X → R. The associated density is then

pθ(x) =
e−Eθ(x)

Zθ
, (1)

where Zθ =
∫
e−Eθ (x) dx is called the partition func-

tion or the normalising constant. However, Zθ is often
unknown and intractable, which makes training an EBM
through maximum likelihood challenging.

Initial methods addresses the challenge with a pseudo-
likelihood function, an altered version of the likelihood
function that circumvents the need to compute the normal-
ising constant (Besag, 1975; Mardia et al., 2009; Varin
et al., 2011). Alternatively, gradients of the log-likelihood
function can be estimated using the Boltzmann learning
rule (Hinton and Sejnowski, 1983) or approximated using
contrastive divergence (Hinton, 2002) at the price of ex-
pensive and difficult-to-tune Markov chain Monte Carlo
(MCMC) sampling methods (Dalalyan, 2017; Welling and
Teh, 2011). To alleviate this difficulty, Du and Mordatch (2019) proposed to maintain a buffer
of samples during training using Langevin MCMC. This work was extended in Du et al. (2021)
by considering a Kullback-Leibler divergence term that was claimed negligible in Hinton (2002).
On another note, Xie et al. (2021) uses a flow trained alongside the EBM as a starting point for a
short-term MCMC sampler reducing the dependency on long chains. In another work, Gao et al.
(2021) proposed to train a succession of EBM on data diffused with noise allowing to train and
sample on conditional distribution. Nijkamp et al. (2019) study the training of EBM for short-term
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non-convergent Langevin Markov chain and showed excellent generation but was not optimizing the
likelihood anymore. As it is critical to have a good estimate of this gradient, alternative methods
consider using a proposal distribution q together with importance sampling (Bengio and Senécal,
2003). However, this results in an objective that is an upper bound of the log-likelihood. Additionally,
the choice of a proposal is critical, and a poor choice will lead to a loose bound. To tighten it, Geng
et al. (2021) train the proposal to minimise the bound. This results in a min-max objective, similar to
generative adversarial networks (GANs), which are infamous for their instability in training (Kumar
et al., 2019; Farnia and Ozdaglar, 2021).

Another line of work aims at getting rid of the partition function altogether. It notably includes score
matching and its variants (Hyvärinen, 2005; Vincent, 2011). Score matching is a family of objectives
that circumvents the normalising constant by matching the Stein score of the data distribution (Stein,
1972) to the one of the model. Then different approaches present alternatives: implicit score matching
trades the Stein score of the data distribution for the Hessian of the model (Hyvärinen, 2005; Kingma
and Le Cun, 2010; Martens et al., 2012), while denoising score matching models instead a corrupted
version of the data, which has a tractable density. The latter approach has proven to be very successful
in generating high dimensional data, such as images and videos (Song et al., 2021; Ho et al., 2022).
Another approach that bypasses the normalising constant is to minimise the Stein discrepancy (Barp
et al., 2019; Grathwohl et al., 2020).

An alternative approach more related to our work is noise contrastive estimation (NCE), where
Gutmann and Hyvärinen (2010) frames the problem as a logistic regression task between the data
and a tractable noise distribution. This leads to a consistent estimate of the model parameters.
Additionally, the normalisation constant is learned using an additional parameter (Mnih and Teh,
2012). The crucial issue of NCE, and that will not affect our method, is that the objective depends on
the noise distribution, which is very hard to optimise (Chehab et al., 2022).

1.1 CONTRIBUTIONS

Our work is inspired by two papers on local likelihood density estimation (Loader, 1996; Hjort and
Jones, 1996), which mention ways of bypassing the normalising constants in their quite specialised
context. Our contributions are the following:

• We propose a new objective, the self-normalised log-likelihood (SNL) that is amenable to
stochastic optimisation and allows to recover both the maximum likelihood estimate and its
normalising constant;

• We study theoretical properties of the SNL, in particular its concavity for exponential
families and its links with information geometry;

• We show on various low-dimensional tasks that SNL is straightforward to implement, and
works as well or better than other, more complex, techniques for learning EBMs.

• We show state-of-the-art result on image regression dataset using an Energy Based Model.
• We derive a surrogate training objective, SNELBO, for a VAE with an EBM prior, that we

train on binary MNIST.

2 SELF-NORMALISING THE LIKELIHOOD

We deal with some data x1, . . . , xn ∈ X , assumed to be independent and identically distributed
samples from a distribution pdata. Our goal is to fit an EBM pθ, as defined in Eq. (1), to these data.
The standard approach for fitting a probabilistic model is to maximise the likelihood function

ℓ(θ) =
1

n

n∑
i=1

log pθ(xi). (2)

Unfortunately, as we will discuss now, maximising such a function for an EBM is a daunting task.

2.1 WHY MAXIMUM LIKELIHOOD FOR EBMS IS HARD

Let us focus on a single data point x. The log density of our EBM is
log pθ(x) = −Eθ(x)− logZθ, (3)
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with θ being the learnable parameters of the model. Gradient-based methods are a popular approach
to train an EBM via maximum likelihood; those methods require the gradient of the log density with
respect to the parameters, θ, that is

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ. (4)

While automatic differentiation can, usually, easily compute the gradient of the energy, ∇θEθ(x), it is
not the case for ∇θ logZθ. However, following the Boltzmann learning rule (Hinton and Sejnowski,
1983), we can express the gradient of the normalising constant as an expected value (see e.g. Song
and Kingma, 2021 for a full derivation):

∇θ logZθ = −EX∼pθ [∇θEθ(X)]. (5)

We can obtain a Monte Carlo estimate of this gradient, but this requires sampling from the EBM
itself, which leads to the use of MCMC-based methods that often suffer from poor stability and
high computational cost. These procedures usually require very long chains to converge to the true
distribution pθ. For the EBM to be computationally trainable, one needs to cut short the procedure.
The obtained samples do not follow exactly pθ meaning that the estimates of ∇θ logZθ are biased.
As it is critical to have a good and fast estimate of this gradient, alternative methods consider using a
proposal distribution q in an importance sampling fashion, to yield a cheaper estimate:

logZθ = log

∫
e−Eθ(x) dx = log

∫
e−Eθ(x)

q(x)
q(x) dx ≥ EX1,...,XM∼q

log 1

M

M∑
m=1

e−Eθ(Xm)

q(Xm)

 ,
(6)

where the last inequality is a consequence of Jensen’s. In turn, this means that we will maximise the
likelihood upper bound

ℓIS(θ) =
1

n

n∑
i=1

−Eθ(xi)− EX1,...,XM∼q

log 1

M

M∑
m=1

e−Eθ(Xm)

q(Xm)

 ≥ ℓ(θ), (7)

in lieu of the likelihood. Depending on the choice of q, and on the number of importance samples
M , this inequality is potentially very loose, meaning that one would train the model to maximise a
biased approximation of the likelihood. Finding a good proposal q that allows for fast sampling and
correct estimation of its entropy is still a very active research area (Grathwohl et al., 2021; Kumar
et al., 2019; Xie et al., 2018). Usually, this proposal is trained in parallel with the model Eθ which
leads to a very unstable adversarial objective (Geng et al., 2021).

