

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LMASK: LEARN TO SOLVE CONSTRAINED ROUTING PROBLEMS WITH LAZY MASKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Routing problems are canonical combinatorial optimization tasks with wide-ranging applications in logistics, transportation, and supply chain management. However, solving these problems becomes significantly more challenging when complex constraints are involved. In this paper, we propose LMask, a novel learning framework that utilizes dynamic masking to generate high-quality feasible solutions for constrained routing problems. LMask introduces the LazyMask decoding method, which lazily refines feasibility masks with the backtracking mechanism. In addition, it employs the refinement intensity embedding to encode the search trace into the model, mitigating representation ambiguities induced by backtracking. To further reduce sampling cost, LMask sets a backtracking budget during decoding, while constraint violations are penalized in the loss function during training to counteract infeasibility caused by this budget. We provide theoretical guarantees for the validity and probabilistic optimality of our approach. Extensive experiments on the traveling salesman problem with time windows (TSPTW) and TSP with draft limits (TSPDL) demonstrate that LMask achieves state-of-the-art feasibility rates and solution quality, outperforming existing neural methods.

1 INTRODUCTION

Routing problems form a fundamental class of combinatorial optimization (CO) problems, encompassing the traveling salesman problem (TSP), vehicle routing problem (VRP), and their numerous variants. These problems frequently arise in practical domains such as logistics (Konstantakopoulos et al., 2022), transportation (Díaz-Parra et al., 2014), and supply chain management Duan et al. (2020), where the objective is to determine optimal routes while satisfying a variety of constraints, such as vehicle capacities, draft limits, time windows, or precedence requirements. The presence of these constraints significantly increases the problem complexity, as they must all be considered when optimizing the distance, time, or transport cost. Integer linear programming (ILP) provides a rigorous framework for modeling routing problems while incorporating constraints explicitly (Dantzig et al., 1954; Dantzig & Ramser, 1959). It guarantees optimal solutions under feasible conditions; however, as the number and complexity of constraints grow, the computational cost of solving ILP models increases exponentially. This makes ILP computationally intractable especially for large-scale instances with complex constraints (Cook, 2015).

To address the computational challenges posed by complex constraints, heuristic methods are commonly adopted. These methods efficiently generate high-quality solutions using approximations and relaxation strategies to handle constraints. Prominent heuristic approaches, such as the Lin-Kernighan-Helsgaun (LKH) heuristic (Helsgaun, 2017), fast iterated local optimization (Accorsi & Vigo, 2021), and hybrid genetic search (Vidal, 2022; Wouda et al., 2024), have demonstrated effectiveness across various constrained routing problem variants. Nonetheless, applying these heuristics often requires significant attention to constraint modeling, algorithm customization, and parameter tuning. This highlights the necessity for expert knowledge to adapt methods for specific problem settings, as well as the complexity of constraint handling in CO problems.

Neural constructive solvers for routing problems. In recent years, machine learning for CO approaches have been developed to tackle the difficulty in solving CO problems. Neural constructive solvers are learning-based methods designed to construct a complete route by adding a node to the current partial route sequentially. Early works introduce the pointer network to generate the

optimal solution to TSP (Vinyals et al., 2015; Bello et al., 2017) and VRP (Nazari et al., 2018) in an auto-regressive way. The attention-based model (AM) (Kool et al., 2018) is a fundamental work in this line of research, which adopts a transformer-based model architecture. Building on AM, many subsequent innovations, including dynamic embedding (Peng et al., 2020; Luo et al., 2023), symmetry utilization (Kwon et al., 2020; Kim et al., 2022) and posterior search (Hottung et al., 2022; Choo et al., 2022), have been proposed to facilitate the performance. Their decoders, utilizing attention mechanisms, generate the solution incrementally by selecting nodes in an auto-regressive manner. Masking techniques are adopted to exclude nodes that do not satisfy the constraints. Additionally, there are several works studying foundation models for VRPs, such as MVMoE (Zhou et al., 2024), Routefinder (Berto et al., 2024) and CaDA (Li et al., 2024).

Feasibility awareness. Most neural methods for routing problems handle constraints by employing the masking mechanism, which excludes actions directly leading to infeasible solutions during construction (Kool et al., 2018; Huang et al., 2025; Kwon et al., 2020; Joshi et al., 2019; Luo et al., 2023). This sequential construction is valid due to the property of tail recursion: after applying a series of construction steps, the remaining tail subproblem becomes a smaller instance of the original CO problem, as discussed in (Drakulic et al., 2023). The construction process implicitly assumes that the tail subproblem is always feasible. This property is present in ordinary routing problems, allowing feasible solutions to be generated node by node. However, for route problems with complex constraints, feasibility issues pose a major challenge during the sequential generation process. To tackle the feasibility difficulty, recent neural approaches have developed diverse strategies. Kool et al. (2022) propose DPDP, which combines learned neural heuristics with dynamic programming algorithms to handle hard constraints. Ma et al. (2023) present the neural k-opt solver for TSP and CVRP, which learns the search process with feasibility-related features and guided infeasible region exploration scheme. Chen et al. (2024) develop a multi-step look-ahead method tailored for TSPTW, incorporating problem-specific features and a large supervised learning dataset. Bi et al. (2024) propose a proactive infeasibility prevention (PIP) framework based on preventative infeasibility (PI) masking, learnable decoders, and adaptive strategies to advance neural methods.

In the previous learning methods, the one-pass forward sequence construction framework (Kool et al., 2018; Kwon et al., 2020; Luo et al., 2023; Bi et al., 2024) limits the model’s ability to handle complex constraints. This auto-regressive approach builds a solution step-by-step in an irreversible manner, where each action is based solely on the partial solution generated so far. Although lookahead strategies attempt to mitigate the inflexibility by exploring the following feasible actions, they are computationally expensive with no guarantee of finding a feasible solution. Furthermore, to enforce these constraints during generation, such methods heavily rely on a masking mechanism that lacks a systematic mathematical explanation. This motivates us to develop a more effective constructive framework with a distinct decoding method, enabling learning over more general constraints in routing problems. Therefore, we develop a novel learning framework, called **LMask**, to handle the feasibility issue in solving routing problems with complex constraints. It explains how machine learning can solve NP-hard problems in an end-to-end manner, offering a theoretically guaranteed approach to generating feasible solutions. The name **LMask** on one hand represents the “LazyMask” decoding algorithm, and on the other hand signifies using the “mask” refinement mechanism to “learn” the routing problems with complex constraints. The overall LMask framework is illustrated in Figure 1 at the end of Section 3. Our main contributions are summarized as follows.

1) Mechanism innovation. We propose the LazyMask decoding algorithm, which lazily updates feasibility masks through the backtracking mechanism, enabling efficient generation of feasible solutions with theoretical guarantees. To mitigate representation ambiguities, the refinement intensity embedding is further employed to integrate information about the search trace into our model.

2) Theoretical guarantee. We present a systematic explanation of the masking mechanism’s role in routing problems, which fundamentally guides the design of the LMask framework. Based on our mathematical derivation, rigorous theoretical guarantees demonstrate the validity of the LazyMask algorithm and the effectivity of LMask’s probabilistic model with entropy regularization.

3) Experimental outperformance. Comprehensive experiments on TSPTW and TSPDL demonstrate that LMask achieves significantly higher solution feasibility and smaller objective gaps than other neural constructive methods with comparable runtime, showing state-of-the-art performance. Notably, a nearly 0.0% infeasibility rate is observed for LMask on synthetic TSPTW datasets, highlighting its effectiveness in handling complex constraints.

108 **2 PRELIMINARIES FOR ROUTING PROBLEMS**
109110 **2.1 A UNIFIED FORMULATION**
111112 In the context of end-to-end learning, we typically do not use mixed-integer programming for
113 modeling routing problems due to its high computational complexity. Instead, we consider a unified
114 formulation of routing problems. Let $V := \{0, 1, \dots, n\}$ denote the set of nodes and $\Pi := V^T$
115 represent the sequence space containing all possible routes of length T . The length T is always
116 $n + 1$ when a routing problem requires each node to be visited exactly once. A wide range of routing
117 problems can be expressed using the following formulation:
118

119
$$\min_{\pi \in \Pi} f(\pi; \mathcal{P}), \quad \text{s.t.} \quad c(\pi; \mathcal{P}) \leq 0, \quad d(\pi; \mathcal{P}) = 0, \quad (1)$$

120

121 where \mathcal{P} represents the problem instance, $c(\pi; \mathcal{P})$ and $d(\pi; \mathcal{P})$ represent the hard constraints imposed
122 on the route π . $d(\pi; \mathcal{P}) = 0$ can be the visit constraints that each node is exactly visited once.
123 $c(\pi; \mathcal{P}) \leq 0$ can represent time window constraints, draft limit constraints, etc. More details of the
124 formulation are shown in Appendix A.
125126 **2.2 A DISTRIBUTION APPROXIMATION VIEW**
127128 In this section, we provide a novel view from the perspective of distribution approximation to solve
129 problem (1). Let Π^* be the optimal solution set and $f^*(\mathcal{P})$ be the optimal objective value for a given
130 instance \mathcal{P} . The search for optimal solutions can be framed as identifying the target distribution:
131

132
$$q^*(\pi; \mathcal{P}) := \frac{1}{|\Pi^*|} \mathbb{1}_{\Pi^*}(\pi) = \begin{cases} \frac{1}{|\Pi^*|}, & \pi \in \Pi^*, \\ 0, & \pi \notin \Pi^*. \end{cases}$$

133

134 Since the optimal solutions cannot be determined in advance, the target distribution is computationally
135 inaccessible. However, it can be approximated by a family of constrained Gibbs distributions:
136

137
$$q_\lambda(\pi; \mathcal{P}) := \frac{1}{Z_\lambda} \exp\left(-\frac{f(\pi; \mathcal{P}) - f^*(\mathcal{P})}{\lambda}\right) \mathbb{1}_C(\pi),$$

138

139 where $C := \{\pi \in \Pi : c(\pi; \mathcal{P}) \leq 0, d(\pi; \mathcal{P}) = 0\}$ is the feasible set of problem (1) and $Z_\lambda :=$
140 $\sum_{\pi \in C} \exp(-(f(\pi; \mathcal{P}) - f^*(\mathcal{P}))/\lambda)$. It is also known as an energy-based model and has a profound
141 impact in deep learning (LeCun et al., 2006; Song & Kingma, 2021). It can be readily verified that
142 $q_\lambda(\pi; \mathcal{P}) \rightarrow q^*(\pi; \mathcal{P})$ as $\lambda \rightarrow 0$, which means optimal solutions can be identified by sampling from
143 a constrained Gibbs distribution q_λ with a sufficiently small λ .
144145 As an alternative to directly sampling from the Gibbs distribution, constructing a parameterized
146 distribution p_θ is often considered more efficient to sample a feasible route. This approach is adopted
147 in variational annealing methods (Hibat-Allah et al., 2021; Sanokowski et al., 2023; Chen et al.,
148 2023). We can construct an auto-regressive distribution that generates a route in a node-by-node
149 manner. Given a problem instance \mathcal{P} , the policy for generating a solution π of length T can be
150 decomposed as:
151

152
$$p_\theta(\pi; \mathcal{P}) = \prod_{t=1}^{T-1} p_\theta(\pi_{t+1} | \pi_{1:t}; \mathcal{P}), \quad (2)$$

153

154 where p_θ represents an auto-regressive neural network (Sutskever et al., 2014; Bahdanau et al., 2015;
155 Vaswani et al., 2017) to predict the next element based on all preceding elements.
156157 Let $P(x)$ and $Q(x)$ represent two probability distributions such that their supports satisfy $\text{supp}(P) \subseteq$
158 $\text{supp}(Q)$. The Kullback-Leibler (KL) divergence from Q to P is defined as $\text{KL}(P||Q) :=$
159 $\mathbb{E}_{x \sim P(\cdot)} [\log \frac{P(x)}{Q(x)}]$. In our framework, to reduce the discrepancy between the policy distribution p_θ
160 and the Gibbs distribution q_λ , we minimize their KL divergence
161

162
$$\text{KL}(p_\theta || q_\lambda) = \mathbb{E}_{p_\theta} [\log p_\theta] + \frac{1}{\lambda} \mathbb{E}_{p_\theta} [f(\pi; \mathcal{P})] + \log Z_\lambda - f^*(\mathcal{P}). \quad (3)$$

163

164 Then, eliminating θ -independent terms ($\log Z_\lambda - f^*(\mathcal{P})$) and λ -scaling in (3) yields the loss function
165

166
$$L(\theta; \mathcal{P}) := \mathbb{E}_{p_\theta(\cdot; \mathcal{P})} [f(\pi; \mathcal{P})] + \lambda \mathbb{E}_{p_\theta(\cdot; \mathcal{P})} [\log p_\theta(\pi; \mathcal{P})],$$

167

168 which contains the expectation of $f(\pi; \mathcal{P})$ over p_θ for concentration on lower function values and an
169 entropy regularizer for encouraging exploration.
170

162

3 METHODOLOGY

163

3.1 CONSTRAINED AUTO-REGRESSIVE MODEL

166 Due to the complex constraints of the routing problem, infeasible solutions need to be excluded in the
 167 auto-regressive model. Transformer-based models for routing problems (Kool et al., 2018; Luo et al.,
 168 2023; Kwon et al., 2020) utilize masking techniques to avoid infeasible solutions. However, the effec-
 169 tiveness of these techniques relies on the routing problem’s constraint structure. For problems with
 170 highly complex constraints, generating feasible solutions is challenging, as detailed in Appendix A.

171 To address this, we leverage the constraint structure of problem (1). Specifically, when constructing
 172 p_θ , we must ensure that the probability of any solution π violating the constraints is zero. This
 173 can be achieved by incorporating the indicator function $\mathbb{1}_C$ for the feasible set C . The conditional
 174 probability $p_\theta(\pi_{t+1}|\pi_{1:t}; \mathcal{P})$, represented by the neural network, should explicitly exclude infeasible
 175 actions. To formalize this, we introduce the potential set $S(\pi_{1:t})$, defined as:

$$176 \quad S(\pi_{1:t}) := \{\pi_{t+1} : \exists \pi_{t+1:T} \in V^{T-t}, [\pi_{1:t}, \pi_{t+1:T}] \in C\},$$

178 which further induces the mask function $\mathbb{1}_{S(\pi_{1:t})}(\pi_{t+1})$. Based on this formulation, the conditional
 179 probability in (2) parameterized by the neural network takes the form:

$$180 \quad p_\theta(\pi_{t+1}|\pi_{1:t}; \mathcal{P}) = \frac{e^{\phi_\theta(\pi_{t+1}|\pi_{1:t}; \mathcal{P})} \mathbb{1}_{S(\pi_{1:t})}(\pi_{t+1})}{\sum_{k=0}^n e^{\phi_\theta(k|\pi_{1:t}; \mathcal{P})} \mathbb{1}_{S(\pi_{1:t})}(\pi_{t+1})},$$

183 where $\phi_\theta(\cdot|\pi_{1:t}; \mathcal{P})$ is produced by all intermediate layers. The auto-regressive model p_θ can produce
 184 feasible solutions step-by-step, forming the foundation for solving general routing problems.

185

3.2 LAZYMASK ALGORITHM

187 Most neural methods for routing problems involve handling constraints through masking mechanisms,
 188 which dynamically excludes actions that would lead to infeasible solutions during the construction.
 189 However, $S(\pi_{1:t})$ is sometimes computationally inaccessible for complex constraints since it may
 190 require an exhaustive lookahead until a complete solution is constructed. To circumvent this, we
 191 propose the LazyMask algorithm which works with an overestimation set $\hat{S}(\pi_{1:t})$ representing the
 192 currently known complementary set of actions that are deemed impossible. LazyMask adaptively
 193 establishes this set via lookahead initialization strategies and incrementally refining it through
 194 backtracking. The interaction between lookahead and backtracking enables efficient generation of
 195 feasible solutions under complex constraints. The detailed procedure is described in Algorithm 1.

196 **Backtrack.** LazyMask employs an adaptive backtracking mechanism to ensure solution feasibil-
 197 ity while reducing unnecessary computation. At each step t , the algorithm examines the current
 198 overestimation $\hat{S}(\pi_{1:t})$. If this set is non-empty, the algorithm extends the partial route by sampling
 199 the next node π_{t+1} according to the masked policy p_θ , and then advances to step $t+1$ to initialize
 200 the new overestimation set. Otherwise, if the set is empty, the algorithm’s decision depends on the
 201 backtracking budget. If the budget is unreached, the algorithm backtracks to step $t-1$ and refines
 202 $\hat{S}(\pi_{1:t-1})$ by removing the invalid node π_t . However, if the budget has been reached, it instead
 203 relaxes $\hat{S}(\pi_{1:t})$ to the set of all unvisited nodes to ensure a complete route can be generated.

