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ABSTRACT

As AI research surges in both impact and volume, conferences have imposed sub-
mission limits to maintain paper quality and alleviate organizational pressure. In
this work, we examine the fairness of desk-rejection systems under submission
limits and reveal that existing practices can result in substantial inequities. Specif-
ically, we formally define the paper submission limit problem and identify a criti-
cal dilemma: when the number of authors exceeds three, it becomes impossible to
reject papers solely based on excessive submissions without negatively impacting
innocent authors. Thus, this issue may unfairly affect early-career researchers, as
their submissions may be penalized due to co-authors with significantly higher
submission counts, while senior researchers with numerous papers face minimal
consequences. To address this, we propose an optimization-based fairness-aware
desk-rejection mechanism and formally define two fairness metrics: individual
fairness and group fairness. We prove that optimizing individual fairness is NP-
hard, whereas group fairness can be efficiently optimized via linear programming.
Through case studies, we demonstrate that our proposed system ensures greater
equity than existing methods, including those used in CVPR 2025, offering a more
socially just approach to managing excessive submissions in AI conferences.

1 INTRODUCTION

We are living in an era shaped by the unprecedented advancements of Artificial Intelligence (AI),
where transformative breakthroughs have emerged across various domains in just a few years. A
key driving force behind AI’s rapid progress is the prevalence of top conferences held frequently
throughout the year, offering dynamic platforms to present many of the field’s most influential
papers. For example, ResNet He et al. (2016), a foundational milestone in deep learning with
over 250,000 citations, was first introduced at CVPR 2016. Similarly, the Transformer architec-
ture Vaswani et al. (2017), the backbone of modern large language models, emerged at NeurIPS
2017. More recently, diffusion models Ho et al. (2020), which represent the state-of-the-art in im-
age generation, were presented at NeurIPS 2020, while CLIP Radford et al. (2021), a leading model
for image-text pretraining, was showcased at ICML 2021. These groundbreaking contributions from
top-tier conferences have significantly accelerated the advancement of AI, enriching both theoretical
insights and practical applications.

As AI continues to expand its applications in real-world domains such as dialogue systems Schulman
et al. (2022); Achiam et al. (2023); Anthropic (2024), image generation Ho et al. (2020); Song et al.
(2020); Wang et al. (2024b; 2023; 2024a), and video generation Ho et al. (2022); Blattmann et al.
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(2023), its immense potential for commercialization has raised growing enthusiasm in AI research.
This enthusiasm has led to a rapid, rocket-like increase in the number of AI-related papers in 2024,
as witnessed by recent studies Stanford (2024). A direct consequence of this surge is the significant
rise in submissions to AI conferences, which has placed a heavy burden on program committees
tasked with selecting papers for acceptance. To address these challenges and maintain the quality of
accepted papers, many leading conferences have introduced submission limits per author. In 2025,
a wide range of leading AI conferences, including CVPR, ICCV, AAAI, WSDM, IJCAI, and KDD,
have introduced submission limits per author in their guidelines, ranging from a maximum of 7 to
25. Table 1 provides an overview of these submission limits across major AI conferences.

Table 1: In this table, we summarize the submission limits of top conferences in recent years. For
details of each conference website, we refer the readers to Section E in the Appendix. Some con-
ferences (CVPR, ICCV, WSDM, KDD) employ a conventional desk-reject algorithm (Algorithm 2),
where papers are desk-rejected once an author has registered more than x (submission limit) papers.

Conference Name Year Upper Bound
CVPR 2025 25
CVPR 2024 N/A
ICCV 2025 25
ICCV 2023 N/A
AAAI 2023-2025 10
AAAI 2022 N/A

WSDM 2021-2025 10
WSDM 2020 N/A
IJCAI 2021-2025 8
IJCAI 2020 6
IJCAI 2018-2019 10
IJCAI 2017 N/A
KDD 2024-2025 7
KDD 2023 N/A

However, such a desk-rejection mechanism may result in unintended negative societal impacts due
to the Matthew effect in the research community Bol et al. (2018), as illustrated in Figure 1. Recent
research has shown that the impact of a setback (e.g., a paper rejection) is often much greater for
early-career researchers than for senior researchers Wang et al. (2019); Sun et al. (2023), which
shows that the effect of a desk rejection can vary significantly depending on the author’s career
stage. For instance, as illustrated in Figure 2, consider the case of a young student submitting their
only draft to the conference, co-authored with a renowned researcher who submits numerous papers
annually. If the paper is desk-rejected due to exceeding submission limits, the senior researcher
might view this as a negligible inconvenience. In contrast, the rejection could have severe conse-
quences for the student, as the paper might be crucial for applying to graduate programs, securing
employment, or forming a chapter of their thesis. This disparity in the impact of desk rejections may
worsen the Matthew effect in the AI community by disproportionately disadvantaging researchers
with only one or two submitted papers, while having little effect on prolific senior researchers. Such
outcomes raise important concerns about fairness and equity in current desk-rejection policies.

In response to the challenges posed by paper-limit-based desk-rejection systems, this work investi-
gates an important and practical problem: ensuring fairness in desk-rejection systems for AI confer-
ences under submission limits. As illustrated in Figure 3, our goal is to design a fair desk-rejection
system that prioritizes rejecting submissions from authors with many papers while protecting those
with fewer submissions, particularly early-career researchers. Our key contributions are as follows:

• We formally define the paper submission limit problem in desk-rejection systems and prove
that an ideal system that rejects papers solely based on each author’s excessive submissions
is mathematically impossible when there are more than three authors.

• We introduce two fairness metrics: individual fairness and group fairness. We formulate
the fairness-aware paper submission limit problem as an integer programming problem.
Specifically, we formally prove that optimizing individual fairness is NP-hard, while the
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group fairness optimization problem can be solved efficiently using any off-the-shelf linear
programming solver.

• Through case studies, we demonstrate that our proposed system achieves greater fairness
compared to existing approaches used in top AI conferences such as CVPR 2025, promot-
ing social justice and fostering a more inclusive ML research community.

Students Professor

Conference

··· ···

Figure 1: The Matthew Effect in the AI community. This figure illustrates the worsening Matthew
Effect in the AI community, where senior researchers tend to have a significantly higher number of
submissions, while junior researchers have relatively few.

Roadmap. Our paper is organized as follows: In Section 2, we review related literature. In Sec-
tion 3, we present the key definition of the paper submission limit problem. In Section 4, we show
that no algorithm can reach the ideal desk-rejection system without unfair collective punishments.
In Section 5, we present our new fairness-aware desk-rejection system. In Section 6, we show by
case studies that our system is better than existing systems. In Section 7, we present our conclusions.