2.2 CAN WE MAKE THIS LOGARITHM DISAPPEAR?

The looseness of the importance sampling approximation ℓIS(θ) is only due to Jensen’s inequality: if
the logarithm were replaced by a linear function, it would be possible to compute unbiased estimated
of the log-likelihood gradients. Our key idea is therefore to linearise the logarithm, using the following
simple variational formulation. This will help us bypass the issues mentioned in Section 2.1.
Lemma 2.1. For all z > 0,

log z = min
λ∈R

(
ze−λ + λ− 1

)
. (8)

The proof of this lemma is elementary and provided in Appendix A.1. This result is often used as an
illustration of variational representations in variational inference tutorials (see e.g. Jordan et al., 1999,
Section 4.1; Ormerod and Wand, 2010, Section 3), but we are not aware of it being used in a context
similar to ours. Applying Lemma 2.1 to Eq. (3) give us, for any x ∈ X ,

log pθ(x) = −Eθ(x)− logZθ = −Eθ(x)−min
b∈R

(
e−bZθ + b− 1

)
= −Eθ(x) + max

b∈R

(
−e−bZθ − b+ 1

)
= max

b∈R

(
−Eθ(x)− b− e−bZθ + 1

)
.

(9)

Using Eq. (9), we define a new objective named the self-normalised log-likelihood (SNL) ℓSNL that
is a function of the original parameter of the EBM θ and a single additional parameter b ∈ R:

ℓSNL(b, θ) =
1

n

n∑
i=1

−Eθ(xi)− b− e−bZθ + 1. (10)
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When maximised w.r.t. b, we can recover the exact log-likelihood of a given model pθ and maximising
both θ and b leads to the maximum log-likelihood estimate, as formalised below.

Theorem 2.1. For any given θ, when the SNL is maximised with respect to b, we have access to the
exact log-likelihood of the model.

max
b∈R

ℓSNL(θ, b) = ℓ(θ), (11)

Moreover, at the optimum, b is the normalisation constant:

argmax
b∈R

ℓSNL(θ, b) = logZθ. (12)

Finally, there is a one-to-one correspondence between the local optima of the SNL and the log-
likelihood.

The proof is available in Appendix A.2 and is a simple application of the variational formulation of
the logarithm. The important consequence of this result is that maximising the SNL w.r.t. θ and b
will recover both the maximum log-likelihood estimate and its normalising constant. This ability
of our objective to learn both the model and its normaliser motivates the name self-normalised
log-likelihood. We chose to call the extra parameter b because, whenEθ is model as a neural network,
b can simply be understood as the bias of its last layer.

Another direct consequence of Eq. (9) is that, for any θ and b, SNL is a lower bound of the log-
likelihood. Using the importance-sampling upper bound, this will lead to useful "sandwichings" of
the log-likelihood:

ℓSNL(θ, b) ≤ ℓ(θ) ≤ ℓIS(θ). (13)

2.3 WHY MAXIMISING THE SNL IS EASIER

Why is the SNL more tractable than the standard log-likelihood? After all, the SNL also involves the
intractable normalising constant. The key difference is that, since it depends linearly on it, it is now
possible to obtain unbiased estimates of the SNL gradients.

Indeed, using a proposal q gives us estimates of the gradient of Zθ with importance sampling. Using

Zθ =

∫
e−Eθ(x)

q(x)
q(x)dx = EX∼q

[
e−Eθ(X)

q(X)

]
, (14)

allows to get unbiased estimates of the SNL gradients w.r.t. θ and b. More precisely, for a batch of
size nB and a number of samples M , we use the following estimate of the gradient w.r.t. θ:

∇θℓSNL(θ, b) ≈ − 1

nb

nb∑
i=1

∇θEθ(xi) + e−b
1

M

M∑
m=1

[
∇θEθ(xm)e−Eθ(xm)

q(xm)

]
. (15)

Similarly, we can compute unbiased estimates of the gradients w.r.t. b:

∇bℓSNL(θ, b) ≈ −1 + e−b
1

M

M∑
m=1

[
e−Eθ(xm)

q(xm)

]
. (16)

The theory of stochastic optimisation (see e.g. Bottou et al., 2018) then ensures that SGD-like algo-
rithms, when applied to SNL, will converge to the maximum likelihood estimate and its normalising
constant. In practice, we use popular algorithms like Adam to train θ and b jointly. Some more
specialised algorithms could also be used. For instance, Bietti and Mairal (2017) call optimisation
problems similar to ours "infinite datasets with finite sum structure" (in our case, the infinite dataset
are samples from the proposal, and the finite sum corresponds to the actual data), and propose an
algorithm fit for this purpose. The full algorithm for training an energy based model with SNL is
available in Appendix E with Algorithm 1.
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Are the gradients of ℓ and ℓSNL related? If we rewrite this gradient in the same fashion as Eq. (4),
we can express the gradient of the SNL with the gradient of the log-likelihood :

∇θℓSNL(θ, b) = − 1

n

n∑
i=1

∇θEθ(x)− e−b+logZθ∇ logZθ

= ∇θℓθ +∇θ logZθ(1− e−b+logZθ ).

(17)

When b is equal to the normalisation constant logZθ, we can obtain an unbiased estimator of the true
log-likelihood gradient.

2.4 PRACTICALITIES WHEN USING SNL

For EBMs to be well-posed, it is required that the normalisation constant exists, i.e. that∫
e−Eθ(x)dx < ∞. To that end, following Grathwohl et al. (2020) and similarly to exponen-

tial tilting (Siegmund, 1976), multiplying the un-normalised probability by a density d ensures the
existence of the normalisation constant. The distribution becomes pθ(x) ∝ e−Eθ(x)d(x).

We call d the base density or the base distribution. In the case where the proposal q is equal to the
base distribution, the SNL estimates and the gradient estimates simplify:

∇θZθ ≈
1

M

M∑
m=1

∇θEθ(xm)e−Eθ(xm). (18)

Furthermore, we initialise b by estimating logZθ with importance sampling using the proposal q at
the beginning of the training procedure. This practice allows us to get gradient estimates of SNL
somewhat close to the true gradient log-likelihood.

2.5 RELATED WORKS

Objectives similar to SNL have been proposed in the past. In particular, in the context of local likeli-
hood density estimation, Loader (1996) and Hjort and Jones (1996) handled intractable normalising
constants in a similar fashion to ours. Arbel et al. (2020) leveraged a similar approach to estimate the
normalisation constant in order to train hybrids of generative adversarial nets and EBMs. Neither
of these works used importance sampling. Pihlaja et al. (2010) and Gutmann and Hirayama (2011)
proposed families of generalisations of NCE which contain an objective similar to SNL as a special
case. In these generalisations of NCE, the noise distribution plays a similar role to our proposal, but
the obtained estimates in general differ from maximum likelihood. The novelty of SNL lies in the
fact that it allows to perform exact maximum likelihood optimisation (regardless of the choice of
proposal) for an EBM using stochastic optimisation together with importance sampling.

3 SOME THEORETICAL PROPERTIES OF SNL

3.1 CONCAVITY OF SNL FOR EXPONENTIAL FAMILIES

It is a well-known fact that the log-likelihood of exponential families is concave because of the partic-
ular form of the gradient of the normaliser. We provide a proof in Appendix A.3 for completeness.
The self-normalised log-likelihood preserves this property with the exponential family: the SNL is
even jointly concave in both parameters.
Theorem 3.1. If (pθ)θ is a canonical exponential family, then ℓSNL(θ, b) is jointly concave.

