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ABSTRACT

Therapeutic antibody candidates often require extensive engineering to improve
key functional and developability properties before clinical development. This
can be achieved through iterative design, where starting molecules are optimized
over several rounds of in vitro experiments. While protein structure can provide a
strong inductive bias, it is rarely used in iterative design due to the lack of struc-
tural data for continually evolving lead molecules over the course of optimiza-
tion. In this work, we propose a strategy for iterative antibody optimization that
leverages both sequence and structure as well as accumulating lab measurements
of binding and developability. Building on prior work, we first train a sequence-
structure diffusion generative model that operates on antibody-antigen complexes.
We then outline an approach to use this model, together with carefully predicted
antibody-antigen complexes, to optimize lead candidates throughout the iterative
design process. Further, we describe a guided sampling approach that biases gen-
eration toward desirable properties by integrating models trained on experimental
data from iterative design. We evaluate our approach in multiple in silico and in
vitro experiments, demonstrating that it produces high-affinity binders at multiple
stages of an active antibody optimization campaign.

1 INTRODUCTION

Therapeutic antibodies are a flexible and rapidly-growing class of drugs that have already success-
fully been used to treat a wide range of diseases (Carter & Lazar, 2018). However, developing these
drugs is a challenging multi-objective protein engineering problem, since viable clinical candidates
must not only bind their targets but also meet a range of developability criteria such improved sta-
bility and half-life (Jarasch et al., 2015).

ML-based approaches can be used to engineer antibodies for desired properties of interest. In partic-
ular, active learning frameworks that iteratively refine candidates through repeated rounds of in vitro
validation have demonstrated value in prior work (Stanton et al., 2022; Gruver et al., 2024; Amin
et al., 2024) (related work in Appendix A). At a high level, in each design round, these strategies
take promising seed antibodies and introduce mutations that are likely to improve properties. Muta-
tions are chosen strategically by incorporating the experimental data collected in previous cycles of
in vitro validation, often through a trained oracle model.

Most ML strategies for iterative design use only sequence information without structural context,
despite such context, such as an experimentally determined antibody-antigen (Ab-Ag) complex, be-
ing a valuable source of information. This is largely because the use of structural context throughout
iterative optimization campaigns is challenging: ground-truth structural information is typically only
available for the antibody at the starting point of optimization. Indeed, works that do incorporate
both sequence and structure (Ruffolo et al., 2024; Luo et al., 2022; Shanehsazzadeh et al., 2023;
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Martinkus et al., 2024) only consider single-shot optimization, without incorporating experimental
data from multiple rounds of in vitro validation into the design process.

In this work, we outline a strategy for embedding sequence-structure generative models into iterative
design, actively incorporating laboratory data. We start by retraining an existing sequence-structure
diffusion generative model, DiffAb (Luo et al., 2022), which generates antibody complementarity
determining regions (CDRs) conditioned on sequence and structure information from an Ab-Ag
complex. We propose a pipeline for iterative design such that in a given design round, we use a
carefully constructed predicted Ab-Ag complex for the current best molecules as a starting point for
generation with this diffusion model. Generated designs can then be ranked with an oracle model
trained on experimental data from the optimization campaign, with the best selected for in vitro
validation. Finally, drawing inspiration from the guided diffusion literature (Dhariwal & Nichol,
2021), we outline a method for more efficient sampling by guiding the diffusion model’s denoising
process using the oracle model.

In our experiments, we first demonstrate in silico that our method produces distributions of se-
quences that are enriched for favorable properties, such as strong predicted binding affinity and low
predicted polyreactivity. Then, in multiple rounds of in vitro validation in a real-world therapeutic
optimization campaign, we show that candidates generated by our method both synthesize success-
fully and are strong binders.

