
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LMASK: LEARN TO SOLVE CONSTRAINED ROUTING
PROBLEMS WITH LAZY MASKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Routing problems are canonical combinatorial optimization tasks with wide-
ranging applications in logistics, transportation, and supply chain management.
However, solving these problems becomes significantly more challenging when
complex constraints are involved. In this paper, we propose LMask, a novel learning
framework that utilizes dynamic masking to generate high-quality feasible solu-
tions for constrained routing problems. LMask introduces the LazyMask decoding
method, which lazily refines feasibility masks with the backtracking mechanism. In
addition, it employs the refinement intensity embedding to encode the search trace
into the model, mitigating representation ambiguities induced by backtracking. To
further reduce sampling cost, LMask sets a backtracking budget during decoding,
while constraint violations are penalized in the loss function during training to
counteract infeasibility caused by this budget. We provide theoretical guarantees
for the validity and probabilistic optimality of our approach. Extensive experiments
on the traveling salesman problem with time windows (TSPTW) and TSP with
draft limits (TSPDL) demonstrate that LMask achieves state-of-the-art feasibility
rates and solution quality, outperforming existing neural methods.

1 INTRODUCTION

Routing problems form a fundamental class of combinatorial optimization (CO) problems, encom-
passing the traveling salesman problem (TSP), vehicle routing problem (VRP), and their numerous
variants. These problems frequently arise in practical domains such as logistics (Konstantakopoulos
et al., 2022), transportation (Dı́az-Parra et al., 2014), and supply chain management Duan et al.
(2020), where the objective is to determine optimal routes while satisfying a variety of constraints,
such as vehicle capacities, draft limits, time windows, or precedence requirements. The presence of
these constraints significantly increases the problem complexity, as they must all be considered when
optimizing the distance, time, or transport cost. Integer linear programming (ILP) provides a rigorous
framework for modeling routing problems while incorporating constraints explicitly (Dantzig et al.,
1954; Dantzig & Ramser, 1959). It guarantees optimal solutions under feasible conditions; however,
as the number and complexity of constraints grow, the computational cost of solving ILP models in-
creases exponentially. This makes ILP computationally intractable especially for large-scale instances
with complex constraints (Cook, 2015).

To address the computational challenges posed by complex constraints, heuristic methods are com-
monly adopted. These methods efficiently generate high-quality solutions using approximations and
relaxation strategies to handle constraints. Prominent heuristic approaches, such as the Lin-Kernighan-
Helsgaun (LKH) heuristic (Helsgaun, 2017), fast iterated local optimization (Accorsi & Vigo, 2021),
and hybrid genetic search (Vidal, 2022; Wouda et al., 2024), have demonstrated effectiveness across
various constrained routing problem variants. Nonetheless, applying these heuristics often requires
significant attention to constraint modeling, algorithm customization, and parameter tuning. This
highlights the necessity for expert knowledge to adapt methods for specific problem settings, as well
as the complexity of constraint handling in CO problems.

Neural constructive solvers for routing problems. In recent years, machine learning for CO
approaches have been developed to tackle the difficulty in solving CO problems. Neural constructive
solvers are learning-based methods designed to construct a complete route by adding a node to
the current partial route sequentially. Early works introduce the pointer network to generate the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

optimal solution to TSP (Vinyals et al., 2015; Bello et al., 2017) and VRP (Nazari et al., 2018) in an
auto-regressive way. The attention-based model (AM) (Kool et al., 2018) is a fundamental work in
this line of research, which adopts a transformer-based model architecture. Building on AM, many
subsequent innovations, including dynamic embedding (Peng et al., 2020; Luo et al., 2023), symmetry
utilization (Kwon et al., 2020; Kim et al., 2022) and posterior search (Hottung et al., 2022; Choo
et al., 2022), have been proposed to facilitate the performance. Their decoders, utilizing attention
mechanisms, generate the solution incrementally by selecting nodes in an auto-regressive manner.
Masking techniques are adopted to exclude nodes that do not satisfy the constraints. Additionally,
there are several works studying foundation models for VRPs, such as MVMoE (Zhou et al., 2024),
Routefinder (Berto et al., 2024) and CaDA (Li et al., 2024).

Feasibility awareness. Most neural methods for routing problems handle constraints by employing
the masking mechanism, which excludes actions directly leading to infeasible solutions during
construction (Kool et al., 2018; Huang et al., 2025; Kwon et al., 2020; Joshi et al., 2019; Luo et al.,
2023). This sequential construction is valid due to the property of tail recursion: after applying a
series of construction steps, the remaining tail subproblem becomes a smaller instance of the original
CO problem, as discussed in (Drakulic et al., 2023). The construction process implicitly assumes
that the tail subproblem is always feasible. This property is present in ordinary routing problems,
allowing feasible solutions to be generated node by node. However, for route problems with complex
constraints, feasibility issues pose a major challenge during the sequential generation process. To
tackle the feasibility difficulty, recent neural approaches have developed diverse strategies. Kool
et al. (2022) propose DPDP, which combines learned neural heuristics with dynamic programming
algorithms to handle hard constraints. Ma et al. (2023) present the neural k-opt solver for TSP and
CVRP, which learns the search process with feasibility-related features and guided infeasible region
exploration scheme. Chen et al. (2024) develop a multi-step look-ahead method tailored for TSPTW,
incorporating problem-specific features and a large supervised learning dataset. Bi et al. (2024)
propose a proactive infeasibility prevention (PIP) framework based on preventative infeasibility (PI)
masking, learnable decoders, and adaptive strategies to advance neural methods.

In the previous learning methods, the one-pass forward sequence construction framework (Kool et al.,
2018; Kwon et al., 2020; Luo et al., 2023; Bi et al., 2024) limits the model’s ability to handle complex
constraints. This auto-regressive approach builds a solution step-by-step in an irreversible manner,
where each action is based solely on the partial solution generated so far. Although lookahead
strategies attempt to mitigate the inflexibility by exploring the following feasible actions, they are
computationally expensive with no guarantee of finding a feasible solution. Furthermore, to enforce
these constraints during generation, such methods heavily rely on a masking mechanism that lacks
a systematic mathematical explanation. This motivates us to develop a more effective constructive
framework with a distinct decoding method, enabling learning over more general constraints in
routing problems. Therefore, we develop a novel learning framework, called LMask, to handle the
feasibility issue in solving routing problems with complex constraints. It explains how machine
learning can solve NP-hard problems in an end-to-end manner, offering a theoretically guaranteed
approach to generating feasible solutions. The name LMask on one hand represents the “LazyMask”
decoding algorithm, and on the other hand signifies using the “mask” refinement mechanism to “learn”
the routing problems with complex constraints. The overall LMask framework is illustrated in Figure
1 at the end of Section 3. Our main contributions are summarized as follows.

1) Mechanism innovation. We propose the LazyMask decoding algorithm, which lazily updates
feasibility masks through the backtracking mechanism, enabling efficient generation of feasible
solutions with theoretical guarantees. To mitigate representation ambiguities, the refinement intensity
embedding is further employed to integrate information about the search trace into our model.

2) Theoretical guarantee. We present a systematic explanation of the masking mechanism’s role in
routing problems, which fundamentally guides the design of the LMask framework. Based on our
mathematical derivation, rigorous theoretical guarantees demonstrate the validity of the LazyMask
algorithm and the effectivity of LMask’s probabilistic model with entropy regularization.

3) Experimental outperformance. Comprehensive experiments on TSPTW and TSPDL demonstrate
that LMask achieves significantly higher solution feasibility and smaller objective gaps than other
neural constructive methods with comparable runtime, showing state-of-the-art performance. Notably,
a nearly 0.0% infeasibility rate is observed for LMask on synthetic TSPTW datasets, highlighting its
effectiveness in handling complex constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES FOR ROUTING PROBLEMS

2.1 A UNIFIED FORMULATION

In the context of end-to-end learning, we typically do not use mixed-integer programming for
modeling routing problems due to its high computational complexity. Instead, we consider a unified
formulation of routing problems. Let V := {0, 1, . . . , n} denote the set of nodes and Π := V T

represent the sequence space containing all possible routes of length T . The length T is always
n+ 1 when a routing problem requires each node to be visited exactly once. A wide range of routing
problems can be expressed using the following formulation:

min
π∈Π

f(π;P), s.t. c(π;P) ≤ 0, d(π;P) = 0, (1)

where P represents the problem instance, c(π;P) and d(π;P) represent the hard constraints imposed
on the route π. d(π;P) = 0 can be the visit constraints that each node is exactly visited once.
c(π;P) ≤ 0 can represent time window constraints, draft limit constraints, etc. More details of the
formulation are shown in Appendix A.

2.2 A DISTRIBUTION APPROXIMATION VIEW

In this section, we provide a novel view from the perspective of distribution approximation to solve
problem (1). Let Π∗ be the optimal solution set and f∗(P) be the optimal objective value for a given
instance P . The search for optimal solutions can be framed as identifying the target distribution:

q∗(π;P) :=
1

|Π∗|1Π∗(π) =

{
1

|Π∗| , π ∈ Π∗,

0, π ̸∈ Π∗.

Since the optimal solutions cannot be determined in advance, the target distribution is computationally
inaccessible. However, it can be approximated by a family of constrained Gibbs distributions:

qλ(π;P) :=
1

Zλ
exp

(
−f(π;P)− f∗(P)

λ

)
1C(π),

where C := {π ∈ Π : c(π;P) ≤ 0, d(π;P) = 0} is the feasible set of problem (1) and Zλ :=∑
π∈C exp (−(f(π;P)− f∗(P))/λ). It is also known as an energy-based model and has a profound

impact in deep learning (LeCun et al., 2006; Song & Kingma, 2021). It can be readily verified that
qλ(π;P) → q∗(π;P) as λ → 0, which means optimal solutions can be identified by sampling from
a constrained Gibbs distribution qλ with a sufficiently small λ.

As an alternative to directly sampling from the Gibbs distribution, constructing a parameterized
distribution pθ is often considered more efficient to sample a feasible route. This approach is adopted
in variational annealing methods (Hibat-Allah et al., 2021; Sanokowski et al., 2023; Chen et al.,
2023). We can construct an auto-regressive distribution that generates a route in a node-by-node
manner. Given a problem instance P , the policy for generating a solution π of length T can be
decomposed as:

pθ(π;P) =

T−1∏
t=1

pθ(πt+1|π1:t;P), (2)

where pθ represents an auto-regressive neural network (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) to predict the next element based on all preceding elements.

Let P (x) and Q(x) represent two probability distributions such that their supports satisfy supp(P) ⊆
supp(Q). The Kullback-Leibler (KL) divergence from Q to P is defined as KL(P ||Q) :=

Ex∼P (·)

[
log P (x)

Q(x)

]
. In our framework, to reduce the discrepancy between the policy distribution pθ

and the Gibbs distribution qλ, we minimize their KL divergence

KL(pθ||qλ) = Epθ
[log pθ] +

1

λ
Epθ

[f(π;P)] + logZλ − f∗(P). (3)

Then, eliminating θ-independent terms (logZλ− f∗(P)) and λ-scaling in (3) yields the loss function
L(θ;P) := Epθ(·;P)[f(π;P)] + λEpθ(·;P)[log pθ(π;P)],

which contains the expectation of f(π;P) over pθ for concentration on lower function values and an
entropy regularizer for encouraging exploration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 CONSTRAINED AUTO-REGRESSIVE MODEL

Due to the complex constraints of the routing problem, infeasible solutions need to be excluded in the
auto-regressive model. Transformer-based models for routing problems (Kool et al., 2018; Luo et al.,
2023; Kwon et al., 2020) utilize masking techniques to avoid infeasible solutions. However, the effec-
tiveness of these techniques relies on the routing problem’s constraint structure. For problems with
highly complex constraints, generating feasible solutions is challenging, as detailed in Appendix A.

To address this, we leverage the constraint structure of problem (1). Specifically, when constructing
pθ, we must ensure that the probability of any solution π violating the constraints is zero. This
can be achieved by incorporating the indicator function 1C for the feasible set C. The conditional
probability pθ(πt+1|π1:t;P), represented by the neural network, should explicitly exclude infeasible
actions. To formalize this, we introduce the potential set S(π1:t), defined as:

S(π1:t) := {πt+1 : ∃πt+1:T ∈ V T−t, [π1:t, πt+1:T] ∈ C},
which further induces the mask function 1S(π1:t)(πt+1). Based on this formulation, the conditional
probability in (2) parameterized by the neural network takes the form:

pθ(πt+1|π1:t;P) =
eϕθ(πt+1|π1:t;P)1S(π1:t)(πt+1)∑n
k=0 e

ϕθ(k|π1:t;P)1S(π1:t)(πt+1)
,

where ϕθ(·|π1:t;P) is produced by all intermediate layers. The auto-regressive model pθ can produce
feasible solutions step-by-step, forming the foundation for solving general routing problems.

3.2 LAZYMASK ALGORITHM

Most neural methods for routing problems involve handling constraints through masking mechanisms,
which dynamically excludes actions that would lead to infeasible solutions during the construction.
However, S(π1:t) is sometimes computationally inaccessible for complex constraints since it may
require an exhaustive lookahead until a complete solution is constructed. To circumvent this, we
propose the LazyMask algorithm which works with an overestimation set Ŝ(π1:t) representing the
currently known complementary set of actions that are deemed impossible. LazyMask adaptively
establishes this set via lookahead initialization strategies and incrementally refining it through
backtracking. The interaction between lookahead and backtracking enables efficient generation of
feasible solutions under complex constraints. The detailed procedure is described in Algorithm 1.