The proof is available in Appendix A.4 and follows directly from the convexity of the exponential.
This means that the many theoretical results on stochastic optimisation for convex functions could be
leveraged to prove convergence guarantees of SNL (see e.g. Bottou et al., 2018).

3.2 AN INFORMATION-THEORETIC INTERPRETATION

Maximum likelihood has the following classical information-theoretic interpretation: when the
number of samples goes to infinity, maximising the likelihood is equivalent to minimising the
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Kullback-Leibler divergence between pθ and the true data distribution pdata (see e.g. White, 1982). A
similar rationale exists also for SNL, and involves a generalisation of the Kullback-Leibler divergence
to un-normalised finite measures. This generalisation exists also in the more general context of
f -divergences, as detailed for instance by Amari and Nagaoka (2000, Section 3.6) or Stummer and
Vajda (2010). It reduces to the usual definition when f1 and f2 are probability densities and shares
many of the merits of the usual Kullback-Leibler divergence (see Appendix D for more details).

Standard maximum likelihood is asymptotically equivalent to minimising KL(pdata||pθ). As we detail
in Appendix D, this turns out to be equivalent to minimising the generalised divergence between pdata
and all un-normalised models proportional to e−Eθ :

KL(pdata||pθ) = min
c>0

KL(pdata||ce−Eθ ). (19)

This new divergence is related to the SNL in the same way that the standard Kullback-Leibler
divergence is related to the likelihood. Indeed, for any c > 0,

KL(pdata||ce−Eθ ) =

∫
log

(
pdata(x)

ce−Eθ(x)

)
pdata(x)(x)dx+ cZθ − 1 (20)

= −
∫
e−Eθ(x)pdata(x)dx− log c+ cZθ − 1 +

∫
log(pdata(x))pdata(x)dx︸ ︷︷ ︸
does not depend on θ nor c

.

(21)

The first integral, that depends on θ, is intractable, but may be estimated if we have access to an i.i.d.
dataset x1, . . . , xn, leading to the estimate

KL(pdata||ce−Eθ ) ≈ − 1

n

n∑
i=1

e−Eθ(xi) − log c+ cZθ − 1 +

∫
log(pdata(x))pdata(x) dx (22)

= −ℓSNL(θ, log c) +

∫
log(pdata(x))pdata(x) dx, (23)

which means that minimising the SNL will asymptotically resemble minimising the generalised
Kullback-Leibler divergence. In the context of local likelihood density estimation, Hjort and Jones
(1996) also derived similar connections with the generalised Kullback-Leibler divergence. More
recently, Bach (2022) applied the same variational representation of the logarithm to the generalised
Kullbakc-Leibler, in a context very different from ours.

4 EXTENDING SNL

4.1 SELF-NORMALIZATION IN THE REGRESSION SETTING

We consider the supervised regression problem where we are given a dataset of pairs of inputs and
targets (x, y) ∈ X × Y where the target space Y is continuous. We want to estimate the conditional
distribution pdata(y|x) using an EBM:

pθ(y|x) =
e−Eθ(x,y)

Zθ,x
, (24)

where Zθ,x =
∫
e−Eθ(x,y) dy. The main difference with the previous density estimation setup is that

the normalisation constant Zθ,x also depends on the input value x.

Because the normaliser now also depends on x, we introduce a new family of functions bϕ whose
role is to estimate the normalisation constant Zθ,x. Similarly to the density estimation case, we define
the self-normalised log-likelihood as

ℓSNL(θ, ϕ) =
1

n

n∑
i=1

(
−Eθ(xi, yi)− bϕ(xi)− Zθ,xi

e−bϕ(xi) + 1
)
. (25)

Provided the family bϕ is expressive enough, this SNL for regression enjoys the same properties as
its unsupervised counterpart. We can retrieve the maximum likelihood estimate when maximising
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Funnel Pinwheel Checkerboard Four Circles

Objective Base Dist ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL

NCE N (0,1) −2.040 (±0.251) −2.044 (±0.254) −1.004 (±0.072) −1.020 (±0.084) −1.947 (±0.033) −1.964 (±0.032) −2.117 (±0.005) −2.120 (±0.006)

SNL N (0,1) −1.811 (±0.175) −1.831 (±0.181) −1.031 (±0.066) −1.035 (±0.065) −1.902 (±0.012) −1.905 (±0.012) −1.914 (±0.022) −1.918 (±0.022)

NCE None −1.894 (±0.096) −1.896 (±0.097) −1.063 (±0.019) −1.069 (±0.024) −1.997 (±0.022) −2.025 (±0.056) −2.231 (±0.038) −2.232 (±0.039)

SNL None −2.006 (±0.378) −2.066 (±0.468) −1.072 (±0.040) −1.086 (±0.030) −1.966 (±0.030) −1.969 (±0.028) −1.971 (±0.047) −1.973 (±0.048)

Table 1: Evaluation of the performance of EBMs trained with NCE or SNL objective with or without
a base distribution. We generate each datasets five times and run each set of parameter once on each.
We report the mean and standard deviation of the estimated log-likelihood and the self-normalised
likelihood ℓSNL. Highest is best.

the SNL in both θ and ϕ. Moreover, at the optimum, for any x ∈ X , bϕ(x) is the normalisation
constant logZθ,x. The SNL for regression is also a lower bound of the true conditional log-likelihood.
Following reasoning of Section 2.3, we propose to train an EBM model for regression using the SNL.
To that end, we consider a proposal qψ that depends on both x and y and is parameterised by ψ. For
instance, Gustafsson et al. (2020) use a mixture density network (MDN, Bishop, 1994) proposal. In
Gustafsson et al. (2020), the EBM is trained jointly with the MDN. The MDN maximisation objective
is an average combination between the negative Kullback-Leibler divergence between the pθ and qψ .

4.2 SELF-NORMALISED EVIDENCE LOWER BOUND

The SNL aproach allows training a variational auto-encoder (VAE) with an energy-based prior using
approximate inference. Both Pang et al. (2020) and Schröder et al. (2023) trained an EBM as a prior
in the latent space for a noisy sampler but required MCMC to sample from the posterior and the prior
during training. We introduce the self-normalised evidence lower bound (SNELBO), a surrogate
ELBO objective that leverages the self-normalised log-likelihood to allow for straightforward training.