2 METHODS

2.1 BACKGROUND

Notation. We denote an antibody-antigen (Ab-Ag) complex as V , where each amino acid in V is
represented by its residue type si ∈ A = {A,C,D,E, . . . ,Y}, Cα atom coordinates xi ∈ R3, and
orientation Oi ∈ SO(3). The complex is partitioned into a masked region M, typically correspond-
ing to the complementarity determining regions (CDRs) to be designed, and an unmasked context
U , such that: V = M ∪ U . Here, M = {(sj , xj , Oj) | j = l + 1, . . . , l + m} represents the
masked amino acids, where m is the number of residues in the CDRs, and U = {(si, xi, Oi) | i ∈
{1, . . . , N} \ {l + 1, . . . , l +m}} contains the unmasked context. Define f to be an oracle which
predicts some property of the antibody from the complex, e.g., its binding affinity to the antigen.

Diffusion Process. We adopt the formulation from Luo et al. (2022). First, we define a forward
diffusion process from t = 0 to t = T . This takes an Ab-Ag complex sampled from the data
distribution p(D), denoted (M(0),U), and progressively adds noise to the residue type s, position x,
and orientation O of each amino acid in the masked region M over T steps, resulting in (MT ,U).
Further details are in Appendix B.1. Our goal is to learn a reverse diffusion process that takes a
noisy input (MT ,U), and iteratively refines it to obtain an estimate (M̂(0),U). As in DiffAb (Luo
et al., 2022), we achieve this by learning a denoising neural network G that takes a noised complex
(MT ,U) and produces three outputs: residue type predictions, denoised coordinates, and denoised
orientations. These outputs parameterize the reverse distributions as follows:

1. Residue types:
p(st−1

j | Mt,U) = Multinomial
(
Gtype(Mt,U)[j]

)
,

where Gtype(·) predicts residue type probabilities for each amino acid j in the masked region M,
conditioned on the noisy state Mt and the context U .

2. Positions:
p(xt−1

j | Mt,U) = N
(
xt−1
j ;Gpos(Mt,U)[j], βtI

)
,

where Gpos(·) predicts the mean of the denoised Cα positions, and βtI is the noise variance.
3. Orientations:

p(Ot−1
j | Mt,U) = IGSO(3)

(
Ot−1

j ;Gorient(Mt,U)[j], βt

)
,

where IGSO(3) is an isotropic Gaussian distribution over SO(3), and Gorient(·) predicts the denoised
orientations for each amino acid in M.

The network G is trained to minimize KL divergences between the denoised and true distributions
over all timesteps (Appendix B.1). At inference time, the model iteratively denoises a starting com-
plex through repeated applications of refinement and sampling, following the above distributions.
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Iterative Antibody Design. In iterative design, the objective is to optimize properties (e.g., binding
affinity) of a starting antibody over multiple rounds of optimization. In each round, we do the
following: take a set of top-performing antibodies, or seeds, from previous rounds; generate a set of
new candidate designs by diversifying the seeds, often using a generative model; select a subset of
these candidates to test in vitro; screen these in laboratory assays, measuring key properties; and use
this data in next round of optimization. Here, we are interested in an iterative design setting where
we are provided a starting Ab-Ag complex, and wish to use this to inform our optimization.

2.2 DiffAbOpt: SEQUENCE-STRUCTURE ITERATIVE DESIGN

Luo et al. (2022), which introduced the DiffAb model, outlined a strategy for single-shot antibody
optimization, given access to a trained generative model over Ab-Ag complexes and a starting com-
plex: (1) Apply t steps of noise to locations in the input complex we wish to optimize, following
the forward diffusion process; (2) Denoise the partially noised complex using the trained generative
model. By repeating this multiple times, we obtain a set of candidate sequences and structures.

Here, we outline DiffAbOpt: a simple yet effective strategy to extend the above approach to iterative
design. In each round of optimization, we apply the single-shot optimization approach to our current
set of best performers (rather than the starting antibody) using an estimated Ab-Ag structure for the
best performer from a folding model. Concretely, we take each top performer, and then fold its
sequence using an antibody folding model (e.g., IgFold Ruffolo et al., 2023) to obtain an estimated
structure. We then perform rigid body alignment of the estimated structure to the starter antibody
from the original Ab-Ag complex, in order to preserve the original binding pose (we implicitly
assume that the binding pose has not substantially changed over the course of optimization).

