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Abstract

Hierarchical Text Classification poses the dif-001
ficult challenge of classifying documents into002
multiple labels organized in a hierarchy. The003
vast majority of works aimed to address this004
problem relies on supervised methods which005
are difficult to implement due to the scarcity of006
labeled data in many real world applications.007
This paper focuses on strict Zero-Shot Classi-008
fication, the setting in which the system lacks009
both labeled instances and training data. We010
propose a novel approach that uses a Large011
Language Model to augment the deepest layer012
of the labels hierarchy in order to enhance its013
specificity. We achieve this by generating se-014
mantically relevant labels as children connected015
to the existing branches, creating a deeper tax-016
onomy that better overlaps with the input texts.017
We leverage the enriched hierarchy to perform018
Zero-Shot Hierarchical Classification by using019
the Upward score Propagation technique. We020
test our method on four public datasets, obtain-021
ing new state-of-the art results on three of them.022
We introduce two cosine similarity-based met-023
rics to quantify the density and granularity of024
a label taxonomy and we show a strong corre-025
lation between the metric values and the clas-026
sification performance of our method on the027
datasets.028

1 Introduction029

Hierarchical Text Classification (HTC) (Sun and030

Lim, 2001; Stein et al., 2019) is a Machine Learn-031

ing problem that consists in classifying documents032

into multiple labels which are organized in the form033

of a hierarchical taxonomy. In recent times, this034

problem has increasingly gathered the interest of035

both academia and industry due to its relevance036

in realistic scenarios (Meng et al., 2019). In fact,037

real-world challenges such as the organization of038

products in e-commerce categories or the classifi-039

cation of documents such as papers or news in a040

hierarchical structure can be tackled by HTC (Song041

and Roth, 2014).042

The greatest difficulty found in this practice is 043

the lack of labelled data and the cost, especially in 044

an industrial framework, of manually annotating 045

data samples. Moreover, the structure of a hierar- 046

chy can change in time and gain or lose classes, 047

which, potentially, can result in additional costs 048

necessary to reorganize existing data and retrain 049

models. For these reasons, researchers have turned 050

their attention to Few-Shot (Snell et al., 2017) and 051

Zero-Shot Classification (ZSC) (Song and Roth, 052

2014) settings in which only few or no annotated 053

documents are given at training time. In this paper 054

we will focus on strict ZSC: a highly constrained 055

scenario where not even the unlabeled training in- 056

stances are given to the system. 057

In the context of textual classification the stan- 058

dard approach used to tackle a strict ZSC prob- 059

lem is to transform it into a textual entailment task 060

solved by a LLM such as as BART-MNLI (Yin 061

et al., 2019; Williams et al., 2017). In this approach, 062

the LLM is asked to determine if a premise sen- 063

tence (the text to be classified) entails semantically 064

a hypothesis sentence (the class to be predicted). 065

Even without fine-tuning, these models are able 066

to classify documents into unseen classes with a 067

high degree of success. Another approach to the 068

ZSC task is to use labels embeddings as prototypes 069

or centroids for a 1-Nearest Neighbor classifica- 070

tion problem (Snell et al., 2017; Liu et al., 2023). 071

Input texts are vectorized in the same embedding 072

space as the labels and the corresponding class is 073

determined via some distance or similarity metric 074

such as the cosine similarity. While this is a natural 075

approach, it has been criticized (Bongiovanni et al., 076

2023; Rondinelli et al., 2022) on the basis that it 077

looks for similarities between few or single words 078

and long and complex texts. Furthermore, docu- 079

ments with a very high level of detail may pose a 080

challenge for models to accurately classify them. 081

For instance, a product review categorized under 082

"strollers" might solely discuss the instability expe- 083
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Figure 1: An example of a deepened taxonomy. Boxed labels are added by HiLA.