Formally, we consider a variational auto-encoder Kingma and Welling (2014) with a prior pθ(z)
defined by an EBM composed of an energy function Eθ parameterised by a neural network and
an associated base distribution d(z), i.e., pθ(z) = e−Eθd(z)

Zθ
where Zθ =

∫
e−Eθ(z)d(z)dz. The

generative model is the same as in VAE and an output density pϕ(z|x) is parameterised by a neural
network gϕ(z). Since the likelihood is intractable, we posit a conditional variational distribution
qγ(z|x) to approximate the posterior of the model, similarly to the original VAE. Using Lemma 2.1,
we can obtain the SNELBO:

LSNL(θ, ϕ, γ, b) = Eqγ(z|x)
[
log pϕ(x|z)

]
+ Eqγ(z|x)

[
log

d(z)

qγ(z|x)

]
+ Eqγ(z|x)

[
−Eθ(z)− b

]
− Ed(z)

[
e−Eθ(z)−b

]
+ 1. (26)

We note that the SNELBO is a lower bound on the log-likelihood, ℓ(θ, ϕ), and a lower bound
on the regular ELBO, L, that is tight for optimal b, i.e., ℓ(θ, ϕ) ≥ L(θ, ϕ, γ) ≥ LSNL(θ, ϕ, γ, b)
and L(θ, ϕ, γ) = maxb∈R LSNL(θ, ϕ, γ, b). See Appendix F for derivation details. This surrogate
objective can be interpreted as the combination of the ELBO from a VAE whose prior is the base
distribution d(z) with a regularization term from the EBM. As such, the EBM can be added easily on
top of any VAE model.

5 EXPERIMENTS

5.1 DENSITY ESTIMATION

We evaluate the performances of an EBM on density estimation, trained with SNL on four different,
two-dimensional, generated datasets. Each dataset has 7000 samples in its training set, 2000 samples
in its test set and 1000 in its validation set. Each model is trained with the Adam optimiser Kingma
and Ba (2015), with a learning rate of 1e−3, for 25 epochs and with a standard Gaussian proposal. We
compare our model with an EBM trained in the same condition but with noise contrastive estimation.
Both setups uses a fully connected network architecture specified in Table 8. Both setup also leverages
a base distribution that equals the proposal distribution and that is not trained. Fig. 4 shows our
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EBM - SNL Gaussian MADE MADE MoG Real NVP (5) Real NVP (10) MAF (5) MAF (10) MAF MoG (5)

Power (d = 6) [0.28, 0.41] −7.74 −3.08 0.40 −0.02 0.17 0.14 0.24 0.30

Gas (d = 8) [5.73, 7.74] −3.58 3.56 8.47 4.78 8.33 9.07 10.08 9.59

Hepmass (d = 21) [−19.22,−19.20] −27.93 −20.98 −15.15 −19.62 −18.71 −17.70 −17.73 −17.39

Table 2: For EBM-SNL the upper bound corresponds to ℓIS and the lower bound to ℓSNL. Both are
computed using 20000 samples from the test set.

results. Qualitatively, we observe that the two models perform on par, except for the four circles
dataset, where SNL dominates.

We perform a second set of density estimation experiments, with the same setup as above, and explore
the impact of the base distribution. For that purpose we perform a set of experiment with a proposal
and a set without. We train each configuration five times, re-generating the dataset every time. We
show our results in Table 1. According to those results, SNL-trained EBM with a base distribution,
perform better than their NCE counter part across all datasets except Pinwheel. Contrary to an SNL
trained EBM, we observe that using a base distribution with a NCE trained EBM is detrimental to its
performances.

We experiment our SNL-trained EBM on the UCI datasets, to explore the impact of higher dimensions.
We use a simple gaussian with full covariance as the proposal. We report our results in Table 2, where
we beat or are on par with other method; and, to the best of our knowledge, it is the first competitive
application of EBMs in this setting.

5.2 EBMS FOR REGRESSION

1 8 16 32 64 128
Nb Samples

4.25

4.00

3.75

3.50

3.25

3.00

2.75

IS

NCE
SNL

(a) Cell Count

11 22 88 1616 3232 6464 128128
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4.0

3.8

3.6
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3.0

IS

(b) UTK Faces

Figure 2: Performance evolution of
the EBMs for regression trained on Cell
Count and UTKFaces dataset.

Following Gustafsson et al. (2022), we study and compare
our training method on two one-dimensional regression
tasks (see Figure Fig. 3 in Appendix G) and four image
regression datasets. We parameterise our model with the
same architecture as Gustafsson et al. (2022) where the
output of a feature extractor, hx, feeds both the proposal
qψ(.|hx) and a head neural network for the EBM (see
Figure 1 in Gustafsson et al. (2022) for more details).
With that formulation, the feature extractor is learned only
with gradients calculated from the EBM loss (either NCE
or SNL in our case) and the proposal is learned with a
fixed feature extractor.

In our experiments, we consider three different proposals:

• A mixture density network proposal whose pa-
rameters are given by a small fully connected
neural network.

• A fixed multivariate Gaussian N (µ,Σ) whose
parameters are estimated before training with the
training dataset and fixed during training.

• A fixed uniform distribution U that is defined by
leveraging the knowledge from the dataset and
fixed during training.

All models are evaluated using an estimate of the log-likelihood with M = 20, 000 samples from a
multivariate Gaussian whose parameters are estimated before training:

ℓIS =
1

N

N∑
i=1

−Eθ(xi, yi)− bϕ(xi)− log
1

M

M∑
m=1

e−Eθ(xi,y
(m)
i )−bϕ(xi)

 (27)

Since NCE normalises the EBM at the optimum (Mnih and Teh, 2012), we also provide the ℓSNL

(i.e. a lower bound estimate of the log-likelihood) for each set of parameters using the same proposal

8
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Regression Dataset 1 Regression Dataset 2

Objective Proposal q ℓIS ℓSNL ℓIS ℓSNL

NCE N (µ,Σ) −0.030 (±0.278) −0.718 (±0.256) −2.592 (±0.214) −3.559 (±1.881)

NCE MDN K2 −0.611 (±0.154) −1.492 (±0.993) −2.451 (±0.088) −2.634 (±0.084)

SNL N (µ,Σ) 0.164 (±0.088) 0.033 (±0.077) −1.813 (±0.109) −1.836 (±0.109)

SNL MDN K2 0.255 (±0.017) 0.251 (±0.016) −2.099 (±0.250) −2.170 (±0.353)

Table 3: Evaluation of regression EBMs on the 1D toy regression problems with two different
objectives and two different proposals. Each model is trained for five runs and we report the mean
and standard deviation of the estimated log-likelihood ℓIS and the self normalized log-likelihood ℓSNL.
Using the SNL as objective clearly outperforms the NCE.

Steering Angle Cell Count UTKFaces BIWI

Objective Proposal ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL

NCE N (µ,Σ) −3.649 (±1.224) UNNORMALIZED −3.367 (±0.399) −9.675 (±0.605) −3.147 (±0.1100) −8.223 (±3.795) −11.02 (±0.576) UNNORMALIZED
NCE MDN-8 −4.001 (±0.667) UNNORMALIZED −3.864 (±0.048) UNNORMALIZED −4.123 (±0.21) −5.170 (±0.955) −11.998 (±0.339) UNNORMALIZED
SNL N (µ,Σ) −2.665 (±1.37) −3.973 (±3.15) −2.701 (±0.041) −2.725 (±0.046 −2.966 (±0.057) −2.991 (±0.069) −10.86 (±1.017) −11.05 (±1.141)

SNL Uniform −1.402 (±0.068) −1.423 (±0.074) −2.604 (±0.001 −2.620 (±0.007) −2.927 (±0.032) −2.965 (±0.019) −10.44 (±0.138) −10.51 (±1.222)

SNL MDN-8 −1.673 (±0.042) −1.692 (±0.046) −2.801 (±0.071) −2.811 (±0.071) −2.921 (±0.055) −2.943 (±0.062) −10.01 (±0.092) −10.04 (±0.091)

Table 4: Evaluation of EBMs for regression on image regression datasets with two different objectives
and different proposals. Each model is trained for five runs and we report the mean and standard devia-
tion of the estimated log-likelihood (ℓIS) and estimated self-normalized log-likelihood (ℓSNL). When
the proposal is MDN, the proposal is learned jointly with the model following Gustafsson et al. (2022).

as ℓIS with 20000 samples. If ℓSNL is close to ℓIS, this means that the lower-bound is tight and bϕ
approximates correctly logZθ (or if no bϕ is used the network is self-normalised and Zθ = 1).