Once we have these estimated complexes for the best performers, we can then follow the standard
approach of applying t steps of noise, and then denoising with our trained generative model, to pro-
duce new designs. After the top performers are diversified with the above method, we can rank them
using a surrogate model that is trained on the property we wish to optimize, using the data acquired
so far during optimization. The top ranked variants can then be selected for in vitro validation.

Oracle Guidance for Efficient Sampling. So far, we have incorporated lab data in two ways:
selecting top performers, and ranking candidates using a surrogate model trained on the experimental
data. The denoising sampling process, however, is based purely on the training data distribution
p(D). If we wish to optimize a property that has limited representation in p(D), then sampling in
this manner may be highly inefficient. Here, inspired by guided sampling in diffusion (Dhariwal &
Nichol, 2021), we outline a denoising process that incorporates predictions from the oracle model
to generate samples that are biased towards achieving our property optimization goals.

Our goal is to generate samples from a Product of Experts (PoE) distribution (Hinton, 2002), incor-
porating both the diffusion model and an oracle model f , with reweighting factor γ:

pPoE(Mt−1 | Mt,U) ∝ pdiffusion(Mt−1 | Mt,U) exp(f(Mt−1,U))γ .
We make an approximation that the oracle f depends only on the sequence of residue types:
f(Mt,U) ≈ f(st1:N ). Given that the binding pose is preserved, we find that the oracle model
is able to predict properties effectively from this sequence alone. With this in place, the sampling
distributions for orientations and positions remain unchanged (Section 2.1), though over multiple
timesteps, they are influenced by the guidance through sequence changes. For the sequence of
residue types, the sampling is modulated by the oracle guidance term:

pPoE(s
t−1 | Mt,U) ∝ pdiffusion(s

t−1 | Mt,U) exp(f(st−1))γ ,

where st is a vector of residue types for the whole sequence. Sampling from this distribution directly
is intractable. To address this, and given that the original diffusion model’s residue type denoising
distribution is already constructed to factorize across sequence indices, we follow Schiff et al. (2024)
and compute the product of experts sampling distribution for each residue location j independently:

pPoE(s
t−1
j = r | Mt,U) ∝ pdiffusion(s

t−1
j = r | Mt,U) exp(f(s̃tjr ))

γ ,

where r is the amino acid residue type, and s̃tjr denotes the sequence at timestep t with residue
at index j mutated to r. This distribution is normalized at each sequence index separately, so is
tractable to sample from exactly.
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(a) in silico evaluation (b) in vitro: Mid-stage optimization (c) in vitro: Late-stage optimization

Figure 1: DiffAbOpt is effective both in silico and in vitro. In an in silico evaluation, DiffAbOpt generates
designs that are predicted to have strong affinities, improving over MLM-generated designs. This boost is seen
even when we focus on the top-ranked sequences according to an affinity oracle. In two in vitro evaluations
midway through and near the end of the optimization campaign, DiffAbOpt (ranked) outperforms a ranked
sequence-only MLM baseline (center) and an unranked DiffAbOpt (right).

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

Optimization Campaign. Our experiments are conducted during a campaign where we were pro-
vided a fragment antigen-binding (Fab) antibody with an experimentally determined Ab-Ag crystal
structure, and aimed to improve its binding affinity over multiple design rounds.

Diffusion model. We train a sequence-structure diffusion model by adapting the publicly available
code from Luo et al. (2022), making three changes: using the latest SAbDab dataset (with 30% more
data) (Dunbar et al., 2014), training with expanded CDR definitions, and adjusting the residue type
denoising posterior. These changes improve the quality of optimized variants (see Appendix C).

Oracle models. We train two binding affinity oracles: a CNN ensemble with a ByteNet architecture
(Yang et al., 2022) for ranking sequences in silico; and a lightweight ridge regression model for
guided sampling. We also train a polyreactivity oracle, which is a random forest regressor based on
sequence features from Chen et al. (2024). Further details are in Appendix C.

3.2 EVALUATING SEQUENCE-STRUCTURE ITERATIVE DESIGN

in silico evaluation. We select two top-performing antibodies as seeds, which have between 10-15
CDR mutations from the starting antibody. We then generate designs with the following methods,
allowing up to 4 CDR edits:

• MLM. Generate 5000 mutants for each seed VH and VL using the Sapiens masked language
model (MLM) (Prihoda et al., 2022) and then combine mutated variable domains.