205 For NP-hard combinatorial optimization problems with complex constraints, it is precisely due to
 206 the inherent complexity of the search space that generating a solution via a single forward pass
 207 is insufficient. The backtracking mechanism addresses this limitation by transforming it from a
 208 conventional one-pass forward model to a dynamic paradigm capable of both forward and backward
 209 operations. As a core role in our decoding algorithm, it significantly enhances the flexibility of route
 210 decoding and constitutes the most fundamental difference from previous neural solvers.

211 **Lookahead.** LazyMask offers great flexibility for initializing the overestimation set as long as
 212 $\hat{S}(\pi_{1:t})$ contains the potential set $S(\pi_{1:t})$. In this paper, we resort to lookahead strategies for this
 213 initialization. Single-step lookahead (SSL) is a common approach for ordinary routing problems that
 214 examines unvisited nodes for immediate constraint violations. Two-step lookahead (TSL) performs
 215 an additional step of lookahead to filter nodes that appear feasible under SSL but could lead to
 infeasible routes, which is adopted in (Bi et al., 2024) and termed as one-step PI masking. The
 specific implementations of these two strategies for TSPTW and TSPDL are provided in Appendix E.

216 **Algorithm 1** LazyMask algorithm

```

217 1: Input: routing problem instance  $\mathcal{P}$ , neural network  $p_\theta$ , backtracking budget  $R$ .
218 2: Initialize  $\pi_1 := 0$ ,  $t := 1$ ,  $r := 0$  and the overestimation set  $\hat{S}(\pi_1)$  either by SSL or TSL.
219 3: while  $t \leq T - 1$  do
220 4:   if  $\hat{S}(\pi_{1:t}) = \emptyset$  and  $r \leq R$  then
221 5:     Update  $\hat{S}(\pi_{1:t-1}) := \hat{S}(\pi_{1:t-1}) \setminus \{\pi_t\}$ .
222 6:     Set  $t := t - 1$ ,  $r := r + 1$ .
223 7:   else
224 8:     if  $\hat{S}(\pi_{1:t}) = \emptyset$  then
225 9:        $\hat{S}(\pi_{1:t}) := V \setminus \{\pi_1, \dots, \pi_t\}$ .
226 10:    end if
227 11:    Calculate the probability  $p_\theta(\cdot | \pi_{1:t}; \mathcal{P})$  using  $\hat{S}(\pi_{1:t})$ .
228 12:    Sample  $\pi_{t+1} \sim p_\theta(\cdot | \pi_{1:t}; \mathcal{P})$ .
229 13:    Set  $t := t + 1$  and initialize  $\hat{S}(\pi_{1:t})$  either by SSL or TSL.
230 14:  end if
231 15: end while
232 16: Output: route  $\pi$ .

```

234 3.3 REFINEMENT INTENSITY EMBEDDING

235 While our LazyMask algorithm is model-agnostic, standard dynamic features in existing auto-
 236 regressive models (Kool et al., 2018; Kwon et al., 2020) are incompatible with backtracking. These
 237 features typically only reflect aggregated information from the partial route, such as the current
 238 time in TSPTW, implicitly assuming a one-pass forward construction. However, when backtracking
 239 occurs, this design renders the model state invariant to its search trace, leading to representation
 240 ambiguities that can hinder the model’s learning ability. For instance, the model cannot distinguish
 241 whether the current partial route emerges from forward construction or backward correction.

242 To address this, we propose the refinement intensity embedding (RIE), designed to enrich the decoder’s
 243 input with essential context about the search trace via the refinement intensity of overestimation
 244 sets. RIE is derived from two distinct refinement intensity features. The local feature quantifies the
 245 refinement count c_t of the current $\hat{S}(\pi_{1:t})$, represented as a capped N -dimensional one-hot vector
 246 with its non-zero entry at index $\min(c_t + 1, N)$. The global feature signals whether the total number
 247 of backtracks has reached the budget R , encoded as a 2-dimensional one-hot vector. These features
 248 are concatenated and then projected to form the final RIE. The resulting RIE enhances the model’s
 249 awareness of the search trace, resolving the representation ambiguities caused by backtracking.

251 3.4 TRAINING

252 For routing problems where identifying feasible solutions can be intractable (Savelsbergh, 1985),
 253 LazyMask with a large backtracking budget R is inefficient during the early training stage. We
 254 therefore adopt a smaller R during training to enhance computational efficiency. This practical choice,
 255 however, can lead to infeasible solutions, requiring a method to guide p_θ towards the feasible set. Thus,
 256 we employ the ℓ_1 penalty function, a well-established technique in constrained optimization (Nocedal
 257 & Wright, 2006). This function specifically penalizes violations of complex constraints, such as
 258 time windows in TSPTW and draft limits in TSPDL, while simpler constraints like node visits are
 259 inherently satisfied by the design of p_θ . The training objective is then formulated as

$$261 \min_{\theta} \mathbb{E}_{\pi \sim p_\theta(\cdot; \mathcal{P})} [\Psi_\rho(\pi; \mathcal{P}) + \lambda \log p_\theta(\pi; \mathcal{P})],$$

262 where $\Psi_\rho(\pi; \mathcal{P}) := f(\pi; \mathcal{P}) + \rho \sum_{j=1}^J \max(c_j(\pi; \mathcal{P}), 0)$ is the ℓ_1 penalty function, $\rho > 0$ is a
 263 given penalty parameter and $c_j(\pi; \mathcal{P})$ quantifies the violation of the j -th complex constraint. While
 264 previous studies (Tang et al., 2022; Ma et al., 2023) have explored ℓ_1 penalty as soft constraints, we
 265 innovatively combine hard and soft constraints during training. It starts with hard constraints through
 266 backtracking and then turns to soft constraints for flexible optimization once the budget threshold
 267 is reached. The policy p_θ is trained using a standard policy gradient algorithm (Silver et al., 2014;
 268 Sutton & Barto, 2018) with further details provided in Appendix B. The overall LMask framework is
 269 illustrated in Figure 1.

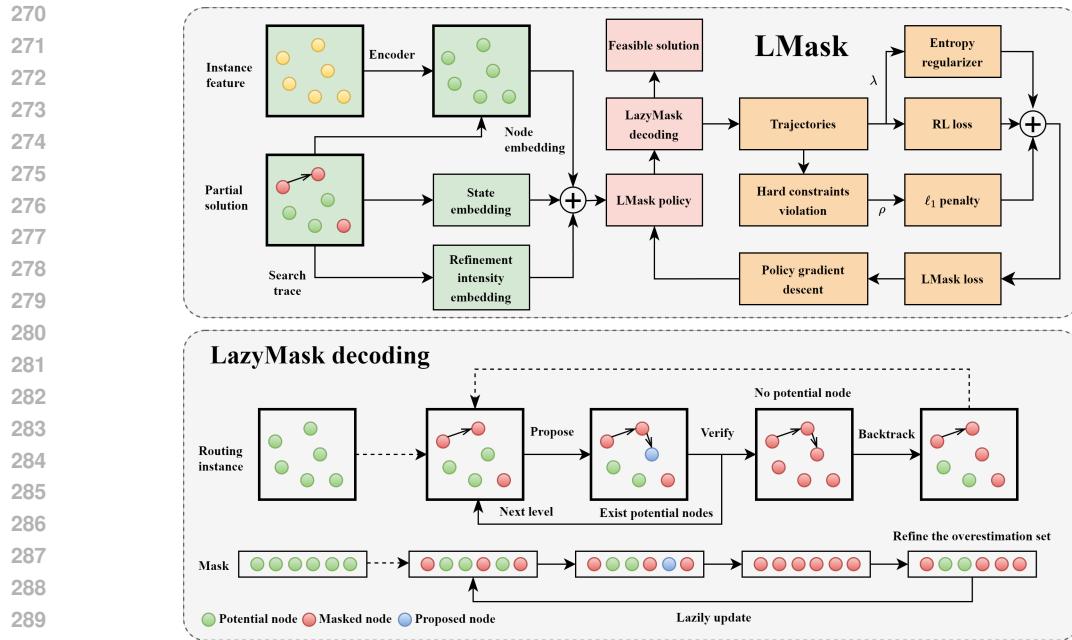


Figure 1: An illustrative overview of LMask: Up - the overall LMask framework. Down - the LazyMask decoding algorithm.

4 THEORETICAL RESULTS

4.1 VALIDITY OF LAZYMASK ALGORITHM

To ensure the effectiveness of Algorithm 1 in solving constrained routing problems, we first prove that it always generates feasible solutions and has a non-zero probability of generating all feasible solutions. The following proposition shows the validity of the algorithm.

Proposition 4.1. *Suppose that the problem (1) is feasible, and that the backtracking budget in Algorithm 1 is set to $R = +\infty$. Then, i) any solution π generated by Algorithm 1 is feasible; ii) Algorithm 1 assigns a non-zero probability to generate any feasible solution π .*

This proposition demonstrates that Algorithm 1 never generates infeasible solutions and no feasible solution is excluded. This ensures that the algorithm explores the entire feasible solution space with the distribution p_θ , which acts as the foundation for further analysis of the algorithm's behavior in finding optimal solutions.

4.2 VALIDITY OF PROBABILISTIC MODEL

We further analyze the theoretical validity of the probabilistic model for the original routing problem by providing rigorous performance guarantees. Before delving into the formal theorem, it is essential to clarify a fundamental assumption supporting the analysis.

Assumption 4.2. We assume that the auto-regressive neural network p_θ has sufficient expressive power to approximate the target distribution q_λ . Specifically, the approximation error $\delta(\lambda)$ defined as follows satisfies:

$$\delta(\lambda) = \min_{\theta} \max_{\mathcal{P} \in \mathcal{D}} \text{KL}(p_\theta(\cdot; \mathcal{P}) \parallel q_\lambda(\cdot; \mathcal{P})) \leq c/\lambda, \quad \lambda > 0,$$

where c is a small constant. Let $p_{\theta^*}(\lambda)$ be the corresponding optimal distribution.

Assumption 4.2 ensures that the auto-regressive neural network p_θ effectively parameterizes Gibbs distributions q_λ , with $\delta(\lambda)$ quantifying their approximation error. It is worth noting that as λ is approaching zero, the target distribution q_λ converges toward a point mass distribution, which is hard

324 to approximate. Hence, we do not assume a uniform upper bound. We further give the following
 325 theorem to formalize the performance guarantees of the probabilistic model.

326 **Theorem 4.3.** *Suppose that Assumption 4.2 holds. We define $\Delta(\mathcal{P}) := \min_{\pi \in C \setminus \Pi^*} f(\pi; \mathcal{P}) - f^*(\mathcal{P})$.
 327 Then, for any $\epsilon > 0$ and $\Delta(\mathcal{P}) \geq \lambda > 0$, the following inequality holds:*

$$329 \quad \mathbb{P}_{p_{\theta^*(\lambda)}}(f(\pi; \mathcal{P}) \geq f^*(\mathcal{P}) + \epsilon) \leq \frac{|C| \Delta(\mathcal{P}) e^{-\Delta(\mathcal{P})/\lambda}}{|\Pi^*| \max\{\epsilon, \Delta(\mathcal{P})\}} + \sqrt{\frac{c}{2\lambda}}. \\ 330$$

331 Theorem 4.3 provides a probabilistic bound for the event that the solution $\pi \sim p_{\theta^*(\lambda)}(\cdot; \mathcal{P})$ is sampled
 332 with an objective value $f(\pi; \mathcal{P})$ significantly larger than the optimal value $f^*(\mathcal{P})$. The suboptimality
 333 gap $\Delta(\mathcal{P})$ serves as a measure of separation between optimal and suboptimal solutions in the feasible
 334 set C , while λ controls the trade-off between exploration and concentration in the Gibbs distribution
 335 q_λ . A smaller λ enhances concentration and suppresses suboptimal solutions more effectively but
 336 increases the approximation error $\sqrt{\frac{c}{2\lambda}}$, while a larger λ reduces approximation error and improves
 337 computational feasibility but weakens the probability guarantee in the term of $e^{-\Delta(\mathcal{P})/\lambda}$. This trade-
 338 off of the entropy regularization coefficient λ is intrinsic to the probabilistic model and underscores
 339 the interplay between concentration, exploration, and approximation quality.

341 5 EXPERIMENTS

343 **Setup.** We conduct experiments on two representative hard-constrained routing problems: TSPTW
 344 and TSPDL, using datasets of sizes $n = 50, 100$ across different hardness levels. To evaluate the
 345 effectiveness of LMask, we compare it against several baselines. For *traditional solvers*, we adopt
 346 PyVRP (Wouda et al., 2024), LKH3 (Helsgaun, 2017) and OR-Tools (Furnon & Perron, 2024). For
 347 *neural solvers*, we consider PIP and PIP-D (Bi et al., 2024), which proactively mask actions that could
 348 lead to future infeasibility, and VSR-LKH (Zheng et al., 2023), which incorporates reinforcement
 349 learning into the local search process of LKH3. DPDP (Kool et al., 2022) is not compared here since
 350 the model provided by the official repository is pretrained on a dataset with a different maximum
 351 time width and we empirically find that it exhibits poor generalization. Additionally, we include two
 352 simple constructive heuristics with backtracking, Random-L and Random-C. We use greedy rollout
 353 with $8\times$ symmetric dihedral augmentation for all neural solvers as done in (Kwon et al., 2020),
 354 resulting in 8 solutions per instance. LMask adopts TSL as its default initialization strategy. The data
 355 generation mechanism, implementation details, and additional results are available in Appendix E.

356 **Evaluation metrics.** We evaluate both the ability to handle complex constraints and the quality
 357 of feasible solutions. The instance infeasibility rate (Ins.) is the fraction of instances for which
 358 no feasible solution is found, and the solution infeasibility rate (Sol.) is the fraction of generated
 359 solutions that are infeasible. To assess solution quality, we report the average route length over the
 360 best feasible solutions, excluding instances for which no feasible solution is available. Additionally,
 361 the gap is computed with respect to PyVRP for TSPTW and LKH3 for TSPDL, and is averaged over
 362 instances where both the evaluated method and the reference solver find feasible solutions. Note that
 363 the gap is computed on a different subset of instances from those used for the average route length,
 364 and serves as the primary metric for solution quality, as done in (Bi et al., 2024). Finally, we report
 365 the total inference time required to solve all instances in the dataset.

366 5.1 PERFORMANCE ON SYNTHETIC DATASETS

367 The results on synthetic TSPTW and TSPDL datasets are presented in Tables 1 and 2. On TSPTW
 368 datasets, LMask consistently achieves near-zero infeasibility rates, significantly surpassing OR-Tools,
 369 PIP, PIP-D and heuristics across different hardness levels. Compared to the traditional solvers PyVRP
 370 and LKH3, LMask is substantially efficient due to fast network inference. Although VSR-LKH is also
 371 learning based, it is implemented on top of the computationally intensive LKH3 pipeline and therefore
 372 inherits its runtime profile, remaining orders of magnitude slower than LMask. Regarding solution
 373 quality, we observe that while PIP-D can improve feasibility over PIP, this sometimes comes at the
 374 cost of larger gaps. In contrast, LMask delivers improved feasibility and lower optimality gaps than
 375 PIP and PIP-D across all settings, while maintaining competitive inference times. The advantages
 376 of LMask become even more pronounced on TSPDL datasets, showing significant improvements
 377 in both feasibility and solution quality. These results highlight that LMask can effectively generate
 higher-quality solutions while significantly reducing the occurrence of infeasible solutions.