5.2.1 1D REGRESSION DATASETS

We consider here the two artificial datasets for 1D regression with multimodal distribution p(y|x) (see
Fig. 3). We provide a description of the neural network architecture in Appendix I.2. On both datasets,
the SNL always outperformed its NCE counterparts with respect to the estimated upper bound ℓIS
Table 3. Moreover, the ℓSNL of the NCE is loose compared to the ℓSNL. We provide additional results
in Table 6. Using a base distribution to ensure the existence of the normalisation constant Zθ either
improves or gives similar results with the SNL objective but systematically damages the results when
minimising the NCE loss. As mentioned by Mnih and Teh (2012), with both objectives, explicitly
modelling bϕ does not provide a better estimation of the network. The normalisation is implicitly
learned with Eθ.

5.2.2 IMAGE REGRESSION DATASETS

We train an NCE-EBM setup as well as an SNL-EBM setup on an image regression task. We
train on four different datasets, steering angle, cell count, UTKFaces and BIWI and follow the
same setup as Gustafsson et al. (2022). Similarly to the 1D regression datasets, SNL-trained EBM
always outperforms its NCE counterparts Table 4. When using NCE, the resulting energy is often
un-normalised whereas SNL trained EBM provides a tighter bound. In Fig. 2, we observe that our
method improves with the number of samples but stagnates after M = 64 samples. On the other
hand, NCE seems to improve with the sample size but in a less compelling fashion. We provide
additional results in Table 7.

5.3 VAE WITH LATENT PRIOR EBM

VAE -89.10
VAE-MoG -88.73
VAE-EBM Post-Hoc -88.11
VAE-EBM -87.09

Table 5: ELBO/SNELBO for
VAEs with different priors.

We train a VAE with EBM prior on binary MNIST using SNELBO,
as outlined in Section 4.2. We parameterise the output distribution
with a Bernoulli distribution with parameters from a neural network
gϕ, i.e. pϕ(x|z) = B(x|gϕ(z)) and the approximate posterior with
a Gaussian whose parameters are given by a neural network qγ(z|x).
We either train from scratch the VAE with EBM prior (VAE-EBM) or
we only train the prior of a pre-trained VAE with standard Gaussian
prior (VAE-EBM Post-hoc). We compare to a standard VAE with

9
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Gaussian prior (VAE) and a VAE with a Mixture of Gaussian Prior (VAE-MoG) and 10 mixtures. All
VAEs are trained with a latent space of size 16. In Table 5, we show that training VAE-EBM with
latent EBM provides better SNELBO.

6 CONCLUSION

We proposed a new objective to train energy-based models (EBMs) called self-normalising log-
likelihood (SNL). By maximising SNL with respect to the parameters of the EBM and an additional
single parameter b, we can recover both the maximum likelihood estimate and the normalising
constant at optimality. We conducted an extensive experimental study on low-dimension datasets for
density estimation, complex regression problems and training VAEs with EBM prior.
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Supplementary material:
Learning energy-based models

by self-normalising the likelihood

A PROOFS

A.1 VARIATIONAL log

Inspired by Jordan et al. (1999) and Ormerod and Wand (2010), we show the following lemma:
Lemma 2.1. For all z > 0,

log z = min
λ∈R

(
ze−λ + λ− 1

)
. (8)

Proof. Let z > 0 and λ ∈ R, we define the function:

h(λ) = ze−λ + λ− 1. (28)

By differentiating this function with respect to λ, we get:

h′(λ) = −ze−λ + 1. (29)

The differentiated function h′ is negative for λ < log z and positive for λ > log z. Thus the minimum
of h is reached at λ = log(z) and h(log (z)) = log(z), hence the proof.

A.2 PROOF AND THEOREM 2.1

We begin by reminding notations: we consider an energy-based model, which specifies a probability
density over a space X through a parameterised energy function Eθ : X → R. The associated density
is:

pθ(x) =
e−Eθ(x)

Zθ
, (30)

where Zθ =
∫
e−Eθ (x)dx is the partition function. Given n data points x1, ..., xn ∈ X , we define

the log-likelihood function:

ℓ(θ) =
1

n

n∑
i=1

−Eθ(xi)− logZθ. (31)

We define as well the self-normalised log-likelihood (SNL) as:

ℓSNL(θ, b) =
1

n

n∑
i=1

−Eθ (xi)− b− e−bZθ + 1. (32)

We now recall Theorem 2.1:
Theorem 2.1. For any given θ, when the SNL is maximised with respect to b, we have access to the
exact log-likelihood of the model.

max
b∈R

ℓSNL(θ, b) = ℓ(θ), (11)

Moreover, at the optimum, b is the normalisation constant:

argmax
b∈R

ℓSNL(θ, b) = logZθ. (12)

Finally, there is a one-to-one correspondence between the local optima of the SNL and the log-
likelihood.
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Proof. Using Lemma 2.1, we show that for any θ, maxb∈R ℓSN(θ, b) = ℓ(θ).

ℓ(θ) =
1

n

n∑
i=1

log pθ(xi) (33)

=
1

n

n∑
i=1

log(e−Eθ(xi))− logZθ (34)

=
1

n

n∑
i=1

log(e−Eθ(xi))−min
b∈R

(e−bZθ + b− 1) (35)

=
1

n

n∑
i=1

log(e−Eθ(xi)) + max
b∈R

(−e−bZθ − b+ 1) (36)

= max
b

1

n

n∑
i=1

log(e−Eθ(xi))− e−bZθ − b+ 1 (37)

= max
b∈R

ℓSNL(θ, b). (38)

We show that ℓ(θ) and ℓSNL(θ, b) share the same local maxima.

Let θ∗ a local optimum of ℓ(θ∗), we will construct a local optimum of ℓSNL.

Let b∗ = logZθ∗ , then the gradient of ∇θ,bℓSNL = 0 :

∇bθℓSNL(θ
∗, b)(x) = −1 + Zθ∗e

−b = 0 (39)

∇θℓSNL(θ
∗, b)(x) = −∇θEθ∗(x)− e−b∇θZθ (40)

= −∇θEθ∗(x)− e−bZθ∗∇θ logZθ∗ (41)

= −∇θEθ∗(x)−
1

Zθ∗
Zθ∗∇θ logZθ∗ (42)

= −∇θEθ(x)−∇θ logZθ∗ (43)
= ∇θℓ(θ

∗)(x) (44)
= 0 (45)

Thus, for any local optimum of ℓ(θ∗), the pair (θ∗, logZθ∗ is a local optimum ℓSNL.