Backtrack. LazyMask employs an adaptive backtracking mechanism to ensure solution feasibil-
ity while reducing unnecessary computation. At each step t, the algorithm examines the current
overestimation Ŝ(π1:t). If this set is non-empty, the algorithm extends the partial route by sampling
the next node πt+1 according to the masked policy pθ, and then advances to step t+ 1 to initialize
the new overestimation set. Otherwise, if the set is empty, the algorithm’s decision depends on the
backtracking budget. If the budget is unreached, the algorithm backtracks to step t− 1 and refines
Ŝ(π1:t−1) by removing the invalid node πt. However, if the budget has been reached, it instead
relaxes Ŝ(π1:t) to the set of all unvisited nodes to ensure a complete route can be generated.

For NP-hard combinatorial optimization problems with complex constraints, it is precisely due to
the inherent complexity of the search space that generating a solution via a single forward pass
is insufficient. The backtracking mechanism addresses this limitation by transforming it from a
conventional one-pass forward model to a dynamic paradigm capable of both forward and backward
operations. As a core role in our decoding algorithm, it significantly enhances the flexibility of route
decoding and constitutes the most fundamental difference from previous neural solvers.

Lookahead. LazyMask offers great flexibility for initializing the overestimation set as long as
Ŝ(π1:t) contains the potential set S(π1:t). In this paper, we resort to lookahead strategies for this
initialization. Single-step lookahead (SSL) is a common approach for ordinary routing problems that
examines unvisited nodes for immediate constraint violations. Two-step lookahead (TSL) performs
an additional step of lookahead to filter nodes that appear feasible under SSL but could lead to
infeasible routes, which is adopted in (Bi et al., 2024) and termed as one-step PI masking. The
specific implementations of these two strategies for TSPTW and TSPDL are provided in Appendix E.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 LazyMask algorithm

1: Input: routing problem instance P , neural network pθ, backtracking budget R.
2: Initialize π1 := 0, t := 1, r := 0 and the overestimation set Ŝ(π1) either by SSL or TSL.
3: while t ≤ T − 1 do
4: if Ŝ(π1:t) = ∅ and r ≤ R then
5: Update Ŝ(π1:t−1) := Ŝ(π1:t−1)\{πt}.
6: Set t := t− 1, r := r + 1.
7: else
8: if Ŝ(π1:t) = ∅ then
9: Ŝ(π1:t) := V \ {π1, . . . , πt}.

10: end if
11: Calculate the probability pθ(·|π1:t;P) using Ŝ(π1:t).
12: Sample πt+1 ∼ pθ(·|π1:t;P).
13: Set t := t+ 1 and initialize Ŝ(π1:t) either by SSL or TSL.
14: end if
15: end while
16: Output: route π.

3.3 REFINEMENT INTENSITY EMBEDDING

While our LazyMask algorithm is model-agnostic, standard dynamic features in existing auto-
regressive models (Kool et al., 2018; Kwon et al., 2020) are incompatible with backtracking. These
features typically only reflect aggregated information from the partial route, such as the current
time in TSPTW, implicitly assuming a one-pass forward construction. However, when backtracking
occurs, this design renders the model state invariant to its search trace, leading to representation
ambiguities that can hinder the model’s learning ability. For instance, the model cannot distinguish
whether the current partial route emerges from forward construction or backward correction.

To address this, we propose the refinement intensity embedding (RIE), designed to enrich the decoder’s
input with essential context about the search trace via the refinement intensity of overestimation
sets. RIE is derived from two distinct refinement intensity features. The local feature quantifies the
refinement count ct of the current Ŝ(π1:t), represented as a capped N -dimensional one-hot vector
with its non-zero entry at index min(ct + 1, N). The global feature signals whether the total number
of backtracks has reached the budget R, encoded as a 2-dimensional one-hot vector. These features
are concatenated and then projected to form the final RIE. The resulting RIE enhances the model’s
awareness of the search trace, resolving the representation ambiguities caused by backtracking.

3.4 TRAINING

For routing problems where identifying feasible solutions can be intractable (Savelsbergh, 1985),
LazyMask with a large backtracking budget R is inefficient during the early training stage. We
therefore adopt a smaller R during training to enhance computational efficiency. This practical choice,
however, can lead to infeasible solutions, requiring a method to guide pθ towards the feasible set. Thus,
we employ the ℓ1 penalty function, a well-established technique in constrained optimization (Nocedal
& Wright, 2006). This function specifically penalizes violations of complex constraints, such as
time windows in TSPTW and draft limits in TSPDL, while simpler constraints like node visits are
inherently satisfied by the design of pθ. The training objective is then formulated as

min
θ

Eπ∼pθ(·;P) [Ψρ(π;P) + λ log pθ(π;P)] ,

where Ψρ(π;P) := f(π;P) + ρ
∑J

j=1 max (cj(π;P), 0) is the ℓ1 penalty function, ρ > 0 is a
given penalty parameter and cj(π;P) quantifies the violation of the j-th complex constraint. While
previous studies (Tang et al., 2022; Ma et al., 2023) have explored ℓ1 penalty as soft constraints, we
innovatively combine hard and soft constraints during training. It starts with hard constraints through
backtracking and then turns to soft constraints for flexible optimization once the budget threshold
is reached. The policy pθ is trained using a standard policy gradient algorithm (Silver et al., 2014;
Sutton & Barto, 2018) with further details provided in Appendix B. The overall LMask framework is
illustrated in Figure 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: An illustrative overview of LMask: Up - the overall LMask framework. Down - the
LazyMask decoding algorithm.

4 THEORETICAL RESULTS

4.1 VALIDITY OF LAZYMASK ALGORITHM

To ensure the effectiveness of Algorithm 1 in solving constrained routing problems, we first prove
that it always generates feasible solutions and has a non-zero probability of generating all feasible
solutions. The following proposition shows the validity of the algorithm.

Proposition 4.1. Suppose that the problem (1) is feasible, and that the backtracking budget in
Algorithm 1 is set to R = +∞. Then, i) any solution π generated by Algorithm 1 is feasible; ii)
Algorithm 1 assigns a non-zero probability to generate any feasible solution π.

This proposition demonstrates that Algorithm 1 never generates infeasible solutions and no feasible
solution is excluded. This ensures that the algorithm explores the entire feasible solution space with
the distribution pθ, which acts as the foundation for further analysis of the algorithm’s behavior in
finding optimal solutions.

4.2 VALIDITY OF PROBABILISTIC MODEL

We further analyze the theoretical validity of the probabilistic model for the original routing problem
by providing rigorous performance guarantees. Before delving into the formal theorem, it is essential
to clarify a fundamental assumption supporting the analysis.

Assumption 4.2. We assume that the auto-regressive neural network pθ has sufficient expressive
power to approximate the target distribution qλ. Specifically, the approximation error δ(λ) defined as
follows satisfies:

δ(λ) = min
θ

max
P∈D

KL(pθ(·;P) ∥ qλ(·;P)) ≤ c/λ, λ > 0,

where c is a small constant. Let pθ∗(λ) be the corresponding optimal distribution.

Assumption 4.2 ensures that the auto-regressive neural network pθ effectively parameterizes Gibbs
distributions qλ, with δ(λ) quantifying their approximation error. It is worth noting that as λ is
approaching zero, the target distribution qλ converges toward a point mass distribution, which is hard

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to approximate. Hence, we do not assume a uniform upper bound. We further give the following
theorem to formalize the performance guarantees of the probabilistic model.
Theorem 4.3. Suppose that Assumption 4.2 holds. We define ∆(P) := minπ∈C\Π∗ f(π;P)−f∗(P).
Then, for any ϵ > 0 and ∆(P) ≥ λ > 0, the following inequality holds:

Ppθ∗(λ)
(f(π;P) ≥ f∗(P) + ϵ) ≤ |C|∆(P)e−∆(P)/λ

|Π∗|max{ϵ,∆(P)} +

√
c

2λ
.

Theorem 4.3 provides a probabilistic bound for the event that the solution π ∼ pθ∗(λ)(·;P) is sampled
with an objective value f(π;P) significantly larger than the optimal value f∗(P). The suboptimality
gap ∆(P) serves as a measure of separation between optimal and suboptimal solutions in the feasible
set C, while λ controls the trade-off between exploration and concentration in the Gibbs distribution
qλ. A smaller λ enhances concentration and suppresses suboptimal solutions more effectively but
increases the approximation error

√
c
2λ , while a larger λ reduces approximation error and improves

computational feasibility but weakens the probability guarantee in the term of e−∆(P)/λ. This trade-
off of the entropy regularization coefficient λ is intrinsic to the probabilistic model and underscores
the interplay between concentration, exploration, and approximation quality.

5 EXPERIMENTS

Setup. We conduct experiments on two representative hard-constrained routing problems: TSPTW
and TSPDL, using datasets of sizes n = 50, 100 across different hardness levels. To evaluate the
effectiveness of LMask, we compare it against several baselines. For traditional solvers, we adopt
PyVRP (Wouda et al., 2024), LKH3 (Helsgaun, 2017) and OR-Tools (Furnon & Perron, 2024). For
neural solvers, we consider PIP and PIP-D (Bi et al., 2024), which proactively mask actions that could
lead to future infeasibility, and VSR-LKH (Zheng et al., 2023), which incorporates reinforcement
learning into the local search process of LKH3. DPDP (Kool et al., 2022) is not compared here since
the model provided by the official repository is pretrained on a dataset with a different maximum
time width and we empirically find that it exhibits poor generalization. Additionally, we include two
simple constructive heuristics with backtracking, Random-L and Random-C. We use greedy rollout
with 8× symmetric dihedral augmentation for all neural solvers as done in (Kwon et al., 2020),
resulting in 8 solutions per instance. LMask adopts TSL as its default initialization strategy. The data
generation mechanism, implementation details, and additional results are available in Appendix E.

Evaluation metrics. We evaluate both the ability to handle complex constraints and the quality
of feasible solutions. The instance infeasibility rate (Ins.) is the fraction of instances for which
no feasible solution is found, and the solution infeasibility rate (Sol.) is the fraction of generated
solutions that are infeasible. To assess solution quality, we report the average route length over the
best feasible solutions, excluding instances for which no feasible solution is available. Additionally,
the gap is computed with respect to PyVRP for TSPTW and LKH3 for TSPDL, and is averaged over
instances where both the evaluated method and the reference solver find feasible solutions. Note that
the gap is computed on a different subset of instances from those used for the average route length,
and serves as the primary metric for solution quality, as done in (Bi et al., 2024). Finally, we report
the total inference time required to solve all instances in the dataset.

5.1 PERFORMANCE ON SYNTHETIC DATASETS

The results on synthetic TSPTW and TSPDL datasets are presented in Tables 1 and 2. On TSPTW
datasets, LMask consistently achieves near-zero infeasibility rates, significantly surpassing OR-Tools,
PIP, PIP-D and heuristics across different hardness levels. Compared to the traditional solvers PyVRP
and LKH3, LMask is substantially efficient due to fast network inference. Although VSR-LKH is also
learning based, it is implemented on top of the computationally intensive LKH3 pipeline and therefore
inherits its runtime profile, remaining orders of magnitude slower than LMask. Regarding solution
quality, we observe that while PIP-D can improve feasibility over PIP, this sometimes comes at the
cost of larger gaps. In contrast, LMask delivers improved feasibility and lower optimality gaps than
PIP and PIP-D across all settings, while maintaining competitive inference times. The advantages
of LMask become even more pronounced on TSPDL datasets, showing significant improvements
in both feasibility and solution quality. These results highlight that LMask can effectively generate
higher-quality solutions while significantly reducing the occurrence of infeasible solutions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results on synthetic TSPTW datasets. Bold indicates the best among constructive methods.

Nodes n = 50 n = 100

Method
Infeasible

Obj. Gap Time
Infeasible

Obj. Gap TimeSol. Inst. Sol. Inst.