rienced when using the three wheels on sidewalks,084

making it challenging for the model to identify the085

appropriate label.086

While there exists a growing body of research087

focusing on ZSC, only few works deal with hier-088

archical data. A recent work (Bongiovanni et al.,089

2023) proposes a zero shot HTC (ZS HTC) model090

that exploits the labels’ taxonomy to improve classi-091

fication results. The authors compute the similarity092

between the text to be classified and all the labels093

in the hierarchy, then they define a technique called094

Upward score Propagation (UP) that propagates095

similarity scores upward in the hierarchy and ex-096

ploits the propagated information to improve the097

classification of the upper levels of the hierarchy.098

Although this technique takes advantage of the tax-099

onomy, it cannot improve the classification results100

for the deepest level of labels (i.e., the leaves of101

the hierarchy) which, we argue, are often the most102

important to be classified correctly in practical ap-103

plications.104

This paper introduces Hierarchical Label Aug-105

mentation (HiLA), a novel technique aimed at en-106

hancing a provided label hierarchy by leveraging a107

Large Language Model (LLM) to introduce mean-108

ingful branches to the existing taxonomy. Namely,109

we augment the deepest layer of the hierarchy by110

generating terms that are connected as children of111

the existing leaves (see Figure 1). The idea behind112

this process is to augment the taxonomy specificity113

so that the new layer of labels gets semantically114

closer to input texts. We then apply UP as in Bon-115

giovanni et al. (2023) to the deepened hierarchy to116

perform Zero-Shot Hierarchical Classification. We117

test our method on four public datasets and obtain118

new state-of-the-art results for three of them. More-119

over, we define a set of cosine similarity-based met-120

rics to quantify the granularity of a taxonomy of121

labels. We conjecture that the accuracy of our ap-122

proach highly depends on how granular the leaves 123

of the taxonomy are. Indeed we show that the met- 124

rics values for the four datasets taxonomies are 125

strongly correlated with the results of our method. 126

Empirical results show that the metrics can be used 127

as a prior test to measure the goodness of a label 128

hierarchy and to check if our proposed method is 129

going to improve the final classification results. 130

The main contributions of our paper are: 131

1. the introduction of a novel technique to aug- 132

ment a label hierarchy; 133

2. the extension of the UP technique to support 134

improvements in the classification of the leafs 135

of a given hierarchy; 136

3. definition of a metric measuring cluster den- 137

sity, which correlates with how well the newly 138

proposed method works; 139

4. an assessment of the given technique, com- 140

paring the newly introduced method with the 141

state-of-the-art. 142

The rest of the paper is organized as follows: 143

in Section 2 we point out relevant related works. 144

In Section 3 we summarize the UP procedure, we 145

present our novel method and two metrics to ex- 146

amine taxonomy structures. We then comment the 147

experiments we performed and their results in sec- 148

tions 4 and 5. Finally, we draw brief conclusions 149

in Section 6. 150

2 Related Works 151

Many past works have studied the problem of HTC 152

(Silla and Freitas, 2011) and have found solutions 153

based on Machine Learning models such as De- 154

cision Trees (Vens et al., 2008) or Support Vec- 155

tor machines (Dekel et al., 2004). Since the ad- 156

vent of Transformers (Vaswani et al., 2017) more 157
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recent studies approached the problem using ad-158