Conversely, with the same reasoning, for any pair of (θ̃, b̃) local optimum of ℓSNL, θ̃ is a local
maximum of ℓ.

A.3 PROOF OF THEOREM A.1

For completeness, we begin by proving the classical result about the convexity of exponential families.
For more details, see e.g. Wainwright and Jordan (2008, Chapter 3).

Theorem A.1. If (pθ)θ is a canonical exponential family, then ℓ(θ) is concave. In particular, the
gradient and the Hessian of logZθ are respectively the mean and the covariance matrix of the
sufficient statistics.

Proof. Let’s consider an exponential family whose densities with respect to a base measure are
parameterised as pθ(x) = eθ

T s(x)−logZθ , where s(x) is the sufficient statistics and θ the natural
parameters. To simplify formulas, we will assume that we observe a single data point x ∈ X .
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Observing several i.i.d. data points will preserve concavity because a sum of concave functions
remains concave, so there is no loss of generality.

The log-likelihood of such a model is given by:

ℓ(θ) = θT s(x)− logZθ = θT s(x)− log

∫
eθ

T s(x)dx. (46)

We will prove that this objective is concave by showing that the Hessian is negative semi-definite.
Let’s calculate the gradient and Hessian of logZθ. For integrals akin to the normalising constant,
switching differentiation and integration is allowed (see e.g. Lehmann and Romano, 2022, Theorem
2.7.1), and we get

∇θ logZθ = ∇θ log

∫
eθ

T s(x)dx (47)

=

∫
s(x)eθ

T s(x)dx∫
eθT s(x)dx

(48)

=

∫
s(x)eθ

T s(x)−logZθdx (49)

= Eθ[s(x)]; (50)

Hθ(logZθ) =

∫
s(x)s(x)T eθ

T s(x)−logZθdx−
(∫

s(x)eθ
T s(x)−logZθdx

)
(∇θ logZθ)

T (51)

=

∫
s(x)s(x)T eθ

T s(x)−logZθdx (52)

−
(∫

s(x)eθ
T s(x)−logZθdx

)(∫
s(x)eθ

T s(x)−logZθdx

)T
(53)

= Eθ[s(x)s(x)T ]− Eθ[s(x)]Eθ[s(x)]T (54)
= Vθ[s(x)]. (55)

Using the Hessian of logZθ, we can express directly the Hessian of the log-likelihood ℓ(θ):

H(ℓ(θ)) = −Vθ[s(x)]. (56)

The covariance matrix Vθ[s(x)] is positive semi-definite thus the hessian H(ℓ(θ)) is negative semi-
definite. Hence, ℓ(θ) is concave.

A.4 PROOF OF THEOREM 3.1

Theorem 3.1. If (pθ)θ is a canonical exponential family, then ℓSNL(θ, b) is jointly concave.

Proof. Using the same notations as the previous proof, our exponential family is parameterised as
pθ(x) = eθ

T s(x)−logZθ , where s(x) is the sufficient statistics and θ the natural parameters. We again
assume without loss of generality that we observe a single data point x ∈ X .

The self-normalised log-likelihood is as follows:

ℓSNL(θ, b) = θT s(x)− b− e−b+logZθ + 1 (57)

= θT s(x)− b+ 1−
∫
eθ

T s(x)−bdx. (58)
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Since the first term of the equation is affine, we will show that the function (θ, b) 7→ e−b+logZθ is
jointly convex in (θ, b).

Let (b1, θ1) and (b2, θ2) any given pair of parameters and let λ ∈ [0, 1] :

∫
e(λθ1+(1−λ)θ2)T s(x)−(λb1+(1−λ)b2)dx =

∫
eλ(θ

T
1 s(x)−b1)+(1−λ)(θT2 s(x)−b2)dx (59)

≥
[∫ (

λeθ
T
1 s(x)−b1 + (1− λ)eθ

T
2 s(x)−b2

)
dx

]
(60)

= λ

∫
eθ

T
1 s(x)−b1dx+ (1− λ)

∫
eθ

T
2 s(x)−b2dx. (61)

The function (θ, b) 7→ e−b+logZθ is convex jointly in (θ, b), thus (θ, b) 7→ ℓSNL(θ, b) is also convex
jointly in (θ, b) which concludes the proof.

B THE GAUSSIAN CASE

We consider a univariate Gaussian with unknown mean θ ∈ R and known unit variance. The model
is parameterised as an exponential family with energy and normalising constant:

Eθ(x) = −θx, logZθ =
1

2
θ2, (62)

the base measure being the standard Gaussian measure.

For a dataset (x1, ..., xn) ∈ Rn, the log-likelihood is:

ℓ(θ) =
1

n

n∑
i=1

xiθ −
1

2
θ2, (63)

which is concave and is maximised at θ̂ML = x̄n. The SNL equals:

ℓSNL(θ, b) =
1

n

n∑
i=1

xiθ − b− Zθe
−b + 1 (64)

=
1

n

n∑
i=1

xiθ − b− e
1
2 θ

2−b + 1, (65)

which is also concave and is maximised at (θ̂SNL, b̂SNL) = (x̄n, x̄
2
n/2).

C THE BERNOULLI CASE

In the same vain as in Appendix B, we derive here the SNL for a Bernoulli distribution, in order to
gain basic insights. We consider a Bernoulli distribtuion with unknown natural parameter θ ∈ R (θ
here is the logit of the probability of success). The model is parameterised as an exponential family
with energy and normalising constant:

Eθ(x) = −θx, logZθ = log
(
1 + eθ

)
, (66)

the base measure being the uniform measure on {0, 1}.

For a dataset (x1, ..., xn) ∈ {0, 1}n, the log-likelihood is:

ℓ(θ) =
1

n

n∑
i=1

xiθ − log
(
1 + eθ

)
, (67)
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which is concave and is maximised at θ̂ML = logit(x̄n). The SNL equals:

ℓSNL(θ, b) =
1

n

n∑
i=1

xiθ − b− Zθe
−b + 1 (68)

=
1

n

n∑
i=1

xiθ − b− e−b
(
1 + eθ

)
+ 1, (69)

which is also concave and is maximised at (θ̂SNL, b̂SNL) = (logit(x̄n), log(1 + elogit(x̄n))).

D THE KULLBACK-LEIBLER DIVERGENCE FOR UN-NORMALISED DENSITIES

We consider a measured space X , equipped with a base measure dx (typically the Lebesgue or the
counting measure). Let f1, f2 be the densities of two finite measures. The Kullback-Leibler between
these is then defined as

KL(f1||f2) =
∫

log

(
f1(x)

f2(x)

)
f1(x)dx+

(∫
f2(x)dx−

∫
f1(x)dx

)
. (70)

It is clear that this reduces to the usual KL when f1 and f2 are probability densities. For more details,
see for instance Amari and Nagaoka (2000, Section 3.6) or Stummer and Vajda (2010).

Why is this a sensible generalisation? We can write our un-normalised densities as f1 = µ1p1 and
f2 = µ1p2, where

µ1 =

∫
f1(x)dx, µ2 =

∫
f2(x)dx. (71)

Plugging this into equation 70 gives

KL(f1||f2) =µ1KL(p1||p2) + µ1 log

(
µ1

µ2

)
+ (µ2 − µ1) (72)

= µ1

(
KL(p1||p2) + h

(
µ2

µ1

))
, (73)

where h : t 7→ t− 1− log t. Since h(t) > 0 for all t ̸= 1 and h(1) = 0, we will have

• KL(f1||f2) ≥ 0

• KL(f1||f2) = 0 if and only if f1 = f2.