2 RELATED WORKS

2.1 DESK REJECT MECHANISM

A wide range of desk-rejection mechanisms have been developed to reduce the human effort in-
volved in the peer-review process Ansell & Samuels (2021). One of the most widely adopted desk-
rejection rules is rejecting papers that violate anonymity requirements Jefferson et al. (2002); Ten-
nant (2018). This rule is crucial for maintaining unbiased evaluations of researchers from diverse
institutions and career levels while preventing conflicts of interest. Another common mechanism
addresses duplicate and dual submissions Stone (2003); Leopold (2013), alleviating the duplication
of reviewer efforts across multiple venues and upholding ethical publication standards. Additionally,
plagiarism King & ChatGPT (2023); Elali & Rachid (2023) is a major concern in desk rejections
at AI conferences, as it undermines the integrity of the academic community, violates intellectual
property rights, and compromises the originality and credibility of research. In response to the
growing number of submissions to AI conferences, new types of desk-rejection rules have recently
emerged Leyton-Brown et al. (2024). For example, IJCAI 2020 and NeurIPS 2020 implemented
a fast desk-rejection mechanism, allowing area chairs to reject papers based on a quick review of
the abstract and main content to manage the review workload. However, this approach introduced
noise and sometimes resulted in the rejection of generally good papers, leading to its reduced preva-
lence compared to more systematic mechanisms like enforcing submission limits, which is the main
focus of this paper. To the best of our knowledge, limited literature has explored these emerg-
ing desk-rejection techniques, and our work is among the first to formally study the desk-rejection
mechanism based on maximum submission limits.

2.2 THE COMPETITIVE RACE IN AI PUBLICATION

Due to the rapid increase in submissions to AI conferences in recent years Stanford (2024), concerns
about the intense competition in these conferences are growing. As Bengio Yoshua noted Bengio
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Figure 2: The unfairness of desk rejection based on submission limits. Left: A careless mistake.
In this scenario, a young student submits the only paper, co-authored with a professor who submits
numerous papers, and carelessly exceeds the submission limit. The paper, which may aim to apply
to graduate programs, secure employment, or form a chapter of the thesis, is very important for the
student but may not be for the professor. Right: The desk rejection. If the paper is desk-rejected
due to submission limits, it poses a minor inconvenience to the professor, and the professor can shrug
about it due to his remaining papers. However, it could have severe consequences for the students,
as the paper is crucial for the student’s future plans.

(2020): “It is more competitive, everything is happening fast and putting a lot of pressure on ev-
eryone. The field has grown exponentially in size. Students are more protective of their ideas and
in a hurry to put them out, by fear that someone else would be working on the same thing else-
where, and in general, a PhD ends up with at least 50% more papers than what I gather it was 20 or
30 years ago.” Consequently, paper acceptance has become increasingly critical in AI job applica-
tions Ahmed (2022); Besiroglu et al. (2024), as having more papers is now the norm. Therefore, it
is crucial to establish fair and practical guidelines for desk rejections Teixeira da Silva et al. (2018),
ensuring that every group of authors is treated equitably in AI conferences.

2.3 FAIRNESS SYSTEM DESIGN

Fairness Francez (2012); Mehrabi et al. (2021) is a key principle of social justice, reflecting the
absence of bias toward individuals or groups based on inherent characteristics. Due to its profound
societal impact, fairness has become an essential consideration in the design of algorithms across
various computer systems that interact with human factors. In recommender systems, fairness can
manifest in various forms, such as item fairness Zhang et al. (2021); Ge et al. (2021), which en-
sures that items from different categories or with varying levels of prior exposure are recommended
equitably, and user fairness Li et al. (2021a;b), which guarantees that all users, regardless of their
backgrounds or preferences, have equal opportunities to access relevant content. These fairness mea-
sures help balance opportunities for both users and retailers, fostering equity in the recommendation
process. In candidate selection systems Gilliland (1993); Wang et al. (2020), fairness ensures that
all candidates are evaluated solely on merit, independent of factors such as race, gender, or socio-
economic background, promoting equality and ensuring that the selection processes are inclusive. In
information access systems Ekstrand et al. (2022), including job search Wu et al. (2022) and music
discovery Melchiorre et al. (2021), fairness guarantees that all individuals can access the information
they need without discrimination, ensuring equal opportunities for users to make informed decisions.
Similarly, in dialog systems Guo et al. (2022); Gallegos et al. (2024), fairness ensures that language
models avoid generating biased text or making inappropriate word-context associations related to
social groups, supporting equitable and respectful interactions. Moreover, recent research has inves-
tigated group fairness in peer review processes for AI conferences, highlighting the importance of
equitable evaluation for submissions Aziz et al. (2023). Despite the widespread focus on fairness in
algorithmic design, the fairness of desk-rejection mechanisms remains an open question and serves
as the primary motivation for this paper.
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3 PRELIMINARY

In this section, we first introduce the notations in Section 3.1. Then, we present the general problem
formulation in Section 3.2.

Professor B

Protect Reject

Student Professor A

Conference

··· ···

Figure 3: Our research objective. This figure presents the goal of our study: creating a more equi-
table desk-rejection system. Consider Professor A, who has carelessly submitted numerous papers
exceeding the submission limit, collaborating with another senior researcher (Professor B) with
many submissions, and a young student with only one paper. Our proposed system prioritizes desk-
rejecting papers from authors with a large number of submissions first, thereby increasing the stu-
dent’s chances of having their paper accepted. This approach aims to mitigate the disparity in the
impact of desk rejections and promote fairness.

3.1 NOTATIONS

For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use N+ to represent the
set of all positive integers. For two sets B and C, we denote the set difference as B \ C := {x ∈ B :
x /∈ C}. For a vector x ∈ Rd, Diag(d) denotes a diagonal matrix X ∈ Rd×d, where the diagonal
entries satisfy Xi,i = xi for all i ∈ [d], and all off-diagonal entries are zero. We use 1n to denote an
n-dimensional column vector with all entries equal to one.

3.2 PROBLEM FORMULATION

In this section, we further introduce the actual problem we will investigate in this paper, where
we begin with introducing the definition for three kinds of authors that will appear later in our
discussion.
Definition 3.1 (Submission Limit Problem). Let A = {a1, a2, . . . , an} denote the set of n authors,
and let P = {p1, p2, . . . , pm} denote the set of m papers. Each author ai ∈ A has a subset of
papers Pi ⊆ P , and each paper pj ∈ P is authored by a subset of authors Aj ⊆ A. For each
author, ai ∈ A, let Ci denote the set of all coauthors of ai and let x ∈ N+ denote the maximum
number of papers each author can submit.

The goal is to find a subset S ⊆ P of papers (to keep) such that for every ai ∈ A,
|{pj ∈ S : ai ∈ Aj}|︸ ︷︷ ︸

#remained papers of author ai

≤ x.

or equivalently find a subset S ⊆ P of papers (to reject) such that for every ai ∈ A,

|Pi| − |{j ∈ S : i ∈ Aj}|︸ ︷︷ ︸
#rejected papers of author ai

≤ x.

We now present several fundamental facts related to Definition 3.1, which can be easily verified
through basic set theory.
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Fact 3.2. For any author ai ∈ A and paper pj ∈ P , ai ∈ Aj if and only if pj ∈ Pi.
Fact 3.3. For each author ai ∈ A, the number of papers submitted by the author can be formulated
as:

|Pi| = |{pj ∈ P : ai ∈ Aj}|.
Fact 3.4. For each paper j ∈ [m], the number of authors of this paper can be formulated as:

|Aj | = |{ai ∈ A : pj ∈ Pi}|.
Fact 3.5. For each author ai ∈ A, the set of coauthors for author ai can be formulated as:

Ci = (
⋃

pj∈Pi

Aj) \ {ai}.

4 THE DESK REJECTION DILEMMA

In this section, we define the concept of an ideal desk-rejection system in Section 4.1 and formally
demonstrate in Section 4.2 that no algorithm can achieve this ideal system.

4.1 IDEAL DESK-REJECTION

An ideal desk-rejection system should avoid unfairly rejecting papers from authors who either com-
ply with the submission limit or exceed it by only one or two papers. Otherwise, authors may face
consequences due to co-authors with an excessively high number of submissions.