• MLM (Ranked). Rank the above output with the ByteNet oracle and take the top 50 sequences.
• DiffAbOpt. Estimate the seed antibody structure with IgFold (Ruffolo et al., 2023), and generate

5000 mutants by diversifying each seed through 8 steps of noising/denoising with the diffusion
model (without oracle guidance).

• DiffAbOpt (Ranked). Rank the above output with the ByteNet oracle and take the top 50.

Figure 1a shows the predicted fold affinity improvements for each method. The DiffAbOpt meth-
ods outperform their sequence-only counterparts, with the DiffAbOpt distributions demonstrating
enrichment for higher affinity sequences. In Appendix C.4, we also provide additional results on the
impact of predicted structures on the results.
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(a) Affinity guidance (in silico) (b) Polyreactivity guidance (in silico) (c) Affinity guidance (in vitro)

Figure 2: Guiding DiffAbOpt sampling with oracle models results in designs enriched for desired prop-
erties, both in silico and in vitro. We train oracle models on data from an optimization campaign and use these
models to guide DiffAbOpt sampling. In in silico evaluations with two oracles (affinity and polyreactivity, left
and center), we find that guidance results in generating more samples with the desired properties. On the right,
in vitro evaluation of the use of affinity oracle guidance shows a marginal improvement over the unguided ap-
proach (though not statistically significant).

in vitro evaluation. We conduct two in vitro evaluations at different stages of the optimization
campaign. Firstly, we take seeds with 5-10 CDR edits from the starting antibody and design 72
sequences using the MLM (Ranked) method (66 synthesized successfully), and 22 using DiffAbOpt
(Ranked) (all 22 synthesized). Figure 1b shows the binding affinities – we observe that DiffAbOpt
(Ranked) outperforms the sequence-only strategy. Secondly, we take seeds with 15-20 CDR ed-
its and investigate the impact of oracle model ranking: we design 60 sequences using DiffAbOpt
(Ranked) (55 synthesized) and 20 using unranked DiffAbOpt (15 synthesized). Figure 1c presents
the binding affinities – we see the clear benefit in ranking designs using the oracle model.

3.3 EVALUATING GUIDED SAMPLING

in silico evaluation. We investigate two oracles: affinity and polyreactivity. We sample 5,000
designs from two seeds (between 10-15 CDR edits from the starting sequence). Figure 2a presents
results for affinity guidance. In the unranked case, oracle guidance substantially biases the generated
sequences towards higher predicted affinities. In the ranked scenario, guidance produces only a
small boost in predicted affinity improvements, likely because the base generative model’s denoising
distribution is already well-enriched for good binders, and the fact that the affinity model used
for evaluation is different from the one used at sampling time. Figure 2b shows the results for
polyreactivity guidance. As compared to unguided sampling, using guidance results in a distribution
of sequences with lower polyreactivity (preferred) and comparable affinity improvements. This is
an example where the samples from the diffusion model are not enriched for sequences with low
polyreactivity, and guidance allows more efficient sampling of that region of sequence space. Further
results are provided in Appendix C.4.

in vitro validation. We take two seeds (10-15 CDR edits from the starting sequence) and diversify
both using Guided and Unguided DiffAbOpt. We ranked the resulting candidates with the ByteNet
oracle and selected the top 20 from each (following developability filtering: see Appendix C) for
in vitro validation. 19 of the unguided samples and 20 of the guided samples synthesized. Figure
2c shows the affinity results – we see a marginal boost in the affinity improvements when oracle
guidance is incorporated. Increasing the guidance strength during sampling could further improve
the affinity gains.
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4 CONCLUSION