378 Table 1: Results on synthetic TSPTW datasets. Bold indicates the best among constructive methods.
379

380	Nodes	381 $n = 50$					382 $n = 100$						
		383 Method	Infeasible384 Sol.	385 Inst.	386 Obj.	387 Gap	388 Time	389 Infeasible Sol.	390 Inst.	391 Obj.	392 Gap	393 Time	
383	384	385 PyVRP	-	0.00%	7.31	*	1.7h	389 -	0.00%	10.19	*	4.3h	
386	387	388 LKH3	-	0.00%	7.31	0.00%	1.9h	389 -	0.00%	10.21	0.29%	7.2h	
388	389	390 VSR-LKH	-	0.00%	7.31	0.00%	4.3h	389 -	0.00%	10.19	0.08%	16.4h	
389	390	391 OR-Tools	-	0.00%	7.32	0.21%	1.7h	389 -	0.00%	10.33	1.43%	4.3h	
390	391	392 Easy	Random-L	56.02%	0.04%	14.55	99.23%	1.3m	393 95.17%	9.37%	30.66	201.20%	6.1m
391	392		Random-C	62.31%	0.03%	19.12	162.03%	1.4m	393 98.17%	27.30%	44.20	333.74%	6.1m
392	393		PIP	0.28%	0.01%	7.51	2.73%	9s	393 0.16%	0.00%	10.57	3.78%	29s
393	394		PIP-D	0.28%	0.00%	7.50	2.60%	10s	393 0.05%	0.00%	10.66	4.62%	31s
394	395		LMask	0.06%	0.00%	7.45	2.02%	7s	393 0.01%	0.00%	10.50	3.11%	17s
395	396		PyVRP	-	0.00%	13.03	*	1.7h	396 -	0.00%	18.72	*	4.3h
396	397		LKH3	-	0.00%	13.02	0.00%	2.9h	397 -	0.01%	18.74	0.16%	10.3h
397	398		VSR-LKH	-	0.00%	13.03	0.01%	8.2h	398 -	0.00%	18.72	0.00%	8.7h
398	399		OR-Tools	-	15.12%	13.01	0.12%	1.5h	399 -	0.52%	18.98	1.40%	4.3h
399	400		Random-L	98.31%	32.18%	18.91	47.04%	1.6m	400 100.00%	100.00%	-	-	5.8m
400	401	402 Medium	Random-C	91.17%	8.18%	21.04	61.91%	1.6m	401 100.00%	100.00%	-	-	5.9m
401	402		PIP	4.82%	1.07%	13.41	2.93%	10s	402 4.35%	0.39%	19.61	4.79%	29s
402	403		PIP-D	4.14%	0.90%	13.46	3.31%	9s	403 3.46%	0.03%	19.80	5.76%	31s
403	404		LMask	0.04%	0.00%	13.25	1.68%	6s	404 0.05%	0.00%	19.51	4.23%	18s
404	405		PyVRP	-	0.00%	25.61	*	1.7h	405 -	0.01%	51.27	0.00%	4.3h
405	406		LKH3	-	0.52%	25.61	0.00%	2.3h	406 -	0.95%	51.27	0.00%	1d8h
406	407		VSR-LKH	-	0.52%	25.68	0.00%	4.4h	407 -	0.91%	51.27	0.00%	8.9h
407	408		OR-Tools	-	65.11%	25.92	0.00%	0.6h	408 -	89.25%	51.72	0.00%	0.5h
408	409		Random-L	100.00%	100.00%	-	-	1.6m	409 100.00%	100.00%	-	-	5.6m
409	410		Random-C	100.00%	99.82%	25.98	1.22%	1.6m	410 100.00%	100.00%	-	-	5.8m
410	411		PIP	5.65%	2.85%	25.73	0.18%	9s	411 31.74%	16.68%	51.48	0.37%	28s
411	412		PIP-D	6.44%	3.03%	25.75	0.27%	9s	412 13.59%	6.60%	51.43	0.32%	31s
412	413		LMask	0.00%	0.00%	25.71	0.10%	6s	413 0.00%	0.00%	51.38	0.21%	18s

405 Table 2: Results on synthetic TSPDL datasets. Bold indicates the best among constructive methods.
406

407	Nodes	408 $n = 50$					409 $n = 100$						
		410 Method	Infeasible411 Sol.	412 Inst.	413 Obj.	414 Gap	415 Time	416 Infeasible Sol.	417 Inst.	418 Obj.	419 Gap	420 Time	
410	411		LKH3	-	0.00%	10.85	*	2.3h	411 -	0.00%	16.36	*	10.2h
411	412		VSR-LKH	-	0.00%	10.85	0.08%	3.8h	412 -	0.00%	16.35	- 0.07%	11.0h
412	413		OR-Tools	-	100.00%	-	-	10.9s	413 -	100.00%	-	-	56.9s
413	414	415 Medium	Random-L	99.96%	97.28%	21.02	138.56%	38s	414 100.00%	100.00%	-	-	2.0m
414	415		Random-C	96.89%	47.39%	24.71	145.85%	37s	415 100.00%	99.98%	50.48	319.97%	2.0m
415	416		PIP	1.75%	0.17%	11.23	3.59%	8s	416 2.50%	0.16%	17.68	8.10%	21s
416	417		PIP-D	2.29%	0.22%	11.26	3.96%	8s	417 1.83%	0.23%	17.80	8.84%	23s
417	418		LMask	0.03%	0.01%	11.14	2.75%	6s	418 0.20%	0.05%	17.04	4.24%	15s
418	419		LKH3	-	0.00%	13.25	*	2.6h	419 0.00%	0.00%	20.76	*	15.8h
419	420		VSR-LKH	-	0.00%	13.25	0.05%	6.0h	420 -	0.00%	20.75	- 0.05%	17.2h
420	421		OR-Tools	-	100.00%	-	-	10.6s	421 -	100.00%	-	-	56.8s
421	422		Random-L	100.00%	99.96%	22.2	132.40%	37s	422 100.00%	100.00%	-	-	2.0m
422	423		Random-C	99.90%	94.05%	25.55	135.68%	37s	423 100.00%	100.00%	-	-	2.0m
423	424		PIP	4.83%	2.39%	13.63	3.42%	8s	424 29.34%	21.65%	22.35	12.87%	20s
424	425		PIP-D	4.16%	0.82%	13.79	4.28%	8s	425 13.51%	8.43%	22.90	12.53%	23s
425	426		LMask	0.19%	0.04%	13.57	2.52%	6s	426 0.80%	0.26%	21.63	4.34%	15s

424

5.2 GENERALIZATION AND SCALABILITY

425

426 In Table 3, we further assess the generalization ability of LMask on the well-known TSPTW benchmark
427 (Dumas et al., 1995). Across all problem sizes, LMask surpasses neural baselines in both
428 solution feasibility and quality. Notably, as the problem size increases, the performance of PIP and
429 PIP-D degrades significantly, whereas LMask remains robust, demonstrating strong generalization
430 across problem sizes. Additional experiments with varying maximum time window widths in Appendix E
431 further confirm the generalization ability of LMask. Beyond generalization, LMask also
432 exhibits notable scalability. Results on hard TSPTW-500 in Appendix E validate its scalability.

Table 3: Results on the TSPTW benchmark.

432
433

Nodes	$n = 20$			$n = 40$			$n = 60$			$n = 80$		
Method	Infeas.	Obj.	Gap	Infeas.	Obj.	Gap	Infeas.	Obj.	Gap	Infeas.	Obj.	Gap
PIP	5%	337.00	5.2%	45%	428.09	4.6%	20%	580.25	11.5%	22.2%	644.43	8.7%
PIP-D	5%	336.63	5.2%	25%	460.27	6.3%	40%	608.67	13.1%	66.7%	662.67	12.0%
LMask	5%	332.74	3.9%	10%	450.44	3.7%	0%	543.50	4.4%	11.1%	625.25	5.1%

439
440

5.3 ADDITIONAL ANALYSIS

Backtracking vs Lookahead. Table 4 shows results across different lookahead steps. With TSL, LMask attains a zero solution infeasibility rate. Even under the less accurate SSL, LMask drives the infeasibility rate down to the second lowest level by allocating a larger backtracking budget. However, PIP and PIP-D exhibit unacceptably high infeasibility rates under SSL. Increasing the lookahead step from 2 to 3 induces an order of magnitude rise in inference time while yielding only marginal gains and the outcomes remain inferior to LMask under SSL with $R = 700$. These results demonstrate that backtracking combined with a lightweight lookahead initialization is more efficient than methods that rely exclusively on deeper lookaheads. Figure 4 in Appendix E further shows how infeasibility and inference time vary with the backtracking budget under different initialization strategies.

Table 4: Comparison between backtracking and lookahead on the hard TSPTW-100 dataset.

Lookahead Step	Method	Sol. Infeas.	Time
1	PIP	100.00%	13s
	PIP-D	79.86%	16s
	LMask ($R = 700$)	5.63%	31s
2	PIP	31.74%	28s
	PIP-D	13.60%	31s
	LMask ($R = 300$)	0.00%	18s
3	PIP	26.87%	35m
	PIP-D	11.62%	35m

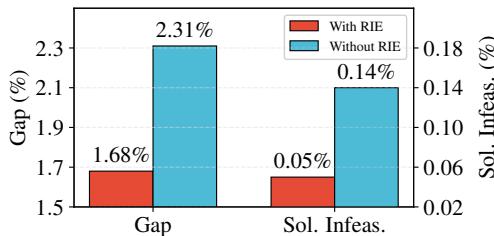


Figure 2: Effect of RIE.

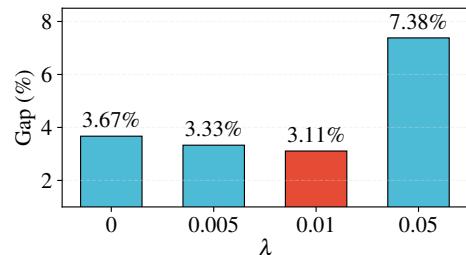


Figure 3: Effect of entropy term.

467
468
469
470

Refinement intensity embedding. Figure 2 presents the results on medium TSPTW-50 with and without RIE. The results confirm that the inclusion of RIE leads to a substantial reduction in optimality gap. Concurrently, it also fosters a tangible improvement in solution feasibility.

471
472
473
474
475
476

Effect of entropy term. In Figure 3, we report the results on easy TSPTW-100 for models trained with different entropy coefficients λ . The optimality gap exhibits a non-monotonic pattern. It decreases as λ increases from 0 to 0.01, achieving the best performance at $\lambda = 0.01$, but then rises significantly at $\lambda = 0.05$. This reflects the intrinsic trade-off between exploration and concentration in the probabilistic model, and suggests that choosing an appropriate entropy coefficient can improve solution optimality. This observation also aligns with our theoretical analysis in Section 4.2.

477
478

6 CONCLUSION

479
480
481
482
483
484
485

In this paper, we propose a novel framework, LMask, for solving hard-constrained routing problems by introducing innovative masking mechanisms. By addressing feasibility through lazy masking, our approach can generate feasible solutions efficiently through the transformer-based model with RIE. We provide theoretical guarantees demonstrating that our approach preserves both feasibility and optimality. Extensive experiments on TSPTW and TSPDL reveal that LMask achieves state-of-the-art feasibility rates and solution quality. Although our current framework is only applied to limited problem types, future work may explore its extension to more general combinatorial optimization problem with simultaneously reduced infeasibility and the solution gap.

486 REFERENCES
487

488 Luca Accorsi and Daniele Vigo. A fast and scalable heuristic for the solution of large-scale capacitated
489 vehicle routing problems. *Transportation Science*, 55(4):832–856, 2021.

490 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
491 learning to align and translate. In *International Conference on Learning Representations*, 2015.

492 Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
493 optimization with reinforcement learning. In *International Conference on Machine Learning
(Workshop)*, 2017.

494

495 Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
496 Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. RL4CO: an extensive reinforcement
497 learning for combinatorial optimization benchmark. *arXiv preprint arXiv:2306.17100*, 2023.

498

499 Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
500 Tierney, and Jinkyoo Park. RouteFinder: Towards foundation models for vehicle routing problems.
501 In *ICML 2024 Workshop on Foundation Models in the Wild (Oral)*, 2024.

502

503 Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaxin Wu, and Jie Zhang. Learning
504 to handle complex constraints for vehicle routing problems. In *Advances in Neural Information
505 Processing Systems*, 2024.

506 Cheng Chen, Ruitao Chen, Tianyou Li, Ruichen Ao, and Zaiwen Wen. Monte Carlo policy gradient
507 method for binary optimization. *arXiv preprint arXiv:2307.00783*, 2023.

508

509 Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, and Weinan Zhang. Looking
510 ahead to avoid being late: Solving hard-constrained traveling salesman problem. *arXiv preprint
511 arXiv:2403.05318*, 2024.

512

513 Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
514 Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. In
515 *Advances in Neural Information Processing Systems*, 2022.

516

517 William J Cook. *In pursuit of the traveling salesman: mathematics at the limits of computation*.
Princeton university press, 2015.

518

519 Rodrigo Ferreira Da Silva and Sebastián Urrutia. A general VNS heuristic for the traveling salesman
520 problem with time windows. *Discrete Optimization*, 7(4):203–211, 2010.

521

522 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-salesman
523 problem. *Journal of the operations research society of America*, 2(4):393–410, 1954.

524

525 George B Dantzig and John H Ramser. The truck dispatching problem. *Management science*, 6(1):
80–91, 1959.

526

527 Ocotlán Díaz-Parra, Jorge A Ruiz-Vanoye, Beatriz Bernábe Loranca, Alejandro Fuentes-Penna, and
528 Ricardo A Barrera-Cámarra. A survey of transportation problems. *Journal of Applied Mathematics*,
529 2014(1):848129, 2014.

530

531 Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
532 Bisimulation quotienting for generalizable neural combinatorial optimization. In *Advances in
533 Neural Information Processing Systems*, 2023.

534

535 Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
536 Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In
537 *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
538 mining*, pp. 3054–3063, 2020.

539

Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal algorithm for
the traveling salesman problem with time windows. *Operations research*, 43(2):367–371, 1995.

Vincent Furnon and Laurent Perron. Or-tools routing library, 2024. URL <https://developers.google.com/optimization/routing/>.

540 Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
 541 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.
 542

543 Mohamed Hibat-Allah, Estelle M Inack, Roeland Wiersema, Roger G Melko, and Juan Carrasquilla.
 544 Variational neural annealing. *Nature Machine Intelligence*, 3(11):952–961, 2021.
 545

546 André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
 547 optimization problems. In *International Conference on Learning Representations*, 2022.
 548

549 Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers for
 550 vehicle routing problems. In *The Thirteenth International Conference on Learning Representations*,
 551 2025.
 552

553 Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
 554 technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.
 555

556 Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural
 557 combinatorial optimization. In *Advances in Neural Information Processing Systems*, 2022.
 558

559 Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
 560 problem and related algorithms for logistics distribution: A literature review and classification.
 561 *Operational research*, 22(3):2033–2062, 2022.
 562

563 Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
 564 *International Conference on Learning Representations*, 2018.
 565

566 Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
 567 gramming for vehicle routing problems. In *International conference on integration of constraint
 568 programming, artificial intelligence, and operations research*. Springer, 2022.
 569

570 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 571 POMO: Policy optimization with multiple optima for reinforcement learning. In *Advances in
 572 Neural Information Processing Systems*, 2020.
 573

574 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
 575 learning. *Predicting structured data*, 1(0), 2006.
 576

577 Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. CaDA: Cross-problem routing solver
 578 with constraint-aware dual-attention. *arXiv preprint arXiv:2412.00346*, 2024.
 579

580 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
 581 heavy decoder: Toward large scale generalization. In *Advances in Neural Information Processing
 582 Systems*, 2023.
 583

584 Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
 585 of routing problems with flexible neural k-opt. In *Thirty-seventh Conference on Neural Information
 586 Processing Systems*, 2023.
 587

588 MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforcement
 589 learning for solving the vehicle routing problem. In *Advances in Neural Information Processing
 590 Systems*, 2018.
 591

592 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 2006.
 593

594 Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
 595 attention model for vehicle routing problems. In *Artificial Intelligence Algorithms and Applications:
 596 11th International Symposium, ISICA 2019, Guangzhou, China, November 16–17, 2019, Revised
 597 Selected Papers 11*, pp. 636–650. Springer, 2020.
 598

599 Mark S Pinsker. Information and information stability of random variables and processes. *Holden-
 600 Day*, 1964.
 601

602 Jørgen Glomvik Rakke, Marielle Christiansen, Kjetil Fagerholt, and Gilbert Laporte. The traveling
 603 salesman problem with draft limits. *Computers & Operations Research*, 39(9):2161–2167, 2012.
 604

594 Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
 595 annealing on graphs for combinatorial optimization. In *Advances in Neural Information Processing*
 596 *Systems*, volume 36, pp. 63907–63930, 2023.

597

598 Martin WP Savelsbergh. Local search in routing problems with time windows. *Annals of Operations*
 599 *research*, 4:285–305, 1985.

600 David Silver, Guy Lever, Nicolas Heess, Thomas Degrif, Daan Wierstra, and Martin Riedmiller.
 601 Deterministic policy gradient algorithms. In *International conference on machine learning*, 2014.

602

603 Yang Song and Diederik P Kingma. How to train your energy-based models. *arXiv preprint*
 604 *arXiv:2101.03288*, 2021.

605 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
 606 In *Advances in Neural Information Processing Systems*, 2014.

607

608 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

609 Qiaoyue Tang, Yangzhe Kong, Lemeng Pan, and Choonmeng Lee. Learning to solve soft-constrained
 610 vehicle routing problems with lagrangian relaxation. *arXiv preprint arXiv:2207.09860*, 2022.

611

612 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 613 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 614 *Processing Systems*, 2017.

615 Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
 616 neighborhood. *Computers & Operations Research*, 140:105643, 2022.

617

618 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
 619 D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 620 2015.

621 Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
 622 *INFORMS Journal on Computing*, 2024.

623

624 Jiongzheng Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Reinforced lin–kernighan–
 625 helsgaun algorithms for the traveling salesman problems. *Knowledge-Based Systems*, 260:110144,
 626 2023.