To address this, we formally define the criteria for an ideal desk-rejection outcome for the problem
in Definition 3.1, where rejections are based solely on an author’s excessive submissions, without
unfairly penalizing others.
Definition 4.1 (Ideal desk-rejection). An ideal solution for the submission limit problem in Defini-
tion 3.1 is a paper subset S ⊆ P such that every author has exactly min{x, |Pi|} papers remaining
after desk rejection.
Remark 4.2. The ideal desk-rejection in Definition 4.1 ensures that innocent authors with less
than x submissions will retain all their papers, and a non-compliant author ai with more than x
submissions will be desk-rejected exact (|Pi| − x) papers.

Thus, if there exists an algorithm that can reach the aforementioned ideal solution, we can ensure
that no author is unfairly penalized due to their co-authors’ submission behavior, achieving both
fairness and individual accountability.

4.2 HARDNESS OF IDEAL DESK-REJECTION

Unfortunately, we find that achieving an ideal desk-rejection system is fundamentally intractable.
The main result regarding this hardness is presented in the following theorem:
Theorem 4.3 (Hardness of Ideal Desk-Rejection). Let n = |A| denote the number of authors in
Definition 3.1. We can show that

• Part 1: For n ≤ 2, there always exists an algorithm that can achieve the ideal desk-
rejection in Definition 4.1.

• Part 2: For n ≥ 3, there exists at least one problem instance where no algorithm can
guarantee achieving the ideal desk-rejection in Definition 4.1.

Proof. For Part 1, the result follows directly from Lemma B.3 and Lemma B.5. For Part 2, the
result is established using Lemma B.6 and Lemma B.7. Detailed technical proofs for these lemmas
are provided in Appendix B.

Therefore, since an ideal desk-rejection system is not achievable, it is inevitable that some authors
may face excessive desk-rejections due to collective punishments. This challenge is particularly
concerning for early-career researchers with only one or two submissions, motivating the need to
seek an approximate solution that optimizes fairness in desk-rejection systems.
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5 FAIRNESS-AWARE DESK-REJECTION

In this section, we first introduce two fairness metrics in Section 5.1, and then present the hardness
result on minimizing one of them in Section 4.2. In Section 5.3, we show our optimization-based
fairness-aware desk-rejection framework.

5.1 FAIRNESS METRICS

As discussed earlier, achieving an ideal desk-rejection system is practically infeasible, as unintended
rejections due to collective punishments are unavoidable. To address this, we relax the ideal system
into an approximate form, where some unfair desk-rejections are permitted, while these rejections
should be proportional to each author’s total number of submissions.

Specifically, we introduce a cost function for each author, which estimates the impact of desk-
rejection on each author:
Definition 5.1 (Cost Function). Considering the submission limit problem in Definition 3.1, we
define the cost function c : [n]× 2[m] → [0, 1] for a specific author ai and a set of remaining paper
S as

c(ai, S) :=
|Pi| − |{pj ∈ S : ai ∈ Aj}|

|Pi|
.

Remark 5.2. The cost function c(ai, S) measures the proportion of papers authored by ai that are
rejected, prioritizing fairness for early-career authors with fewer submissions and aiming to reduce
setbacks for them.

To further demonstrate how this author-wise cost function could benefit fairness, we present the
following example:
Example 5.3. Consider a submission limit problem with x = 10 and n = 2. Suppose author a1
submits papers p1, p2, . . . , p11, and author a2 submits only paper p11. Rejecting paper p11 (i.e.,
S = P \ {p11}) results in a cost of c(a1, S) = 1/11 for a1 but a cost of c(a2, S) = 1 for a2, which
is unfair to a2. On the other hand, if we reject paper p1 (i.e., S′ = P \{p1}), the cost for a1 remains
c(a1, S

′) = 1/11, while the cost for a2 becomes c(a2, S′) = 0. This minimizes both the highest cost
and the total cost. This example demonstrates that our cost function encourages rejecting papers
from authors with many submissions while protecting authors with few submissions.

To ensure fair treatment for all authors and avoid imposing excessive setbacks on early-career re-
searchers, we introduce two fairness metrics based on our cost function. These metrics are inspired
by the principles of utilitarian social welfare and egalitarian social welfare Aziz et al. (2024). We
begin by defining individual fairness, which is a strict worst-case fairness metric that aligns with the
egalitarian social welfare framework by estimating the individual cost among all authors.

Definition 5.4 (Individual Fairness). Let c : [n] × 2[m] → [0, 1] be the cost function defined in
Definition 5.1. We define function ζind : 2[m] → [0, 1] to measure the individual fairness:

ζind(S) := max
i∈[n]

c(ai, S).

Next, we present the concept of group fairness, which aligns with utilitarian social welfare and
measures the total cost across all authors.
Definition 5.5 (Group Fairness). Let c : [n] × 2[m] → [0, 1] be the cost function defined in Defini-
tion 5.1. We define function ζgroup : 2[m] → [0, 1] to measure the group fairness:

ζgroup(S) :=
1

n

∑
i∈[n]

c(ai, S).

To show the relationship between these two fairness metrics, we have the following proposition:
Proposition 5.6 (Relationship of Fairness Metrics, informal version of Proposition C.1 in Ap-
pendix C). For any solution S ⊆ P to the submission limit problem in Definition 3.1, we have

ζind(S) ≤ ζgroup(S).
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5.2 HARDNESS OF INDIVIDUAL FAIRNESS-AWARE SUBMISSION LIMIT PROBLEM

After presenting fairness metrics for the desk-rejection system, we introduce an optimization-based
framework to address these metrics. We first study the individual fairness-aware submission limit
problem to minimize the individual fairness measure ζind in Definition 5.4.
Definition 5.7 (Individual Fairness-Aware Submission Limit Problem). We consider the following
optimization problem:

min
S⊆P

ζind(S)

s.t. |{pj ∈ S : ai ∈ Aj}| ≤ x, ∀ai ∈ A.

To represent the fairness metric minimization problem in matrix form, we introduce Definition 5.8.
Definition 5.8 (Author-Paper Matrix). Let W ∈ {0, 1}n×m denote the author-paper matrix for the
author set A and paper set P . Then, we define Wi,j = 1 if author ai is a coauthor of paper pj , and
Wi,j = 0 otherwise.

Therefore, we present a more tractable integer programming form of the original problem and prove
its equivalence to the original formulation:
Definition 5.9 (Individual Fairness-Aware Submission Limit Problem, Matrix Form). We consider
the following integer optimization problem:

min
r∈{0,1}m

∥1n −D−1Wr∥∞

s.t. (Wr)/x ≤ 1n

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector r ∈ {0, 1}m is a 0-1 vector, with rj = 1
indicating that paper pj is remained, and rj = 0 indicating that it is desk-rejected.
Proposition 5.10 (Matrix Form Equivalence for ζind, informal version of Proposition C.3 in Ap-
pendix C). The individual fairness-aware submission limit problem in Definition 5.7 and the matrix
form integer programming problem in Definition 5.9 are equivalent.

Unfortunately, solving this integer programming problem is highly non-trivial, which means it may
not yield a feasible solution within a reasonable time for large-scale conference submission systems.
We establish the computational hardness of this problem in the following theorem:
Theorem 5.11 (Hardness, informal version of Theorem C.7 in Appendix C.2). The Individual
Fairness-Aware Submission Limit Problem defined in Definition 5.7 is NP-hard.