E
as

y

PyVRP - 0.00% 7.31 * 1.7h - 0.00% 10.19 * 4.3h
LKH3 - 0.00% 7.31 0.00% 1.9h - 0.00% 10.21 0.29% 7.2h
VSR-LKH - 0.00% 7.31 0.00% 4.3h - 0.00% 10.19 0.08% 16.4h
OR-Tools - 0.00% 7.32 0.21% 1.7h - 0.00% 10.33 1.43% 4.3h

Random-L 56.02% 0.04% 14.55 99.23% 1.3m 95.17% 9.37% 30.66 201.20% 6.1m
Random-C 62.31% 0.03% 19.12 162.03% 1.4m 98.17% 27.30% 44.20 333.74% 6.1m
PIP 0.28% 0.01% 7.51 2.73% 9s 0.16% 0.00% 10.57 3.78% 29s
PIP-D 0.28% 0.00% 7.50 2.60% 10s 0.05% 0.00% 10.66 4.62% 31s
LMask 0.06% 0.00% 7.45 2.02% 7s 0.01% 0.00% 10.50 3.11% 17s

M
ed

iu
m

PyVRP - 0.00% 13.03 * 1.7h - 0.00% 18.72 * 4.3h
LKH3 - 0.00% 13.02 0.00% 2.9h - 0.01% 18.74 0.16% 10.3h
VSR-LKH - 0.00% 13.03 0.01% 8.2h - 0.00% 18.72 0.00% 8.7h
OR-Tools - 15.12% 13.01 0.12% 1.5h - 0.52% 18.98 1.40% 4.3h

Random-L 98.31% 32.18% 18.91 47.04% 1.6m 100.00% 100.00% - - 5.8m
Random-C 91.17% 8.18% 21.04 61.91% 1.6m 100.00% 100.00% - - 5.9m
PIP 4.82% 1.07% 13.41 2.93% 10s 4.35% 0.39% 19.61 4.79% 29s
PIP-D 4.14% 0.90% 13.46 3.31% 9s 3.46% 0.03% 19.80 5.76% 31s
LMask 0.04% 0.00% 13.25 1.68% 6s 0.05% 0.00% 19.51 4.23% 18s

H
ar

d

PyVRP - 0.00% 25.61 * 1.7h - 0.01% 51.27 0.00% 4.3h
LKH3 - 0.52% 25.61 0.00% 2.3h - 0.95% 51.27 0.00% 1d8h
VSR-LKH - 0.52% 25.68 0.00% 4.4h - 0.91% 51.27 0.00% 8.9h
OR-Tools - 65.11% 25.92 0.00% 0.6h - 89.25% 51.72 0.00% 0.5h

Random-L 100.00% 100.00% - - 1.6m 100.00% 100.00% - - 5.6m
Random-C 100.00% 99.82% 25.98 1.22% 1.6m 100.00% 100.00% - - 5.8m
PIP 5.65% 2.85% 25.73 0.18% 9s 31.74% 16.68% 51.48 0.37% 28s
PIP-D 6.44% 3.03% 25.75 0.27% 9s 13.59% 6.60% 51.43 0.32% 31s
LMask 0.00% 0.00% 25.71 0.10% 6s 0.00% 0.00% 51.38 0.21% 18s

Table 2: Results on synthetic TSPDL datasets. Bold indicates the best among constructive methods.

Nodes n = 50 n = 100

Method
Infeasible

Obj. Gap Time
Infeasible

Obj. Gap TimeSol. Inst. Sol. Inst.

M
ed

iu
m

LKH3 - 0.00% 10.85 * 2.3h - 0.00% 16.36 * 10.2h
VSR-LKH - 0.00% 10.85 0.08% 3.8h - 0.00% 16.35 - 0.07% 11.0h
OR-Tools - 100.00% - - 10.9s - 100.00% - - 56.9s

Random-L 99.96% 97.28% 21.02 138.56% 38s 100.00% 100.00% - - 2.0m
Random-C 96.89% 47.39% 24.71 145.85% 37s 100.00% 99.98% 50.48 319.97% 2.0m
PIP 1.75% 0.17% 11.23 3.59% 8s 2.50% 0.16% 17.68 8.10% 21s
PIP-D 2.29% 0.22% 11.26 3.96% 8s 1.83% 0.23% 17.80 8.84% 23s
LMask 0.03% 0.01% 11.14 2.75% 6s 0.20% 0.05% 17.04 4.24% 15s

H
ar

d

LKH3 - 0.00% 13.25 * 2.6h 0.00% 0.00% 20.76 * 15.8h
VSR-LKH - 0.00% 13.25 0.05% 6.0h - 0.00% 20.75 - 0.05% 17.2h
OR-Tools - 100.00% - - 10.6s - 100.00% - - 56.8s

Random-L 100.00% 99.96% 22.2 132.40% 37s 100.00% 100.00% - - 2.0m
Random-C 99.90% 94.05% 25.55 135.68% 37s 100.00% 100.00% - - 2.0m
PIP 4.83% 2.39% 13.63 3.42% 8s 29.34% 21.65% 22.35 12.87% 20s
PIP-D 4.16% 0.82% 13.79 4.28% 8s 13.51% 8.43% 22.90 12.53% 23s
LMask 0.19% 0.04% 13.57 2.52% 6s 0.80% 0.26% 21.63 4.34% 15s

5.2 GENERALIZATION AND SCALABILITY

In Table 3, we further assess the generalization ability of LMask on the well-known TSPTW bench-
mark (Dumas et al., 1995). Across all problem sizes, LMask surpasses neural baselines in both
solution feasibility and quality. Notably, as the problem size increases, the performance of PIP and
PIP-D degrades significantly, whereas LMask remains robust, demonstrating strong generalization
across problem sizes. Additional experiments with varying maximum time window widths in Ap-
pendix E further confirm the generalization ability of LMask. Beyond generalization, LMask also
exhibits notable scalability. Results on hard TSPTW-500 in Appendix E validate its scalability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results on the TSPTW benchmark.

Nodes n = 20 n = 40 n = 60 n = 80

Method Infeas. Obj. Gap Infeas. Obj. Gap Infeas. Obj. Gap Infeas. Obj. Gap
PIP 5% 337.00 5.2% 45% 428.09 4.6% 20% 580.25 11.5% 22.2% 644.43 8.7%
PIP-D 5% 336.63 5.2% 25% 460.27 6.3% 40% 608.67 13.1% 66.7% 662.67 12.0%
LMask 5% 332.74 3.9% 10% 450.44 3.7% 0% 543.50 4.4% 11.1% 625.25 5.1%

5.3 ADDITIONAL ANALYSIS

Table 4: Comparison between backtracking and
lookahead on the hard TSPTW-100 dataset.

Lookahead Step Method Sol. Infeas. Time

1

PIP 100.00% 13s
PIP-D 79.86% 16s
LMask (R = 700) 5.63% 31s

2
PIP 31.74% 28s
PIP-D 13.60% 31s
LMask (R = 300) 0.00% 18s

3
PIP 26.87% 35m
PIP-D 11.62% 35m

Backtracking vs Lookahead. Table 4 shows re-
sults across different lookahead steps. With TSL,
LMask attains a zero solution infeasibility rate.
Even under the less accurate SSL, LMask drives the
infeasibility rate down to the second lowest level by
allocating a larger backtracking budget. However,
PIP and PIP-D exhibit unacceptably high infeasibil-
ity rates under SSL. Increasing the lookahead step
from 2 to 3 induces an order of magnitude rise in
inference time while yielding only marginal gains
and the outcomes remain inferior to LMask under
SSL with R = 700. These results demonstrate that
backtracking combined with a lightweight looka-
head initialization is more efficient than methods
that rely exclusively on deeper lookaheads. Figure 4 in Appendix E further shows how infeasibility
and inference time vary with the backtracking budget under different initialization strategies.

Gap Sol. Infeas.
1.5

1.7

1.9

2.1

2.3

G
ap

(%
)

1.68%

2.31% With RIE
Without RIE

0.02

0.06

0.10

0.14

0.18

So
l.

In
fe

as
.(

%
)

0.05%

0.14%

Figure 2: Effect of RIE.

0 0.005 0.01 0.05
λ

2

4

6

8

G
ap

(%
)

3.67% 3.33% 3.11%

7.38%

Figure 3: Effect of entropy term.

Refinement intensity embedding. Figure 2 presents the results on medium TSPTW-50 with and
without RIE. The results confirm that the inclusion of RIE leads to a substantial reduction in optimality
gap. Concurrently, it also fosters a tangible improvement in solution feasibility.

Effect of entropy term. In Figure 3, we report the results on easy TSPTW-100 for models trained
with different entropy coefficients λ. The optimality gap exhibits a non-monotonic pattern. It
decreases as λ increases from 0 to 0.01, achieving the best performance at λ = 0.01, but then rises
significantly at λ = 0.05. This reflects the intrinsic trade-off between exploration and concentration
in the probabilistic model, and suggests that choosing an appropriate entropy coefficient can improve
solution optimality. This observation also aligns with our theoretical analysis in Section 4.2.

6 CONCLUSION

In this paper, we propose a novel framework, LMask, for solving hard-constrained routing problems
by introducing innovative masking mechanisms. By addressing feasibility through lazy masking, our
approach can generate feasible solutions efficiently through the transformer-based model with RIE.
We provide theoretical guarantees demonstrating that our approach preserves both feasibility and
optimality. Extensive experiments on TSPTW and TSPDL reveal that LMask achieves state-of-the-art
feasibility rates and solution quality. Although our current framework is only applied to limited
problem types, future work may explore its extension to more general combinatorial optimization
problem with simultaneously reduced infeasibility and the solution gap.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Luca Accorsi and Daniele Vigo. A fast and scalable heuristic for the solution of large-scale capacitated
vehicle routing problems. Transportation Science, 55(4):832–856, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Machine Learning
(Workshop), 2017.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. RL4CO: an extensive reinforcement
learning for combinatorial optimization benchmark. arXiv preprint arXiv:2306.17100, 2023.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
Tierney, and Jinkyoo Park. RouteFinder: Towards foundation models for vehicle routing problems.
In ICML 2024 Workshop on Foundation Models in the Wild (Oral), 2024.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. In Advances in Neural Information
Processing Systems, 2024.

Cheng Chen, Ruitao Chen, Tianyou Li, Ruichen Ao, and Zaiwen Wen. Monte Carlo policy gradient
method for binary optimization. arXiv preprint arXiv:2307.00783, 2023.

Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, and Weinan Zhang. Looking
ahead to avoid being late: Solving hard-constrained traveling salesman problem. arXiv preprint
arXiv:2403.05318, 2024.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. In
Advances in Neural Information Processing Systems, 2022.

William J Cook. In pursuit of the traveling salesman: mathematics at the limits of computation.
Princeton university press, 2015.

Rodrigo Ferreira Da Silva and Sebastián Urrutia. A general VNS heuristic for the traveling salesman
problem with time windows. Discrete Optimization, 7(4):203–211, 2010.

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2(4):393–410, 1954.

George B Dantzig and John H Ramser. The truck dispatching problem. Management science, 6(1):
80–91, 1959.

Ocotlán Dı́az-Parra, Jorge A Ruiz-Vanoye, Beatriz Bernábe Loranca, Alejandro Fuentes-Penna, and
Ricardo A Barrera-Cámara. A survey of transportation problems. Journal of Applied Mathematics,
2014(1):848129, 2014.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for generalizable neural combinatorial optimization. In Advances in
Neural Information Processing Systems, 2023.

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 3054–3063, 2020.

Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal algorithm for
the traveling salesman problem with time windows. Operations research, 43(2):367–371, 1995.

Vincent Furnon and Laurent Perron. Or-tools routing library, 2024. URL https://developers.
google.com/optimization/routing/.

10

https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Mohamed Hibat-Allah, Estelle M Inack, Roeland Wiersema, Roger G Melko, and Juan Carrasquilla.
Variational neural annealing. Nature Machine Intelligence, 3(11):952–961, 2021.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers for
vehicle routing problems. In The Thirteenth International Conference on Learning Representations,
2025.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural
combinatorial optimization. In Advances in Neural Information Processing Systems, 2022.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, 2020.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. CaDA: Cross-problem routing solver
with constraint-aware dual-attention. arXiv preprint arXiv:2412.00346, 2024.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Processing
Systems, 2023.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
attention model for vehicle routing problems. In Artificial Intelligence Algorithms and Applications:
11th International Symposium, ISICA 2019, Guangzhou, China, November 16–17, 2019, Revised
Selected Papers 11, pp. 636–650. Springer, 2020.

Mark S Pinsker. Information and information stability of random variables and processes. Holden-
Day, 1964.

Jørgen Glomvik Rakke, Marielle Christiansen, Kjetil Fagerholt, and Gilbert Laporte. The traveling
salesman problem with draft limits. Computers & Operations Research, 39(9):2161–2167, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. In Advances in Neural Information Processing
Systems, volume 36, pp. 63907–63930, 2023.

Martin WP Savelsbergh. Local search in routing problems with time windows. Annals of Operations
research, 4:285–305, 1985.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, 2014.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Qiaoyue Tang, Yangzhe Kong, Lemeng Pan, and Choonmeng Lee. Learning to solve soft-constrained
vehicle routing problems with lagrangian relaxation. arXiv preprint arXiv:2207.09860, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
neighborhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
2015.

Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 2024.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Reinforced lin–kernighan–
helsgaun algorithms for the traveling salesman problems. Knowledge-Based Systems, 260:110144,
2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE:
Multi-task vehicle routing solver with mixture-of-experts. In International Conference on Machine
Learning, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

LMask: Learn to Solve Constrained Routing Problems
with Lazy Masking (Appendix)

A COMBINATORIAL OPTIMIZATION FORMULATION OF ROUTING PROBLEMS

A.1 TSPTW AND TSPDL FORMULATION

The traveling salesman problem with time windows (TSPTW) is a well-known combinatorial opti-
mization problem that extends the classic traveling salesman problem (TSP) by introducing additional
time window constraints. The objective of TSPTW is to find the shortest route for a salesman, starting
and ending at a designated depot, and visiting a given set of customers exactly once. Let node 0
represent the depot and Vc := {1, 2, . . . , n} represent the set of customer nodes. Each customer
i ∈ Vc has an associated time window [ei, li] during which it must be served. Early arrivals are
allowed, meaning that the salesman can arrive at node i before the ready time ei. However, in this
case the salesman has to wait until service can begin at node i. This problem can be formulated as:

min f(π;P) =

n∑
i=1

∥∥xπi
− xπi+1

∥∥+ ∥xπn+1
− xπ1

∥

s.t. ci(π;P) = τi+1 − lπi+1
≤ 0, i = 1, . . . , n,

di(π;P) =

n+1∑
t=1

1πt=i − 1 = 0, i = 1, . . . , n,

(4)

where τi+1 represents the time to begin service at node πi+1 in route π. This time is derived
recursively: τi+1 = max

(
τi + wπi,πi+1 , eπi+1

)
, i = 1, . . . , n, with τ1 = 0. Here wπi,πi+1 is the

total duration from πi to πi+1, which includes both the service time at πi and the travel time from πi

to πi+1.