In this work, we proposed an approach for iterative antibody optimization using sequence-structure
diffusion models for antibody-antigen complexes. Our method enables the use of sequence-structure
generative models for optimization even when the ground truth structure is available only for the
starting molecule. We do this by leveraging predicted complex structures of evolving leads as input
to the generative model, taking care to preserve the overall binding pose. In addition, we describe a
strategy to directly incorporate experimental data into the generation process by guiding the diffusion
model’s sampling distribution with an oracle model trained on data from the optimization campaign.
We evaluated our approach in silico and in multiple rounds of in vitro validation, demonstrating its
ability to produce high-affinity binders at different stages of an active antibody campaign.
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A RELATED WORK

Sequence-based ML for antibody design. There has been significant prior work in sequence-
based approaches for ML-driven antibody engineering, for instance Stanton et al. (2022); Gruver
et al. (2024); Amin et al. (2024); Maus et al. (2022); Zeng et al. (2024); Frey et al. (2024); Gordon
et al. (2024). Many of these works take a Bayesian optimization approach to sequence engineering,
where an oracle model is fit to experimental data collected during iterative design, and new sequence
designs are sampled such that they maximize some acquisition function. This directly captures
oracle-predicted performance and predicted uncertainty to trade off exploration and exploitation in a
principled fashion. Sequence-based methods naturally allow the incorporation of experimental data
from the lab, but are limited in that they are not designed to incorporate structural information, even
when available.

Structure-based ML for antibody design. Prior work in structure-based antibody design in-
cludes methods for pure structural design (Watson et al., 2023; Krishna et al., 2024; Bose et al.,
2024), inverse folding (Dauparas et al., 2022; Høie et al., 2023), and sequence-structure joint design
(Luo et al., 2022; Huguet et al., 2024; Peng et al., 2023; Martinkus et al., 2024; Shanehsazzadeh
et al., 2023; Campbell et al., 2024; Ruffolo et al., 2024; Malherbe & Ucar, 2024). Here, we focus on
sequence-structure joint design. In terms of antibody optimization, this literature primarily focuses
on one-shot structure/sequence modelling, without actively incorporating experimental data from
iterative design. This is in part due to the challenge of obtaining high-quality structural information
for intermediate lead candidates in an iterative optimization campaign.

Here, we present a framework for utilizing these structure-based design methods in iterative design,
actively incorporating experimental data. This is achieved in three ways: (1) using predicted struc-
tures for lead molecules at a given design round as input to generative models, since ground truth
experimentally determined structures are likely unavailable for all molecules aside from the starting
point of optimization; (2) using oracle models trained on experimental data from the campaign to
rank generated designs before selecting a subset for in vitro validation; and (3) directly incorporating
oracle models into the generative sampling process to enrich the resulting distribution for designs
with favourable properties. We choose DiffAb (Luo et al., 2022) as the sequence/structure gener-
ative model in our experiments, since it is publicly available and has been developed in previous
work, e.g. Uçar et al. (2024). Compared to other works in this space, we provide data from multiple
in vitro validation experiments, demonstrating the promise of our approach.

Guided sampling in diffusion. Our approach to incorporate oracle models directly into the gen-
erative sampling process is inspired by the technique of classifier guidance (Dhariwal & Nichol,
2021). In this work, we use guided sampling in a discrete diffusion process over sequence-structure
data. Several prior works have studied how to formulate guidance in this setting using a range of ap-
proaches, including: learning a continuous latent space from a discrete input and applying guidance
accordingly (Gruver et al., 2024); finetuning a base discrete diffusion model to generate samples
with high quality, as determined by a guidance model (Rector-Brooks et al., 2024; Wang et al.,
2024); and finetuning-free approaches by adjusting the sampling distribution used at inference time
(Nisonoff et al., 2024; Schiff et al., 2024). In this work, we follow the finetuning-free approach
from Schiff et al. (2024) that assumes a notion of independence among sequence tokens during
generation, and incorporate it into a sequence-structure joint diffusion model.

B ADDITIONAL METHODS DETAILS

B.1 DIFFUSION PROCESS

We follow the formulation of sequence-structure joint diffusion from Luo et al. (2022).