627 Jianan Zhou, Zhiguang Cao, Yaxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE:
 628 Multi-task vehicle routing solver with mixture-of-experts. In *International Conference on Machine*
 629 *Learning*, 2024.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650 **LMask: Learn to Solve Constrained Routing Problems**

651

652 with Lazy Masking (Appendix)

653

654 A COMBINATORIAL OPTIMIZATION FORMULATION OF ROUTING PROBLEMS

655 A.1 TSPTW AND TSPDL FORMULATION

656 The traveling salesman problem with time windows (TSPTW) is a well-known combinatorial optimization problem that extends the classic traveling salesman problem (TSP) by introducing additional time window constraints. The objective of TSPTW is to find the shortest route for a salesman, starting and ending at a designated depot, and visiting a given set of customers exactly once. Let node 0 represent the depot and $V_c := \{1, 2, \dots, n\}$ represent the set of customer nodes. Each customer $i \in V_c$ has an associated time window $[e_i, l_i]$ during which it must be served. Early arrivals are allowed, meaning that the salesman can arrive at node i before the ready time e_i . However, in this case the salesman has to wait until service can begin at node i . This problem can be formulated as:

$$\begin{aligned} \min \quad & f(\pi; \mathcal{P}) = \sum_{i=1}^n \|x_{\pi_i} - x_{\pi_{i+1}}\| + \|x_{\pi_{n+1}} - x_{\pi_1}\| \\ \text{s.t.} \quad & c_i(\pi; \mathcal{P}) = \tau_{i+1} - l_{\pi_{i+1}} \leq 0, \quad i = 1, \dots, n, \\ & d_i(\pi; \mathcal{P}) = \sum_{t=1}^{n+1} \mathbb{1}_{\pi_t=i} - 1 = 0, \quad i = 1, \dots, n, \end{aligned} \quad (4)$$

657 where τ_{i+1} represents the time to begin service at node π_{i+1} in route π . This time is derived recursively: $\tau_{i+1} = \max(\tau_i + w_{\pi_i, \pi_{i+1}}, e_{\pi_{i+1}})$, $i = 1, \dots, n$, with $\tau_1 = 0$. Here $w_{\pi_i, \pi_{i+1}}$ is the total duration from π_i to π_{i+1} , which includes both the service time at π_i and the travel time from π_i to π_{i+1} .

658 The traveling salesman problem with draft limits (TSPDL) frequently arises in marine transportation scenarios, where the load-carrying limits of vessels must be respected. In this problem, node 0 serves as the depot, and $V_c := \{1, 2, \dots, n\}$ represents the set of port nodes. Each port $i \in V_c$ is associated with a demand $q_i > 0$ and a draft limit D_i . The draft limit D_i at port i specifies the maximum cumulative load a vessel can carry after visiting that port. The depot at node 0 is assumed to have zero demand, meaning $q_0 = 0$. This problem can be formulated as:

$$\begin{aligned} \min \quad & f(\pi; \mathcal{P}) = \sum_{i=1}^n \|x_{\pi_i} - x_{\pi_{i+1}}\| + \|x_{\pi_{n+1}} - x_{\pi_1}\| \\ \text{s.t.} \quad & c_i(\pi; \mathcal{P}) = \delta_{i+1} - D_{\pi_{i+1}} \leq 0, \quad i = 1, \dots, n, \\ & d_i(\pi; \mathcal{P}) = \sum_{t=1}^{n+1} \mathbb{1}_{\pi_t=i} - 1 = 0, \quad i = 1, \dots, n, \end{aligned} \quad (5)$$

659 where δ_{i+1} denotes the accumulated load after visiting node π_{i+1} in route π . The accumulated load 660 can be calculated as $\delta_{i+1} = \sum_{t=1}^{i+1} q_{\pi_t}$.

661 A.2 FEASIBILITY DILEMMA IN TSPTW

662 Bi et al. (2024) point out that the core of feasibility masking in neural constructive solvers is to 663 filter out invalid actions that violate constraints, based on the assumption that the global feasibility 664 can be decomposed into the feasibility of each node selection step, and that ground truth masks 665 are obtainable for each step. We describe this issue more formally using the notation defined in 666 Section 3.1. For simple constraints in other routing problems, there always exists a feasible action 667 for each step. For example, at each step in CVRP, it is possible to return to the depot to perform an 668

action that satisfies the capacity constraints. This indicates that the potential set S can be precisely determined, enabling an efficient masking technique to ensure the feasibility. Since $S \neq \emptyset$ at each step, a valid action is always available. This characteristic ensures that the solution space remains connected, avoiding situations where no valid action can be performed due to capacity violations.

However, not all constraints can precisely determine the potential set S , which may even be empty at certain decision steps. In TSPTW, nodes are masked out if they have been visited or cannot be visited before their time windows close. The feasibility of selecting a node at a particular step impacts the current time, thereby affecting all subsequent selections due to the interdependence imposed by time windows constraints. Therefore, focusing solely on the local feasibility does not guarantee overall feasibility. Once a node is selected, the decision becomes irreversible, potentially leading to infeasible situations after several steps. Nevertheless, it is impractical to compute full global feasibility to obtain the exact potential set S , which is typically considered an NP-hard problem. There is a dilemma between solution feasibility and computational costs under these complex constraints.

B TRAINING DETAILS

In this section, we elaborate on the formulation of the penalty function $\Psi_\rho(\pi; \mathcal{P})$ and the policy gradient algorithm used for training p_θ .

B.1 PENALTY FUNCTION FORMULATION

The penalty function $\Psi_\rho(\pi; \mathcal{P})$ is designed to guide the policy towards feasible solutions by penalizing constraint violations. It combines the primary objective function $f(\pi; \mathcal{P})$ with terms representing the severity of constraint violations.

For TSPTW, given a complete route $\pi = (\pi_1 = 0, \pi_2, \dots, \pi_T)$, let τ_t denote the time to begin service at node π_t in the route π and l_{π_t} denote the due time of π_t , for $t = 1, 2, \dots, T$. The penalty function is defined as

$$\Psi_\rho(\pi; \mathcal{P}) = f(\pi; \mathcal{P}) + \rho \sum_{t=1}^T \max(\tau_t - l_{\pi_t}, 0).$$

Here, the term $\sum_{t=1}^T \max(\tau_t - l_{\pi_t}, 0)$ quantifies the total amount by which time windows are violated.

Similarly, for TSPDL, we consider a route $\pi = (\pi_1 = 0, \pi_2, \dots, \pi_T)$. Let δ_t represent the accumulated load after visiting node π_t and D_{π_t} denote the draft limit of node π_t , for $t = 1, 2, \dots, T$. The penalty function for TSPDL is formulated as

$$\Psi_\rho(\pi; \mathcal{P}) = f(\pi; \mathcal{P}) + \rho \sum_{t=1}^T \max(\delta_t - D_{\pi_t}, 0).$$

Here $\sum_{t=1}^T \max(\delta_t - D_{\pi_t}, 0)$ represents the total excess load beyond the specified draft limits.

B.2 TRAINING ALGORITHM

The training objective, as introduced in the main text, is formulated as

$$\min \mathbb{E}_{\pi \sim p_\theta(\cdot; \mathcal{P})} [\Psi_\rho(\pi; \mathcal{P}) + \lambda \log p_\theta(\pi; \mathcal{P})], \quad (6)$$

which is expressed in the form of an expectation. Hence we can minimize it by various stochastic policy gradient methods. It is well known that the policy gradient of (6) is given by

$$\mathbb{E}_{\pi \sim p_\theta(\cdot; \mathcal{P})} [A(\pi; \mathcal{P}) \nabla_\theta \log p_\theta(\pi; \mathcal{P})],$$

where $A(\pi; \mathcal{P}) := \Psi_\rho(\pi; \mathcal{P}) - b(\mathcal{P}) + \lambda \log p_\theta(\pi; \mathcal{P})$ denotes the advantage function and $b(\mathcal{P})$ is a constant with respect to the parameter θ , referred to the baseline. We then utilize the Monte Carlo method to estimate the policy gradient. Specifically, we sample N routes $\{\pi^j\}_{j=1}^N$ and then estimate the expectation with sample average

$$\hat{g}(\theta; \mathcal{P}) = \frac{1}{N} \sum_{j=1}^N A(\pi^j; \mathcal{P}) \nabla_\theta \log p_\theta(\pi^j; \mathcal{P}).$$

In routing problems, empirically, a shared baseline has the desirable effect of reducing variance in the sample estimate for the policy gradient, as demonstrated in [Kwon et al. \(2020\)](#). This shared baseline writes $b(\mathcal{P}) = \frac{1}{N} \sum_{j=1}^N \Psi_\rho(\pi^j; \mathcal{P})$.

So far, we have described how to train the policy p_θ on a given instance \mathcal{P} . The training can be extended to a dataset of instances, as shown in [Algorithm 2](#).

Algorithm 2 LMask training procedure

Input: data distribution \mathcal{D} , neural network p_θ , number of training steps K , backtracking budget R .
for $k = 1, \dots, K$ **do**
 Sample a batch of instances $\{\mathcal{P}_i\}_{i=1}^B$ from the data distribution \mathcal{D} .
 Employ the LazyMask algorithm with backtracking budget R to sample N routes $\{\pi^{ij}\}_{j=1}^N$ from p_{θ^k} for each instance \mathcal{P}_i , where $i = 1, \dots, B$.
 Compute the stochastic gradient:

$$\hat{g}(\theta^k) = \frac{1}{BN} \sum_{i=1}^B \sum_{j=1}^N A(\pi^{ij}; \mathcal{P}_i) \nabla_\theta \log p_\theta(\pi^{ij}; \mathcal{P}_i) |_{\theta=\theta^k}.$$

 Update θ^k using $\hat{g}(\theta^k)$ with SGD or ADAM optimizer.
end for

C MODEL ARCHITECTURE

LMask adopts an encoder-decoder architecture inherited from POMO ([Kwon et al., 2020](#)). The encoder transforms static features of a problem instance into node embeddings through self-attention mechanism. Based on node embeddings, dynamic features of the current partial route and the refinement intensity embedding, the decoder then auto-regressively generates the conditional probability through the cross-attention mechanism.

C.1 MULTI-HEAD ATTENTION

An attention function takes a set of queries and a separate set of keys and values as input, and outputs a weighted sum of values for each query. Self-attention means that the query set and the key-value set come from the same sequence, while cross-attention means the query set and the key-value set comes from two different sequences. These queries, keys and values are packed into matrices $Q \in \mathbb{R}^{n_1 \times d}$, $K \in \mathbb{R}^{n_2 \times d}$, $V \in \mathbb{R}^{n_2 \times d}$ for implementation efficiency, where n_1 is the number of queries, n_2 is the number of key-value pairs and d is the hidden dimension. Firstly, attention weights are computed by scaled dot-product between the queries and keys, followed by a softmax function

$$A = \text{Softmax} \left(\frac{QK^T}{\sqrt{d}} + M \right),$$

where the softmax function should be understood in a row-wise manner with $\text{Softmax}(\mathbf{x})_i := \frac{\exp(x_i)}{\sum_{j=1}^N \exp(x_j)}$ for an N dimensional vector \mathbf{x} , and M is an optional attention mask that prevents attending to certain positions, which can be done by setting elements to $-\infty$. Then, the attention output is calculated as the sum of the values, weighted by the attention weights: $Z = AV$. The whole attention function is defined by

$$\text{Attention}(Q, K, V; M) = \text{Softmax} \left(\frac{QK^T}{\sqrt{d}} + M \right) V.$$

Multi-head attention further takes information from different representation subspaces into consideration. It starts by linearly projecting the queries, keys, and values onto H subspaces. Subsequently, the attention function is performed on each subspace in parallel. Lastly, these attention outputs are concatenated and projected back to the original embedding space. In summary, the multi-head attention operation can be formulated as

$$\text{MHA}(Q, K, V; M) = [Z_1, Z_2, \dots, Z_H] W^O, \quad (7)$$

810 where

811

$$812 \quad Z_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V; M), \quad i = 1, \dots, H,$$

813 and W^O, W_i^Q, W_i^K, W_i^V are learnable projection matrices. The general formulation includes the
 814 mask M to support masked attention scenarios. In cases where no masking is applied (i.e., M is ef-
 815 fectively a zero matrix or conceptually omitted), the operation is often simplified as $\text{MHA}(Q, K, V)$.
 816

817

818 C.2 ENCODER

819 The encoder produces embeddings of all input nodes. Static features of the problem instance are first
 820 projected to the embedding space to obtain initial embeddings $\mathbf{h}^{(0)} \in \mathbb{R}^{(n+1) \times d}$. These static features
 821 vary depending on the specific problem considered. For TSPTW, they include node coordinates and
 822 time windows, while for TSPDL, they include node coordinates, demands, and draft limits. Then the
 823 embeddings are updated through a stack of L attention layers, each consisting of two sublayers, one
 824 multi-head attention sublayer and one feed-forward sublayer. Furthermore, residual connections and
 825 instance normalization are employed. A single attention layer can be formulated as
 826

827

$$828 \quad \hat{\mathbf{h}}^\ell = \text{IN} \left(\mathbf{h}^\ell + \text{MHA}^\ell(\mathbf{h}^\ell, \mathbf{h}^\ell, \mathbf{h}^\ell) \right), \quad \ell = 0, \dots, L-1,$$

829

$$830 \quad \mathbf{h}^{\ell+1} = \text{IN} \left(\hat{\mathbf{h}}^\ell + \text{FFN}^\ell(\hat{\mathbf{h}}^\ell) \right), \quad \ell = 0, \dots, L-1,$$

831 where IN represents the instance normalization, MHA is the multi-head attention, as given by
 832 (7), and the fully-connected feed forward network FFN^ℓ is applied in a row-wise manner with
 833 $\text{FFN}^\ell(\mathbf{x}) = \max(\mathbf{x}W_1^\ell + b_1^\ell, 0) W_2^\ell + b_2^\ell$ for a row vector \mathbf{x} .
 834

835

836 C.3 DECODER

837 The decoder auto-regressively generates the conditional probability over available nodes based on the
 838 node embeddings and the current partial route. At decision step t , $1 \leq t \leq T-1$, a partial route $\pi_{1:t}$
 839 is assumed to have been constructed.

840 Previous works (Kwon et al., 2020; Berto et al., 2024) begin by constructing a query through a
 841 projection of the current node embedding h_{π_t} and dynamic features s_t into the embedding space:
 842 $q_t = h_{\pi_t}W_c^1 + s_tW_c^2$. This is represented as the sum of the node embedding and the state embedding.
 843 The dynamic features s_t typically aggregate information accumulated up to the current decision step t .
 844 For instance, in TSPTW, s_t represents the current time, and in TSPDL, s_t represents the current load.
 845 However, in the presence of backtracking, relying solely on such features can lead to representation
 846 ambiguities. The model state, defined only by h_{π_t} and s_t , becomes invariant to the specific search
 847 trace, potentially hindering the model’s ability to learn meaningful distinctions.

848 To address this limitation, we introduce the refinement intensity embedding (RIE). The RIE enhances
 849 the model’s awareness of the search trace by explicitly encoding information about refinement
 850 intensity. The refinement intensity is captured by a set of dedicated features, denoted by ζ_t , which are
 851 subsequently projected to form the RIE $\zeta_t W_c^3$. ζ_t is conceptualized from two distinct perspectives.
 852 First, the local feature, represented by φ_t , quantifies c_t , the number of refinements applied to the
 853 overestimation set $\hat{S}(\pi_{1:t})$ corresponding the current partial route $\pi_{1:t}$. This count c_t is transformed
 854 into a capped one-hot vector $\varphi_t \in \{0, 1\}^N$ of predefined length N : if $c_t < N$, the $(c_t + 1)$ -th element
 855 of φ_t is 1; otherwise, the N -th element is 1, with all other elements being 0. Second, the global
 856 refinement status, captured by ξ_t , is a binary feature indicating whether u_t , the total backtracking
 857 count accumulated during the decoding process, has reached the backtracking budget R . This is
 858 defined as $\xi_t = [1, 0]$ if $u_t < R$, and $\xi_t = [0, 1]$ if $u_t \geq R$. These two types of features are
 859 concatenated to yield the overall refinement intensity features $\zeta_t = [\varphi_t, \xi_t] \in \mathbb{R}^{N+2}$. The query q_t is
 860 then constructed by incorporating the RIE: $q_t = h_{\pi_t}W_c^1 + s_tW_c^2 + \zeta_t W_c^3$.

861 To ensure that the subsequent attention mechanism and probability calculation only consider valid
 862 next nodes, we define a mask $M_t \in \{0, -\infty\}^{n+1}$. This mask vector is derived from $\hat{S}(\pi_{1:t})$ such
 863 that $M_t(i) = 0$ if node i belongs to $\hat{S}(\pi_{1:t})$, and $M_t(i) = -\infty$ otherwise. Using this mask, a context
 864 embedding, h_t^c , is subsequently obtained via a masked multi-head cross-attention layer. This layer

864 employs q_t as the query, with static node embeddings \mathbf{h}^L projected by W_g^K and W_g^V to serve as keys
 865 and values respectively, and incorporating the mask M_t :

$$867 \quad h_t^c = \text{MHA}(q_t, \mathbf{h}^L W_g^K, \mathbf{h}^L W_g^V; M_t).$$

868 Next, the logits are computed with a single attention head:

$$870 \quad z = \frac{h_t^c (\mathbf{h}^L W^K)^T}{\sqrt{d}}.$$

873 Finally, the logits z are transformed into a conditional probability distribution over available nodes

$$874 \quad p_\theta(\cdot \mid \pi_{1:t}; \mathcal{P}) = \text{Softmax}(C \tanh(z + M_t)),$$

876 where $C > 0$ is a clipping constant for the \tanh function.