The traveling salesman problem with draft limits (TSPDL) frequently arises in marine transportation
scenarios, where the load-carrying limits of vessels must be respected. In this problem, node 0 serves
as the depot, and Vc := {1, 2, . . . , n} represents the set of port nodes. Each port i ∈ Vc is associated
with a demand qi > 0 and a draft limit Di. The draft limit Di at port i specifies the maximum
cumulative load a vessel can carry after visiting that port. The depot at node 0 is assumed to have
zero demand, meaning q0 = 0. This problem can be formulated as:

min f(π;P) =

n∑
i=1

∥∥xπi − xπi+1

∥∥+ ∥xπn+1 − xπ1∥

s.t. ci(π;P) = δi+1 −Dπi+1 ≤ 0, i = 1, . . . , n,

di(π;P) =

n+1∑
t=1

1πt=i − 1 = 0, i = 1, . . . , n,

(5)

where δi+1 denotes the accumulated load after visiting node πi+1 in route π. The accumulated load
can be calculated as δi+1 =

∑i+1
t=1 qπt

.

A.2 FEASIBILITY DILEMMA IN TSPTW

Bi et al. (2024) point out that the core of feasibility masking in neural constructive solvers is to
filter out invalid actions that violate constraints, based on the assumption that the global feasibility
can be decomposed into the feasibility of each node selection step, and that ground truth masks
are obtainable for each step. We describe this issue more formally using the notation defined in
Section 3.1. For simple constraints in other routing problems, there always exists a feasible action
for each step. For example, at each step in CVRP, it is possible to return to the depot to perform an

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

action that satisfies the capacity constraints. This indicates that the potential set S can be precisely
determined, enabling an efficient masking technique to ensure the feasibility. Since S ̸= ∅ at each
step, a valid action is always available. This characteristic ensures that the solution space remains
connected, avoiding situations where no valid action can be performed due to capacity violations.

However, not all constraints can precisely determine the potential set S, which may even be empty at
certain decision steps. In TSPTW, nodes are masked out if they have been visited or cannot be visited
before their time windows close. The feasibility of selecting a node at a particular step impacts the
current time, thereby affecting all subsequent selections due to the interdependence imposed by time
windows constraints. Therefore, focusing solely on the local feasibility does not guarantee overall
feasibility. Once a node is selected, the decision becomes irreversible, potentially leading to infeasible
situations after several steps. Nevertheless, it is impractical to compute full global feasibility to obtain
the exact potential set S, which is typically considered an NP-hard problem. There is a dilemma
between solution feasibility and computational costs under these complex constraints.

B TRAINING DETAILS

In this section, we elaborate on the formulation of the penalty function Ψρ(π;P) and the policy
gradient algorithm used for training pθ.

B.1 PENALTY FUNCTION FORMULATION

The penalty function Ψρ(π;P) is designed to guide the policy towards feasible solutions by penalizing
constraint violations. It combines the primary objective function f(π;P) with terms representing the
severity of constraint violations.

For TSPTW, given a complete route π = (π1 = 0, π2, . . . , πT), let τt denote the time to begin service
at node πt in the route π and lπt denote the due time of πt, for t = 1, 2, . . . , T . The penalty function
is defined as

Ψρ(π;P) = f(π;P) + ρ

T∑
t=1

max(τt − lπt
, 0).

Here, the term
∑T

t=1 max(τt− lπt , 0) quantifies the total amount by which time windows are violated.

Similarly, for TSPDL, we consider a route π = (π1 = 0, π2, . . . , πT). Let δt represent the accumu-
lated load after visiting node πt and Dπt

denote the draft limit of node πt, for t = 1, 2, . . . , T . The
penalty function for TSPDL is formulated as

Ψρ(π;P) = f(π;P) + ρ

T∑
t=1

max(δt −Dπt , 0).

Here
∑T

t=1 max(δt −Dπt
, 0) represents the total excess load beyond the specified draft limits.

B.2 TRAINING ALGORITHM

The training objective, as introduced in the main text, is formulated as

min Eπ∼pθ(·;P) [Ψρ(π;P) + λ log pθ(π;P)] , (6)

which is expressed in the form of an expectation. Hence we can minimize it by various stochastic
policy gradient methods. It is well known that the policy gradient of (6) is given by

Eπ∼pθ(·;P) [A(π;P)∇θ log pθ(π;P)] ,

where A(π;P) := Ψρ(π;P)− b(P) + λ log pθ(π;P) denotes the advantage function and b(P) is a
constant with respect to the parameter θ, referred to the baseline. We then utilize the Monte Carlo
method to estimate the policy gradient. Specifically, we sample N routes {πj}Nj=1 and then estimate
the expectation with sample average

ĝ(θ;P) =
1

N

N∑
j=1

A(πj ;P)∇θ log pθ(π
j ;P).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In routing problems, empirically, a shared baseline has the desirable effect of reducing variance in the
sample estimate for the policy gradient, as demonstrated in Kwon et al. (2020). This shared baseline
writes b(P) = 1

N

∑N
j=1 Ψρ(π

j ;P).

So far, we have described how to train the policy pθ on a given instance P . The training can be
extended to a dataset of instances, as shown in Algorithm 2.

Algorithm 2 LMask training procedure

Input: data distribution D, neural network pθ, number of training steps K, backtracking budget R.
for k = 1, . . . ,K do

Sample a batch of instances {Pi}Bi=1 from the data distribution D.
Employ the LazyMask algorithm with backtracking budget R to sample N routes {πij}Nj=1
from pθk for each instance Pi, where i = 1, . . . , B.
Compute the stochastic gradient:

ĝ(θk) =
1

BN

B∑
i=1

N∑
j=1

A(πij ;Pi)∇θ log pθ(π
ij ;Pi) |θ=θk .

Update θk using ĝ(θk) with SGD or ADAM optimizer.
end for

C MODEL ARCHITECTURE

LMask adopts an encoder-decoder architecture inherited from POMO (Kwon et al., 2020). The
encoder transforms static features of a problem instance into node embeddings through self-attention
mechanism. Based on node embeddings, dynamic features of the current partial route and the refine-
ment intensity embedding, the decoder then auto-regressively generates the conditional probability
through the cross-attention mechanism.

C.1 MULTI-HEAD ATTENTION

An attention function takes a set of queries and a separate set of keys and values as input, and outputs
a weighted sum of values for each query. Self-attention means that the query set and the key-value
set come from the same sequence, while cross-attention means the query set and the key-value
set comes from two different sequences. These queries, keys and values are packed into matrices
Q ∈ Rn1×d, K ∈ Rn2×d, V ∈ Rn2×d for implementation efficiency, where n1 is the number of
queries, n2 is the number of key-value pairs and d is the hidden dimension. Firstly, attention weights
are computed by scaled dot-product between the queries and keys, followed by a softmax function

A = Softmax

(
QKT

√
d

+M

)
,

where the softmax function should be understood in a row-wise manner with Softmax(x)i :=
exp(xi)∑N

j=1 exp(xj)
for an N dimensional vector x, and M is an optional attention mask that prevents

attending to certain positions, which can be done by setting elements to −∞. Then, the attention
output is calculated as the sum of the values, weighted by the attention weights: Z = AV . The whole
attention function is defined by

Attention(Q,K, V ;M) = Softmax

(
QKT

√
d

+M

)
V.

Multi-head attention further takes information from different representation subspaces into considera-
tion. It starts by linearly projecting the queries, keys, and values onto H subspaces. Subsequently,
the attention function is performed on each subspace in parallel. Lastly, these attention outputs
are concatenated and projected back to the original embedding space. In summary, the multi-head
attention operation can be formulated as

MHA(Q,K, V ;M) = [Z1, Z2, . . . , ZH]WO, (7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where

Zi = Attention(QWQ
i ,KWK

i , V WV
i ;M), i = 1, . . . ,H,

and WO, WQ
i , WK

i , WV
i are learnable projection matrices. The general formulation includes the

mask M to support masked attention scenarios. In cases where no masking is applied (i.e., M is ef-
fectively a zero matrix or conceptually omitted), the operation is often simplified as MHA(Q,K, V).

C.2 ENCODER

The encoder produces embeddings of all input nodes. Static features of the problem instance are first
projected to the embedding space to obtain initial embeddings h(0) ∈ R(n+1)×d. These static features
vary depending on the specific problem considered. For TSPTW, they include node coordinates and
time windows, while for TSPDL, they include node coordinates, demands, and draft limits. Then the
embeddings are updated through a stack of L attention layers, each consisting of two sublayers, one
multi-head attention sublayer and one feed-forward sublayer. Furthermore, residual connections and
instance normalization are employed. A single attention layer can be formulated as

ĥℓ = IN
(
hℓ +MHAℓ(hℓ,hℓ,hℓ)

)
, ℓ = 0, . . . , L− 1,

hℓ+1 = IN
(
ĥℓ + FFNℓ(ĥℓ)

)
, ℓ = 0, . . . , L− 1,

where IN represents the instance normalization, MHA is the multi-head attention, as given by
(7), and the fully-connected feed forward network FFNℓ is applied in a row-wise manner with
FFNℓ(x) = max

(
xW ℓ

1 + bℓ1, 0
)
W ℓ

2 + bℓ2 for a row vector x.

C.3 DECODER

The decoder auto-regressively generates the conditional probability over available nodes based on the
node embeddings and the current partial route. At decision step t, 1 ≤ t ≤ T − 1, a partial route π1:t

is assumed to have been constructed.

Previous works (Kwon et al., 2020; Berto et al., 2024) begin by constructing a query through a
projection of the current node embedding hπt

and dynamic features st into the embedding space:
qt = hπtW

1
c + stW

2
c . This is represented as the sum of the node embedding and the state embedding.

The dynamic features st typically aggregate information accumulated up to the current decision step t.
For instance, in TSPTW, st represents the current time, and in TSPDL, st represents the current load.
However, in the presence of backtracking, relying solely on such features can lead to representation
ambiguities. The model state, defined only by hπt

and st, becomes invariant to the specific search
trace, potentially hindering the model’s ability to learn meaningful distinctions.

To address this limitation, we introduce the refinement intensity embedding (RIE). The RIE enhances
the model’s awareness of the search trace by explicitly encoding information about refinement
intensity. The refinement intensity is captured by a set of dedicated features, denoted by ζt, which are
subsequently projected to form the RIE ζtW

3
c . ζt is conceptualized from two distinct perspectives.

First, the local feature, represented by φt, quantifies ct, the number of refinements applied to the
overestimation set Ŝ(π1:t) corresponding the current partial route π1:t. This count ct is transformed
into a capped one-hot vector φt ∈ {0, 1}N of predefined length N : if ct < N , the (ct+1)-th element
of φt is 1; otherwise, the N -th element is 1, with all other elements being 0. Second, the global
refinement status, captured by ξt, is a binary feature indicating whether ut, the total backtracking
count accumulated during the decoding process, has reached the backtracking budget R. This is
defined as ξt = [1, 0] if ut < R, and ξt = [0, 1] if ut ≥ R. These two types of features are
concatenated to yield the overall refinement intensity features ζt = [φt, ξt] ∈ RN+2. The query qt is
then constructed by incorporating the RIE: qt = hπtW

1
c + stW

2
c + ζtW

3
c .

To ensure that the subsequent attention mechanism and probability calculation only consider valid
next nodes, we define a mask Mt ∈ {0,−∞}n+1. This mask vector is derived from Ŝ(π1:t) such
that Mt(i) = 0 if node i belongs to Ŝ(π1:t), and Mt(i) = −∞ otherwise. Using this mask, a context
embedding, hc

t , is subsequently obtained via a masked multi-head cross-attention layer. This layer

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

employs qt as the query, with static node embeddings hL projected by WK
g and WV

g to serve as keys
and values respectively, and incorporating the mask Mt:

hc
t = MHA(qt,h

LWK
g ,hLWV

g ;Mt).

Next, the logits are computed with a single attention head:

z =
hc
t(h

LWK)T√
d

.

Finally, the logits z are transformed into a conditional probability distribution over available nodes

pθ(· | π1:t;P) = Softmax(C tanh(z +Mt)),

where C > 0 is a clipping constant for the tanh function.

D PROOF OF THEORETICAL RESULTS

D.1 PROOF OF PROPOSITION 4.1

For clarity, we restate Proposition 4.1 here before providing the proof.

Proposition 4.1. Suppose that problem (1) is feasible, and that the backtracking budget in Algorithm 1
is set to R = +∞. Then, i) any solution π generated by Algorithm 1 is feasible; ii) Algorithm 1
assigns a non-zero probability to generate any feasible solution π.