vanced Deep Learning (DL) techniques and Lan-159

guage Models (LM). In Kowsari et al. (2017) the160

authors take into account the hierarchical structure161

of the taxonomy by training a different Deep Neu-162

ral Network on each node of the taxonomy. In this163

way, they employs stacks of deep architectures to164

provide specialized understanding at each level of165

the document hierarchy. In Huang et al. (2019), the166

researchers develop a DL methodology to capture167

both local and global information across various168

levels of the taxonomy. They first learn represen-169

tations for both the document and the taxonomy170

and then employ an attention mechanism to model171

dependencies in a top-down manner. Finally, a clas-172

sifier is used to decide whether a document merits173

labeling with a specific node. All the mentioned174

works leverage the hierarchical structure of the la-175

bels but specifically rely on labeled data.176

The challenge of Zero-Shot Classification has177

been the focus of attention in recent years and has178

produced many works proposing appealing solu-179

tions. In Gera et al. (2022) the authors address the180

ZSC problem with a Self-Training based approach.181

They first compute the similarity of a document182

with all the labels. Secondly, they select the high-183

est scoring documents and confidently treat them184

as labeled data. They use then the self-labeled doc-185

uments as data to fine-tune a LM. Yin et al. (2019);186

Williams et al. (2017); Pàmies et al. (2023); Puri187

and Catanzaro (2019) propose to deal with ZSC188

as a textual entailment problem. They convert the189

labels into the hypothesis I="This document talks190

about [label]" and use LLMs to decide if I entails191

the document. All the cited methods either do not192

address ZSC in a strict sense or are not able to193

leverage the labels taxonomy structure.194

A work strongly aligned with ours, and which195

we deeply rely on, is Bongiovanni et al. (2023),196

where ZS HTC is performed taking advantage of197

hierarchical information. The authors present a198

new methodology for text classification based on199

a custom hierarchical taxonomy, achieved without200

relying on labeled data. Their approach initially201

involves leveraging semantic information rooted in-202

side pre-trained Deep Language Models to assign203

a preliminary relevance score to each label of the204

taxonomy through zero-shot techniques. Next, they205

leverage the hierarchical structure to reinforce the206

initial scores, thereby improving the overall clas-207

sification process. While they do not update the208

relevance scores for the last level of the taxonomy, 209

our work is strongly directed towards improving 210

them. 211

3 Method 212

In this section, we provide an overview of the UP 213

method as outlined in Bongiovanni et al. (2023). 214

Subsequently, we present our proposed label aug- 215

mentation method designed to enhance a given la- 216

bel hierarchy by adding an additional level of labels. 217

Afterwards, we illustrate the UP application to the 218

novel hierarchy generated by our approach. Finally, 219

we introduce a set of metrics aimed at quantifying 220

the granularity of label hierarchies. 221

We will use a notation largely inspired by Silla 222

and Freitas (2011) and Fagni and Sebastiani (2007), 223

extending and customizing it to align with the spe- 224

cific requirements of our study. Specifically, we 225

will use an upward arrow to denote the parent of a 226

node in the hierarchy, for instance ↑ clj is the parent 227

node of the j-th label at level l of the hierarchy. A 228

fat upward arrow will denote the set of all ances- 229

tors of a given node (as in, e.g., ⇑ clj). Similarly, 230

we will use a downward arrow to denote the set 231

of children of a given category (e.g., ↓ clj) and a 232

fat downward arrow to denote the set of all descen- 233

dants categories of a given category (e.g., ⇓ clj). A 234

summary of the notation is presented in Table 1 for 235

quick reference. 236

3.1 ZS HTC 237

In this subsection we briefly summarize the Up- 238

ward Score Propagation procedure introduced by 239

Bongiovanni et al. (2023). 240

A document d and a label clj belonging to a hier- 241

archy H are separately mapped in the same seman- 242

tic vector space with Ψd and Ψc respectively. In the 243

vector space a prior relevance score is computed 244

between two embeddings: 245

p(clj) = SC(Ψd(d),Ψc(c
l
j)), 246

where SC is the cosine similarity. p(clj) is com- 247

puted for a document with respect to all the labels 248

of the taxonomy. The authors then define the UP, 249

a method which updates prior relevance scores of 250

labels into posterior scores SUP(c
l
j) by propagating 251

confidence scores upwards through the taxonomy. 252

It is based on the paradigm that if a label is relevant 253

to a document, then also its parent is. 254

The UP score is defined as it follows. For labels 255

at depth L the score is simply defined as SUP(c
L
j ) = 256
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Symbol Meaning

l A level of the hierarchy, l = 0, . . . , L

clj Label number j at level l
Nl The number of labels in a level of the taxonomy
c0 The root of the hierarchy, usually a nameless label or the name of the dataset
↑ clj The parent category of class clj
⇑ clj The set of ancestor categories of class clj .
↓ clj The set of children of class clj
⇓ clj The set of descendant categories of class clj .
(↓ clj)i The i-th children of class clj

Table 1: Notation for the class hierarchy. Since we consider tree-shaped hierarchies, ↑ clj consists of one label
and ⇑ clj consists of one label for each level l′ < l. Moreover, ↑ c1j = ⇑ c1j = c0 ∀j = 1, . . . , N1 and ↓ cLj = {}
∀j = 1, . . . , NL.