Forward Diffusion. The forward diffusion process introduces noise to the data in M, transition-
ing from the observed distribution at t = 0 to a prior distribution at t = T . For each modality, this
process is defined as follows:

10
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1. Residue types: Residue types stj are corrupted using a multinomial distribution:

q(stj | st−1
j ) = Multinomial

(
(1− βt) · onehot(st−1

j ) + βt ·
1

20
· 1

)
,

where βt is the noise schedule, onehot(st−1
j ) converts st−1

j to a one-hot encoding, and 1 is
a vector of ones. At any timestep t, direct sampling can be written as:

q(stj | s0j ) = Multinomial
(
ᾱt · onehot(s0j ) + (1− ᾱt) ·

1

20
· 1

)
,

where ᾱt =
∏t

τ=1(1− βτ ).
2. Positions: The Cα coordinates xt

j are perturbed using a Gaussian distribution:

q(xt
j | x0

j ) = N
(
xt
j ;
√
ᾱtx

0
j , (1− ᾱt)I

)
,

where ᾱt scales the original coordinate, and I is the identity matrix.
3. Orientations: Orientations Ot

j are corrupted using an isotropic Gaussian distribution over
SO(3):

q(Ot
j | O0

j ) = IGSO(3)
(
Ot

j ;ScaleRot(
√
ᾱtO

0
j ), (1− ᾱt)

)
,

where ScaleRot rescales the rotation matrix.

Reverse Diffusion. The reverse diffusion process starts from the prior distribution at t = T and
iteratively refines the noisy data in M to reconstruct the target distribution, conditioned on the
unmasked context U . We learn a neural network that takes in the masked and unmasked context and
produces outputs for the denoised residue types, denoised Cα positions, and denoised orientations.
For each timestep t, this captures the following posterior distribution:

1. Residue types:
p(st−1

j | Mt,U) = Multinomial
(
Gtype(Mt,U)[j]

)
,

where Gtype(·) is a neural network that predicts residue type probabilities for amino acid j
based on the noisy state Mt and the context U .

2. Positions:
p(xt−1

j | Mt,U) = N
(
xt−1
j ;Gpos(Mt,U)[j], βtI

)
,

where Gpos(·) predicts the mean of the denoised Cα positions, and βtI is the noise variance.
3. Orientations:

p(Ot−1
j | Mt,U) = IGSO(3)

(
Ot−1

j ;Gorient(Mt,U)[j], βt

)
,

where IGSO(3) is an isotropic Gaussian distribution over SO(3), and Gorient(·) predicts the
denoised orientations for each amino acid in M.

Training Objective. The model is trained by minimizing the KL divergence between the forward
and reverse processes across all timesteps. The loss over the residue types is:

Lt
type = EMt∼q

 1

m

l+m∑
j=l+1

DKL
(
q(st−1

j | stj , s0j ) ∥ Multinomial
(
Gtype(Mt,U)[j]

)) ,

the loss for the positions is:

Lt
pos = EMt∼q

 1

m

∑
j∈M

∥∥xt−1
j −Gpos(Mt,U)[j]

∥∥2 ,

and the loss for the orientations is:

Lt
orient = EMt∼q

 1

m

∑
j∈M

∥∥∥(O0
j )

⊤Ôt−1
j − I

∥∥∥2
F

 ,

where Ôt−1
j is the output of the orientation predictor Gorient(Mt,U). The total loss is the weighted

sum of the three individual losses, with an expectation taken over all timesteps:
L = Et∼Uniform(1,T )

[
λtypeLt

type + λposLt
pos + λorientLt

orient

]
. (1)
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DIFFAB TRAINING

As discussed in Section 3.1, we train a sequence-structure generative model by adapting the publicly
available code from Luo et al. (2022). We use the same architecture as Luo et al. (2022), and make
three main changes to the training process.

Firstly, we train on an updated version of the SAbDab dataset (downloaded on 2024/10/17)(Dunbar
et al., 2014), with approximately 30% more data than the dataset used to train the model from Luo
et al. (2022). As in the original paper, we remove structures with worse resolution than 4Å, remove
antibodies targeting non-protein antigens, and cluster the antibodies at 50% sequence identity by
HCDR3 sequences to define training/testing sets.

Secondly, we train the model with expanded CDR definitions, rather than the Chothia definition used
in the original paper. This expanded definition is based on a union of Chothia, IMGT, and Kabat
indices.