Proof. i) Let the route π be generated by Algorithm 1. Since Ŝ(π1:T−1) only needs to validate the
feasibility of the last node πT , the estimation Ŝ(π1:T−1) is exact, that is, S(π1:T−1) = Ŝ(π1:T−1). It
follows that πT ∈ S(π1:T−1). By the definition of S(π1:T−1), this implies that π is a feasible route.

ii) Let π be a feasible route. For t = 1, . . . , T − 1, the definition of S(π1:t) yields πt+1 ∈ S(π1:t).
Since S(π1:t) ⊆ Ŝ(π1:t), it follows that πt+1 ∈ Ŝ(π1:t) ̸= ∅ for t = 1, . . . , T − 1. Therefore, the
Algorithm 1 assigns a probability pθ(πt+1|π1:t;P) > 0 to generate πt+1. The total probability of
generating the complete route π is strictly positive, i.e., pθ(π) =

∏T−1
t=1 pθ(πt+1|π1:t;P) > 0. Thus,

route π can be generated by Algorithm 1.

This completes the proof.

D.2 PROOF OF THEOREM 4.3

For clarity, we restate Theorem 4.3 here before providing the proof.

Theorem 4.3. Suppose that Assumption 4.2 holds. We define ∆(P) := minπ∈C\Π∗ f(π;P)−f∗(P).
Then, for any ϵ > 0 and ∆(P) ≥ λ > 0, the following inequality holds:

Ppθ∗(λ)
(f(π;P) ≥ f∗(P) + ϵ) ≤ |C|∆(P)e−∆(P)/λ

|Π∗|max{ϵ,∆(P)} +

√
c

2λ
.

Proof. For convenience, we omit all notations P in this proof. Let π denote a random variable drawn
from the distribution pθ∗(λ), and define the event A := {f(π) ≥ f∗ + ϵ}. We aim to bound the
probability of the event A. To this end, let us first bound the difference in probabilities of the A under
the distribution pθ∗(λ) and qλ using the KL divergence. Then, we apply Markov’s inequality to derive
a tail bound on the event probability under qλ. Finally, using properties of the Gibbs distribution, we
derive a convergence bound that characterizes how this probability behaves as λ decreases.

1) We begin by introducing Pinsker’s inequality (Pinsker, 1964), which bounds the total variation
(TV) distance in terms of the KL divergence. Given two distributions P and Q over a finite domain
D, the TV distance is defined as

TV(P,Q) := max
E⊆D

|P (E)−Q(E)|.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where E ⊆ D represents any measurable event of the domain D. Pinsker’s inequality states that the
TV distance and KL divergence satisfy the following inequality:

TV(P,Q) ≤
√

1

2
KL(P ∥ Q).

Using Pinsker’s inequality, we can bound the probability difference for the given event A under two
given distributions pθ∗(λ) and qλ:

|pθ∗(λ)(A)− qλ(A)| ≤ TV(pθ∗(λ), qλ) ≤
√

1

2
KL(pθ∗(λ)||qλ) ≤

√
δ(λ)

2
≤

√
c

2λ
, (8)

where the first inequality follows from the definition of the TV distance, the second uses Pinsker’s
inequality and the last is based on the Assumption 4.2. This result provides a way to control the
discrepancy in the probability of event A under the two distributions pθ∗(λ) and qλ, in terms of the
approximation error δ(λ).

2) Then, we analyze the tail probability of qλ using Markov’s inequality. If X is a nonnegative
random variable and ϵ > 0, then the probability that X is at least a is at most the expectation of X
divided by ϵ:

P(X ≥ a) ≤ EX
ϵ

.

Using Markov’s inequality, we can give the following tail bound:

Pqλ(f(π) ≥ f∗ + ϵ) ≤ Eqλ [f(π)− f∗]

ϵ
. (9)

As f is defined over a discrete domain, it has finitely many function values and suboptimality gap
∆ > 0. It can be observed that qλ(f(π) ≥ f∗ + ϵ) = qλ(f(π) ≥ f∗ +∆) when 0 < ϵ ≤ ∆. We
can conclude the following inequality from (9):

Pqλ(f(π) ≥ f∗ + ϵ) ≤ Eqλ [f(π)− f∗]

max{ϵ,∆} . (10)

3) Since qλ converges to the target distribution q∗ as λ → 0, we analyze the asymptotic behavior of
the expected suboptimality gap Eqλ [f(π)− f∗] as λ decreases. Specifically, we write the expectation:

Eqλ [f(π)− f∗] =
∑
π∈C

qλ(π)[f(π)− f∗] =

∑
π∈C e−f(π)/λ[f(π)− f∗]∑

π∈C e−f(π)/λ
. (11)

The summations over C in the numerator and the denominator can be split into two parts. Observing
that f(π)− f∗ = 0 for all π ∈ Π∗, we factor out e−f∗/λ from both the numerator and denominator
in (11) and obtain that

Eqλ [f(π)− f∗] =

∑
π∈Π∗ e−(f(π)−f∗)/λ[f(π)− f∗] +

∑
π∈C\Π∗ e−(f(π)−f∗)/λ[f(π)− f∗]∑

π∈Π∗ e−(f(π)−f∗)/λ +
∑

π∈C\Π∗ e−(f(π)−f∗)/λ

=

∑
π∈C\Π∗ e−(f(π)−f∗)/λ[f(π)− f∗]

|Π∗|+∑
π∈C\Π∗ e−(f(π)−f∗)/λ

.

(12)
Reviewing that ∆ := minπ∈C\Π∗ f(π)−f∗ represents the smallest gap between the objective values
of suboptimal solutions and the optimal value, we have f(π) − f∗ ≥ ∆ > 0 for all π ∈ C\Π∗.
Given that the derivative of xe−λx is (1 − x/λ)e−x/λ, it follows that xe−x/λ is non-increasing
for x ≥ λ. Consequently, when ∆ ≥ λ > 0, the condition f(π) − f∗ ≥ ∆ ≥ λ implies that
e−(f(π)−f∗)/λ[f(π)− f∗] ≤ ∆e−∆/λ for all π ∈ C\Π∗. The numerator in (12) is bounded as∑

π∈C\Π∗

e−(f(π)−f∗)/λ[f(π)− f∗] ≤ |C\Π∗|∆e−∆/λ ≤ |C|∆e−∆/λ, for ∆ ≥ λ > 0. (13)

Meanwhile, the denominator in (12) has the lower bound |Π∗|+∑
π∈C\Π∗ e−(f(π)−f∗)/λ ≥ |Π∗|.

It follows from (12) that

Eqλ [f(π)− f∗] ≤ |C|∆e−∆/λ

|Π∗| , for ∆ ≥ λ > 0. (14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

4) Finally, combining these inequalities (8), (10) and (14), we derive that

Ppθ∗(λ)
(f(π) ≥ f∗ + ϵ) ≤ |C|∆e−∆/λ

|Π∗|max{ϵ,∆} +

√
c

2λ
, for ∆ ≥ λ > 0. (15)

This completes the proof.

E EXPERIMENTS

E.1 DATA GENERATION

E.1.1 TSPTW

The difficulty of a TSPTW instance largely depends on the availability of feasible solutions. Instances
are more challenging when they allow very few feasible tours, making it harder for algorithms to find
valid solutions, while overly feasible instances may lead the policy to overemphasize optimization
and neglect feasibility. A key determinant of difficulty is the width of the time windows assigned
to customer nodes. Narrower time windows reduce the overlap between customer service intervals,
significantly limiting the number of feasible tours and increasing problem complexity.

To address these challenges, we adopt a data generation mechanism capable of producing TSPTW in-
stances with easy, medium, and hard levels of difficulty. These levels are determined by systematically
controlling the time window width and other instance-specific parameters, as detailed below:

Easy and medium TSPTW instances. An expected distance Tn is predefined, which varies
depending on the number of nodes, n. The ready times ei are sampled from a uniform distribution
U [0, Tn]. Time window widths hi are sampled from a scaled uniform distribution U [α, β] · Tn, where
0 < α < β < 1 are hyperparameters. The due times li are then calculated as li = ei + hi. By
adjusting the hyperparameters α, β, and Tn, TSPTW instances with varying levels of time window
tightness can be generated. Specifically, to generate easy TSPTW instances, we set α = 0.5 and
β = 0.75. For medium TSPTW instances, we use α = 0.1 and β = 0.2. In all cases, customer nodes
are sampled uniformly within the region [0, 100]2, and Tn is set to 55(n+ 1).

Hard TSPTW instances. Consistent with prior works (Kool et al., 2022; Bi et al., 2024), we adopt a
generation mechanism inspired by benchmark datasets (Dumas et al., 1995; Da Silva & Urrutia, 2010)
for hard TSPTW instances. This approach ensures the existence of at least one feasible tour. The core
data generation procedure begins by sampling customer locations and constructing a random tour.
Time windows are then defined centered around the arrival times within this random tour. Specifically,
customer coordinates are uniformly sampled from [0, 50]2, followed by the generation of a random
permutation π over customers (including the depot) to define a directed route. For each customer
node πt in this sequence, the cumulative travel distance dπt

from the depot to πt along the random
tour is calculated. Time windows are then constructed around dπt

with a pre-specified maximum
width w. In benchmark datasets (Dumas et al., 1995; Da Silva & Urrutia, 2010), the maximum time
window width w typically ranges from 20 to 100. In this study, we select w = 100 . The ready
time eπt

is sampled from dπt
− U [0, w/2] and clamped to ensure non-negativity. The due time lπt

is
similarly sampled from dπt + U [0, w/2].
For the depot, the ready time is conventionally set to zero, while the due time is left unconstrained
since it does not affect the feasibility of the TSPTW solution, provided the depot remains reachable
from all customer nodes.

Normalization. To standardize the input and ensure consistency across instances, node coordinates
are scaled to the range [0, 1] by dividing them by the maximum sample range. Time windows are
proportionally scaled following this transformation to maintain consistency with the adjusted spatial
coordinates.

E.1.2 TSPDL

Node coordinates are uniformly sampled from [0, 1]2. Following (Rakke et al., 2012), we assign a
demand of q0 = 0 to the depot and a demand of qi = 1 to each port node. Given a percentage σ%, we
randomly select ⌊(n+ 1)× σ%⌋ nodes with restricting draft limits strictly less than the total demand∑n

i=0 qi. Specifically, the draft limits of these selected nodes are randomly generated between 1 and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

n− 1. The remaining nodes are assigned a draft limit equal to the total demand
∑n

i=0 qi, so that their
draft limits impose no effective constraints.

To check whether the generated instance admits a feasible solution, we employ the following
proposition from (Rakke et al., 2012) as a sufficient and necessary condition. If the condition is not
satisfied, the instance is rejected and regenerated until a feasible one is obtained.
Proposition E.1. (Rakke et al., 2012) Let π = (π1 = 0, π2, π3, . . . , πn+1) be a solution ordering
the port nodes {1, . . . , n} in ascending order of draft limits: Dπ2

≤ Dπ3
≤ . . . Dπn+1

. Then the
TSPDL instance admits a feasible solution if and only if π is feasible.

A larger percentage σ% results in more nodes with restricting draft limits, thereby increasing the
difficulty of balancing feasibility and optimality. Following (Bi et al., 2024), we set σ% to 75% for
medium TSPDL datasets and 90% for hard ones.

E.2 IMPLEMENTATION DETAILS

Hardware. All experiments are conducted on a server with NVIDIA Tesla A800 GPUs (80GB) and
Intel Xeon Gold 6326 CPUs (256GB) at 2.90GHz.

Baseline details. For search-based solvers, including PyVRP, LKH3, VSR-LKH and OR-Tools, we
run them with 32 CPU cores in parallel as done in (Kool et al., 2018; Zhou et al., 2024). For PIP,
PIP-D and LMask, we run them on a single GPU with batch size of 2500 at inference time. Below
we provide implementation details for each baseline.

• PyVRP, a state-of-the-art VRP solver built on top of HGS. We use the default hyperparame-
ters and set a time limit of 20 seconds per instance for n = 50, and 50 seconds for n = 100.
Note that PyVRP does not support draft limits and is therefore inapplicable to TSPDL.

• LKH3, a strong solver that implements the Lin-Kernighan heuristic for a wide range of
routing problems. For each instance, we run LKH with 10000 trials and 1 run.

• OR-Tools, a more versatile solver than PyVRP and LKH3. For TSPTW, we use the local
cheapest insertion as the first solution strategy and the guided local search as the local search
strategy. As in PyVRP, we set the time limit to 20 seconds for n = 50, and 50 seconds for
n = 100. Despite exhaustive testing across all initial solution strategies, OR-Tools fails to
find any feasible solution for TSPDL within the time limit, consistent with findings in (Bi
et al., 2024).

• PIP and PIP-D, state-of-the-art neural solvers for TSPTW and TSPDL. To maintain consis-
tency with our proposed method and facilitate a fair comparison, we specifically utilize their
implementations based on POMO. We evaluate PIP and PIP-D using the pretrained models
and default hyperparameters as provided in their official source code repositories.

• VSR-LKH, a method combining reinforcement learning with LKH3 to solve TSP variants.
We compile the official source code using its default settings, including the α-measure for
candidate selection.

• Random heuristics, two simple random heuristics with backtracking implemented to demon-
strate the importance of the policy parameterized by a neural network. Random-L constructs
a probability distribution by normalizing the inverse distances from the current node to
candidate nodes. Random-C constructs a probability distribution by normalizing the inverse
of due times in TSPTW or draft limits in TSPDL. The sample size is set to 64 and the batch
size is accordingly set to 1024 for n = 50 and 512 for n = 100 due to memory limit.