Since minimizing individual fairness is computationally intractable, our fairness-aware desk-
rejection system instead focuses on minimizing group fairness.

5.3 GROUP FAIRNESS OPTIMIZATION

Given the inherent hardness of individual fairness optimization, we address the fairness problem
using an alternative yet equally important metric: group fairness, as defined in Definition 5.5. This
metric is not only a crucial fairness measure in its own right but also serves as a lower bound for
individual fairness as stated in Proposition 5.6, potentially improving individual fairness implicitly.

Following a similar approach in Section 5.2, we first formulate the submission limit problem with
respect to group fairness and derive a tractable integer programming formulation in matrix form:
Definition 5.12 (Group Fairness-Aware Submission Limit Problem). We consider the following
optimization problem:

min
S⊆P

ζgroup(S)

s.t. |{pj ∈ S : ai ∈ Aj}| ≤ x, ∀ai ∈ A.

Definition 5.13 (Group Fairness-Aware Submission Limit Problem, Matrix Form). We consider the
following integer programming problem:

max
r∈{0,1}m

1⊤
nD

−1Wr
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Algorithm 1 Fairness-Aware Desk-Reject Algorithm

1: /* A denotes the set of n authors. */
2: /* P denote the set of m papers. */
3: /* Author ai ∈ N has a subset of papers Pi ⊂ P . */
4: /* Paper pj ∈ P is coauthored by a subset of authors Aj ⊆ A.*/
5: /* x represents the submission limit for each author.*/
6: procedure FAIRDESKREJECT(A,P, x)
7: /* Initialize the constants of the problem. */
8: for i ∈ [n], j ∈ [m] do
9: if pj ∈ Ai then

10: Wi,j ← 1
11: else
12: Wi,j ← 0
13: end if
14: end for
15: D ← Diag(|P1|, . . . , |Pn|)
16: /* Solve the linear programming problem in Definition 5.15. */
17: r⋆ ← LPSolver(W,D, x, r0)
18: /* Transform the solution. */
19: S ← ∅
20: for j ∈ [m] do
21: if rj = 1 then
22: S ← S ∪ {pj}
23: end if
24: end for
25: return S
26: end procedure

s.t. (Wr)/x ≤ 1n,

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector r ∈ {0, 1}m is a 0-1 vector, with rj = 1
indicating that paper pj is remained, and rj = 0 indicating that it is desk-rejected.
Proposition 5.14 (Matrix Form Equivalence for ζgroup, informal version of Proposition C.8 in Ap-
pendix C). The fairness-aware submission limit problem in Definition 5.12 and the matrix form
integer programming problem in Definition 5.13 are equivalent.

However, solving integer programming problems is practically challenging. To this end, we first
relax the feasible region of r to [0, 1]m, and then analyze the resulting relaxed problem.
Definition 5.15 (Group Fairness-Aware Submission Limit Problem, Relaxation). We consider the
optimization problem

max
r∈[0,1]m

1⊤
nD

−1Wr

s.t. (Wr)/x ≤ 1n,

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector r ∈ {0, 1}m is a 0-1 vector, with rj = 1
indicating that paper pj is remained, and rj = 0 indicating that it is desk-rejected.

Fortunately, the relaxed problem is a linear program, which can be efficiently solved using standard
linear programming solvers. Moreover, its optimal solution is equivalent to that of the original
integer programming problem, an this result is formalized in the following theorem:
Theorem 5.16 (Optimal Solution Equivalence of the Relaxed Problem, informal version of The-
orem C.9). The optimal solution of the relaxed linear programming problem in Definition 5.15 is
equivalent to the optimal solution of the original integer programming problem in Definition 5.13.

This theoretical result is significant as we formally establish that the group fairness-aware submis-
sion problem in Definition 5.12 reduces to a linear programming (LP) problem with guaranteed op-
timality, solvable using off-the-shelf LP solvers. We formalize this procedure in Algorithm 1, where

9



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

LPSolver denotes any standard LP solver, including but not limited to the simplex method Bar-
tels & Golub (1969), interior-point path-finding methods Lee & Sidford (2014), and state-of-the-art
stochastic central path methods Cohen et al. (2019); Jiang et al. (2021).
Remark 5.17. The time complexity of our fairness-aware desk-rejection algorithm in Algorithm 1
aligns with modern linear programming solvers. For instance, using the stochastic central path
method Cohen et al. (2021); Jiang et al. (2021); van den Brand et al. (2020); Song & Yu (2021), it
achieves a time complexity of O∗(m2.37 log(m/δ)), where δ represents the relative accuracy corre-
sponding to a (1 + δ)-approximation guarantee.
Remark 5.18. In practice, major AI conferences routinely process submissions at the scale of m ∼
104 Stanford (2024). Given this regime, our algorithm guarantees efficient computation, enabling
fairness-aware desk rejection within tractable timeframes, even for large-scale conferences.

6 CASE STUDY

Since desk-rejection data from top AI conferences is not publicly available, and fully open-review
conferences like ICLR do not impose submission limits, evaluating real-world conference submis-
sions is impractical. Therefore, we present a case study to demonstrate how our proposed desk-
rejection algorithm more effectively addresses fairness issues. Additional case studies are provided
in Appendix D. Let the paper subscript j in pj ∈ P denote the submission order. We analyze the
widely used desk-rejection system (e.g., CVPR 2025) in Algorithm 2, which rejects all papers sub-
mitted after an author’s x-th submission. To highlight its limitations, we present a minimal example:
Example 6.1. Consider a submission limit problem as defined in Definition 3.1 with n = 2, x = 25,
and m = 26. Author a1 submits all papers p1, . . . , p26, while author a2 submits only p26.

Given the ideal desk-rejection criteria in Definition 4.1, it is evident that we can reject any pa-
pers in {p1, p2, . . . , p25} following the techniques in Lemma B.4. After rejection, since a1 retains
25 papers and a2 retains 1 paper, the fairness metrics are ζind(S) = max{1/26, 0} = 1/26 and
ζgroup(S) = 1

2 (1/26 + 0) = 1/52. On the other hand, the CVPR 2025 algorithm, as described
in Algorithm 2, rejects p26, retaining S = {p1, . . . , p25}. This unfairly penalizes a2, resulting in
ζind(S) = max{1/26, 1} = 1 and ζgroup(S) = 1

2 (1/26 + 1) = 27/52, which is much worse
compared with the ideal results. In contrast, our method in Algorithm 1 solves the linear program
and recovers the ideal solution, achieving the same fairness metrics as the optimal case. A simple
workaround to mitigate unfairness in conventional desk-rejection systems is the roulette algorithm,
which randomly rejects papers from non-compliant authors like a1 until the submission limit x is
reached. However, this heuristic cannot fully prevent the rejection of the undesirable paper p26 and
results in suboptimal fairness outcomes compared to our fairness-aware rejection, since the expected
fairness metrics under the roulette algorithm satisfy E[ζind] = (25/26) · (1/26)+(1/26) ·1 ≤ 1/26
and E[ζgroup] = (25/26) · (1/52) + (1/26) · (27/52) ≤ 27/52. Thus, this example illustrates that
conventional desk-rejection systems in top conferences such as CVPR can suffer from severe fair-
ness issues, whereas our proposed method effectively mitigates these problems. Additionally, this
example also highlights another noteworthy consequence of the conventional desk-rejection system.
Specifically, authors collaborating with senior researchers who have numerous submissions may
have to compete for earlier submission slots to avoid desk rejection. However, the submission order
should not influence whether a paper is accepted, which reveals the unintended implications of the
order-based desk-rejection system.