878 D PROOF OF THEORETICAL RESULTS

880 D.1 PROOF OF PROPOSITION 4.1

882 For clarity, we restate Proposition 4.1 here before providing the proof.

884 **Proposition 4.1.** *Suppose that problem (1) is feasible, and that the backtracking budget in Algorithm 1
 885 is set to $R = +\infty$. Then, i) any solution π generated by Algorithm 1 is feasible; ii) Algorithm 1
 886 assigns a non-zero probability to generate any feasible solution π .*

888 *Proof.* i) Let the route π be generated by Algorithm 1. Since $\hat{S}(\pi_{1:T-1})$ only needs to validate the
 889 feasibility of the last node π_T , the estimation $\hat{S}(\pi_{1:T-1})$ is exact, that is, $S(\pi_{1:T-1}) = \hat{S}(\pi_{1:T-1})$. It
 890 follows that $\pi_T \in S(\pi_{1:T-1})$. By the definition of $S(\pi_{1:T-1})$, this implies that π is a feasible route.

891 ii) Let π be a feasible route. For $t = 1, \dots, T-1$, the definition of $S(\pi_{1:t})$ yields $\pi_{t+1} \in S(\pi_{1:t})$.
 892 Since $S(\pi_{1:t}) \subseteq \hat{S}(\pi_{1:t})$, it follows that $\pi_{t+1} \in \hat{S}(\pi_{1:t}) \neq \emptyset$ for $t = 1, \dots, T-1$. Therefore, the
 893 Algorithm 1 assigns a probability $p_\theta(\pi_{t+1} \mid \pi_{1:t}; \mathcal{P}) > 0$ to generate π_{t+1} . The total probability of
 894 generating the complete route π is strictly positive, i.e., $p_\theta(\pi) = \prod_{t=1}^{T-1} p_\theta(\pi_{t+1} \mid \pi_{1:t}; \mathcal{P}) > 0$. Thus,
 895 route π can be generated by Algorithm 1.

896 This completes the proof. □

899 D.2 PROOF OF THEOREM 4.3

901 For clarity, we restate Theorem 4.3 here before providing the proof.

902 **Theorem 4.3.** *Suppose that Assumption 4.2 holds. We define $\Delta(\mathcal{P}) := \min_{\pi \in C \setminus \Pi^*} f(\pi; \mathcal{P}) - f^*(\mathcal{P})$.
 903 Then, for any $\epsilon > 0$ and $\Delta(\mathcal{P}) \geq \lambda > 0$, the following inequality holds:*

$$905 \quad \mathbb{P}_{p_{\theta^*(\lambda)}}(f(\pi; \mathcal{P}) \geq f^*(\mathcal{P}) + \epsilon) \leq \frac{|C| \Delta(\mathcal{P}) e^{-\Delta(\mathcal{P})/\lambda}}{|\Pi^*| \max\{\epsilon, \Delta(\mathcal{P})\}} + \sqrt{\frac{c}{2\lambda}}.$$

908 *Proof.* For convenience, we omit all notations \mathcal{P} in this proof. Let π denote a random variable drawn
 909 from the distribution $p_{\theta^*(\lambda)}$, and define the event $A := \{f(\pi) \geq f^* + \epsilon\}$. We aim to bound the
 910 probability of the event A . To this end, let us first bound the difference in probabilities of the A under
 911 the distribution $p_{\theta^*(\lambda)}$ and q_λ using the KL divergence. Then, we apply Markov's inequality to derive
 912 a tail bound on the event probability under q_λ . Finally, using properties of the Gibbs distribution, we
 913 derive a convergence bound that characterizes how this probability behaves as λ decreases.

914 1) We begin by introducing Pinsker's inequality (Pinsker, 1964), which bounds the total variation
 915 (TV) distance in terms of the KL divergence. Given two distributions P and Q over a finite domain
 916 D , the TV distance is defined as

$$917 \quad \text{TV}(P, Q) := \max_{E \subseteq D} |P(E) - Q(E)|.$$

918 where $E \subseteq D$ represents any measurable event of the domain D . Pinsker's inequality states that the
 919 TV distance and KL divergence satisfy the following inequality:
 920

$$921 \quad \text{TV}(P, Q) \leq \sqrt{\frac{1}{2} \text{KL}(P \parallel Q)}.$$

923 Using Pinsker's inequality, we can bound the probability difference for the given event A under two
 924 given distributions $p_{\theta^*}(\lambda)$ and q_λ :

$$926 \quad |p_{\theta^*}(\lambda)(A) - q_\lambda(A)| \leq \text{TV}(p_{\theta^*}(\lambda), q_\lambda) \leq \sqrt{\frac{1}{2} \text{KL}(p_{\theta^*}(\lambda) \parallel q_\lambda)} \leq \sqrt{\frac{\delta(\lambda)}{2}} \leq \sqrt{\frac{c}{2\lambda}}, \quad (8)$$

928 where the first inequality follows from the definition of the TV distance, the second uses Pinsker's
 929 inequality and the last is based on the Assumption 4.2. This result provides a way to control the
 930 discrepancy in the probability of event A under the two distributions $p_{\theta^*}(\lambda)$ and q_λ , in terms of the
 931 approximation error $\delta(\lambda)$.

932 2) Then, we analyze the tail probability of q_λ using Markov's inequality. If X is a nonnegative
 933 random variable and $\epsilon > 0$, then the probability that X is at least a is at most the expectation of X
 934 divided by ϵ :

$$935 \quad \mathbb{P}(X \geq a) \leq \frac{\mathbb{E}X}{\epsilon}.$$

937 Using Markov's inequality, we can give the following tail bound:

$$938 \quad \mathbb{P}_{q_\lambda}(f(\pi) \geq f^* + \epsilon) \leq \frac{\mathbb{E}_{q_\lambda}[f(\pi) - f^*]}{\epsilon}. \quad (9)$$

940 As f is defined over a discrete domain, it has finitely many function values and suboptimality gap
 941 $\Delta > 0$. It can be observed that $q_\lambda(f(\pi) \geq f^* + \epsilon) = q_\lambda(f(\pi) \geq f^* + \Delta)$ when $0 < \epsilon \leq \Delta$. We
 942 can conclude the following inequality from (9):

$$943 \quad \mathbb{P}_{q_\lambda}(f(\pi) \geq f^* + \epsilon) \leq \frac{\mathbb{E}_{q_\lambda}[f(\pi) - f^*]}{\max\{\epsilon, \Delta\}}. \quad (10)$$

946 3) Since q_λ converges to the target distribution q^* as $\lambda \rightarrow 0$, we analyze the asymptotic behavior of
 947 the expected suboptimality gap $\mathbb{E}_{q_\lambda}[f(\pi) - f^*]$ as λ decreases. Specifically, we write the expectation:

$$949 \quad \mathbb{E}_{q_\lambda}[f(\pi) - f^*] = \sum_{\pi \in C} q_\lambda(\pi)[f(\pi) - f^*] = \frac{\sum_{\pi \in C} e^{-f(\pi)/\lambda}[f(\pi) - f^*]}{\sum_{\pi \in C} e^{-f(\pi)/\lambda}}. \quad (11)$$

951 The summations over C in the numerator and the denominator can be split into two parts. Observing
 952 that $f(\pi) - f^* = 0$ for all $\pi \in \Pi^*$, we factor out $e^{-f^*/\lambda}$ from both the numerator and denominator
 953 in (11) and obtain that

$$955 \quad \mathbb{E}_{q_\lambda}[f(\pi) - f^*] = \frac{\sum_{\pi \in \Pi^*} e^{-(f(\pi)-f^*)/\lambda}[f(\pi) - f^*] + \sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda}[f(\pi) - f^*]}{\sum_{\pi \in \Pi^*} e^{-(f(\pi)-f^*)/\lambda} + \sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda}} \\ 957 \quad = \frac{\sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda}[f(\pi) - f^*]}{|\Pi^*| + \sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda}}. \quad (12)$$

960 Reviewing that $\Delta := \min_{\pi \in C \setminus \Pi^*} f(\pi) - f^*$ represents the smallest gap between the objective values
 961 of suboptimal solutions and the optimal value, we have $f(\pi) - f^* \geq \Delta > 0$ for all $\pi \in C \setminus \Pi^*$.
 962 Given that the derivative of $xe^{-\lambda x}$ is $(1 - x/\lambda)e^{-x/\lambda}$, it follows that $xe^{-x/\lambda}$ is non-increasing
 963 for $x \geq \lambda$. Consequently, when $\Delta \geq \lambda > 0$, the condition $f(\pi) - f^* \geq \Delta \geq \lambda$ implies that
 964 $e^{-(f(\pi)-f^*)/\lambda}[f(\pi) - f^*] \leq \Delta e^{-\Delta/\lambda}$ for all $\pi \in C \setminus \Pi^*$. The numerator in (12) is bounded as

$$966 \quad \sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda}[f(\pi) - f^*] \leq |C \setminus \Pi^*| \Delta e^{-\Delta/\lambda} \leq |C| \Delta e^{-\Delta/\lambda}, \quad \text{for } \Delta \geq \lambda > 0. \quad (13)$$

968 Meanwhile, the denominator in (12) has the lower bound $|\Pi^*| + \sum_{\pi \in C \setminus \Pi^*} e^{-(f(\pi)-f^*)/\lambda} \geq |\Pi^*|$.
 969 It follows from (12) that

$$971 \quad \mathbb{E}_{q_\lambda}[f(\pi) - f^*] \leq \frac{|C| \Delta e^{-\Delta/\lambda}}{|\Pi^*|}, \quad \text{for } \Delta \geq \lambda > 0. \quad (14)$$

972 4) Finally, combining these inequalities (8), (10) and (14), we derive that
 973

$$974 \mathbb{P}_{p_{\theta^*}(\lambda)}(f(\pi) \geq f^* + \epsilon) \leq \frac{|C| \Delta e^{-\Delta/\lambda}}{|\Pi^*| \max\{\epsilon, \Delta\}} + \sqrt{\frac{c}{2\lambda}}, \quad \text{for } \Delta \geq \lambda > 0. \quad (15)$$

975 This completes the proof. \square
 976

978 E EXPERIMENTS

980 E.1 DATA GENERATION

982 E.1.1 TSPTW

984 The difficulty of a TSPTW instance largely depends on the availability of feasible solutions. Instances
 985 are more challenging when they allow very few feasible tours, making it harder for algorithms to find
 986 valid solutions, while overly feasible instances may lead the policy to overemphasize optimization
 987 and neglect feasibility. A key determinant of difficulty is the width of the time windows assigned
 988 to customer nodes. Narrower time windows reduce the overlap between customer service intervals,
 989 significantly limiting the number of feasible tours and increasing problem complexity.

990 To address these challenges, we adopt a data generation mechanism capable of producing TSPTW in-
 991 stances with easy, medium, and hard levels of difficulty. These levels are determined by systematically
 992 controlling the time window width and other instance-specific parameters, as detailed below:

993 **Easy and medium TSPTW instances.** An expected distance T_n is predefined, which varies
 994 depending on the number of nodes, n . The ready times e_i are sampled from a uniform distribution
 995 $\mathcal{U}[0, T_n]$. Time window widths h_i are sampled from a scaled uniform distribution $\mathcal{U}[\alpha, \beta] \cdot T_n$, where
 996 $0 < \alpha < \beta < 1$ are hyperparameters. The due times l_i are then calculated as $l_i = e_i + h_i$. By
 997 adjusting the hyperparameters α , β , and T_n , TSPTW instances with varying levels of time window
 998 tightness can be generated. Specifically, to generate easy TSPTW instances, we set $\alpha = 0.5$ and
 999 $\beta = 0.75$. For medium TSPTW instances, we use $\alpha = 0.1$ and $\beta = 0.2$. In all cases, customer nodes
 1000 are sampled uniformly within the region $[0, 100]^2$, and T_n is set to $55(n + 1)$.

1001 **Hard TSPTW instances.** Consistent with prior works (Kool et al., 2022; Bi et al., 2024), we adopt a
 1002 generation mechanism inspired by benchmark datasets (Dumas et al., 1995; Da Silva & Urrutia, 2010)
 1003 for hard TSPTW instances. This approach ensures the existence of at least one feasible tour. The core
 1004 data generation procedure begins by sampling customer locations and constructing a random tour.
 1005 Time windows are then defined centered around the arrival times within this random tour. Specifically,
 1006 customer coordinates are uniformly sampled from $[0, 50]^2$, followed by the generation of a random
 1007 permutation π over customers (including the depot) to define a directed route. For each customer
 1008 node π_t in this sequence, the cumulative travel distance d_{π_t} from the depot to π_t along the random
 1009 tour is calculated. Time windows are then constructed around d_{π_t} with a pre-specified maximum
 1010 width w . In benchmark datasets (Dumas et al., 1995; Da Silva & Urrutia, 2010), the maximum time
 1011 window width w typically ranges from 20 to 100. In this study, we select $w = 100$. The ready
 1012 time e_{π_t} is sampled from $d_{\pi_t} - \mathcal{U}[0, w/2]$ and clamped to ensure non-negativity. The due time l_{π_t} is
 1013 similarly sampled from $d_{\pi_t} + \mathcal{U}[0, w/2]$.

1014 For the depot, the ready time is conventionally set to zero, while the due time is left unconstrained
 1015 since it does not affect the feasibility of the TSPTW solution, provided the depot remains reachable
 1016 from all customer nodes.

1017 **Normalization.** To standardize the input and ensure consistency across instances, node coordinates
 1018 are scaled to the range $[0, 1]$ by dividing them by the maximum sample range. Time windows are
 1019 proportionally scaled following this transformation to maintain consistency with the adjusted spatial
 1020 coordinates.

1021 E.1.2 TSPDL

1023 Node coordinates are uniformly sampled from $[0, 1]^2$. Following (Rakke et al., 2012), we assign a
 1024 demand of $q_0 = 0$ to the depot and a demand of $q_i = 1$ to each port node. Given a percentage $\sigma\%$, we
 1025 randomly select $\lfloor (n + 1) \times \sigma\% \rfloor$ nodes with restricting draft limits strictly less than the total demand
 $\sum_{i=0}^n q_i$. Specifically, the draft limits of these selected nodes are randomly generated between 1 and

1026 $n - 1$. The remaining nodes are assigned a draft limit equal to the total demand $\sum_{i=0}^n q_i$, so that their
 1027 draft limits impose no effective constraints.
 1028

1029 To check whether the generated instance admits a feasible solution, we employ the following
 1030 proposition from (Rakke et al., 2012) as a sufficient and necessary condition. If the condition is not
 1031 satisfied, the instance is rejected and regenerated until a feasible one is obtained.
 1032

1033 **Proposition E.1.** (Rakke et al., 2012) *Let $\pi = (\pi_1 = 0, \pi_2, \pi_3, \dots, \pi_{n+1})$ be a solution ordering
 1034 the port nodes $\{1, \dots, n\}$ in ascending order of draft limits: $D_{\pi_2} \leq D_{\pi_3} \leq \dots D_{\pi_{n+1}}$. Then the
 1035 TSPDL instance admits a feasible solution if and only if π is feasible.*
 1036

1037 A larger percentage $\sigma\%$ results in more nodes with restricting draft limits, thereby increasing the
 1038 difficulty of balancing feasibility and optimality. Following (Bi et al., 2024), we set $\sigma\%$ to 75% for
 1039 medium TSPDL datasets and 90% for hard ones.
 1040

E.2 IMPLEMENTATION DETAILS

1041 **Hardware.** All experiments are conducted on a server with NVIDIA Tesla A800 GPUs (80GB) and
 1042 Intel Xeon Gold 6326 CPUs (256GB) at 2.90GHz.
 1043

1044 **Baseline details.** For search-based solvers, including PyVRP, LKH3, VSR-LKH and OR-Tools, we
 1045 run them with 32 CPU cores in parallel as done in (Kool et al., 2018; Zhou et al., 2024). For PIP,
 1046 PIP-D and LMask, we run them on a single GPU with batch size of 2500 at inference time. Below
 1047 we provide implementation details for each baseline.
 1048

- 1049 • PyVRP, a state-of-the-art VRP solver built on top of HGS. We use the default hyperparameters
 1050 and set a time limit of 20 seconds per instance for $n = 50$, and 50 seconds for $n = 100$.
 Note that PyVRP does not support draft limits and is therefore inapplicable to TSPDL.
 1051
- 1052 • LKH3, a strong solver that implements the Lin-Kernighan heuristic for a wide range of
 routing problems. For each instance, we run LKH with 10000 trials and 1 run.
 1053
- 1054 • OR-Tools, a more versatile solver than PyVRP and LKH3. For TSPTW, we use the local
 cheapest insertion as the first solution strategy and the guided local search as the local search
 strategy. As in PyVRP, we set the time limit to 20 seconds for $n = 50$, and 50 seconds for
 1055 $n = 100$. Despite exhaustive testing across all initial solution strategies, OR-Tools fails to
 1056 find any feasible solution for TSPDL within the time limit, consistent with findings in (Bi
 1057 et al., 2024).
 1058
- 1059 • PIP and PIP-D, state-of-the-art neural solvers for TSPTW and TSPDL. To maintain consistency
 1060 with our proposed method and facilitate a fair comparison, we specifically utilize their
 1061 implementations based on POMO. We evaluate PIP and PIP-D using the pretrained models
 1062 and default hyperparameters as provided in their official source code repositories.
 1063
- 1064 • VSR-LKH, a method combining reinforcement learning with LKH3 to solve TSP variants.
 We compile the official source code using its default settings, including the α -measure for
 1065 candidate selection.
 1066
- 1067 • Random heuristics, two simple random heuristics with backtracking implemented to demon-
 strate the importance of the policy parameterized by a neural network. Random-L constructs
 1068 a probability distribution by normalizing the inverse distances from the current node to
 1069 candidate nodes. Random-C constructs a probability distribution by normalizing the inverse
 1070 of due times in TSPTW or draft limits in TSPDL. The sample size is set to 64 and the batch
 1071 size is accordingly set to 1024 for $n = 50$ and 512 for $n = 100$ due to memory limit.
 1072

1073 **Overestimation initialization details.** As mentioned in the main text, we initialize the overestimation
 1074 sets using problem-dependent lookahead strategies, namely single-step lookahead (SSL) and two-step
 1075 lookahead (TSL). For TSPTW, according to the triangle inequality property of travel times, if an
 1076 unvisited node violates the time window constraint at the current step, it will remain infeasible in
 1077 subsequent steps without backtracking. Hence, SSL checks whether any unvisited node exhibits a
 1078 time window violation. If such a node exists, $\hat{S}(\pi_{1:t})$ is initialized as empty, triggering backtracking;
 1079 otherwise, it contains all unvisited nodes. TSL enhances this by tentatively extending the route
 with each candidate node and checking for time window violations among the remaining nodes.
 Nodes whose selection would make some remaining nodes infeasible are excluded, resulting in more

1080 accurate initialization and a notable decrease in backtracking steps. The TSPDL exhibits a similar
 1081 monotonic property. Since the cumulative load increases along a route, any node violating its draft
 1082 limit at a given step will also be infeasible thereafter. Consequently, SSL and TSL for TSPDL are
 1083 implemented analogously by checking for immediate and future draft limit violations, respectively.