p(cLj ). The score for a label clj at level l < L is257

defined recursively and it requires the introduction258

of few pieces of notations. Let us denote with n259

to be the number of children of label clj (i.e., n =260

| ↓ clj |), and define the score S
(i)
UP(c

l
j) in function261

of the i-th children of clj as:262

S
(i)
UP(c

l
j) =


max(p(clj), 0) if i = 0,

S
(i−1)
UP (clj) if (↓ clj)i ≺ clj ,

S
(i−1)
UP (clj) · eδj,i if clj ≺ (↓ clj)i, αclj

,

SUP

(
(↓ clj)i

)
if (↓ clj)i ≻ αclj

,

(1)263

where c ≺ c′, α iff SUP (c) < min(S
(i−1)
UP (c′), α)264

assuming c′ = ∞ or α = ∞ when they are not265

specified, and δj,i = SUP

(
(↓ clj)i

)
− S

(i−1)
UP (clj).266

267

SUP(c
l
j) is defined to be equal to S

(n)
UP (c

l
j).268

269

αclj
represents the value above which a text270

is considered strongly related to the label. The271

second clause in the definition of the S
(i)
UP function272

simply propagates the information of a strongly273

relevant child label clj to its parent label. The274

third clause updates S
(i−1)
UP (clj), i.e., the UP275

score computed up to now, multiplying it by276

an exponential term based on the difference in277

relevance between the score of the children of the278

current node and the UP score for the current node.279

The last clause replaces the score of the father clj280

entirely with the one of its son (↓ clj)i if the score281

of the son is greater than αclj
. The final predicted282

label for d at level l is computed as the argmax of 283

all the scores of the corresponding level. 284

3.2 Label augmentation 285

In this subsection we describe how HiLA works 286

and describe how it is applied to a deepened hierar- 287

chy. 288

We assume to be given a dataset D whose labels 289

are arranged in a hierarchy H of depth L. We 290

propose to use a pre-trained LLM to deepen the 291

class hierarchy by adding to every existing leaf cLj 292

a set of new leaves ↓ cLj so that they are coherent 293

with the original hierarchy and more specific than 294

cLj . We assume that nodes of H have one and only 295

one parent, so that the hierarchy can be represented 296

as a tree. 297

We prompt an LLM to generate ↓ cLj starting 298

from a context that we extract from the hierarchy 299

itself. In principle, we would like to to include the 300

full hierarchy in the prompt and to ask the LLM 301

to produce a set of ↓ clj for all the NL leaves of 302

the taxonomy. Unfortunately, such approach is 303

intractable in many cases for two reasons: i) the 304

prompt may not fit in the limited number of tokens 305

that can be digested in a single step by the LLM1; 306

ii) the output would itself be too long or complex 307

to be reliably produced by the LLM. 308

For these reasons we propose an iterative ap- 309

proach where the extended hierarchy for all chil- 310

dren of a node cL−1
j at level L − 1 are generated 311

simultaneously and independently from the other 312

1While the biggest models are nowadays able to deal with
tens of kilo-tokens, smaller models are still limited in the
number of tokens they are able to digest in a single step.
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Figure 2: Examples of two branch-sets built on the c21 (red) node and on the c22 node (blue). Nodes shown as half
red and half blue are shared among the two branch-sets.

nodes. We define the branch-set BL−1
j of a node313

cL−1
j as the set containing all labels in the branch314

containing cL−1
j (including cL−1

j itself) along with315

all the children of cL−1
j . Formally:316

BL−1
j = cL−1

j ∪ ⇑ cL−1
j ∪ ↓ cL−1

j . (2)317

We note that hierarchies with depth L ≥ 2 generate318

branch-sets that share at least one label (c0) and up319

to L−2 labels, if the two nodes at level L−1 share320

their father. A graphical representation of branch-321

sets is provided by Figure 2. Given a branch-set322

BL−1
j , we compose the general prompt structure in323

the following way:324

[cL−1
j ][⇑ cL−1

j ]objects can be classified as

[↓ cL−1
j ], could you give me some more speci-

fic classifications for these classes?

(3)325

where square brackets are used to denote places326

where the box template is filled with contextual327

values. The actual prompt structure can depend on328

the dataset on which the method is used. For the329

sake of exemplification, let us consider a dataset330

of product reviews, where at the L − 1 level we331

have a label “skin care” with ancestor “beauty” and332

children “face”, “body” and “sun”. The branch-set333

of “skin care” would then be formed by “skin care”,334

“beauty”, “face”, “body”, and “sun”; the prompt for335

deepening the structure rooted in “skin care” would336

be:337

"skin care" "beauty" "products"338
can be classified as "face", "body"339
or "sun", could you give me some more340
specific classifications for these341
classes?342