7 CONCLUSION

In this work, we identify the fairness issue in the desk-rejection mechanisms of AI conferences
under submission limits. Our theoretical analysis proves that an ideal system that rejects papers
solely based on authors’ non-compliance, without unfairly penalizing others due to collective pun-
ishment, is impossible. We further consider an optimization-based fairness-aware desk-rejection
system to alleviate the unfairness problem. In this system, we considered two fairness metrics: in-
dividual fairness and group fairness. We formally established that optimizing individual fairness in
desk-rejection is NP-hard, while optimizing group fairness can be reduced to a linear programming
problem that can be solved highly efficiently. Through case studies, we showed that the proposed
method outperforms the existing desk-rejection system with submission limits in top conferences.
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APPENDIX

Roadmap. In Section A, we give the conventional desk-reject algorithm. In Section B, we supple-
ment the missing proofs in Section 4. In Section B, we supplement the missing proofs in Section 4.
In Section C, we present the missing proofs in Section 5. In Section D, we show additional case
studies. In Section E, we provide the details related to conference submission limits.

A CONVENTIONAL DESK-REJECT ALGORITHM

Algorithm 2 Conventional Desk-Reject Algorithm

1: procedure DESKREJCT(A,P, x)
2: /* Initialize registered paper set for each author. */
3: for i = 1→ n do
4: Ri ← ∅
5: end for
6: /* Initialize the subset of remaining papers. */
7: S ← P
8: /* Process each paper in submission order.*̇/
9: for j = 1→ m do

10: for i ∈ Aj do
11: /* If author ai has reached the submission limit, the paper will be rejected.*/
12: if |Ri| ≥ x then
13: S ← S \ {pj}
14: break
15: end if
16: end for
17: /* If paper pj is not rejected, we add it to each co-author’s registered paper set.*/
18: if pj ∈ S then
19: for i ∈ Aj do
20: Ri ← Ri ∪ {j}
21: end for
22: end if
23: end for
24: return S
25: end procedure

B MISSING PROOFS IN SECTION 4

In this section, we provide the complete technical proofs for Theorem 4.3 in Section 4. In Sec-
tion B.1, we first introduce key definitions that will be useful To structure our analysis, we in the
subsequent proofs. We then establish positive results for the cases where n ≤ 2 in Section B.2,
followed by negative results for n ≥ 3 in Section B.3.

B.1 BASIC DEFINITIONS

To systematically analyze the desk-rejection problem, we begin by classifying authors based on their
submission behavior and their relationship to co-authors. This classification will help us organize
and present the proofs in a more structured and readable manner.
Definition B.1 (Author Categories). For any author ai ∈ A, we define the following categories:

• Non-compliant: An author ai is non-compliant if they have submitted more than x papers,
i.e., |Pi| > x. Such authors exceed the submission limit and are subject to desk-rejection
under the policy.

• Vulnerable: An author ai is vulnerable if they have submitted no more than x papers
(|Pi| ≤ x) but have at least one non-compliant co-author, i.e., ∃k ∈ Ci such that |Pk| > x.
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Although these authors comply with the submission limit, they are at risk of being unfairly
penalized due to their co-authors’ non-compliance.

• Safe: An author ai is safe if they have submitted no more than x papers (|Pi| ≤ x) and all
their co-authors are also compliant, i.e., ∀k ∈ Ci, |Pk| ≤ x. These authors are guaranteed
to retain all their submissions, as neither they nor their co-authors violate the submission
limit.

Next, we formalize the notion of achievability for the ideal desk-rejection system.

Definition B.2 (Achievability). Given a submission limit problem instance as defined in Defini-
tion 3.1:

• Positive result: A problem instance is a positive result if there exists an algorithm that can
achieve the ideal desk-rejection as defined in Definition 4.1.

• Negative result: A problem instance is a negative result if, under proper conditions, no
algorithm can achieve the ideal desk-rejection as defined in Definition 4.1.

In the following sections, we will use these definitions to systematically prove the positive results
for small numbers of authors (n ≤ 2) and the negative results for larger numbers of authors (n ≥ 3),
which covers two cases in Theorem 4.3.

B.2 POSITIVE RESULTS

In this subsection, we present two positive results that support the n ≤ 2 case in Theorem 4.3. We
begin with the positive result for n = 1 and any x ∈ N+.

Lemma B.3 (Positive result for n = 1 and any x ∈ N+, general case). If the following conditions
hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the
conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. We consider the three cases for the only author a1: non-compliant, vulnerable, and safe, as
defined in Definition B.1.

Case 1: Non-compliant author. If author a1 is non-compliant, we desk-reject (|P1| − x) papers.
This ensures that exactly x papers remain, satisfying the ideal desk-rejection condition.

Case 2: Vulnerable author. Since n = 1 and there is only one author, author a1 has no co-authors
to make itself vulnerable. Therefore, this case cannot happen.

Case 3: Safe author. If author a1 is safe, no papers need to be rejected. The ideal desk-rejection
condition is trivially satisfied.

In all possible cases, we can achieve the ideal desk-rejection. Thus, the proof is finished.

To present the positive result for n = 2 and any x ∈ N+, we first discuss a specific case where all
authors are non-compliant.

Lemma B.4 (Positive result for n = 2 and any x ∈ N+, non-compliant author only case). If the
following conditions hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• All the authors are non-compliant authors as defined in Definition B.1.
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• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the
conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. Let c ∈ N denote the number of papers co-authored by both author a1 and author a2. For
i ∈ {1, 2}, let bi ∈ N denote the number of single-authored papers by author ai.

We then have:
b1 + c = |P1|

and
b2 + c = |P2|.

Case 1: c ≤ x. In this case, we have b1 ≥ |P1| − x and b2 ≥ |P2| − x. Since bi represents the
number of single-authored papers by author ai, we can desk reject exactly (|Pi| − x) papers from
author ai.

Case 2: c > x. Here, we have b1 < |P1| − x and b2 < |P2| − x. We first desk reject all b1
single-authored papers from author a1 and all b2 single-authored papers from author a2. Next, we
desk reject (c− x) co-authored papers from both authors. This ensures that the remaining x papers
are co-authored by both a1 and a2. Thus, we have successfully rejected exactly (|Pi| − x) papers
from each author ai.

By combining the two cases above, the proof is complete.

With the help of Lemma B.4, we now establish the positive result for n = 2 and any x ∈ N+.
Lemma B.5 (Positive result for n = 2 and any x ∈ N+, general case). If the following conditions
hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the
conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. We consider two authors, a1 and a2. Without loss of generality, we assume that a1 has at least
as many papers as a2, i.e., |P1| ≥ |P2|. By exhaustively enumerating all possible compositions of
author types (i.e., non-compliant, vulnerable, or safe) for a1 and a2, we observe that the vulnerable-
safe composition is impossible. This is because a vulnerable author must co-author at least one
paper with a non-compliant author. After excluding this case, we analyze the remaining possible
scenarios as follows:

Case 1: Both a1 and a2 are safe authors. In this case, no papers need to be rejected, and the
ideal desk-rejection trivially holds.