1084 **Hyperparameter details.** To ensure a fair comparison, we set the backtracking budget R of LMask
 1085 such that its runtime is comparable to that of neural baselines. The specific backtracking budgets
 1086 used for experiments in Tables 1 and 2 are summarized in Table 5. Our implementation is built upon
 1087 the RL4CO library (Berto et al., 2023). Details of model and training hyperparameters of our main
 1088 experiments are reported in Table 6. Note that the total number of gradient updates is comparable to
 1089 that of neural baselines.

1090 Table 5: Backtracking budget settings across different datasets.
1091

1093 Hardness	1094 TSPTW		1095 TSPDL	
	1096 $n = 50$	1097 $n = 100$	1098 $n = 50$	1099 $n = 100$
1100 Easy	100	150	—	—
1101 Medium	100	200	150	150
1102 Hard	200	300	150	150

1100 Table 6: Experiment hyperparameters. Values with “/” indicate different choices depending on the
 1101 problem size, i.e., on the left are values for $n = 50$ and on the right are values for $n = 100$.
1102

1103 Hyperparameter	1104 Value
<i>Model</i>	
1105 Embedding dimension	128
1106 Number of attention heads	8
1107 Number of encoder layers	6
1108 Normalization	Instance
1109 Feedforward hidden dimension	512
1110 Feedforward structure	MLP
1111 Feedforward activation	ReLU
1112 Tanh clipping	10.0
1113 Refinement intensity feature dimension	7
<i>Training</i>	
1115 Train decode type	Multi-sampling with free starts
1116 Number of samples per instance	50 / 100
1117 Batch size	512 / 64
1118 Training instances per epoch	256,000 / 100,000
1119 Penalty parameter ρ	1
<i>Optimization</i>	
1122 Optimizer	AdamW
1123 Learning rate	3e-4 / 1e-4
1124 Weight decay	1e-6
1125 LR scheduler	MultiStepLR
1126 LR milestones	[900, 950]
1127 LR gamma	0.1
1128 Gradient clip value	1.0
1129 Max epochs	1000

1134
1135

E.3 HYPERPARAMETER STUDY

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

Effect of the backtracking budget. Here we investigate how the backtracking budget R influences the performance of LMask under both SSL and TSL initialization strategies on the hard TSPTW-100 dataset. As shown in Figure 4, for both strategies, inference time exhibits a nearly linear growth with respect to R , with an increase of approximately 2 seconds per 100 additional backtracking budget, demonstrating manageable computational overhead. In contrast, infeasibility rates decrease sharply at small values of R , indicating substantial early-stage gains in feasibility. Notably, using SSL, the instance infeasibility rate approaches zero within approximately 50 seconds, corresponding to $R = 1500$. Under the more accurate TSL strategy, feasibility improves even more rapidly: instance infeasibility effectively vanishes at $R = 100$, requiring only 17 seconds of inference time. These results highlight that larger backtracking budgets substantially improve solution feasibility with modest increases in runtime, and further demonstrate that a more accurate initialization strategy enhances backtracking efficiency.

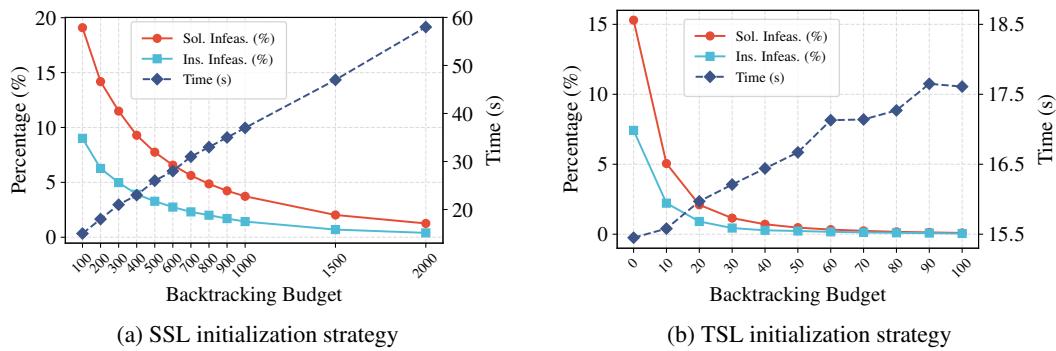


Figure 4: Effect of backtracking budget under different overestimation initialization strategies

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

Effect of the penalty parameter. We analyze the sensitivity of LMask’s performance to the ℓ_1 penalty parameter ρ . The results on the hard TSPDL-50 dataset are presented in Table 7. In our experiments, we tested several fixed values for ρ and a scheduled approach, denoted as ρ^\dagger . For the scheduled approach, the penalty parameter is increased exponentially over the training epochs t according to the schedule $\rho_t = \min(\gamma^t \cdot \rho_0, \rho_{\max})$, with the hyperparameters set to $\gamma = 1.01$, $\rho_0 = 0.5$, and $\rho_{\max} = 2$. Our results show that a small, fixed penalty ($\rho = 0.5$) leads to training instability, resulting in high infeasibility and a large optimality gap. Conversely, large fixed penalty values (e.g., $\rho = 1.5, \rho = 2$) reduce infeasibility but at the cost of an increased optimality gap. The scheduled approach (ρ^\dagger) provides better training stability and strikes an effective balance, achieving low infeasibility rates and a small optimality gap that slightly outperform our default setting of $\rho = 1$.

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184Table 7: Results on the hard TSPDL-50 dataset with different λ during training.

ρ	Sol. Infeas.	Ins. Infeas.	Obj.	Gap
0.5	7.10%	2.45%	13.71	3.97%
1	0.19%	0.04%	13.57	2.52%
1.5	0.07%	0.03%	13.58	2.64%
2	0.02%	0.01%	13.60	2.78%
ρ^\dagger	0.18%	0.00%	13.56	2.48%

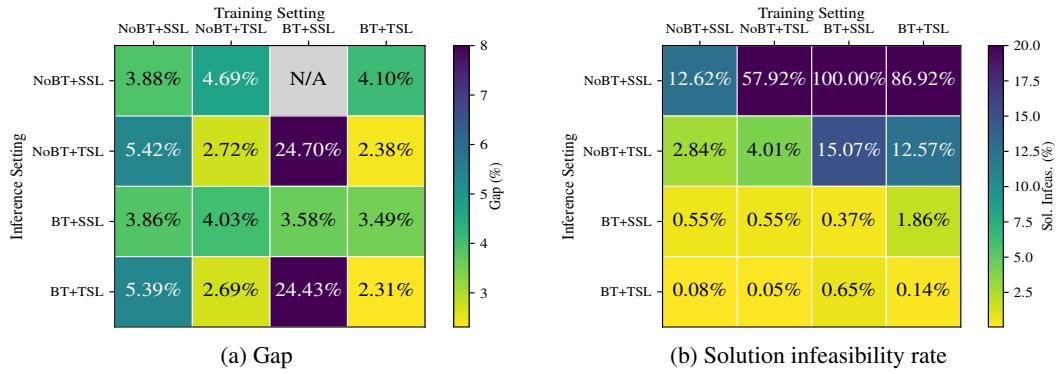
1185
1186
1187

E.4 DISCUSSION ON BACKTRACKING AND OVERESTIMATION SET INITIALIZATION

To thoroughly analyze the individual roles of backtracking and the overestimation set initialization strategy, as well as their interaction, we presented results on medium TSPTW-50 for all 16 combina-

1188 tions of their usage at training and inference in Figure 5. Note that RIE is disabled in this experiment
 1189 to ensure a fair comparison.

1190 We observe that, under TSL, enabling backtracking during training consistently reduces the optimality
 1191 gap across inference settings. While training with backtracking can affect the model’s
 1192 inherent constraint awareness, this is effectively compensated by using backtracking during inference.
 1193 As shown in Figure 5, when applying backtracking with the TSL strategy at inference, enabling
 1194 backtracking during training leads to a notable reduction in the optimality gap (from 2.69% to 2.31%)
 1195 with only a negligible increase in the solution infeasibility rate (from 0.05% to 0.14%). Moreover,
 1196 this slight trade-off is mitigated by our proposed refinement intensity embedding, which further
 1197 reduces the solution infeasibility rate to 0.05% and the optimality gap to 1.68%. We further observe
 1198 that enabling backtracking at inference consistently yields substantial reductions in infeasibility and
 1199 modest improvements in solution quality, regardless of the training configuration. Remarkably, using
 1200 backtracking with less accurate SSL outperforms using TSL without backtracking, highlighting the
 1201 critical role of inference-time backtracking.



1215 Figure 5: Effect of backtracking and overestimation set initialization strategy combinations. BT/NoBT
 1216 denotes with/without backtracking and SSL/TSL denotes single/two-step lookahead.

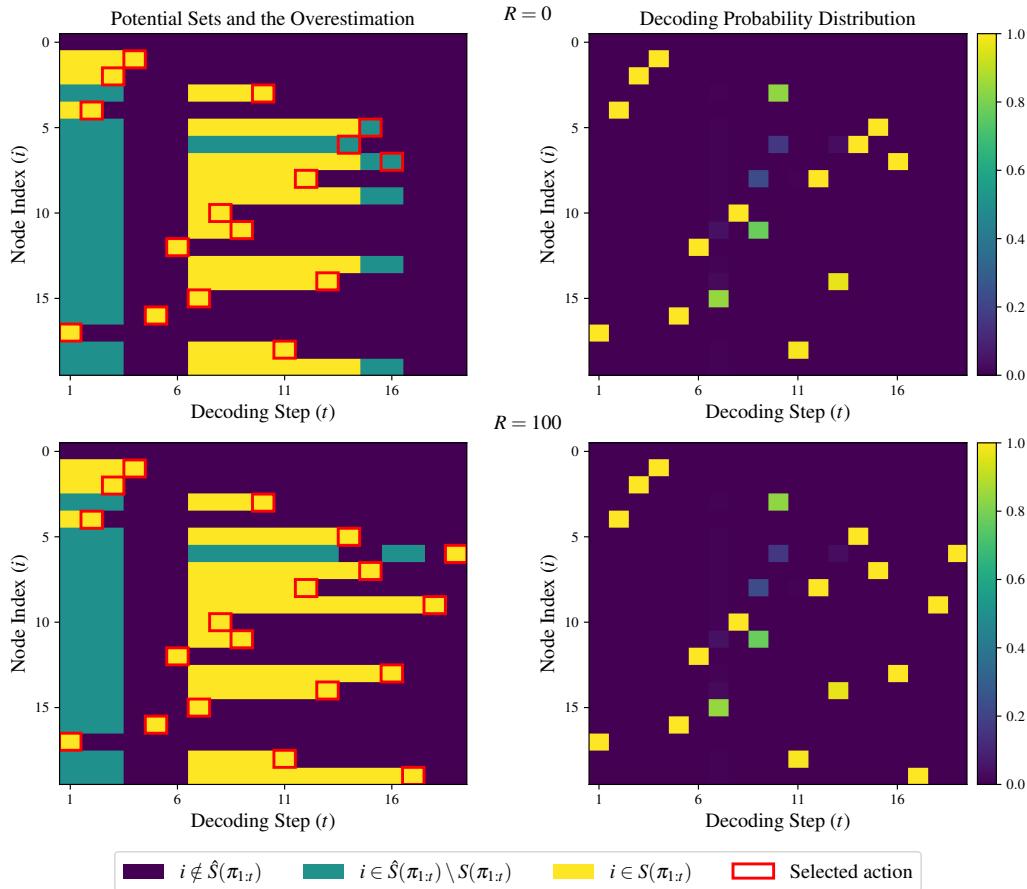
1218 E.5 ANALYSIS OF THE EFFICIENCY AND FAILURE MODES OF LMASK

1219 In this subsection, we provide an in-depth analysis of the circumstances under which LMask is
 1220 efficient and those in which it is not. Recall that precisely obtaining the potential set S is sometimes
 1221 computationally intractable. Fortunately, our goal is solely to construct feasible solutions, and we use
 1222 a pretrained policy to guide the node selection. Since this policy is trained with an ℓ_1 penalty and its
 1223 distribution is expected to approximate the feasible region well, we do not require the exact potential
 1224 set S . Our approach is to establish an overestimation set \hat{S} and refine it via backtracking when
 1225 necessary. With the greedy decoding strategy, a feasible solution can be constructed as long as the
 1226 node with the highest probability in the distribution $p_\theta(\cdot \mid \pi_{1:t})$ induced by $\hat{S}(\pi_{1:t})$, falls within the
 1227 true potential set $S(\pi_{1:t})$. If at some step t , the policy incorrectly selects a node $i \in \hat{S}(\pi_{1:t}) \setminus S(\pi_{1:t})$,
 1228 at a subsequent construction step, the algorithm will discover that the overestimation set for the
 1229 corresponding extended route is empty, halting further progress. At this point, our backtracking
 1230 mechanism is triggered. Through this repeated process of extension and backtracking, the algorithm
 1231 eventually corrects the incorrect selection at step t and removes node i from $\hat{S}(\pi_{1:t})$.

1232 Based on this analysis, two key factors influence the efficiency of the LMask algorithm can be
 1233 identified. The first is the correspondence between the high-probability nodes in the distribution
 1234 $p_\theta(\cdot \mid \pi_{1:t})$ induced by $\hat{S}(\pi_{1:t})$ and the true potential set $S(\pi_{1:t})$ at each decoding step t . The second
 1235 is the cost of correcting an incorrect selection $i \in \hat{S}(\pi_{1:t}) \setminus S(\pi_{1:t})$ at decoding step t . This cost is
 1236 related to both the magnitude of t and the initial overestimation set $\hat{S}([\pi_{1:t}, i])$ corresponding to the
 1237 extended route $[\pi_{1:t}, i]$. The former determines the backtracking depth, while the latter determines
 1238 the number of exploration attempts.