This means that this generalised KL enjoys some of the nice properties of the usual KL, which
motivates its use for statistical inference.

Another interesting property that is a direct consequence of Eq. (72) is that

KL(p1||p2) = min
c>0

KL(p1||cf2), (74)

which means that we can recover the KL between probability densities by minimising the KL
between un-normalised densities, transforming the computation of the normalising constant into an
optimisation problem. This justifies Eq. (19). Another interpretation of this property is that the KL
between p1 and the set {cf2; c > 0} is just the KL between p1 and p2.

The KL divergence between two un-normalised densities relates to the self-normalised log-likelihood
as such:
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KL(pdata||ce−Eθ ) =

∫
log

(
pdata(x)

ce−Eθ(x)

)
pdata(x)(x)dx+ cZθ − 1 (75)

= −
∫ (

e−Eθ(x)pdata(x)− log c+ cZθ − 1
)
dx+

∫
log(pdata(x))pdata(x)dx︸ ︷︷ ︸
does not depend on θ nor c

.

(76)

As we assume we have access to an i.i.d. dataset x1, ..., xn, we can estimate the above quantity:

KL(pdata||ce−Eθ ) ≈ − 1

n

n∑
i=1

e−Eθ(xi) − log c+ cZθ − 1 +

∫
log(pdata(x))pdata(x) dx (77)

= −ℓSNL(θ, log c) +

∫
log(pdata(x))pdata(x) dx. (78)

This implies that maximising the self-normalised log-likelihood will, asymptotically, resemble
minimising the generalised Kullback-Leibler divergence.

E ALGORITHMS

Algorithm 1: Training an EBM for density estimation using SNL loss and proposal q.
input :Learning iterations, T ; learning rate, η; initial parameters, {θ0, b0}; observed examples, {xi}ni=1;

batch size, nb; number of samples from the proposal q, M .
output : θT , bT .
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}nb
i=1.

2. Proposal sampling: Sample M elements from the proposal xm ∼ q̃(xm)

3. Learn EBM parameters θ: Update θt+1 = θt − η∇̂θℓSNL(θ, b) using ∇̂θℓSNL(θt, b) defined in
Eq. (15).

4. Learn b: Update bt+1 = bt − η∇̂bℓSNL(θ, bt) using ∇̂bℓSNL(θ, bt) in defined Eq. (16).

Algorithm 2: Training a VAE with EBM prior using the SNELBO loss.
input :Learning iterations, T ; learning rate, η; initial parameters, {θ0, γ0, ϕ0, b0}; observed examples,

{xi}ni=1; batch size, nb; number of samples from the base d, M .
output : θT , γT , ϕT , bT .
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}nb
i=1.

2. Proposal sampling: Sample M elements from the base xm ∼ d̃(xm)

3. Learn EBM parameters θ: Update θt+1 = θt − η∇̂θLSNL((θ, γ, ϕ, b) using Eq. (26).
4. Learn VAE parameters: Update {γ, ϕ}t+1 = {γ, ϕ}t − η∇̂{γ,ϕ}LSNL(θ, γ, ϕ, b) using Eq. (26).
5. Learn b: Update bt+1 = bt − η∇̂bℓSNL(θ, bt) using Eq. (26).

F DERIVATION OF THE SNELBO

Using the variational distribution qγ(z|x), we can write the regular ELBO for the VAE with the
energy-based prior as

L(θ, ϕ, γ) = Eqγ(z|x)[log pϕ(x|z)] + Eqγ(z|x)

[
log

e−Eθ(z)d(z)

qγ(z|x)Zθ

]
, (79)

which is a lower bound, ℓ(θ, ϕ) ≥ L(θ, ϕ, γ), on the log-likelihood

ℓ(θ, ϕ) = pθ,ϕ(x) =

∫
pϕ(x|z)pθ(z) dz, (80)
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where we left out the sum over data to simply the notation. Using Lemma 2.1, we define the SNELBO
as

LSNL(θ, ϕ, γ, b) = Eqγ(z|x)[log pϕ(x|z)] + Eqγ(z|x)

[
log

d(z)

qγ(z|x)

]
+ Eqγ(z|x)

[
−Eθ(z)− b

]
− Zθe

−b + 1, (81)

which can be written using the base distribution d,

LSNL(θ, ϕ, γ, b) = Eqγ(z|x)
[
log pϕ(x|z)

]
+ Eqγ(z|x)

[
log

d(z)

qγ(z|x)

]
+ Eqγ(z|x)

[
−Eθ(z)− b

]
− Ed(z)

[
e−Eθ(z)−b

]
+ 1 (82)

Lemma 2.1 gives directly the following results :

ℓ(θ, ϕ) ≥ L(θ, ϕ, γ) ≥ LSNL(θ, ϕ, γ, b) (83)
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Figure 3: Visualisation of the two toy regression datasets.

The first dataset set, on the left hand side of Fig. 3, is a mixture of two gaussians with weights 0.2 and
0.8 for negative values on the x-axis and a log-normal distribution Log−N (0., 0.25) for positive
values of x. There are 2000 training samples that we generated by uniformly sampling values in
[−3, 3].

The second dataset, on the right hand side of Fig. 3, is defined for x in [0, 1] and is divided in four
different chunks. The first one, for x < 0.21, is sampled from Beta(α = 0.5, β = 1); the second one,
for 0.21 ≤ x < 0.47 is sampled from N

(
µ = 3 · cosx− 2, σ = |3 · cosx− 2|

)
; the third one for

0.47 ≤ x < 0.61 from an increasing uniform distribution; the fourth and last one, for 0.61 ≤ x ≤ 1
is obtained from a mixture of uniform distribution, U(8, 0.5),U(1, 3) and U(−4.5, 1.5).
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H ADDITIONAL RESULTS

Models Datasets
Regression Dataset 1 Regression Dataset 2

Objective Proposal q bϕ Base Dist ℓIS ℓSNL ℓIS ℓSNL

NCE N (µ,Σ) None None −0.100 (±0.186) −0.638 (±0.168) −2.416 (±0.376) −3.049 (±0.900)

NCE N (µ,Σ) None q −0.336 (±0.468) −1.567 (±0.282) −2.548 (±0.232) −2.676 (±0.169)

NCE N (µ,Σ) MLP None −0.030 (±0.278) −0.718 (±0.256) −2.592 (±0.214) −3.559 (±1.881)

NCE N (µ,Σ) MLP q −0.644 (±0.632) −1.580 (±0.480) −2.426 (±0.257) −2.586 (±0.238)

NCE MDN K2 None None −0.570 (±0.209) −1.275 (±0.688) −2.451 (±0.040) −3.094 (±0.515)

NCE MDN K2 MLP None −0.611 (±0.154) −1.492 (±0.993) −2.451 (±0.088) −2.634 (±0.084)

SNL N (µ,Σ) None None 0.091 (±0.122) −0.023 (±0.071) −1.597 (±0.047) −1.619 (±0.063)