Case 2: a1 is a non-compliant author and a2 is a safe author. Since rejecting papers from a1
does not affect a2’s submissions, we can simply reject (|P1|−x) papers from a1 to achieve the ideal
desk-rejection.

Case 3: a1 is a non-compliant author and a2 is a vulnerable author. By Definition B.1, we
have |P1| > x and |P2| ≤ x. Let c := |{pj ∈ S : pj ∈ P1, pj ∈ P2}| denote the number of
co-authored papers by a1 and a2. From basic set theory, we know that c ≤ |P2|. Since |P2| ≤ x, it
follows that c ≤ x. Therefore, we have:

|P1| − c︸ ︷︷ ︸
Individual papers of a1

≥ |P1| − x︸ ︷︷ ︸
Excess papers of a1

,

which implies that the number of individual papers authored solely by a1 exceeds the number of
over-limit papers for a1. Thus, we can first reject a1’s individual papers without affecting a2’s
submissions, thereby achieving the desired ideal desk-rejection.
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Case 4: Both a1 and a2 are non-compliant authors. This case directly follows from Lemma B.4.

Combining all the cases above, we conclude that the ideal desk-rejection can always be achieved,
which finishes the proof.

B.3 NEGATIVE RESULTS

In this subsection, we present two positive results that support the n ≥ 3 case in Theorem 4.3. We
commence by showing the negative result for n = 3 and x = 1.

Lemma B.6 (Negative result for n = 3 and x = 1). If the following conditions hold:

• Let n = 3 denote the number of authors as defined in Definition 3.1.

• Let x = 1 denote the maximum number of submissions allowed for each author in the
conference.

Then, under proper conditions, no algorithm can achieve the ideal desk-rejection as defined in
Definition 4.1.

Proof. Let all the authors be non-compliant authors as defined in Definition B.1, and let the number
of papers be m = 3. We suppose the three papers p1, p2, and p3 have the following authorship:

• Paper p1 is co-authored by a1 and a2.

• Paper p2 is co-authored by a1 and a3.

• Paper p3 is co-authored by a2 and a3.

From the authors’ perspective, the relationships are as follows:

• Author a1 has papers p1 and p2.

• Author a2 has papers p1 and p3.

• Author a3 has papers p2 and p3.

We enumerate all possible rejection plans and their outcomes in Table 2.

Table 2: Remaining number of papers for each author after desk rejection.

Rejected Papers Author a1 Author a2 Author a3
N/A 2 2 2
p1 1 1 2
p2 1 2 1
p3 2 1 1

p1, p2 0 1 1
p1, p3 1 0 1
p2, p3 1 1 0

p1, p2, p3 0 0 0

First, suppose we desk reject paper p3. Then, authors a2 and a3 each have one paper remaining, but
author a1 still has two papers. To satisfy the constraint x = 1, we must reject one of p1 or p2.

If we reject p1, author a2 is left with no papers, which is unfair. If we reject p2, author a3 is left with
no papers, which is also unfair.

Thus, no rejection plan satisfies the ideal desk rejection condition for all authors. This completes
the proof.
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Next, we present the negative result for any n ≥ 3 and x = n− 2.

Lemma B.7 (Negative result for any n ≥ 3 and x = n− 2). If the following conditions hold:

• Let n ≥ 3 denote the number of authors as defined in Definition 3.1.

• Let x = n− 2 denote the maximum number of submissions allowed for each author in the
conference.

Then, under proper conditions, no algorithm can achieve the ideal desk-rejection as defined in
Definition 4.1.

Proof. In this negative problem instance, we choose the number of papers to be the same as the
number of authors, i.e., m = n, and we assume all the n authors are non-compliant authors as
defined in Definition B.1.

For each of the n papers pi ∈ P , we let i-th paper pi contain n− 1 authors, excluding only the i-th
author ai. Specifically, we have:

• The first paper p1 has authors a2, a3, · · · , an.

• The second paper p2 has authors a1, a3, a4, · · · , an.

• · · · · · ·

• The (n− 1)-th paper has authors a1, a2, · · · , an−2, an.

• The n-th paper has authors a1, a2, · · · , an−2, an−1.

Since each author is allowed to submit at most x = n − 2 papers, we must desk-reject at least two
papers. We analyze the process of desk-rejecting these two papers step by step.

Step 1: Desk-reject the first paper.

Without loss of generality, we consider rejecting paper p1 first. After this operation, authors
a2, a3, · · · an, will have n − 2 submitted papers, while author a1 will have n − 1 submitted pa-
pers.

Step 2: Desk-reject the second paper.

Without loss of generality, we consider rejecting paper p2 next. After this operation, authors
a3, a4, · · · an, will have n − 3 submitted papers, while author a1 and a2 will have n − 2 submitted
papers.

At this point, it is impossible for authors a3, a4, a5 · · · , an to have exactly (n − 2) submitted pa-
pers. Therefore, no algorithm can achieve the ideal desk-rejection under the given conditions. This
completes the proof.

C MISSING PROOFS IN SECTION 5

In this section, we first present the missing proofs for fairness metrics in Section C.1, and then
present the supplementary proofs for the hardness of individual fairness optimization in Section C.2.
Finally, we show the additional proofs for the group fairness optimization problem in Section C.3.

C.1 FAIRNESS METRICS

We present the relationship between the fairness metrics.

Proposition C.1 (Relationship of Fairness Metrics, formal version of Proposition 5.6 in Section 5.1).
For any solution S ⊆ P for the submission limit problem in Definition 3.1, we have

ζgroup(S) ≤ ζind(S).
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Proof. By Definition 5.5, we have:

ζgroup(S) =
1

n

∑
i∈[n]

c(ai, S)

≤ 1

n

∑
i∈[n]

max
i∈[n]

c(ai, S)

=
1

n
· n ·max

i∈[n]
c(ai, S)

= ζind(S),

where the first equality directly follows from Definition 5.5, the second and the third inequality
follow from basic algebra, and the last equality follows from Definition 5.4. Thus, we complete the
proof.

C.2 HARDNESS OF INDIVIDUAL FAIRNESS-AWARE SUBMISSION LIMIT PROBLEM

Before proving the theoretical results in Section 5.2, we first introduce a useful fact that serves as a
foundation for the subsequent proofs.
Fact C.2. For each author ai ∈ A, the number of papers after desk-rejection (i.e., |{pj ∈ S : ai ∈
Aj}|) can be written as W⊤

i r.

Proof. This simply follows from:

W⊤
i r =

∑
j∈[m]

Wi,j · rj

= |{j ∈ [m] : Wi,j = 1, rj = 1}|
= |{pj ∈ P : ai ∈ Aj , pj ∈ S}|
= |{pj ∈ S : ai ∈ Aj}|,

where the first and the second equality follow from basic algebra and set theory, and the third and
the fourth equality follow from Definition 3.1.

With the help of the aforementioned fact, we now prove the equivalence of the matrix form for the
individual fairness problem.
Proposition C.3 (Matrix Form Equivalence for ζind, formal version of Proposition 5.10 in Sec-
tion 5.2). The individual fairness-aware submission limit problem in Definition 5.7 and the matrix
form integer programming problem in Definition 5.9 are equivalent.

Proof. In Definition 5.7, the paper set P consists of m papers, each of which can either be main-
tained or desk-rejected. Thus, the subset of maintained papers, S, can be represented by a 0-1 vector
r ∈ {0, 1}m, where rj = 1 indicates that paper pj is maintained, and rj = 0 indicates that it is
desk-rejected. We now establish the equivalence of both the objective function and the constraints
in these two formulations.