1239 To illustrate these factors, we visualize the LazyMask decoding process on two representative small-
 1240 scale TSPDL instances ($n = 19$). In the first example (Figure 6), LMask efficiently constructs a

1242 feasible solution with a relatively small backtracking budget. Although the gap between the true
 1243 potential sets and the overestimation sets is large in the early decoding steps, it has no impact because
 1244 the policy accurately identifies nodes within the potential set. In a later decoding step ($t = 14$), the
 1245 policy incorrectly selects a node outside the true potential set. However, because this error occurs
 1246 late, the backtracking depth is not large, and the number of nodes in the potential set of the extended
 1247 route is small. Therefore, a backtracking budget of only $R = 100$ is sufficient to correct this error
 1248 and ultimately construct a feasible solution. In the second example (Figure 7), LMask requires a huge
 1249 backtracking budget to successfully construct a feasible solution. Here, the initial overestimation
 1250 set at each step is very close to the true potential set, differing by only one node. However, the
 1251 policy selects this single incorrect node at an early step ($t = 9$), and the overestimation set for the
 1252 corresponding extended route is large. Consequently, a significant backtracking budget is spent
 1253 attempting to correct this early error (even $R = 10k$ was insufficient). By increasing the budget to
 1254 $R = 11k$, LMask is able to correct this selection and finally constructs a feasible solution.
 1255
 1256



1286 Figure 6: Visualization of the LazyMask decoding process on a TSPDL instance where a feasible
 1287 solution is efficiently found with a small backtracking budget. The rows depict two decoding trials
 1288 with varying backtracking budgets: $R = 0$ (Top) and $R = 100$ (Bottom). The trial with $R = 0$ fails
 1289 to find a feasible solution, whereas the trial with $R = 100$ successfully identifies a complete, feasible
 1290 route. **Left:** The left column visualizes the relationship between the true potential set $S(\pi_{1:t})$ and its
 1291 overestimation $\hat{S}(\pi_{1:t})$. At each decoding step t (x-axis), each node i (y-axis) is color-coded based
 1292 on its set membership. Dark blue indicates $i \notin \hat{S}(\pi_{1:t})$, teal green indicates $i \in \hat{S}(\pi_{1:t}) \setminus S(\pi_{1:t})$,
 1293 and bright yellow indicates $i \in S(\pi_{1:t})$. The node selected by the policy at each step is indicated
 1294 by a red bounding box. The visualization for any failed trial is truncated at the decoding step where
 1295 $S(\pi_{1:t})$ becomes empty and the backtracking budget is depleted. **Right:** The right column displays
 the corresponding decoding probability distribution $p_\theta(\cdot \mid \pi_{1:t})$ generated by the LMask at each step.

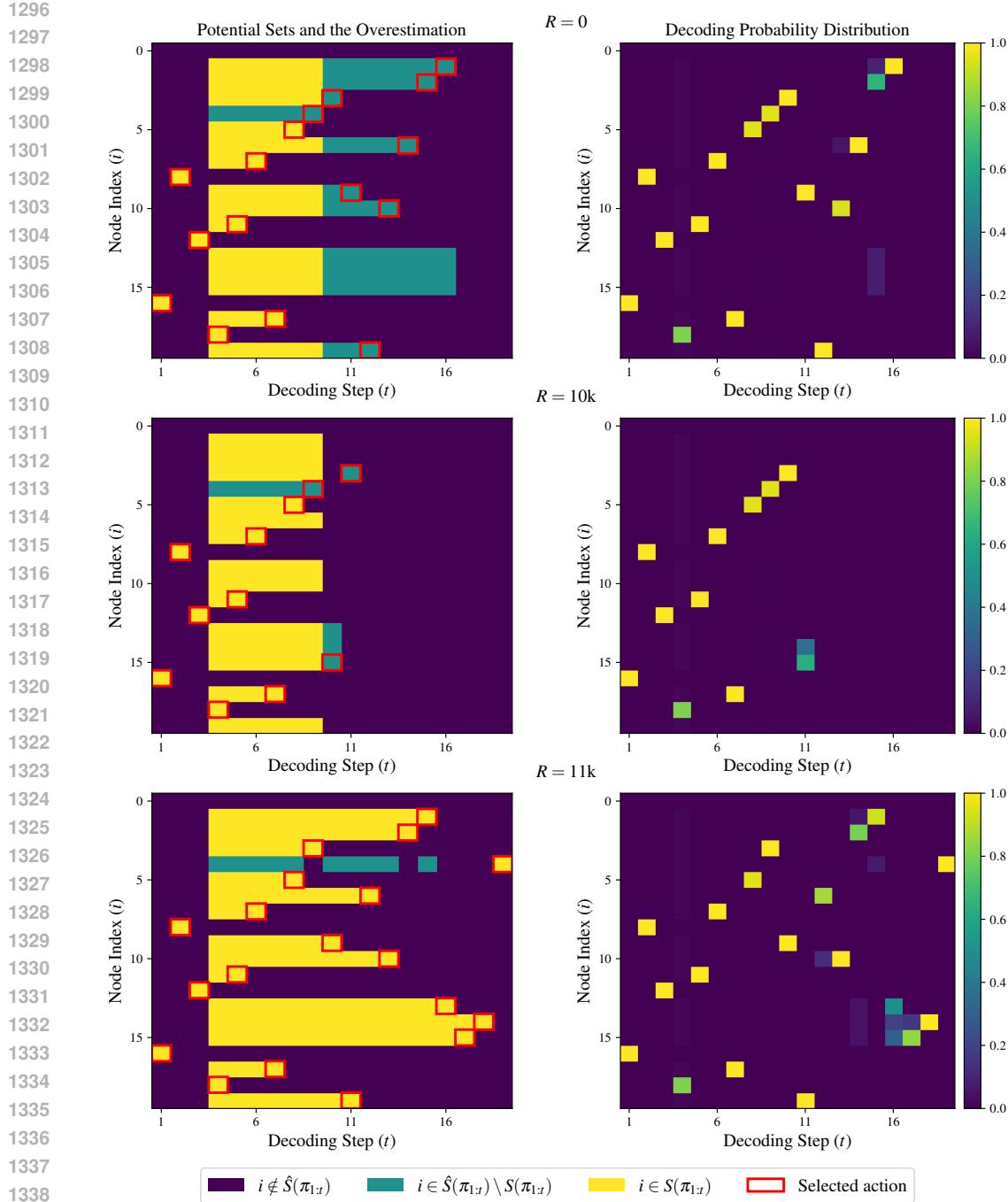


Figure 7: Visualization of the LazyMask decoding process on a challenging TSPDL instance requiring extensive backtracking. The rows depict three decoding trials with varying backtracking budgets: $R = 0$ (Top), $R = 10k$ (Middle), and $R = 11k$ (Bottom). The first two trials ($R = 0, R = 10k$) fail to find a feasible solution, whereas the $R = 11k$ trial successfully identifies a complete, feasible route. **Left:** The left column visualizes the relationship between the true potential set $S(\pi_{1:t})$ and its overestimation $\hat{S}(\pi_{1:t})$. At each decoding step t (x-axis), each node i (y-axis) is color-coded based on its set membership. Dark blue indicates $i \notin \hat{S}(\pi_{1:t})$, teal green indicates $i \in \hat{S}(\pi_{1:t}) \setminus S(\pi_{1:t})$, and bright yellow indicates $i \in S(\pi_{1:t})$. The node selected by the policy at each step is indicated by a red bounding box. The visualization for any failed trial is truncated at the decoding step where $S(\pi_{1:t})$ becomes empty and the backtracking budget is depleted. **Right:** The right column displays the corresponding decoding probability distribution $p_\theta(\cdot \mid \pi_{1:t})$ generated by the LMask at each step.

1350 E.6 GENERALIZATION AND SCALABILITY
13511352 E.6.1 GENERALIZATION ACROSS TIME WINDOW WIDTHS
1353

1354 We assess the generalization ability of LMask on hard TSPTW-50 datasets, by evaluating performance
1355 on test instances with varying maximum time window widths $w = 20, 60, 200$, while keeping the
1356 training distribution fixed at $w = 100$. As shown in Table 8, both neural baselines, PIP and PIP-
1357 D, exhibit large performance fluctuations as w deviates from 100. In particular, although their
1358 performance improves at $w = 20$, their infeasibility rates and optimality gaps increase significantly
1359 at $w = 60$ and $w = 200$, compared to their performance on $w = 100$ reported in Table 1 of the main
1360 paper. This indicates limited generalization when the maximum time width changes. In contrast,
1361 LMask remains consistently robust across different values of w , showing zero infeasibility rates in all
1362 cases, even outperforming the strong traditional solver PyVRP in feasibility. While its optimality gap
1363 increases at $w = 200$, it remains lower than those of PIP and PIP-D. These results demonstrate the
1364 strong generalization ability of LMask to variations in the maximum time window width.

1365 E.6.2 SCALABILITY TO LARGE-SCALE PROBLEM INSTANCES
1366

1367 To assess the scalability of LMask, we conduct experiments on the hard TSPTW-500 dataset, which
1368 contains 128 hard TSPTW instances with $n = 500$. We do not include PIP and PIP-D in this
1369 evaluation as their official source code repository does not offer pretrained models specifically for
1370 the hard TSPTW-500 dataset. Due to the substantial computational cost per instance at this scale,
1371 traditional solvers such as PyVRP, LKH3, and OR-Tools are no longer able to process multiple
1372 instances in parallel using multi-core CPUs as done in the main experiments. Instead, each instance
1373 is solved sequentially using all available 32 CPU cores. Therefore, we report the average runtime
1374 per instance for a fair comparison. As for the size-specific hyperparameters, we set the time limit
1375 of PyVRP and OR-Tools for solving each instance to 4 minutes. LKH3 is run with a maximum of
1376 10000 trials and 10 runs. LMask’s inference is performed with a backtracking budget of $R = 600$.

1377 As shown in Table 9, OR-Tools and both greedy heuristics fail to produce any feasible solutions at
1378 this scale, with instance infeasibility rates reaching 100%. In contrast, traditional solvers such as
1379 PyVRP and LKH still manage to find feasible solutions for the majority of instances, achieving low
1380 infeasibility rates of 3.12% and 2.33%, respectively. Notably, LMask achieves zero infeasibility rates
1381 and maintains a low optimality gap of 0.53%, demonstrating superior scalability.

1382
1383 Table 8: Results on datasets with varying maximum time window widths w . All models are trained
1384 on hard TSPTW instances with $n = 50$ and $w = 100$.
1385

Width	$w = 20$			$w = 60$			$w = 200$			
	Method	Infeasible Sol.	Infeasible Ins.	Gap	Infeasible Sol.	Infeasible Ins.	Gap	Infeasible Sol.	Infeasible Ins.	Gap
1390	PyVRP	-	12.6%	*	-	2.71%	*	-	0.03%	*
1391	PIP	3.75%	2.54%	0.08%	6.54%	3.64%	0.04%	10.49%	5.69%	3.57%
1392	PIP-D	3.08%	1.82%	0.08%	8.72%	4.67%	0.08%	18.15%	10.35%	6.58%
1393	LMask	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	2.99%

1397 E.7 PERFORMANCE OF LMASK USING DIFFERENT BACKBONE MODELS
1398

1399 LMask is model-agnostic and can be combined with any auto-regressive backbone model. The
1400 default backbone model used in main experiments is POMO (Kwon et al., 2020). Here we replace it
1401 with the recent ReLD model (Huang et al., 2025), which enhances the POMO decoder by adding
1402 residual connections and a two-layer feed-forward network. The performance comparison of different
1403 backbone models on various datasets is presented in Table 10. The results show that a stronger
backbone model further boosts the performance of LMask.

Table 9: Results on hard TSPTW-500

Method	Sol. Infeas.	Ins. Infeas.	Obj.	Gap	Avg. Time
PyVRP	-	3.12%	256.59	*	4m
LKH	-	2.33%	256.65	0.00%	13m
OR-Tools	-	100.00%	-	-	17s
Greedy-L	100.00%	100.00%	-	-	1s
Greedy-C	100.00%	100.00%	-	-	1s
LMask	0.00%	0.00%	257.92	0.53%	16s

Table 10: Performance comparison of LMask using different backbone models.

Nodes			n = 50				n = 100					
Dataset	Hardness	Model	Infeasible Sol.	Inst.	Obj.	Gap	Time	Infeasible Sol.	Inst.	Obj.	Gap	Time
TSPTW	Easy	POMO	0.06%	0.00%	7.45	2.02%	7s	0.01%	0.00%	10.50	3.11%	17s
		ReLD	0.01%	0.00%	7.43	1.66%	7s	0.02%	0.00%	10.48	2.85%	21s
	Medium	POMO	0.04%	0.00%	13.25	1.68%	6s	0.05%	0.00%	19.51	4.23%	18s
		ReLD	0.03%	0.00%	13.23	1.58%	7s	0.03%	0.00%	19.31	3.13%	22s
	Hard	POMO	0.00%	0.00%	25.71	0.10%	6s	0.00%	0.00%	51.38	0.21%	18s
		ReLD	0.00%	0.00%	25.70	0.06%	7s	0.00%	0.00%	51.36	0.16%	22s
TSPDL	Medium	POMO	0.03%	0.01%	11.14	2.75%	6s	0.20%	0.05%	17.04	4.24%	15s
		ReLD	0.03%	0.00%	11.06	2.00%	7s	0.18%	0.03%	16.91	3.42%	15s
	Hard	POMO	0.19%	0.04%	13.57	2.52%	6s	0.80%	0.26%	21.63	4.34%	15s
		ReLD	0.13%	0.02%	13.47	1.80%	7s	0.52%	0.11%	21.53	3.84%	16s

E.8 SAMPLING PERFORMANCE

We evaluate the performance of neural methods under sampling decoding. Each method samples S solutions per augmentation, where S is varied as 3, 10, and 30. The $8 \times$ dihedral augmentation is retained, resulting in $8 \times S$ solutions per instance. Due to memory limitations, the batch sizes are adjusted accordingly. For an intuitive comparison, we also include the results under greedy decoding as reported in the main paper. The results are summarized in Tables 11 and 12.

Compared to greedy decoding, all methods exhibit lower instance infeasibility rates and optimality gaps under sampling decoding. Meanwhile, the solution infeasibility rates increase under sampling decoding, as the larger number of sampled solutions naturally leads to a higher proportion of infeasible ones. Remarkably, even though PIP and PIP-D generate ten times as many solutions as the greedy version of LMask, they still yield higher instance infeasibility rates. In addition, their optimality gaps are generally higher than those of greedy LMask on most datasets, highlighting LMask’s strong ability to consistently generate high-quality feasible solutions even with a smaller number of samples.

E.9 STABILITY ANALYSIS

We investigate the stability of LMask under sampling decoding at inference. In Figure 8, we present box plots of the optimality gaps and solution infeasibility rates across 10 different random seeds on medium TSPTW-50 and TSPDL-50 datasets. Across both datasets and all tested random seeds, both metrics remain highly stable, with total variations staying below 0.02%. These results demonstrate that LMask yields highly consistent performance when using sampling decoding at inference, despite the inherent randomness in solution generation.

E.10 PERFORMANCE ON THE TSPTW BENCHMARK

We evaluate our LMask framework on the TSPTW benchmark (Dumas et al., 1995) to validate our innovation. Although comprehensive tests are conducted on all TSPTW benchmark instances, we decide to directly reference the original test results from Appendix D.7 in the article (Bi et al.,

1458

1459

1460

Table 11: Sampling results on synthetic TSPTW datasets.