Overestimation initialization details. As mentioned in the main text, we initialize the overestimation
sets using problem-dependent lookahead strategies, namely single-step lookahead (SSL) and two-step
lookahead (TSL). For TSPTW, according to the triangle inequality property of travel times, if an
unvisited node violates the time window constraint at the current step, it will remain infeasible in
subsequent steps without backtracking. Hence, SSL checks whether any unvisited node exhibits a
time window violation. If such a node exists, Ŝ(π1:t) is initialized as empty, triggering backtracking;
otherwise, it contains all unvisited nodes. TSL enhances this by tentatively extending the route
with each candidate node and checking for time window violations among the remaining nodes.
Nodes whose selection would make some remaining nodes infeasible are excluded, resulting in more

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

accurate initialization and a notable decrease in backtracking steps. The TSPDL exhibits a similar
monotonic property. Since the cumulative load increases along a route, any node violating its draft
limit at a given step will also be infeasible thereafter. Consequently, SSL and TSL for TSPDL are
implemented analogously by checking for immediate and future draft limit violations, respectively.

Hyperparameter details. To ensure a fair comparison, we set the backtracking budget R of LMask
such that its runtime is comparable to that of neural baselines. The specific backtracking budgets
used for experiments in Tables 1 and 2 are summarized in Table 5 . Our implementation is built upon
the RL4CO library (Berto et al., 2023). Details of model and training hyperparameters of our main
experiments are reported in Table 6. Note that the total number of gradient updates is comparable to
that of neural baselines.

Table 5: Backtracking budget settings across different datasets.

Hardness
TSPTW TSPDL

n = 50 n = 100 n = 50 n = 100

Easy 100 150 — —
Medium 100 200 150 150
Hard 200 300 150 150

Table 6: Experiment hyperparameters. Values with “/” indicate different choices depending on the
problem size, i.e., on the left are values for n = 50 and on the right are values for n = 100.

Hyperparameter Value
Model
Embedding dimension 128
Number of attention heads 8
Number of encoder layers 6
Normalization Instance
Feedforward hidden dimension 512
Feedforward structure MLP
Feedforward activation ReLU
Tanh clipping 10.0
Refinement intensity feature dimension 7

Training
Train decode type Multi-sampling with free starts
Number of samples per instance 50 / 100
Batch size 512 / 64
Training instances per epoch 256,000 / 100,000
Penalty parameter ρ 1

Optimization
Optimizer AdamW
Learning rate 3e-4 / 1e-4
Weight decay 1e-6
LR scheduler MultiStepLR
LR milestones [900, 950]
LR gamma 0.1
Gradient clip value 1.0
Max epochs 1000

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.3 HYPERPARAMETER STUDY

Effect of the backtracking budget. Here we investigate how the backtracking budget R influences
the performance of LMask under both SSL and TSL initialization strategies on the hard TSPTW-100
dataset. As shown in Figure 4, for both strategies, inference time exhibits a nearly linear growth
with respect to R, with an increase of approximately 2 seconds per 100 additional backtracking
budget, demonstrating manageable computational overhead. In contrast, infeasibility rates decrease
sharply at small values of R, indicating substantial early-stage gains in feasibility. Notably, using
SSL, the instance infeasibility rate approaches zero within approximately 50 seconds, corresponding
to R = 1500. Under the more accurate TSL strategy, feasibility improves even more rapidly: instance
infeasibility effectively vanishes at R = 100, requiring only 17 seconds of inference time. These
results highlight that larger backtracking budgets substantially improve solution feasibility with
modest increases in runtime, and further demonstrate that a more accurate initialization strategy
enhances backtracking efficiency.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
15

00
20

00

Backtracking Budget

0

5

10

15

20

Pe
rc

en
ta

ge
(%

)

Sol. Infeas. (%)
Ins. Infeas. (%)
Time (s)

20

30

40

50

60

Ti
m

e
(s

)

(a) SSL initialization strategy

0 10 20 30 40 50 60 70 80 90 10
0

Backtracking Budget

0

5

10

15

Pe
rc

en
ta

ge
(%

)

Sol. Infeas. (%)
Ins. Infeas. (%)
Time (s)

15.5

16.5

17.5

18.5

Ti
m

e
(s

)

(b) TSL initialization strategy

Figure 4: Effect of backtracking budget under different overestimation initialization strategies

Effect of the penalty parameter. We analyze the sensitivity of LMask’s performance to the ℓ1
penalty parameter ρ. The results on the hard TSPDL-50 dataset are presented in Table 7. In our
experiments, we tested several fixed values for ρ and a scheduled approach, denoted as ρ†. For
the scheduled approach, the penalty parameter is increased exponentially over the training epochs
t according to the schedule ρt = min(γt · ρ0, ρmax), with the hyperparameters set to γ = 1.01,
ρ0 = 0.5, and ρmax = 2. Our results show that a small, fixed penalty (ρ = 0.5) leads to training
instability, resulting in high infeasibility and a large optimality gap. Conversely, large fixed penalty
values (e.g., ρ = 1.5, ρ = 2) reduce infeasibility but at the cost of an increased optimality gap. The
scheduled approach (ρ†) provides better training stability and strikes an effective balance, achieving
low infeasibility rates and a small optimality gap that slightly outperform our default setting of ρ = 1.

Table 7: Results on the hard TSPDL-50 dataset with different λ during training.

ρ Sol. Infeas. Ins. Infeas. Obj. Gap

0.5 7.10% 2.45% 13.71 3.97%

1 0.19% 0.04% 13.57 2.52%

1.5 0.07% 0.03% 13.58 2.64%

2 0.02% 0.01% 13.60 2.78%

ρ† 0.18% 0.00% 13.56 2.48%

E.4 DISCUSSION ON BACKTRACKING AND OVERESTIMATION SET INITIALIZATION

To thoroughly analyze the individual roles of backtracking and the overestimation set initialization
strategy, as well as their interaction, we presented results on medium TSPTW-50 for all 16 combina-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

tions of their usage at training and inference in Figure 5. Note that RIE is disabled in this experiment
to ensure a fair comparison.

We observe that, under TSL, enabling backtracking during training consistently reduces the op-
timality gap across inference settings. While training with backtracking can affect the model’s
inherent constraint awareness, this is effectively compensated by using backtracking during inference.
As shown in Figure 5, when applying backtracking with the TSL strategy at inference, enabling
backtracking during training leads to a notable reduction in the optimality gap (from 2.69% to 2.31%)
with only a negligible increase in the solution infeasibility rate (from 0.05% to 0.14%). Moreover,
this slight trade-off is mitigated by our proposed refinement intensity embedding, which further
reduces the solution infeasibility rate to 0.05% and the optimality gap to 1.68%. We further observe
that enabling backtracking at inference consistently yields substantial reductions in infeasibility and
modest improvements in solution quality, regardless of the training configuration. Remarkably, using
backtracking with less accurate SSL outperforms using TSL without backtracking, highlighting the
critical role of inference-time backtracking.

NoBT+SSL NoBT+TSL BT+SSL BT+TSL
Training Setting

NoBT+SSL

NoBT+TSL

BT+SSL

BT+TSL

In
fe

re
nc

e
Se

tti
ng

3.88% 4.69% N/A 4.10%

5.42% 2.72% 24.70% 2.38%

3.86% 4.03% 3.58% 3.49%

5.39% 2.69% 24.43% 2.31% 3

4

5

6

7

8

G
ap

(%
)

(a) Gap

NoBT+SSL NoBT+TSL BT+SSL BT+TSL
Training Setting

NoBT+SSL

NoBT+TSL

BT+SSL

BT+TSL

In
fe

re
nc

e
Se

tti
ng

12.62% 57.92% 100.00% 86.92%

2.84% 4.01% 15.07% 12.57%

0.55% 0.55% 0.37% 1.86%

0.08% 0.05% 0.65% 0.14% 2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

So
l.

In
fe

as
.(

%
)

(b) Solution infeasibility rate

Figure 5: Effect of backtracking and overestimation set initialization strategy combinations. BT/NoBT
denotes with/without backtracking and SSL/TSL denotes single/two-step lookahead.

E.5 ANALYSIS OF THE EFFICIENCY AND FAILURE MODES OF LMASK

In this subsection, we provide an in-depth analysis of the circumstances under which LMask is
efficient and those in which it is not. Recall that precisely obtaining the potential set S is sometimes
computationally intractable. Fortunately, our goal is solely to construct feasible solutions, and we use
a pretrained policy to guide the node selection. Since this policy is trained with an ℓ1 penalty and its
distribution is expected to approximate the feasible region well, we do not require the exact potential
set S. Our approach is to establish an overestimation set Ŝ and refine it via backtracking when
necessary. With the greedy decoding strategy, a feasible solution can be constructed as long as the
node with the highest probability in the distribution pθ(· | π1:t) induced by Ŝ(π1:t), falls within the
true potential set S(π1:t). If at some step t, the policy incorrectly selects a node i ∈ Ŝ(π1:t) \S(π1:t),
at a subsequent construction step, the algorithm will discover that the overestimation set for the
corresponding extended route is empty, halting further progress. At this point, our backtracking
mechanism is triggered. Through this repeated process of extension and backtracking, the algorithm
eventually corrects the incorrect selection at step t and removes node i from Ŝ(π1:t).

Based on this analysis, two key factors influence the efficiency of the LMask algorithm can be
identified. The first is the correspondence between the high-probability nodes in the distribution
pθ(· | π1:t) induced by Ŝ(π1:t) and the true potential set S(π1:t) at each decoding step t. The second
is the cost of correcting an incorrect selection i ∈ Ŝ(π1:t) \ S(π1:t) at decoding step t. This cost is
related to both the magnitude of t and the initial overestimation set Ŝ([π1:t, i]) corresponding to the
extended route [π1:t, i]. The former determines the backtracking depth, while the latter determines
the number of exploration attempts.

To illustrate these factors, we visualize the LazyMask decoding process on two representative small-
scale TSPDL instances (n = 19). In the first example (Figure 6), LMask efficiently constructs a

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

feasible solution with a relatively small backtracking budget. Although the gap between the true
potential sets and the overestimation sets is large in the early decoding steps, it has no impact because
the policy accurately identifies nodes within the potential set. In a later decoding step (t = 14), the
policy incorrectly selects a node outside the true potential set. However, because this error occurs
late, the backtracking depth is not large, and the number of nodes in the potential set of the extended
route is small. Therefore, a backtracking budget of only R = 100 is sufficient to correct this error
and ultimately construct a feasible solution. In the second example (Figure 7), LMask requires a huge
backtracking budget to successfully construct a feasible solution. Here, the initial overestimation
set at each step is very close to the true potential set, differing by only one node. However, the
policy selects this single incorrect node at an early step (t = 9), and the overestimation set for the
corresponding extended route is large. Consequently, a significant backtracking budget is spent
attempting to correct this early error (even R = 10k was insufficient). By increasing the budget to
R = 11k, LMask is able to correct this selection and finally constructs a feasible solution.

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

Potential Sets and the Overestimation

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

Decoding Probability Distribution

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 0

R = 100

i /∈ Ŝ(π1:t) i ∈ Ŝ(π1:t)\S(π1:t) i ∈ S(π1:t) Selected action

Figure 6: Visualization of the LazyMask decoding process on a TSPDL instance where a feasible
solution is efficiently found with a small backtracking budget. The rows depict two decoding trials
with varying backtracking budgets: R = 0 (Top) and R = 100 (Bottom). The trial with R = 0 fails
to find a feasible solution, whereas the trial with R = 100 successfully identifies a complete, feasible
route. Left: The left column visualizes the relationship between the true potential set S(π1:t) and its
overestimation Ŝ(π1:t). At each decoding step t (x-axis), each node i (y-axis) is color-coded based
on its set membership. Dark blue indicates i /∈ Ŝ(π1:t), teal green indicates i ∈ Ŝ(π1:t) \ S(π1:t),
and bright yellow indicates i ∈ S(π1:t). The node selected by the policy at each step is indicated
by a red bounding box. The visualization for any failed trial is truncated at the decoding step where
S(π1:t) becomes empty and the backtracking budget is depleted. Right: The right column displays
the corresponding decoding probability distribution pθ(· | π1:t) generated by the LMask at each step.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

Potential Sets and the Overestimation

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

Decoding Probability Distribution

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

1 6 11 16

Decoding Step (t)

0

5

10

15

N
od

e
In

de
x

(i
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 0

R = 10k

R = 11k

i /∈ Ŝ(π1:t) i ∈ Ŝ(π1:t)\S(π1:t) i ∈ S(π1:t) Selected action

Figure 7: Visualization of the LazyMask decoding process on a challenging TSPDL instance requiring
extensive backtracking. The rows depict three decoding trials with varying backtracking budgets:
R = 0 (Top), R = 10k (Middle), and R = 11k (Bottom). The first two trials (R = 0, R = 10k)
fail to find a feasible solution, whereas the R = 11k trial successfully identifies a complete, feasible
route. Left: The left column visualizes the relationship between the true potential set S(π1:t) and its
overestimation Ŝ(π1:t). At each decoding step t (x-axis), each node i (y-axis) is color-coded based
on its set membership. Dark blue indicates i /∈ Ŝ(π1:t), teal green indicates i ∈ Ŝ(π1:t) \ S(π1:t),
and bright yellow indicates i ∈ S(π1:t). The node selected by the policy at each step is indicated
by a red bounding box. The visualization for any failed trial is truncated at the decoding step where
S(π1:t) becomes empty and the backtracking budget is depleted. Right: The right column displays
the corresponding decoding probability distribution pθ(· | π1:t) generated by the LMask at each step.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.6 GENERALIZATION AND SCALABILITY

E.6.1 GENERALIZATION ACROSS TIME WINDOW WIDTHS

We assess the generalization ability of LMask on hard TSPTW-50 datasets, by evaluating performance
on test instances with varying maximum time window widths w = 20, 60, 200, while keeping the
training distribution fixed at w = 100. As shown in Table 8, both neural baselines, PIP and PIP-
D, exhibit large performance fluctuations as w deviates from 100. In particular, although their
performance improves at w = 20, their infeasibility rates and optimality gaps increase significantly
at w = 60 and w = 200, compared to their performance on w = 100 reported in Table 1 of the main
paper. This indicates limited generalization when the maximum time width changes. In contrast,
LMask remains consistently robust across different values of w, showing zero infeasibility rates in all
cases, even outperforming the strong traditional solver PyVRP in feasibility. While its optimality gap
increases at w = 200, it remains lower than those of PIP and PIP-D. These results demonstrate the
strong generalization ability of LMask to variations in the maximum time window width.