We find the use of branch-sets defined in equation 2 343

to be more convenient than simple branches, i.e. the 344

sets cLj ∪ ⇑ cLj , for two reasons: i) HiLA requires 345

less LLM calls which imply less waiting/overall 346

time; ii) they ensure that newly generated labels do 347

not overlap neither with existing labels nor previ- 348

ously generated ones. In the example illustrated 349

above, the generation starting from the branch de- 350

fined by labels "skin care", "beauty" and "body" 351

could create the label "face and body lenitive oils", 352

that would overlap with an existing label of the 353

taxonomy. 354

Further generation hyperparameters can be spec- 355

ified in the prompt to meet more stringent require- 356

ments. For instance, the levels of formality, ver- 357

bosity of the new labels and either a maximum or 358

minimum number of children | ↓ cLj | can be added 359

to the prompt as required. 360

If the hierarchy H is deepened with our label 361

augmentation method, we can apply UP as de- 362

scribed in equation 1. This time the labels belong- 363

ing to level L of the input taxonomy are updated 364

too because they have children. The update only 365

happens if at least one of the generated labels is 366

more relevant to the text than its parent label, i.e., 367

if the label augmentation technique was effective. 368

It is worth noting that the labels generated by our 369

approach are not meant as classification targets 370

for the downstream ZSC task. They just provide 371

more context to the classification step, thus allow- 372

ing for better predictions. Pseudo code for the 373

label augmentation algorithm is shown in Algo- 374

rithm 1. The algorithm calls two helper functions: 375

the “fill_template” function uses the template given 376

in Eq. 3 to populate the objects in the input branch- 377

set; the “parse” function analyzes the LLM output 378

and retrieves the set of generated labels. 379
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Algorithm 1: The HiLA algorithm
Data: Labels hierarchy H
Result: H is extended with a new leaf level.
for j ∈ NL−1 do

BL−1
j ← cL−1

j ∪ ⇑ cL−1
j ∪ ↓ cL−1

j

P ← fill_template(BL−1
j ) ▷ see (3)

↓ cLj ← parse(LLM(P ))

end

3.3 Cluster density estimation380

Our proposed method heavily depends on the qual-381

ity of the structure represented in the hierarchy.382

Given that the generation of new labels relies on383

the existing ones as prompts, the density of label384

embeddings becomes a critical determinant of the385

generated labels’ quality. A higher density implies386

a more semantically rich and well-organized label387

space, thereby enhancing the efficacy of the deep-388

ening process.389

In this subsection we present two metrics390

grounded in cosine similarity to gauge the evolv-391

ing average proximity among nodes as we navigate392

through different levels of the taxonomy. We will393

show in Section 5 that D1 measure correlates with394

the quality of the proposed solution ad measure395

D2 allows for a better understanding of the hierar-396

chy structure that will prove helpful when we will397

analyze the behaviour of HiLA.398

We define a label cluster (or simply a cluster) to399

be the set:400

C l+1
j = clj∪ ↓ clj , (4)401

i.e. a label and its children. The metric D1 is402

defined as403

D1(C
l+1
j ) =

∑
i,k SC(Ψc((↓ clj)i),Ψc((↓ clj)k))(|↓clj |

2

)
(5)404

for i = 1, . . . , | ↓ clj |, k < i, i.e. the average405

cosine similarity among the node’s children em-406

beddings. It measures how much the children of a407

node are close to each other. Metric D2 is defined408

as409

D2(C
l+1
j ) =

∑|↓clj |
i=1 SC(Ψc(c

l
j),Ψc((↓ clj)i))