1461

1462

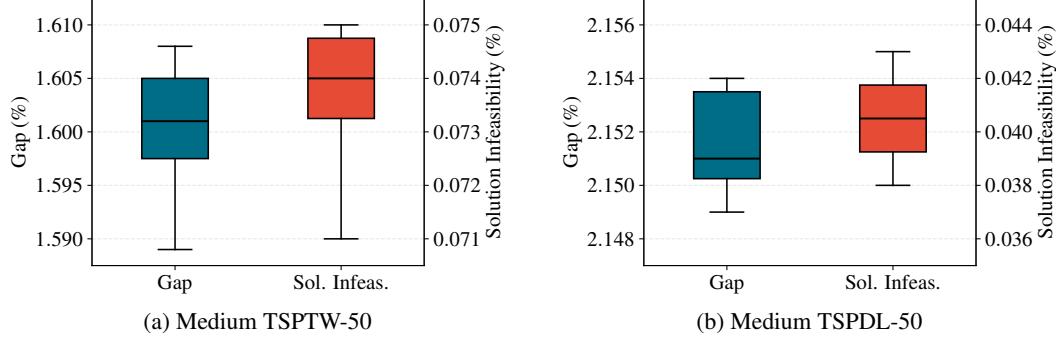
1463

Nodes		$n = 50$					$n = 100$				
	Method	Infeasible Sol.	Infeasible Inst.	Obj.	Gap	Time	Infeasible Sol.	Infeasible Inst.	Obj.	Gap	Time
Easy	PIP	0.28%	0.01%	7.51	2.73%	9s	0.16%	0.00%	10.57	3.78%	29s
	PIP ($S = 3$)	0.29%	0.01%	7.49	2.45%	19s	0.17%	0.00%	10.55	3.56%	1.3m
	PIP ($S = 10$)	0.29%	0.01%	7.47	2.20%	57s	0.17%	0.00%	10.52	3.24%	4.6m
	PIP ($S = 30$)	0.29%	0.01%	7.45	2.03%	3.0m	0.18%	0.00%	10.50	3.04%	12.8m
	PIP-D	0.28%	0.00%	7.50	2.60%	10s	0.05%	0.00%	10.66	4.62%	31s
	PIP-D ($S = 3$)	0.31%	0.00%	7.48	2.33%	20s	0.07%	0.00%	10.64	4.40%	1.5m
	PIP-D ($S = 10$)	0.29%	0.00%	7.46	2.06%	1.1m	0.06%	0.00%	10.60	4.05%	5.0m
	PIP-D ($S = 30$)	0.30%	0.00%	7.44	1.89%	3.3m	0.06%	0.00%	10.58	3.82%	14.0m
	LMask	0.06%	0.00%	7.45	2.02%	7s	0.01%	0.00%	10.50	3.11%	17s
	LMask ($S = 3$)	0.06%	0.00%	7.44	1.85%	11s	0.02%	0.00%	10.53	3.31%	35s
Medium	LMask ($S = 10$)	0.07%	0.00%	7.42	1.51%	17s	0.02%	0.00%	10.48	2.89%	1.2m
	LMask ($S = 30$)	0.06%	0.00%	7.40	1.30%	33s	0.02%	0.00%	10.45	2.61%	3.1m
	PIP	4.82%	1.07%	13.41	2.93%	10s	4.35%	0.39%	19.61	4.79%	29s
	PIP ($S = 3$)	4.98%	0.68%	13.36	2.55%	19s	4.55%	0.19%	19.54	4.37%	1.3m
	PIP ($S = 10$)	4.96%	0.46%	13.32	2.26%	58s	4.52%	0.10%	19.45	3.93%	4.5m
	PIP ($S = 30$)	4.98%	0.25%	13.30	2.06%	2.9m	4.50%	0.06%	19.39	3.60%	12.7m
	PIP-D	4.14%	0.90%	13.46	3.31%	9s	3.46%	0.03%	19.80	5.76%	31s
	PIP-D ($S = 3$)	4.30%	0.54%	13.41	2.95%	20s	3.87%	0.00%	19.73	5.41%	1.5m
	PIP-D ($S = 10$)	4.32%	0.36%	13.37	2.66%	1.1m	3.80%	0.00%	19.63	4.86%	5.0m
	PIP-D ($S = 30$)	4.31%	0.27%	13.34	2.44%	3.3m	3.82%	0.00%	19.55	4.47%	14.0m
Hard	LMask	0.06%	0.00%	13.25	1.73%	6s	0.05%	0.00%	19.51	4.23%	18s
	LMask ($S = 3$)	0.08%	0.00%	13.30	2.13%	14s	0.10%	0.00%	19.48	4.05%	40s
	LMask ($S = 10$)	0.07%	0.00%	13.23	1.60%	24s	0.10%	0.00%	19.40	3.64%	1.3m
	LMask ($S = 30$)	0.07%	0.00%	13.19	1.25%	55s	0.11%	0.00%	19.34	3.33%	3.2m
	PIP	5.65%	2.85%	25.73	0.18%	9s	31.74%	16.68%	51.48	0.37%	28s
	PIP ($S = 3$)	5.81%	2.28%	25.72	0.16%	19s	32.47%	11.83%	51.44	0.33%	1.3m
	PIP ($S = 10$)	5.80%	1.89%	25.72	0.15%	58s	32.59%	9.66%	51.43	0.30%	4.5m
	PIP ($S = 30$)	5.79%	1.68%	25.72	0.14%	2.9m	32.58%	7.97%	51.42	0.27%	12.7m
	PIP-D	6.44%	3.03%	25.75	0.27%	9s	13.59%	6.60%	51.43	0.32%	31s
	PIP-D ($S = 3$)	6.59%	2.40%	25.75	0.25%	20s	13.99%	5.32%	51.41	0.29%	1.5m
Medium	PIP-D ($S = 10$)	6.56%	2.10%	25.74	0.24%	1.1m	13.93%	4.54%	51.41	0.27%	5.0m
	PIP-D ($S = 30$)	6.58%	1.88%	25.74	0.23%	3.3m	13.92%	4.05%	51.40	0.26%	14.0m
	LMask	0.00%	0.00%	25.71	0.10%	6s	0.00%	0.00%	51.38	0.21%	18s
	LMask ($S = 3$)	0.00%	0.00%	25.70	0.09%	10s	0.00%	0.00%	51.37	0.19%	40s
	LMask ($S = 10$)	0.00%	0.00%	25.70	0.08%	17s	0.00%	0.00%	51.36	0.18%	1.3m
	LMask ($S = 30$)	0.00%	0.00%	25.70	0.08%	33s	0.00%	0.00%	51.36	0.16%	3.2m

1494

1495

1496



1506

1507

Figure 8: Box plots of optimality gaps and solution infeasibility rates of LMask under sampling decoding across 10 random seeds. Each box shows the interquartile range (25th-75th percentile), the horizontal line indicates the median, and the whiskers extend to the minimum and maximum within 1.5 times the interquartile range.

Table 12: Sampling results on synthetic TSPDL datasets.

Nodes		n = 50					n = 100				
Method		Infeasible Sol.	Infeasible Inst.	Obj.	Gap	Time	Infeasible Sol.	Infeasible Inst.	Obj.	Gap	Time
Medium	PIP	1.75%	0.17%	11.23	3.59%	8s	2.50%	0.16%	17.68	8.10%	21s
	PIP ($S = 3$)	1.87%	0.13%	11.19	3.23%	15s	2.68%	0.10%	17.62	7.68%	52s
	PIP ($S = 10$)	1.84%	0.11%	11.16	2.93%	45s	2.68%	0.08%	17.53	7.14%	2.9m
	PIP ($S = 30$)	1.84%	0.11%	11.14	2.73%	2.5m	2.70%	0.06%	17.46	6.74%	8.8m
	PIP-D	2.29%	0.22%	11.26	3.96%	8s	1.83%	0.23%	17.80	8.84%	23s
	PIP-D ($S = 3$)	2.42%	0.10%	11.22	3.56%	17s	1.98%	0.14%	17.73	8.40%	59s
	PIP-D ($S = 10$)	2.44%	0.07%	11.19	3.19%	50s	1.95%	0.09%	17.63	7.78%	3.4m
	PIP-D ($S = 30$)	2.45%	0.07%	11.16	2.94%	2.8m	1.96%	0.07%	17.56	7.36%	10.0m
	LMask	0.03%	0.01%	11.14	2.75%	6s	0.20%	0.05%	17.04	4.24%	15s
	LMask ($S = 3$)	0.04%	0.01%	11.10	2.43%	13s	0.21%	0.04%	16.99	3.88%	28s
Hard	LMask ($S = 10$)	0.04%	0.01%	11.07	2.15%	17s	0.21%	0.04%	16.91	3.43%	51s
	LMask ($S = 30$)	0.04%	0.01%	11.05	1.97%	29s	0.21%	0.04%	16.86	3.13%	2.0m
	PIP	4.83%	2.39%	13.63	3.42%	8s	29.34%	21.65%	22.35	12.87%	20s
	PIP ($S = 3$)	5.06%	2.14%	13.59	3.09%	15s	29.60%	20.30%	22.30	12.37%	52s
	PIP ($S = 10$)	5.07%	2.00%	13.56	2.83%	44s	29.52%	19.53%	22.18	11.59%	3.0m
	PIP ($S = 30$)	5.07%	1.90%	13.54	2.64%	2.5m	29.52%	18.92%	22.08	11.00%	8.8m
	PIP-D	4.16%	0.82%	13.79	4.28%	8s	13.51%	8.43%	22.90	12.53%	23s
	PIP-D ($S = 3$)	4.43%	0.59%	13.74	3.89%	17s	13.76%	7.49%	22.82	11.99%	1.0m
	PIP-D ($S = 10$)	4.47%	0.40%	13.70	3.55%	51s	13.77%	6.82%	22.71	11.30%	3.4m
	PIP-D ($S = 30$)	4.43%	0.38%	13.67	3.32%	2.8m	13.75%	6.55%	22.63	10.80%	10.0m
	LMask	0.19%	0.04%	13.57	2.52%	6s	0.80%	0.26%	21.63	4.34%	15s
	LMask ($S = 3$)	0.22%	0.04%	13.53	2.22%	13s	0.87%	0.22%	21.56	3.99%	29s
	LMask ($S = 10$)	0.22%	0.03%	13.50	1.98%	18s	0.87%	0.21%	21.48	3.61%	52s
	LMask ($S = 30$)	0.22%	0.03%	13.48	1.82%	29s	0.87%	0.18%	21.42	3.32%	2.0m

2024) due to inaccurate replication attempts of PIP and PIP-D. Additionally, to ensure consistency in research comparisons, the benchmark instance set we selected remains fully aligned with those used in the original study. Results show that compared to the neural baselines, LMask framework significantly reduces the infeasibility rate and improves solution quality.

Table 13: Model performance on the benchmark datasets (Dumas et al., 1995).

Instance	Opt.	PIP		PIP-D		LMask		Instance	Opt.	PIP		PIP-D		LMask	
		Obj.	Gap	Obj.	Gap	Obj.	Gap			Obj.	Gap	Obj.	Gap	Obj.	Gap
n20w20.001	378	389	2.91%	389	2.91%	390	3.17%	n40w40.003	474	496	4.64%	497	4.85%	489	3.16%
n20w20.002	286	292	2.10%	292	2.10%	292	2.10%	n40w40.004	452	-	-	-	-	466	3.10%
n20w20.003	394	-	-	-	-	-	-	n40w40.005	453	470	3.75%	471	3.97%	469	3.53%
n20w20.004	396	405	2.27%	405	2.27%	405	2.27%	n40w60.001	494	-	-	525	6.28%	512	3.64%
n20w20.005	352	360	2.27%	360	2.27%	362	2.84%	n40w60.002	470	-	-	502	6.81%	484	2.98%
n20w40.001	254	276	8.66%	279	9.84%	276	8.66%	n40w60.003	408	-	-	-	-	426	4.41%
n20w40.002	333	347	4.20%	339	1.80%	340	2.10%	n40w60.004	382	406	6.28%	420	9.95%	397	3.93%
n20w40.003	317	332	4.73%	332	4.73%	331	4.42%	n40w60.005	328	342	4.27%	344	4.88%	340	3.66%
n20w40.004	388	401	3.35%	401	3.35%	396	2.06%	n40w80.001	395	407	3.04%	407	3.04%	409	3.54%
n20w40.005	288	294	2.08%	302	4.86%	296	2.78%	n40w80.002	431	448	3.94%	452	4.87%	445	3.25%
n20w60.001	335	349	4.18%	353	5.37%	345	2.99%	n40w80.003	412	444	7.77%	454	10.19%	434	5.34%
n20w60.002	244	252	3.28%	260	6.56%	250	2.46%	n40w80.004	417	430	3.12%	435	4.32%	430	3.12%
n20w60.003	352	358	1.70%	358	1.70%	358	1.70%	n40w80.005	344	362	5.23%	379	10.17%	355	3.20%
n20w60.004	280	298	6.43%	289	3.21%	287	2.50%	n60w80.001	458	-	-	-	-	478	4.37%
n20w60.005	338	385	13.91%	361	6.80%	349	3.25%	n60w80.002	498	540	8.43%	548	10.04%	517	3.82%
n20w80.001	329	347	5.47%	347	5.47%	346	5.17%	n60w80.003	550	635	15.45%	646	17.45%	578	5.09%
n20w80.002	353	347	2.66%	360	6.51%	348	2.96%	n60w80.004	566	611	7.95%	632	11.66%	593	4.77%
n20w80.003	320	328	2.50%	328	2.50%	329	2.81%	n60w80.005	468	535	14.32%	-	-	486	3.85%
n20w80.004	304	341	12.17%	339	11.51%	335	10.20%	n80w60.001	554	582	5.05%	-	-	579	4.51%
n20w80.005	264	302	14.39%	302	14.39%	287	8.71%	n80w60.002	633	678	7.11%	-	-	664	4.90%
n40w20.001	500	-	-	-	-	-	-	n80w60.004	619	678	9.53%	-	-	656	5.98%
n40w20.002	552	-	-	610	10.51%	574	3.99%	n80w60.005	575	-	-	-	-	614	6.78%
n40w20.003	478	-	-	507	6.07%	498	4.18%	n80w80.001	624	-	-	-	-	654	4.81%
n40w20.004	404	419	3.71%	418	3.47%	418	3.47%	n80w80.002	592	624	5.41%	638	7.77%	616	4.05%
n40w20.005	499	-	-	-	-	-	-	n80w80.003	589	648	10.02%	674	14.43%	-	-
n40w40.001	465	-	-	-	-	484	4.09%	n80w80.004	594	674	13.47%	676	13.80%	625	5.22%
n40w40.002	461	485	5.21%	483	4.77%	478	3.69%	n80w80.005	570	627	10.00%	-	-	594	4.21%
Average Gap		5.2%		5.3%		3.9%		Average Gap		7.4%		8.5%		4.2%	
Infeasible Rate		22.2%		14.8%		11.1%		Infeasible%		25.9%		37.9%		3.7%	

1566 F RUNTIME DISCUSSION
15671568 F.1 INFERENCE-TIME EVALUATION PROTOCOL AND CPU-ONLY RESULTS
1569

1570 It is hard to achieve an absolutely fair comparison of the run time between CPU-based traditional
1571 solvers and GPU-based solvers due to hardware difference. As a widely adopted convention in
1572 the neural combinatorial optimization community, we have run traditional solvers with 32 CPUs in
1573 parallel to mitigate this unfairness. To provide further clarification, we have also run LMask using
1574 only CPUs. The results, presented in Table 14, demonstrate that LMask remains substantially faster
1575 than the traditional solvers.

1576
1577 F.2 BACKTRACKING OVERHEAD
1578

1579 The runtime of LMask can be decomposed into four components: (1) network forward pass; (2)
1580 lookahead; (3) backtracking; and (4) miscellaneous operations such as distance matrix precomputation
1581 and tour length evaluation. We then elaborate on the overhead induced by backtracking. The main
1582 source of cost comes from reduced parallelization due to instance heterogeneity and from increased
1583 forward passes in the decoder. The backtracking operation itself is lightweight, as it only rolls back
1584 via a stack. To mitigate the cost from heterogeneity, one can selectively process only the instances
1585 still in forward construction. In fact, this approach is used during the inference phase with greedy
1586 decoding. As shown in Figure 4b, on the hard TSPTW-100 dataset, increasing the backtracking
1587 budget from 0 to 100 adds only about 2 seconds to the inference time, which is a marginal increase.
1588 However, during the training phase, which employs a multi-sampling decoding scheme, this selective
1589 processing would impair the computational efficiency of the cross-attention mechanism in the decoder.
1590 We believe that more efficient implementations could further reduce this training overhead.

1591 To clearly demonstrate the computational overhead from backtracking and compare training times
1592 with other methods, we provide a training time comparison in Table R5. Note that we have optimized
1593 the implementation of lookahead from the original PIP source code by reducing the use of indexing
1594 operations, which are very time-consuming on GPUs. This optimization significantly improves
1595 efficiency. As a result, even with the addition of backtracking, the total training time for LMask
1596 remains shorter than that of PIP.

1597 Table 14: Inference time using 32 CPUs. Time is reported in minutes (m), hours (h), and days (d).
1598

1599 Hardness	1600 Method	1601 $n = 50$	1602 $n = 100$
1603 Easy	PyVRP	1.7h	4.3h
	LKH3	1.9h	7.2h
	LMask	3.2m	11.4m
1604 Medium	PyVRP	1.7h	4.3h
	LKH3	2.9h	10.3h
	LMask	3.8m	11.7m
1605 Hard	PyVRP	1.7h	4.3h
	LKH3	2.3h	1.3d
	LMask	5.6m	12.4m

1613 Table 15: Training time (days).
1614

1615 Method	1616 $n = 50$	1617 $n = 100$
LMask	4.2d	7.8d
PIP	4.7d	28.4d
PIP-D	3.6d	12.2d

1620 **G BROADER IMPACTS**
1621

1622 This paper proposes a novel LMask framework to solve the routing problem with more complex
 1623 constraints, whose goal is to advance the field of machine learning and optimization. There are many
 1624 potential societal impacts of our work: 1) enhancing the understanding within the AI and mathematical
 1625 programming communities on effective approaches to handling constraints in optimization problems;
 1626 2) promoting efficient delivery systems in complex transportation scenarios; 3) reducing energy
 1627 consumption in transportation systems and decreasing carbon emissions. The LMask framework has
 1628 the potential to create positive effects across logistics, transportation, and supply chain management.
 1629 On the other hand, negative societal impacts may include environmental unfriendliness due to
 1630 computational resource usage.

1631 **H LICENSES FOR EXISTING ASSETS**
1632

1633 The used assets in this work are listed in Table 16, which are all open-source for academic research.
 1634 We will release our source code with the MIT License.

1635 Table 16: Used assets, licenses, and their usage.

Type	Asset	License	Usage
Code	LKH3 (Helsgaun, 2017)	Available for academic use	Evaluation
	OR-Tools (Furnon & Perron, 2024)	Apache-2.0 license	Evaluation
	PyVRP (Furnon & Perron, 2024)	MIT License	Evaluation
	RL4CO (Furnon & Perron, 2024)	MIT License	Revision
	PIP (Furnon & Perron, 2024)	MIT License	Revision
Datasets	Dumas et al. (Dumas et al., 1995)	Available for academic use	Evaluation

1647 **I THE USE OF LARGE LANGUAGE MODELS**
1648

1649 Large language models are used only for writing.