E.6.2 SCALABILITY TO LARGE-SCALE PROBLEM INSTANCES

To assess the scalability of LMask, we conduct experiments on the hard TSPTW-500 dataset, which
contains 128 hard TSPTW instances with n = 500. We do not include PIP and PIP-D in this
evaluation as their official source code repository does not offer pretrained models specifically for
the hard TSPTW-500 dataset. Due to the substantial computational cost per instance at this scale,
traditional solvers such as PyVRP, LKH3, and OR-Tools are no longer able to process multiple
instances in parallel using multi-core CPUs as done in the main experiments. Instead, each instance
is solved sequentially using all available 32 CPU cores. Therefore, we report the average runtime
per instance for a fair comparison. As for the size-specific hyperparameters, we set the time limit
of PyVRP and OR-Tools for solving each instance to 4 minutes. LKH3 is run with a maximum of
10000 trials and 10 runs. LMask’s inference is performed with a backtracking budget of R = 600.

As shown in Table 9, OR-Tools and both greedy heuristics fail to produce any feasible solutions at
this scale, with instance infeasibility rates reaching 100%. In contrast, traditional solvers such as
PyVRP and LKH still manage to find feasible solutions for the majority of instances, achieving low
infeasibility rates of 3.12% and 2.33%, respectively. Notably, LMask achieves zero infeasibility rates
and maintains a low optimality gap of 0.53%, demonstrating superior scalability.

Table 8: Results on datasets with varying maximum time window widths w. All models are trained
on hard TSPTW instances with n = 50 and w = 100.

Width w = 20 w = 60 w = 200

Method
Infeasible

Gap
Infeasible

Gap
Infeasible

GapSol. Ins. Sol. Ins. Sol. Ins.

PyVRP - 12.6% * - 2.71% * - 0.03% *
PIP 3.75% 2.54% 0.08% 6.54% 3.64% 0.04% 10.49% 5.69% 3.57%

PIP-D 3.08% 1.82% 0.08% 8.72% 4.67% 0.08% 18.15% 10.35% 6.58%
LMask 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 2.99%

E.7 PERFORMANCE OF LMASK USING DIFFERENT BACKBONE MODELS

LMask is model-agnostic and can be combined with any auto-regressive backbone model. The
default backbone model used in main experiments is POMO (Kwon et al., 2020). Here we replace it
with the recent ReLD model (Huang et al., 2025), which enhances the POMO decoder by adding
residual connections and a two-layer feed-forward network. The performance comparison of different
backbone models on various datasets is presented in Table 10. The results show that a stronger
backbone model further boosts the performance of LMask.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 9: Results on hard TSPTW-500

Method Sol. Infeas. Ins. Infeas. Obj. Gap Avg. Time

PyVRP - 3.12% 256.59 * 4m
LKH - 2.33% 256.65 0.00% 13m
OR-Tools - 100.00% - - 17s
Greedy-L 100.00% 100.00% - - 1s
Greedy-C 100.00% 100.00% - - 1s
LMask 0.00% 0.00% 257.92 0.53% 16s

Table 10: Performance comparison of LMask using different backbone models.

Nodes n = 50 n = 100

Dataset Hardness Model
Infeasible

Obj. Gap Time
Infeasible

Obj. Gap TimeSol. Inst. Sol. Inst.

TSPTW

Easy POMO 0.06% 0.00% 7.45 2.02% 7s 0.01% 0.00% 10.50 3.11% 17s
ReLD 0.01% 0.00% 7.43 1.66% 7s 0.02% 0.00% 10.48 2.85% 21s

Medium POMO 0.04% 0.00% 13.25 1.68% 6s 0.05% 0.00% 19.51 4.23% 18s
ReLD 0.03% 0.00% 13.23 1.58% 7s 0.03% 0.00% 19.31 3.13% 22s

Hard POMO 0.00% 0.00% 25.71 0.10% 6s 0.00% 0.00% 51.38 0.21% 18s
ReLD 0.00% 0.00% 25.70 0.06% 7s 0.00% 0.00% 51.36 0.16% 22s

TSPDL
Medium POMO 0.03% 0.01% 11.14 2.75% 6s 0.20% 0.05% 17.04 4.24% 15s

ReLD 0.03% 0.00% 11.06 2.00% 7s 0.18% 0.03% 16.91 3.42% 15s

Hard POMO 0.19% 0.04% 13.57 2.52% 6s 0.80% 0.26% 21.63 4.34% 15s
ReLD 0.13% 0.02% 13.47 1.80% 7s 0.52% 0.11% 21.53 3.84% 16s

E.8 SAMPLING PERFORMANCE

We evaluate the performance of neural methods under sampling decoding. Each method samples S
solutions per augmentation, where S is varied as 3, 10, and 30. The 8× dihedral augmentation is
retained, resulting in 8× S solutions per instance. Due to memory limitations, the batch sizes are
adjusted accordingly. For an intuitive comparison, we also include the results under greedy decoding
as reported in the main paper. The results are summarized in Tables 11 and 12.

Compared to greedy decoding, all methods exhibit lower instance infeasibility rates and optimality
gaps under sampling decoding. Meanwhile, the solution infeasibility rates increase under sampling
decoding, as the larger number of sampled solutions naturally leads to a higher proportion of infeasible
ones. Remarkably, even though PIP and PIP-D generate ten times as many solutions as the greedy
version of LMask, they still yield higher instance infeasibility rates. In addition, their optimality
gaps are generally higher than those of greedy LMask on most datasets, highlighting LMask’s strong
ability to consistently generate high-quality feasible solutions even with a smaller number of samples.

E.9 STABILITY ANALYSIS

We investigate the stability of LMask under sampling decoding at inference. In Figure 8, we present
box plots of the optimality gaps and solution infeasibility rates across 10 different random seeds on
medium TSPTW-50 and TSPDL-50 datasets. Across both datasets and all tested random seeds, both
metrics remain highly stable, with total variations staying below 0.02%. These results demonstrate
that LMask yields highly consistent performance when using sampling decoding at inference, despite
the inherent randomness in solution generation.

E.10 PERFORMANCE ON THE TSPTW BENCHMARK

We evaluate our LMask framework on the TSPTW benchmark (Dumas et al., 1995) to validate
our innovation. Although comprehensive tests are conducted on all TSPTW benchmark instances,
we decide to directly reference the original test results from Appendix D.7 in the article (Bi et al.,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 11: Sampling results on synthetic TSPTW datasets.

Nodes n = 50 n = 100

Method
Infeasible

Obj. Gap Time
Infeasible

Obj. Gap TimeSol. Inst. Sol. Inst.

E
as

y

PIP 0.28% 0.01% 7.51 2.73% 9s 0.16% 0.00% 10.57 3.78% 29s
PIP (S = 3) 0.29% 0.01% 7.49 2.45% 19s 0.17% 0.00% 10.55 3.56% 1.3m
PIP (S = 10) 0.29% 0.01% 7.47 2.20% 57s 0.17% 0.00% 10.52 3.24% 4.6m
PIP (S = 30) 0.29% 0.01% 7.45 2.03% 3.0m 0.18% 0.00% 10.50 3.04% 12.8m

PIP-D 0.28% 0.00% 7.50 2.60% 10s 0.05% 0.00% 10.66 4.62% 31s
PIP-D (S = 3) 0.31% 0.00% 7.48 2.33% 20s 0.07% 0.00% 10.64 4.40% 1.5m
PIP-D (S = 10) 0.29% 0.00% 7.46 2.06% 1.1m 0.06% 0.00% 10.60 4.05% 5.0m
PIP-D (S = 30) 0.30% 0.00% 7.44 1.89% 3.3m 0.06% 0.00% 10.58 3.82% 14.0m

LMask 0.06% 0.00% 7.45 2.02% 7s 0.01% 0.00% 10.50 3.11% 17s
LMask (S = 3) 0.06% 0.00% 7.44 1.85% 11s 0.02% 0.00% 10.53 3.31% 35s
LMask (S = 10) 0.07% 0.00% 7.42 1.51% 17s 0.02% 0.00% 10.48 2.89% 1.2m
LMask (S = 30) 0.06% 0.00% 7.40 1.30% 33s 0.02% 0.00% 10.45 2.61% 3.1m

M
ed

iu
m

PIP 4.82% 1.07% 13.41 2.93% 10s 4.35% 0.39% 19.61 4.79% 29s
PIP (S = 3) 4.98% 0.68% 13.36 2.55% 19s 4.55% 0.19% 19.54 4.37% 1.3m
PIP (S = 10) 4.96% 0.46% 13.32 2.26% 58s 4.52% 0.10% 19.45 3.93% 4.5m
PIP (S = 30) 4.98% 0.25% 13.30 2.06% 2.9m 4.50% 0.06% 19.39 3.60% 12.7m

PIP-D 4.14% 0.90% 13.46 3.31% 9s 3.46% 0.03% 19.80 5.76% 31s
PIP-D (S = 3) 4.30% 0.54% 13.41 2.95% 20s 3.87% 0.00% 19.73 5.41% 1.5m
PIP-D (S = 10) 4.32% 0.36% 13.37 2.66% 1.1m 3.80% 0.00% 19.63 4.86% 5.0m
PIP-D (S = 30) 4.31% 0.27% 13.34 2.44% 3.3m 3.82% 0.00% 19.55 4.47% 14.0m

LMask 0.06% 0.00% 13.25 1.73% 6s 0.05% 0.00% 19.51 4.23% 18s
LMask (S = 3) 0.08% 0.00% 13.30 2.13% 14s 0.10% 0.00% 19.48 4.05% 40s
LMask (S = 10) 0.07% 0.00% 13.23 1.60% 24s 0.10% 0.00% 19.40 3.64% 1.3m
LMask (S = 30) 0.07% 0.00% 13.19 1.25% 55s 0.11% 0.00% 19.34 3.33% 3.2m

H
ar

d

PIP 5.65% 2.85% 25.73 0.18% 9s 31.74% 16.68% 51.48 0.37% 28s
PIP (S = 3) 5.81% 2.28% 25.72 0.16% 19s 32.47% 11.83% 51.44 0.33% 1.3m
PIP (S = 10) 5.80% 1.89% 25.72 0.15% 58s 32.59% 9.66% 51.43 0.30% 4.5m
PIP (S = 30) 5.79% 1.68% 25.72 0.14% 2.9m 32.58% 7.97% 51.42 0.27% 12.7m

PIP-D 6.44% 3.03% 25.75 0.27% 9s 13.59% 6.60% 51.43 0.32% 31s
PIP-D (S = 3) 6.59% 2.40% 25.75 0.25% 20s 13.99% 5.32% 51.41 0.29% 1.5m
PIP-D (S = 10) 6.56% 2.10% 25.74 0.24% 1.1m 13.93% 4.54% 51.41 0.27% 5.0m
PIP-D (S = 30) 6.58% 1.88% 25.74 0.23% 3.3m 13.92% 4.05% 51.40 0.26% 14.0m

LMask 0.00% 0.00% 25.71 0.10% 6s 0.00% 0.00% 51.38 0.21% 18s
LMask (S = 3) 0.00% 0.00% 25.70 0.09% 10s 0.00% 0.00% 51.37 0.19% 40s
LMask (S = 10) 0.00% 0.00% 25.70 0.08% 17s 0.00% 0.00% 51.36 0.18% 1.3m
LMask (S = 30) 0.00% 0.00% 25.70 0.08% 33s 0.00% 0.00% 51.36 0.16% 3.2m

Gap Sol. Infeas.

1.590

1.595

1.600

1.605

1.610

G
ap

(%
)

0.071

0.072

0.073

0.074

0.075

So
lu

tio
n

In
fe

as
ib

ili
ty

(%
)

(a) Medium TSPTW-50

Gap Sol. Infeas.