Thirdly, we adjust the posterior calculation for the residue type denoising posterior – we found that
a variance term was calculated incorrectly in the original implementation. As a result of this change,
we set λtype = 10.0, λpos = 1.0, λorient = 1.0 in equation 1. Without this change, the residue type
denoising posterior term in the loss had too small a scale and did not reduce during optimization.

We find that the above changes improve the quality of the sampled variants – see Appendix C.4.

Following the original paper, the model is trained for 200,000 steps with the Adam optimizer
(Kingma, 2014) and a learning rate of 1e-4. The model is trained to generate the sequence/structure
of CDRs given the framework region and antigen. As with the original paper, we trained the model
on patch sizes of 128 residues, based on proximity to anchors adjacent to the CDRs. Further increas-
ing the patch size did not appear to improve generation quality and led to slower training/inference
times.

C.2 ORACLE MODEL TRAINING

We train oracles on two assays: binding affinity and polyreactivity.

For binding affinity, we train two different oracle models on one-hot sequence encodings:

• ByteNet Oracle: This is an ensemble of ten 1D CNNs with a ByteNet/CARP architecture
(Yang et al., 2022). We use this model for in silico evaluation, specifically to rank generated
sequences and select the top-ranked for promotion to in vitro validation. This model is
first pre-trained on in-house Next Generation Sequencing (NGS) datasets with around 75k
sequences, and then fine-tuned on binding affinity datasets using all available data from the
optimization campaign at the specific design round (ranging from 4k to 8k sequences).

• Ridge Regression Oracle: this is a lightweight affinity predictive model that is used in
guided sampling during denoising. It is trained directly on all the available binding affinity
data from the optimization campaign at the specific design round. We opt to use this during
guided sampling instead of the ByteNet oracle since it is a smaller model and faster to run
inference on.

For polyreactivity, we train a random forest regressor based on handcrafted sequence features from
Chen et al. (2024). This is trained on a dataset of 250 sequences, all of which have flow cytometry
polyreactivity measurements.

C.3 SAMPLING HYPERPARAMETERS AND IMPLEMENTATION

Edit distance. For all in silico and in vitro evaluations, we allow up to 4 CDR edits (across all VH
and VL CDRs). This is to ensure a reasonable rate of synthesis and binding in the generated dataset.

DiffAbOpt. We experimented with various sampling configurations in terms of (a) what CDRs
have noise applied to them, and (b) how many steps of noise to apply. We experimented with noising
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Figure 3: Investigating the effect of structural noise in the distribution of top-ranked generated se-
quences. We compare how the distribution of the top ranked 500 designs vary when we add different kinds of
noise to the structure taken in as input by the diffusion model. As a seed, we use the antibody at the starting
point of the optimization campaign, for which we have an experimentally determined structure. The leftmost
box uses the ground-truth experimentally determined structure of the Ab/Ag complex. The second box uses a
predicted structure for the Ab, which shows increased variance relative to using the ground truth structure, but
a similar median performance. Next, we apply noise to the structure by applying a rigid body rotation to the
antibody (third box), finding that the resulting sequences are predicted to perform substantially worse. Finally,
we try removing the antigen altogether (rightmost box), which is better than a noisy pose, but worse than using
the ground truth structure or the predicted Ab structure.

all subsets of CDRs for 2, 4, 8 and 16 steps and denoising for the same number of steps as was used
during noising. We found that for a given sampling budget (total number of generated samples, prior
to edit distance filtering), we obtained the best results by applying 8 steps of noise to all six CDRs
simultaneously and applying denoising for 8 steps. With more steps of noising, the model generates
very few sequences within the required maximal edit distance. Denoising different subsets of the
CDRs did not appear to result in much change over noising/denoising them all together.

Improving the Efficiency of Guided Sampling. In order to improve the efficiency of guided
sampling, we found it valuable to cache oracle predictions for a given sequence, and retrieve from
the cache instead of predicting.