Part 1: Optimization Objective. We first consider the objective function 1⊤
nD

−1Wr in Defini-
tion 5.9:

min
r∈{0,1}m

∥1n −D−1Wr∥∞ = min
r∈{0,1}m

max
i∈[n]

(1− (D−1Wr)i)

= min
r∈{0,1}m

max
i∈[n]

(1− (W⊤
i r)i/Di,i)

= min
r∈{0,1}m

max
i∈[n]

(1− (W⊤
i r)i/|Pi|)

= min
r∈{0,1}m

max
i∈[n]

(1− |{pj ∈ S : ai ∈ Aj}|/|Pi|)

= min
r∈{0,1}m

max
i∈[n]

c(ai, S)
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= min
r∈{0,1}m

ζind(S),

where the first equality follows from the definition of infinity norm, the second equality follows
from basic algebra, the third equality follows from Definition 5.9, the fourth equality follows from
Fact C.2, the fifth equality follows from Definition 5.1, and the last equality follows from Defini-
tion 5.4. By decoding r back into the paper subset S, we recover the original optimization objective
in Definition 5.7.

Part 2: Constraints. The constraint in Definition 5.9 can be rewritten using basic algebra as:
Wi · r ≤ x, ∀i ∈ [n].

By applying Fact C.2, we see that this constraint is equivalent to its counterpart in Definition 5.7.

Since both the objective function and constraints in Definition 5.7 and Definition 5.9 are equivalent,
the proof is complete.

To show the hardness of the individual fairness problem, we first present a classical set cover problem
with well-established hardness.
Definition C.4 (Set Cover Problem Karp (1972); Garey & Johnson (1979)). The Set Cover problem
is the following:

• Input: A universe U = {1, . . . , n}, a family of sets {S1, . . . , Sm} ⊆ 2U , and a integer
K > 0.

• Question: Is there a subfamily {Sj : j ∈ J} for some J ⊆ {1, . . . ,m} and |J | ≤ K that
covers U , i.e.,

⋃
j∈J Sj = U?

Lemma C.5 (Folklore Karp (1972); Garey & Johnson (1979)). The Set Cover problem defined in
Definition C.4 is NP-hard.

Additionally, we also present a technical lemma which is useful for showing the hardness of the
individual fairness problem.
Lemma C.6. For any r ∈ {0, 1}m, the following two statements are equivalent:

• Part 1. ∥1n −D−1Wr∥∞ ≤ 1− 1
mini∈[n] |Pi| .

• Part 2. mini∈[n](Wr)i ≥ 1.

Proof. We first show that Part 1 implies Part 2. Suppose that

∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
.

By the definition of the infinity norm, we have

1− (Wr)i′

|Pi′ |
≤ 1− 1

mini∈[n] |Pi|
, ∀i′ ∈ [n].

Rearranging gives

(Wr)i′ ≥
|Pi′ |

mini∈[n] |Pi|
≥ 1, ∀i′ ∈ [n].

Since for all i′ ∈ [n], we have (Wr)i′ ≥ 1, we can conclude that mini∈[n](Wr)i ≥ 1.

Now we show that that Part 2 implies Part 1. Suppose that mini∈[n](Wr)i ≥ 1, then we have
(Wr)i ≥ 1 for all i ∈ [n], which implies that for all i ∈ [n],

1− (Wr)i
|Pi|

≤ 1− 1

|Pi|
≤ 1− 1

maxi′∈[n] |Pi′ |
.

Hence

∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
.

Thus the proof is complete.
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Theorem C.7 (Hardness, formal version of Theorem 5.11 in Section 5.2). The Individual Fairness-
Aware Submission Limit Problem defined in Definition 5.7 is NP-hard.

Proof. By Proposition 5.10, it sufficies to reduce Set Cover problem to the integer optimization
problem of the matrix form in Definition 5.9.

Given an instance of Set Cover, we build the matrix W ∈ {0, 1}n×m by defining Wi,j = 1 if
element i ∈ Sj , and 0 otherwise. Now set |Pi| =

∑
j∈[m] Wi,j for every row i ∈ [n]. Finally, we

choose x = m. We reduce the Set Cover problem to the following optimization problem:

min
r∈{0,1}m

∥1n −D−1Wr∥∞

s.t. Wr ≤ m1n,

∥r∥1 ≤ K.

Note that this problem is easier than the optimization problem defined in Definition 5.7. The con-
straint Wr ≤ m1n is always satisfied, so we can drop it out. Now, it suffices to consider the decision
problem:

Find r ∈ {0, 1}m

s.t. ∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
,

∥r∥1 ≤ K.

Note that ∥1n−D−1Wr∥∞ ≤ 1− 1
mini∈[n] |Pi| is equivalent to mini∈[n](Wr)i ≥ 1 by Lemma C.6.

Hence the problem is equivalent to

Find r ∈ {0, 1}m s.t. min
i∈[n]

(Wr)i ≥ 1 and ∥r∥1 ≤ K.

It is not hard to see that the Set Cover problem has a solution if and only if the above problem has a
solution. Requiring mini∈[n](Wr)i > 1 exactly means that each element i in the universe is covered
by at least set Sj . The constraint ∥r∥1 ≤ K means that the size of cover is at most K. In other
words, there exists a subfamily of size at most K covering all elements if and only if there is an
r ∈ {0, 1}m with mini∈[n](Wr)i > 1 and ∥r∥1 ≤ K.

Therefore, by Lemma C.5, the individual fairness-aware submission limit problem is NP-hard.

C.3 GROUP FAIRNESS OPTIMIZATION

Now, we present the missing proofs on both matrix form equivalence and linear programming opti-
mal solution equivalence for the group fairness optimization problem.
Proposition C.8 (Matrix Form Equivalence for ζgroup, formal version of Proposition 5.14 in Sec-
tion 5.3). The problem in Definition 5.12 and the problem in Definition 5.13 are equivalent.

Proof. In Definition 5.12, there are m papers in P , where each paper can either be maintained
or rejected. Thus, we can encode the paper subset S using a binary vector r ∈ {0, 1}m, where
rj = 1 indicates that paper pj is maintained, and rj = 0 indicates that it is desk-rejected. We now
demonstrate that both the objective function and the constraints are equivalent.

Part 1: Optimization Objective. We first examine the objective function 1⊤
nD

−1Wr in Defini-
tion 5.13:

1⊤
nD

−1Wr =
∑
i∈[n]

(D−1Wr)i

=
∑
i∈[n]

(W · r)i/|Pi|

=
∑
i∈[n]

(W⊤
i · r)/|Pi|
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=
∑
i∈[n]

|{pj ∈ S : ai ∈ Aj}|
|Pi|

=
∑
i∈[n]

(1− c(ai, S)),

where the first equality follows from basic algebra, the second follows from Definition 5.13, the third
follows from matrix-vector multiplication, the fourth follows from Fact C.2, and the final equality
follows from Definition 5.1. Consequently, the maximization problem in Definition 5.13 can be
rewritten as:

max
r∈{0,1}m

∑
i∈[n]

(1− c(ai, S)).

Since maximizing this objective is equivalent to minimizing
∑

i∈[n] c(ai, S), we can reformulate it
as:

min
r∈{0,1}m

∑
i∈[n]

c(ai, S).

By decoding r back into the paper subset S, we recover the original optimization objective in Defi-
nition 5.12.