2.148

2.150

2.152

2.154

2.156

G
ap

(%
)

0.036

0.038

0.040

0.042

0.044

So
lu

tio
n

In
fe

as
ib

ili
ty

(%
)

(b) Medium TSPDL-50

Figure 8: Box plots of optimality gaps and solution infeasibility rates of LMask under sampling
decoding across 10 random seeds. Each box shows the interquartile range (25th-75th percentile), the
horizontal line indicates the median, and the whiskers extend to the minimum and maximum within
1.5 times the interquartile range.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 12: Sampling results on synthetic TSPDL datasets.

Nodes n = 50 n = 100

Method
Infeasible

Obj. Gap Time
Infeasible

Obj. Gap TimeSol. Inst. Sol. Inst.

M
ed

iu
m

PIP 1.75% 0.17% 11.23 3.59% 8s 2.50% 0.16% 17.68 8.10% 21s
PIP (S = 3) 1.87% 0.13% 11.19 3.23% 15s 2.68% 0.10% 17.62 7.68% 52s
PIP (S = 10) 1.84% 0.11% 11.16 2.93% 45s 2.68% 0.08% 17.53 7.14% 2.9m
PIP (S = 30) 1.84% 0.11% 11.14 2.73% 2.5m 2.70% 0.06% 17.46 6.74% 8.8m

PIP-D 2.29% 0.22% 11.26 3.96% 8s 1.83% 0.23% 17.80 8.84% 23s
PIP-D (S = 3) 2.42% 0.10% 11.22 3.56% 17s 1.98% 0.14% 17.73 8.40% 59s
PIP-D (S = 10) 2.44% 0.07% 11.19 3.19% 50s 1.95% 0.09% 17.63 7.78% 3.4m
PIP-D (S = 30) 2.45% 0.07% 11.16 2.94% 2.8m 1.96% 0.07% 17.56 7.36% 10.0m

LMask 0.03% 0.01% 11.14 2.75% 6s 0.20% 0.05% 17.04 4.24% 15s
LMask (S = 3) 0.04% 0.01% 11.10 2.43% 13s 0.21% 0.04% 16.99 3.88% 28s
LMask (S = 10) 0.04% 0.01% 11.07 2.15% 17s 0.21% 0.04% 16.91 3.43% 51s
LMask (S = 30) 0.04% 0.01% 11.05 1.97% 29s 0.21% 0.04% 16.86 3.13% 2.0m

H
ar

d

PIP 4.83% 2.39% 13.63 3.42% 8s 29.34% 21.65% 22.35 12.87% 20s
PIP (S = 3) 5.06% 2.14% 13.59 3.09% 15s 29.60% 20.30% 22.30 12.37% 52s
PIP (S = 10) 5.07% 2.00% 13.56 2.83% 44s 29.52% 19.53% 22.18 11.59% 3.0m
PIP (S = 30) 5.07% 1.90% 13.54 2.64% 2.5m 29.52% 18.92% 22.08 11.00% 8.8m

PIP-D 4.16% 0.82% 13.79 4.28% 8s 13.51% 8.43% 22.90 12.53% 23s
PIP-D (S = 3) 4.43% 0.59% 13.74 3.89% 17s 13.76% 7.49% 22.82 11.99% 1.0m
PIP-D (S = 10) 4.47% 0.40% 13.70 3.55% 51s 13.77% 6.82% 22.71 11.30% 3.4m
PIP-D (S = 30) 4.43% 0.38% 13.67 3.32% 2.8m 13.75% 6.55% 22.63 10.80% 10.0m

LMask 0.19% 0.04% 13.57 2.52% 6s 0.80% 0.26% 21.63 4.34% 15s
LMask (S = 3) 0.22% 0.04% 13.53 2.22% 13s 0.87% 0.22% 21.56 3.99% 29s
LMask (S = 10) 0.22% 0.03% 13.50 1.98% 18s 0.87% 0.21% 21.48 3.61% 52s
LMask (S = 30) 0.22% 0.03% 13.48 1.82% 29s 0.87% 0.18% 21.42 3.32% 2.0m

2024) due to inaccurate replication attempts of PIP and PIP-D. Additionally, to ensure consistency
in research comparisons, the benchmark instance set we selected remains fully aligned with those
used in the original study. Results show that compared to the neural baselines, LMask framework
significantly reduces the infeasibility rate and improves solution quality.

Table 13: Model performance on the benchmark datasets (Dumas et al., 1995).

Instance Opt.
PIP PIP-D LMask

Instance Opt.
PIP PIP-D LMask

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
n20w20.001 378 389 2.91% 389 2.91% 390 3.17% n40w40.003 474 496 4.64% 497 4.85% 489 3.16%
n20w20.002 286 292 2.10% 292 2.10% 292 2.10% n40w40.004 452 - - - - 466 3.10%
n20w20.003 394 - - - - - - n40w40.005 453 470 3.75% 471 3.97% 469 3.53%
n20w20.004 396 405 2.27% 405 2.27% 405 2.27% n40w60.001 494 - - 525 6.28% 512 3.64%
n20w20.005 352 360 2.27% 360 2.27% 362 2.84% n40w60.002 470 - - 502 6.81% 484 2.98%
n20w40.001 254 276 8.66% 279 9.84% 276 8.66% n40w60.003 408 - - - - 426 4.41%
n20w40.002 333 347 4.20% 339 1.80% 340 2.10% n40w60.004 382 406 6.28% 420 9.95% 397 3.93%
n20w40.003 317 332 4.73% 332 4.73% 331 4.42% n40w60.005 328 342 4.27% 344 4.88% 340 3.66%
n20w40.004 388 401 3.35% 401 3.35% 396 2.06% n40w80.001 395 407 3.04% 407 3.04% 409 3.54%
n20w40.005 288 294 2.08% 302 4.86% 296 2.78% n40w80.002 431 448 3.94% 452 4.87% 445 3.25%
n20w60.001 335 349 4.18% 353 5.37% 345 2.99% n40w80.003 412 444 7.77% 454 10.19% 434 5.34%
n20w60.002 244 252 3.28% 260 6.56% 250 2.46% n40w80.004 417 430 3.12% 435 4.32% 430 3.12%
n20w60.003 352 358 1.70% 358 1.70% 358 1.70% n40w80.005 344 362 5.23% 379 10.17% 355 3.20%
n20w60.004 280 298 6.43% 289 3.21% 287 2.50% n60w80.001 458 - - - - 478 4.37%
n20w60.005 338 385 13.91% 361 6.80% 349 3.25% n60w80.002 498 540 8.43% 548 10.04% 517 3.82%
n20w80.001 329 347 5.47% 347 5.47% 346 5.17% n60w80.003 550 635 15.45% 646 17.45% 578 5.09%
n20w80.002 353 347 2.66% 360 6.51% 348 2.96% n60w80.004 566 611 7.95% 632 11.66% 593 4.77%
n20w80.003 320 328 2.50% 328 2.50% 329 2.81% n60w80.005 468 535 14.32% - - 486 3.85%
n20w80.004 304 341 12.17% 339 11.51% 335 10.20% n80w60.001 554 582 5.05% - - 579 4.51%
n20w80.005 264 302 14.39% 302 14.39% 287 8.71% n80w60.002 633 678 7.11% - - 664 4.90%
n40w20.001 500 - - - - - - n80w60.004 619 678 9.53% - - 656 5.98%
n40w20.002 552 - - 610 10.51% 574 3.99% n80w60.005 575 - - - - 614 6.78%
n40w20.003 478 - - 507 6.07% 498 4.18% n80w80.001 624 - - - - 654 4.81%
n40w20.004 404 419 3.71% 418 3.47% 418 3.47% n80w80.002 592 624 5.41% 638 7.77% 616 4.05%
n40w20.005 499 - - - - - - n80w80.003 589 648 10.02% 674 14.43% - -
n40w40.001 465 - - - - 484 4.09% n80w80.004 594 674 13.47% 676 13.80% 625 5.22%
n40w40.002 461 485 5.21% 483 4.77% 478 3.69% n80w80.005 570 627 10.00% - - 594 4.21%

Average Gap 5.2% 5.3% 3.9% Average Gap 7.4% 8.5% 4.2%
Infeasible Rate 22.2% 14.8% 11.1% Infeasible% 25.9% 37.9% 3.7%

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F RUNTIME DISCUSSION

F.1 INFERENCE-TIME EVALUATION PROTOCOL AND CPU-ONLY RESULTS

It is hard to achieve an absolutely fair comparison of the run time between CPU-based traditional
solvers and GPU-based solvers due to hardware difference. As a widely adopted convention in
the neural combinatorial optimization community, we have run traditional solvers with 32 CPUs in
parallel to mitigate this unfairness. To provide further clarification, we have also run LMask using
only CPUs. The results, presented in Table 14, demonstrate that LMask remains substantially faster
than the traditional solvers.

F.2 BACKTRACKING OVERHEAD

The runtime of LMask can be decomposed into four components: (1) network forward pass; (2)
lookahead; (3) backtracking; and (4) miscellaneous operations such as distance matrix precomputation
and tour length evaluation. We then elaborate on the overhead induced by backtracking. The main
source of cost comes from reduced parallelization due to instance heterogeneity and from increased
forward passes in the decoder. The backtracking operation itself is lightweight, as it only rolls back
via a stack. To mitigate the cost from heterogeneity, one can selectively process only the instances
still in forward construction. In fact, this approach is used during the inference phase with greedy
decoding. As shown in Figure 4b, on the hard TSPTW-100 dataset, increasing the backtracking
budget from 0 to 100 adds only about 2 seconds to the inference time, which is a marginal increase.
However, during the training phase, which employs a multi-sampling decoding scheme, this selective
processing would impair the computational efficiency of the cross-attention mechanism in the decoder.
We believe that more efficient implementations could further reduce this training overhead.

To clearly demonstrate the computational overhead from backtracking and compare training times
with other methods, we provide a training time comparison in Table R5. Note that we have optimized
the implementation of lookahead from the original PIP source code by reducing the use of indexing
operations, which are very time-consuming on GPUs. This optimization significantly improves
efficiency. As a result, even with the addition of backtracking, the total training time for LMask
remains shorter than that of PIP.

Table 14: Inference time using 32 CPUs. Time is reported in minutes (m), hours (h), and days (d).

Hardness Method n = 50 n = 100

Easy
PyVRP 1.7h 4.3h
LKH3 1.9h 7.2h
LMask 3.2m 11.4m

Medium
PyVRP 1.7h 4.3h
LKH3 2.9h 10.3h
LMask 3.8m 11.7m

Hard
PyVRP 1.7h 4.3h
LKH3 2.3h 1.3d
LMask 5.6m 12.4m

Table 15: Training time (days).

Method n = 50 n = 100

LMask 4.2d 7.8d
PIP 4.7d 28.4d

PIP-D 3.6d 12.2d

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G BROADER IMPACTS

This paper proposes a novel LMask framework to solve the routing problem with more complex
constraints, whose goal is to advance the field of machine learning and optimization. There are many
potential societal impacts of our work: 1) enhancing the understanding within the AI and mathematical
programming communities on effective approaches to handling constraints in optimization problems;
2) promoting efficient delivery systems in complex transportation scenarios; 3) reducing energy
consumption in transportation systems and decreasing carbon emissions. The LMask framework has
the potential to create positive effects across logistics, transportation, and supply chain management.
On the other hand, negative societal impacts may include environmental unfriendliness due to
computational resource usage.

H LICENSES FOR EXISTING ASSETS

The used assets in this work are listed in Table 16, which are all open-source for academic research.
We will release our source code with the MIT License.

Table 16: Used assets, licenses, and their usage.

Type Asset License Usage

Code

LKH3 (Helsgaun, 2017) Available for academic use Evaluation
OR-Tools (Furnon & Perron, 2024) Apache-2.0 license Evaluation

PyVRP (Furnon & Perron, 2024) MIT License Evaluation
RL4CO (Furnon & Perron, 2024) MIT License Revision

PIP (Furnon & Perron, 2024) MIT License Revision

Datasets Dumas et al. (Dumas et al., 1995) Available for academic use Evaluation

I THE USE OF LARGE LANGUAGE MODELS

Large language models are used only for writing.

31

	Introduction
	Preliminaries for routing problems
	A unified formulation
	A distribution approximation view

	Methodology
	Constrained auto-regressive model
	LazyMask algorithm
	Refinement intensity embedding
	Training

	Theoretical results
	Validity of LazyMask algorithm
	Validity of probabilistic model

	Experiments
	Performance on synthetic datasets
	Generalization and scalability
	Additional analysis

	Conclusion
	Combinatorial optimization formulation of routing problems
	TSPTW and TSPDL formulation
	Feasibility dilemma in TSPTW

	Training details
	Penalty function formulation
	Training algorithm

	Model architecture
	Multi-head attention
	Encoder
	Decoder

	Proof of theoretical results
	Proof of Proposition 4.1
	Proof of Theorem 4.3

	Experiments
	Data generation
	TSPTW
	TSPDL

	Implementation details
	Hyperparameter study
	Discussion on backtracking and overestimation set initialization
	Analysis of the Efficiency and Failure Modes of LMask
	Generalization and scalability
	Generalization across time window widths
	Scalability to large-scale problem instances

	Performance of LMask using different backbone models
	Sampling performance
	Stability analysis
	Performance on the TSPTW benchmark

	Runtime discussion
	Inference-Time evaluation protocol and CPU-only results
	Backtracking overhead

	Broader impacts
	Licenses for existing assets
	The use of large language models