Formulating Guidance. For the affinity oracle, we set the guidance reweighting factor γ = 2.
For the polyreactivity oracle, given that lower polyreactivity is better and due to the natural scale of
the model’s outputs, we set fguidance(s) = −fpolyreactivity(s) and set the reweighting factor γ = 10.

C.4 ADDITIONAL RESULTS

Impact of predicted structures. Here, we explore how different kinds of structural noise impact
the distribution of predicted affinities of the sequences generated by the diffusion model. For this
experiment, we use the antibody at the starting point of the optimization campaign as the seed, since
it has a ground truth empirically determined Ab/Ag crystal structure. Figure 3 presents the results,
showing the distribution of predicted fold affinity improvements of the top 500 ranked designs. We
observe that using the ground truth structure and predicted Ab structure (left two boxes) perform
similarly, with the ground truth structure showing less variance in predicted performance. Adding
noise to the Ab/Ag pose (via rigid body rotation of the antibody) and removing the antigen altogether
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Figure 4: Expanded CDR definitions and training on larger datasets boosts predicted performance of
generated variants. We compare the distribution of predicted affinity improvements from top-ranked se-
quences generated from different DiffAb models. From left to right, these are: the original model from Luo
et al. (2022), a model trained with an adjusted sequence posterior, a model trained with expanded CDR defi-
nitions and the adjusted posterior, and finally a model trained on a more recent dataset version with adjusted
CDR definitions and the adjusted posterior. We observe boosts in the quality of generated sequences when we
combine these changes.

(right two bars) both worsen performance. This suggests that minor changes, such as using a pre-
dicted antibody structure but preserving the same pose, are well-tolerated in terms of the best-quality
designs that the model can produce.

Impact of training changes: extra data, CDR definitions, and posterior. Figure 4 shows the
predicted fold affinity improvements for different DiffAb models, focusing on the top 100 ranked
variants for each. (Note that “Ranked” has been excluded in axis labels to reduce clutter). For all of
these, we followed the sampling hyperparameters discussed in Section C.3.

The leftmost box has sequences from the DiffAb model provided with the published paper by Luo
et al. (2022). Immediately to the right, we have generations after fixing the posterior calculation,
which has a marginal improvement. Next, we incorporate the expanded CDR definitions into train-
ing and observe a clear boost in performance. Finally, the rightmost box has the posterior fix,
expanded CDR definitions, and training on a larger dataset, again showing a boost in performance.
This benefit of more data was also seen in Uçar et al. (2024), suggesting that expanding the data set
further could improve the quality of the generation even more.

Further results on polyreactivity guidance. In the main paper, we showed that polyreactivity
guidance resulted in generated sequences that had lower polyreactivity (desirable) and comparable
predicted affinity improvements. Here, we investigate taking generated sequences, with and without
polyreactivity guidance, and applying post-hoc ranking with the ByteNet affinity oracle. Due to
the differing distribution shapes between unranked and ranked sequences, visualizing this on one
KDE plot is challenging, so Figure 5 compares results with/without ranking on two separate plots.
As with the unranked evaluation, we see that even after ranking with the oracle model (taking the
top 100 ranked designs), we see comparable predicted affinity improvements to unguided sampling,
while still observing clear reductions in the resulting predicted polyreactivity. These two objectives
can directly be at odds (Chen et al., 2024), so being able to trade them off in generation is useful in
practice.
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(a) Polyreactivity guidance without affinity ranking (b) Polyreactivity guidance with affinity ranking

Figure 5: Studying the impact of polyreactivity guidance with and without affinity model ranking. We
investigate the impact of polyreactivity guidance without (left) and with (right) affinity oracle ranking post
generation, showing the distribution of the top 100 ranked sequences. We see that among this top ranked
set, we are able to generate sequences with lower polyreactivity while also maintaining comparable boosts in
affinity.

C.5 IN VITRO VALIDATION DETAILS

After generation and ranking, sequences were filtered based on key developability criteria (e.g.,
isoelectric point, excluding known sequence liabilities) before being selected for wet lab screening.
Sequences were synthesized in Cell-Free Protein Synthesis (CFPS) as scFvs and binding affinities
of those that synthesized in adequate quantities and purity were measured via BLI (Octet).
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