| ↓ clj |
,

(6)410

i.e. the average similarity between a parent node411

and its children. It measures how close a node is on412

average to its children. Upon the application of the 413

metrics, individual D1 and D2 values are derived 414

for each internal node. We summarize metric val- 415

ues for levels l′ : l > 0 by averaging them across 416

all nodes belonging to that level, i.e., we take the 417

average of the metric values across all clusters C l′
j 418

situated at the depth l′. Please note that metric D2 419

has no value for l′ = 1 since c0 lacks an embedding 420

representation. 421

4 Experiments 422

4.1 Data 423

To test the validity and versatility of our method, 424

we select four HTC datasets with diverse content, 425

style, and taxonomy depth. All datasets contain 426

English text. 427

DBPedia Classes2 - This dataset consists of 428

about 340,000 Wikipedia articles that are catego- 429

rized according to DBpedia’s hierarchy of classes. 430

The dataset covers different kinds of entities such 431

as persons, places, organizations, and abstract con- 432

cepts. The taxonomy has three levels with 9, 70 433

and 219 classes respectively. The language used is 434

clear and refined. 435

Web Of Science3 - This dataset contains about 436

46,000 abstracts of research papers from vari- 437

ous scientific domains, extracted and annotated in 438

Kowsari et al. (2017). Its taxonomy has two levels 439

with 7 and 134 classes respectively. The language 440

is highly technical and scientific. 441

Amazon Product Reviews4 - This dataset fea- 442

tures products reviews that are labelled according 443

to a hierarchical taxonomy provided by Amazon. 444

The dataset has about 50,000 reviews and its hier- 445

archy consists of three levels with 6, 64 and 510 446

categories respectively. The language varies from 447

review to review but it is typically casual and spon- 448

taneous. 449

Books Blurbs5 - A set of book blurbs. The 450

dataset taxonomy depth varied across samples, so 451

we only used the first two levels that applied to 452

all documents. Furthermore, we removed the texts 453

that had more than one label per layer. After pre- 454

processing, the dataset has about 9,000 texts and 455

2https://www.kaggle.com/datasets/dano
fer/DBpedia-classes

3https://huggingface.co/datasets/web_
of_science

4https://www.kaggle.com/datasets/kash
nitsky/hierarchical-text-classification

5https://www.inf.uni-hamburg.de/en/ins
t/ab/lt/resources/data/blurb-genre-colle
ction.html
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cL−1
i ∪ ⇑ cL−1

j cLi Generated labels

Grocery gourmet food,
meat & poultry

Sauces
Barbeque sauce, Soy sauce,
hot sauce, pasta sauce,
marinara sauce

Health and personal care,
personal care

Oral hygiene
Toothpaste, Mouthwash,
Toothbrushes, Tongue cleaners,
Dental floss

Pet supplies, Dogs Beds & furniture
Dog beds, Couches,
Dog crates, Elevated beds

Table 2: Some examples of label generation for the Amazon dataset

Model F1-macro
WoS DBpedia Amazon Books

L. 1 L. 2 L. 1 L. 2 L. 3 L. 1 L. 2 L. 3 L. 1 L. 2
M 0.596 0.462 0.317 0.326 0.628 0.547 0.256 0.173 0.257 0.285

M + UP 0.741 0.462 0.759 0.656 0.628 0.712 0.348 0.173 0.422 0.285
M+LA+UP 0.647 0.371 0.768 0.660 0.629 0.762 0.393 0.249 0.429 0.325

Table 3: Classification performance of our method compared to "raw" UP and ZS HTC without the use of UP. M
refers to the MPnet-based text vectorization defined in Bongiovanni et al. (2023)

its hierarchy consists of two levels with 4 and 33456

classes respectively. The tone is the one used in457

advertisements, the language is typically polished.458

4.2 Implementation details459

To perform label augmentation we rely on Ope-460

nAI API as it gives access to several LLMs of461

the GPT family. Specifically, we choose the462

gpt-3.5-turbo model. It is one of the best463

models provided by the API and it is the base ver-464

sion of the GPT model used by ChatGPT web in-465

terface.466

For the ZS HTC and the clustering part we fol-467

low Bongiovanni et al. (2023) and use as embedder468

mpnet-all (Reimers and Gurevych, 2019; Song469

et al., 2020) from HuggingFace Sentence Trans-470

formers library. Results are measured in terms of471

macro-F1 score. All experiments are performed on472

a single Tesla T4 GPU6.473

5 Results474

5.1 Label augmentation results475

In our experiments, we did not specify a target476

number of generated labels, but the LLM always477

produced at least three labels. Some samples of478

6Software will be made available upon acceptance, with
MIT licence.

the generated labels are displayed in Table 2. It is 479

worth noting that some texts belonging to the Ama- 480

zon hierarchy have some of the leaf nodes labelled 481

as "unknown", apparently because the annotators 482

could not associate them any label of the taxonomy. 483

We verified that, for these labels HiLA produces 484

new labels which are too generic and similar to the 485

other existing labels of level L. As we will com- 486

ment below, the quality of the input taxonomy is 487

very important to the performances of the proposed 488

approach. 489

The four deepened hierarchies are used to per- 490

form HTC via the UP method we introduced in Sec- 491

tion 3.1, results are displayed in Table 3. Applying 492

label augmentation before UP increases results in 493

terms of F1-score for three out of four datasets on 494

which we achieve new state-of-the-art results. F1 495

increments are visible not only at the deepest level 496

of the hierarchies L but also at all higher levels. 497

The labels generated by our method are coherent 498

not only with their parent labels cLj but also with 499

the full branch cLj ∪ ⇑ cLj to which they belong. 500

The only dataset which does not benefit from our 501

label augmentation technique is Web Of Science 502

for which F1 scores worsen at every level. 503
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Wos DBpedia Amazon Books
L. 1 L. 2 L. 1 L. 2 L. 3 L. 1 L. 2 L. 3 L. 1 L. 2