SNL N (µ,Σ) None q 0.065 (±0.084) −0.044 (±0.095) −1.493 (±0.039) −1.503 (±0.041)

SNL N (µ,Σ) MLP None 0.164 (±0.088) 0.033 (±0.077) −1.813 (±0.109) −1.836 (±0.109)

SNL N (µ,Σ) MLP q 0.091 (±0.094) −0.048 (±0.030) −1.468 (±0.014) −1.477 (±0.016)

SNL MDN K2 None None 0.227 (±0.058) 0.221 (±0.059) −2.061 (±0.145) −2.070 (±0.141)

SNL MDN K2 MLP None 0.255 (±0.017) 0.251 (±0.016) −2.099 (±0.250) −2.170 (±0.353)

Table 6: Evaluation of regression EBMs on the 1D toy regression problems with two different
objectives and different sets of parameters. Each model is trained for five runs and we report the mean
and standard deviation of the estimated log-likelihood ℓIS and the self normalized log-likelihood ℓSNL.
Using the SNL as objective clearly outperforms the NCE.

Models Datasets
Steering Angle Cell Count UTKFaces BIWI

Objective Proposal ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL ℓIS ℓSNL

NCE N (µ,Σ) −3.649 (±1.224) UNNORMALIZED −3.367 (±0.399) −9.675 (±0.605) −3.147 (±0.1100) −8.223 (±3.795) −11.02 (±0.576) UNNORMALIZED
NCE MDN-4 −4.044 (±0.741) −10.272 (±0.742) −3.856 (±0.029) UNNORMALIZED −3.876 (±0.140) −4.821 (±0.233) −12.093 (±0.155) UNNORMALIZED
NCE MDN-8 −4.001 (±0.667) UNNORMALIZED −3.864 (±0.048) UNNORMALIZED −4.123 (±0.21) −5.170 (±0.955) −11.998 (±0.339) UNNORMALIZED
SNL N (µ,Σ) −2.665 (±1.37) −3.973 (±3.15) −2.701 (±0.041) −2.725 (±0.046 −2.966 (±0.057) −2.991 (±0.069) −10.86 (±1.017) −11.05 (±1.141)

SNL Uniform −1.402 (±0.068 −1.423 (±0.074) −2.604 (±0.001 −2.620 (±0.007) −2.927 (±0.032) −2.965 (±0.019) −10.44 (±0.138) −10.51 (±1.222)

SNL MDN-4 −1.780 (±0.2312) −1.795 (±0.231) −2.834 (±0.041) −2.846 (±0.043) −2.992 (±0.045) −3.004 (±0.075) −10.08 (±0.149) −10.11 (±0.126)

SNL MDN-8 −1.673 (±0.042) −1.692 (±0.046) −2.801 (±0.071) −2.811 (±0.071) −2.921 (±0.055) −2.943 (±0.062) −10.01 (±0.092) −10.04 (±0.091)

Table 7: Evaluation of EBMs for regression on image regression datasets with two different objectives
and different proposals. Each model is trained for five runs and we report the mean and standard
deviation of the estimated log-likelihood (ℓIS) and estimated self-normalised log-likelihood (ℓSNL).
When the proposal is MDN, the proposal is learned jointly with the model following Gustafsson et al.
(2022).
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I DESCRIPTION OF THE NEURAL NETWORKS

I.1 2D DISTRIBUTION ESTIMATION

Eθ Activation Output shape
Fully Connected ReLU 2× 200
Fully Connected ReLU 200× 100
Fully Connected ReLU 100× 50
Fully Connected ReLU 50× 50
Fully Connected ReLU 50× 1
Total trainable parameters 30450

Table 8: Eθ for the toy distribution estimation

I.2 1D REGRESSION

Feature extractor Activation Output shape
Fully Connected ReLU 10× 10
Fully Connected ReLU 10× 10
Fully Connected ReLU 10× 1
Total trainable parameters 210

Table 9: Feature extractor. Inputs x and outputs hx

Eθ Activation Output shape
Input y→ Output f(y)

Fully Connected ReLU 1× 16
Fully Connected ReLU 16× 32
Fully Connected ReLU 32× 64
Fully Connected ReLU 64× 128

Concatenation of hx and f(y)
Fully Connected ReLU 144× 10
Fully Connected ReLU 10× 1
Total trainable parameters 30450

Table 10: Eθ for 1d regression estimation.

MDN Activation Output shape
Input hx

Fully Connected ReLU 10× 10
Fully Connected ReLU 10×K
Total trainable parameters 100 + 10×K

Table 11: Neural network estimating one parameter of the MDN with K components in the mixture.

bϕ Activation Output shape
Input hx

Fully Connected ReLU 10× 10
Fully Connected ReLU 10× 1
Total trainable parameters 110

Table 12: Neural network estimating the normalization constant Zθ,x for every x.
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I.3 IMAGE REGRESSION

The feature extractor is a Resnet-18 He et al. (2016) from torchvision Paszke et al. (2019).

Eθ Activation Output shape
Input y→ Output f(y)

Fully Connected ReLU 1× 16
Fully Connected ReLU 16× 32
Fully Connected ReLU 32× 64
Fully Connected ReLU 64× 128

Concatenation of hx and f(y)
Fully Connected ReLU 640× 640
Fully Connected ReLU 640× 1
Total trainable parameters 420816

Table 13: Eθ for 1d regression estimation.

MDN Activation Output shape
Input hx

Fully Connected ReLU 512× 512
Fully Connected ReLU 512×K
Total trainable parameters 262144 + 512×K

Table 14: Neural network estimating one parameter of the MDN with K components in the mixture.
We use three such networks for πψ, µψ, σψ .

bϕ Activation Output shape
Input hx

Fully Connected ReLU 512× 512
Fully Connected ReLU 512× 1
Total trainable parameters 262656

Table 15: Neural network estimating the normalization constant Zθ,x for every x.

I.4 VAE WITH PRIOR EBM

EBM Model for BinaryMNIST
Layers In-Out Size Stride
Input: z 100

Linear, LReLU 200 -
Linear, LReLU 200 -

Linear 1 -
Generator Model for BinaryMNIST, ngf = 16

Input: z 16×1×1
4×4 convT(ngf × 8), LReLU 4×4×(ngf × 8) 1
3×3 convT(ngf × 4), LReLU 7×7×(ngf × 4) 2
4×4 convT(ngf × 2), LReLU 14×14×(ngf × 2) 2

4×4 convT(3), Sigmoid 28×28×1 2
Encoder Model for BinaryMNIST, ngf = 16

Input: × 1×28×28
5×5 conv(ngf × 2), LReLU 14×14×(ngf × 2) 2
5×5 conv(ngf × 4), LReLU 7×7×(ngf × 4) 2
5×5 conv(ngf × 8), LReLU 4×4×(ngf × 8) 2

Linear, - 16 -
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Figure 4: Each row is a dataset, the first column displays samples from the dataset, the second
column displays the energy function of an EBM trained with the self normalised log-likelihood
(ours), the third column displays the energy function of an EBM trained with NCE. We use a standard
Gaussian as base distribution for both training methods. These parameterisations corresponds to the
first two lines of Table 1.
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