Part 2: Constraints. Since the constraint is identical to that in the individual fairness minimiza-
tion problem in Definition 5.7, this result follows directly from Part 2 in the proof of Proposition C.3.

Since both the objective function and constraints in Definition 5.12 and Definition 5.13 are equiva-
lent, the proof is complete.

Theorem C.9 (Optimal Solution Equivalence of the Relaxed Problem, formal version of Theo-
rem 5.16 in Section 5.3). The optimal solution of the relaxed problem in Definition 5.15 is equivalent
to the optimal solution of the original problem in Definition 5.13.

Proof. The problem in Definition 5.15 is a linear program since it has a linear objective function
1⊤
nD

−1Wr and linear constraints: the box constraint r ∈ [0, 1]m and a linear inequality constraint
(Wr)/x ≤ 1n.

Furthermore, the problem is convex because the objective function is linear, the constraint
(Wr)/x ≤ 1n is affine, and the feasible region defined by r ∈ [0, 1]m is a convex set.

By the fundamental theorem of linear programming (see Page 23 of Luenberger et al. (1984)), the
optimal solution must occur at an extreme point of the convex polytope defined by the constraints.
This implies that for all i ∈ [m], we must have either ri = 0 or ri = 1. Therefore, the optimal
solution of the relaxed linear program coincides with that of the original integer program, which
finishes the proof.

D ADDITIONAL CASE STUDIES

As discussed in Section 4.2, optimizing the individual fairness metric is computationally challeng-
ing. Therefore, we minimize the group fairness metric, which serves as a lower bound for individual
fairness, as a practical alternative. In this subsection, we present case studies demonstrating the
relationship between both types of fairness metrics.

Example D.1. Consider a submission limit problem as defined in Definition 3.1 with x = 2, n = 3
authors, and m = 6 papers. Let author a1 submit four papers p1, p2, p3, p4, author a2 submit two
papers p3, p5, and author a3 submit two papers p4, p6.

In this case, the ideal desk-rejection criteria in Definition 4.1 reject p1 and p2 (i.e., S =
{p3, p4, p5, p6}), yielding fairness metrics ζind(S) = max{1/2, 0, 0} = 1/2 and ζgroup(S) =
1
3 (1/2 + 0 + 0) = 1/6. By applying an LP solver to minimize group fairness using Algorithm 1
and enumerating all rejection strategies to verify individual fairness minimization, we observe that
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minimizing group fairness in this case aligns with minimizing individual fairness as defined in Def-
inition 5.9. This case illustrates that minimizing group fairness can sometimes benefit individual
fairness.

However, group fairness and individual fairness are not always consistent. In some cases, prioritizing
group fairness may disproportionately burden certain individuals. To illustrate this, we consider the
following example.

Example D.2. Consider a submission limit problem as defined in Definition 3.1 with x = 2, n = 5
authors, and m = 4 papers. Let author a1 submit four papers p1, p2, p3, p4, author a2 submit two
papers p1, p2, and authors a3, a4, a5 be coauthors of papers p3, p4.

In this scenario, an ideal desk-rejection is impossible because a1 must have two papers rejected,
but rejecting any papers would cause at least one of the authors in a2, . . . , a5 to fall below the
submission limit of x = 2. Here, group fairness and individual fairness diverge: Algorithm 1
minimizes group fairness by rejecting p1 and p2 (i.e., S = {p3, p4}), which unfairly excludes all
of a2’s submissions. This results in fairness metrics ζgroup(S) = 1

4 (1/2 + 1 + 0 + 0) = 3/8 and
ζind(S) = max{1/2, 1, 0, 0} = 1.

Conversely, the individual fairness minimization problem in Definition 5.9 rejects one paper from
a1, a2 and another from a3, a4, leading to ζgroup(S) = 1

4 (1/2 + 1/2 + 1/2 + 1/2) = 1/2 and
ζind(S) = max{1/2, 1/2, 1/2, 1/2} = 1/2.

This example highlights an unintended consequence of minimizing group fairness: it may unfairly
penalize authors with fewer coauthors, as rejecting their papers incurs a smaller total cost. On
the other hand, optimizing individual fairness inevitably spreads rejections across a broader set of
authors, potentially leading to a higher overall fairness cost. Balancing individual and group fairness
remains an open challenge, which we leave for future work.

E SUMMARY OF CONFERENCE LINKS

In the introduction, Table 1 only gives a brief summary of the conference year and its limitation of
per-author submission. Thus, we provide a detailed list of conferences in each year in this section,
and then summarize the submission limits in Table. 3.

• CVPR

– 2025, https://cvpr.thecvf.com/Conferences/2025/CVPRChanges
– 2024, https://cvpr.thecvf.com/Conferences/2024/
AuthorGuidelines

• ICCV

– 2025, https://iccv.thecvf.com/Conferences/2025/
AuthorGuidelines

– 2023, https://iccv2023.thecvf.com/policies-361500-2-20-15.
php

• AAAI

– 2025, https://aaai.org/conference/aaai/aaai-25/
submission-instructions/

– 2024, https://aaai.org/aaai-24-conference/
submission-instructions/

– 2023, https://aaai-23.aaai.org/submission-guidelines/
– 2022, https://aaai.org/conference/aaai/aaai-22/

• WSDM

– 2025, https://www.wsdm-conference.org/2025/
call-for-papers/

– 2024, https://www.wsdm-conference.org/2024/
call-for-papers/
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– 2023, https://www.wsdm-conference.org/2023/calls/
call-papers/

– 2022, https://www.wsdm-conference.org/2022/calls/
– 2021, https://www.wsdm-conference.org/2021/
call-for-papers.php

– 2020, https://www.wsdm-conference.org/2020/
call-for-papers.php

• IJCAI
– 2025, https://2025.ijcai.org/call-for-papers-main-track/
– 2024, https://ijcai24.org/call-for-papers/
– 2023, https://ijcai-23.org/call-for-papers/
– 2022, https://ijcai-22.org/calls-papers
– 2021, https://ijcai-21.org/cfp/index.html
– 2020, https://ijcai20.org/call-for-papers/index.html
– 2019, https://www.ijcai19.org/call-for-papers.html
– 2018, https://www.ijcai-18.org/cfp/index.html
– 2017, https://ijcai-17.org/MainTrackCFP.html

• KDD
– 2025, https://kdd2025.kdd.org/research-track-call-for-papers/
– 2024, https://kdd2024.kdd.org/research-track-call-for-papers/
– 2023, https://kdd.org/kdd2023/call-for-research-track-papers/
index.html
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Table 3: In this table, we summarize the submission limits of top conferences in recent years. For
details of each conference website, we refer the readers to Section E in Appendix.

Conference Name Year Upper Bound
CVPR 2025 25
CVPR 2024 N/A
ICCV 2025 25
ICCV 2023 N/A
AAAI 2025 10
AAAI 2024 10
AAAI 2023 10
AAAI 2022 N/A

WSDM 2025 10
WSDM 2024 10
WSDM 2023 10
WSDM 2022 10
WSDM 2021 10
WSDM 2020 N/A
IJCAI 2025 8
IJCAI 2024 8
IJCAI 2023 8
IJCAI 2022 8
IJCAI 2021 8
IJCAI 2020 6
IJCAI 2019 10
IJCAI 2018 10
IJCAI 2017 N/A
KDD 2025 7
KDD 2024 7
KDD 2023 N/A
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