D1 0.378 0.275 0.238 0.399 0.482 0.307 0.351 0.369 0.308 0.451
D2 - 0.393 - 0.409 0.579 - 0.436 0.444 - 0.456

Table 4: Results of metrics D1 and D2 applied to levels L = l + 1 of the hierarchical taxonomies.

Figure 3: Visual interpretation of the positioning of the labels embeddings in a taxonomy. Blue dots represent
labels embeddings, bigger blue dots symbolize higher labels in the taxonomy. Yellow areas represent space portions
occupied by clusters.

5.2 Clustering density estimation results504

We conducted an analysis utilizing metrics D1 and505

D2 to measure the density of each level within the506

hierarchical structures. The outcomes are presented507

in Table 4.508

Upon scrutiny of the D1 and D2 values, a dis-509

cernible trend manifests: offspring nodes exhibit510

a closer affinity to their parent node than to each511

other. This observation suggests that clusters C l+1
j512

adopt a spatial arrangement reminiscent of an neu-513

ronal configuration, where the parent node occu-514

pies a central locus, while its progeny nodes are515

dispersed in the periphery. A noteworthy positive516

correlation between hierarchy levels and D2 values517

is observed, signifying that, as we descend the tax-518

onomy, sets ↓ clj tend to concentrate more. This519

outcome intuitively corresponds to a progressive520

refinement in semantic specificity as l increases.521

We contend that the observed structure aligns with522

the expectations of a conventional hierarchy, where523

each branching introduces new and more refined524

labels to the existing taxonomy. An intuitive visual525

representation of the observed hierarchical spatial526

structure is given in Figure 3.527

Contrary to the other hierarchies, Web Of Sci-528

ence taxonomy’s semantic similarity within chil-529

dren of the same level decreases as the level grows.530

Labels of the second level move away from the531

existing labels instead of adding specificity to them.532

This results in labels becoming more distant from533

each other, leading to poorly defined clusters. 534

The analysis illustrates an evident correlation be- 535

tween the metrics results and the augmentation and 536

classification results. When the taxonomy given as 537

input to HiLA is solid in density terms, our method 538

generates coherent labels that improve classifica- 539

tion results once UP is applied. In contrast, if the 540

input taxonomy lacks solidity, the generated labels 541

fail to confer additional specificity; rather, they ex- 542

acerbate the taxonomic structure, thereby deterio- 543

rating the results of UP. The analysis also confirms 544

the hypothesis that the metrics D1 and D2 can be 545

used as an initial screening tool to measure both the 546

quality of the label taxonomy and the effectiveness 547

of the HiLA. 548

6 Conclusions 549

In this paper we proposed an LLM-based label aug- 550

mentation technique to deepen a given hierarchy of 551

labels. We also defined a set of metrics to measure 552

the granularity of a taxonomy. By applying our 553

method to four public hierarchical datasets, we ob- 554

tained new sets of coherent and meaningful labels. 555

We then used the deepened hierarchies to perform 556

Zero-Shot Hierarchical TC using the UP technique. 557

We obtained SOTA results on three out of four 558

datasets. The classification results are strongly cor- 559

related with the metric values, that can therefore be 560

used to study the behaviour of the HiLA approach. 561
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7 Limitations562

The hierarchical label augmentation method we in-563

troduced depends heavily on the quality of the input564

taxonomy. While we tried to provide tools to assess565

the quality of the hierarchy, we acknowledge that566

the proposed approach will not provide the desired567

results in case the provided hierarchy is not easily568

extendible by the LLM. Also, our method depends569

on the OpenAI API, which is a closed-source tool570

released by a private company. To these regards,571

we believe that the provided approach would per-572

form well also when coupled with models that are573

open source and that can be used freely (such as574

LLaMA (Touvron et al., 2023) or Orca-2 (Mitra575

et al., 2023)). Providing evidence for this claim is576

left as future work.577
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