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Abstract

Automatic data selection and curriculum design for training large language models
is challenging, with only a few existing methods showing improvements over
standard training. Furthermore, current schemes focus on domain-level selec-
tion, overlooking the more fine-grained contributions of each individual training
point. It is difficult to apply traditional datapoint selection methods on large lan-
guage models: most online batch selection methods perform two-times forward
or backward passes, which introduces considerable extra costs with large-scale
models. To mitigate these obstacles, we propose IRREDUCIBLE CURRICULUM as a
curriculum learning algorithm for language model pretraining, which prioritizes
samples with higher learnability. Specifically, to avoid prohibitive extra compu-
tation overhead, we simulate the sample loss along the main model’s training
trajectory using a small-scale proxy model. Our experiments on the RedPajama-1B
dataset demonstrate a consistent improvement on validation perplexity across all 7
domains compared to random uniform baseline and the anti-curriculum strategy.
Our method also reduces the sharpness of the network and illustrates a better 5-shot
accuracy on MMLU benchmarks.

1 Introduction
The evolution of language models demonstrates impressive generation and reasoning abilities from
a continuous scaling-up of model size and training corpus [Brown et al., 2020, Chowdhery et al.,
2022, Kaplan et al., 2020, Hoffmann et al., 2022], along with very significant growth in computation
cost. Besides the quantity [Kaplan et al., 2020] and quality [Lee et al., 2022, Longpre et al., 2023] of
training data, several recent works show that the ordering [Chen et al., 2023] and composition [Xie
et al., 2023] of data during the training can highly impact performance and efficiency. Xie et al.
[2023] proposes DOREMI, which determines the optimal domain mixture to construct the pretraining
corpus using auxiliary models; Chen et al. [2023] introduces an online selection scheme, which
seeks to dynamically update the mixture of data from each skill-set at each training step. While
DOREMI and SKILL-IT demonstrates great downstream performance, their curriculum are built upon
the group-level where all the instances within one group (domain/skill) shares the same sampling
probability, without looking inside each domains on the sample-specific attributions.

Nevertheless, few research have succeeded applying traditional sample-level selection schemes for
large langauge model pretraining. Online batch selection methods [Loshchilov and Hutter, 2015,
Katharopoulos and Fleuret, 2018, Jiang et al., 2019, Schaul et al., 2015] select hard samples with
high loss or high gradient norm, which require a second forward/backward pass. That introduces
large extra computation costs when the model size is large, which hurts the scalability. On the
other side, Campos [2021] shows that the linguistic-based curriculum learning failed to improve on
causal language model pretraining. Schaul et al. [2015] introduces RHO-LOSS, which is an online
batch selection scheme based on the gap between current training loss and an irreducible loss term
measured using a proxy model. Inspired by the idea of proxy model approximation, we propose
IRREDUCIBLE CURRICULUM as a curriculum learning algorithm, construct an ordered data stream
by simulating the learning trajectory of large model through the lens of a small-scale proxy model.

ATTRIB: Workshop on Attributing Model Behavior at Scale at NeurIPS 2023.



Specifically, we train the small-scale proxy model on a holdout set, and measure the loss on each
data samples in the training set using the proxy model at different training stages. We estimate the
learnability score of the training samples by the loss gap from the proxy model at early- and late-stage.
The IRREDUCIBLE CURRICULUM would prioritize the samples with highest learnability score and
proceed to the samples with lower learnability score. We present the details of our methodology in
Section 3.

2 Background
2.1 Reducible Holdout Loss Selection (RHO-LOSS)
We recapitulate RHO-LOSS [Mindermann et al., 2022] with the emphasis on their data selection
criterion and approximation using the proxy model. Considering a model M(θ) parameterized
by θ, and training corpus Dtrain = {(xi, yi)}ni=1, online batch selection pre-samples a larger batch
Bt ∈ Dtrain uniformly, from which it then selects a smaller subset bt ∈ Bt, |Bt| ≫ |bt|.
At training step t, given the model has seen part of training corpus Dt, the output distribution from
M(θ) for an input x is denoted as p(y|x;Dt). Therefore, the log-likelihood objective on the holdout
evaluation set after adding a new training point (x, y) can be written as log p(yho|xho;Dt ∪ (x, y)).
Applying Bayesian rule and conditional independence, the notion of the RHO-LOSS can be derived
as,

log p(yho|xho;Dt ∪ (x, y))

= log
p(y|x;xho, yho,Dt) p(y

ho|xho, x;Dt)

p(y|x, xho;Dt)
Bayes rule

= log
p(y|x; yho, xho,Dt) p(y

ho|xho;Dt)

p(y|x;Dt)

conditional
independence

∝ L [y|x;θ[t],Dt]− L [y|x;θ[t],Dho,Dt]

≈ L [y|x;θ[t],Dt]− L [y|x;θ[t],Dho] (1)

≈
reducible holdout loss︷ ︸︸ ︷

L [y|x;θ[t],Dt]︸ ︷︷ ︸
training loss

− L
[
y|x;θ′,Dho

]︸ ︷︷ ︸
irreducible holdout loss (IL)

proxy-model
approximation (2)

, where θ′ denotes a smaller scale proxy model pretrained on holdout set Dho. To avoid retraining the
model on (Dt ∪Dho) at each step, the second term in Equ. (1) is approximated with the model trained
on the holdout set L [y|x;θ[t],Dho,Dt] ≈ L [y|x;θ[t],Dho] (irreducible holdout loss), such that the
second term could be computed by a pretrained, reusable model. To further improve computational
efficiency, the small-scale proxy model Mproxy(θ

′) is applied to compute the irreducible holdout
loss. Mindermann et al. [2022] empirically proved that the approximation can preserve the desired
properties with significantly lower computational costs.

Qualitatively, RHO-LOSS down-weighs the redundant, noisy samples and outliers: redundant points
have low training loss and low irreducible holdout loss, while noisy samples and outliers have
high training loss and high irreducible holdout loss, both lead to a low RHO-LOSS score. While
the approximation alleviates the computational burden, the first term in Equ. (2) still requires one
forward pass through the proxy model, and two forward passes through the large model at every
step: On a pre-sampled batch Bt, the scoring takes one pass through the proxy model and the large
model. Then the large model would be trained with a second pass on the top-ranked |bt| with highest
scores. Given that it takes C1 FLOPs for one forward pass through the large model M(θ) and C2

for proxy model Mproxy(θ
′). To train the model for T steps on T · |bt| samples, RHO-LOSS takes

O(TC1 · (|Bt|+ |bt|) + TC2|Bt|) forward FLOPs. In case that |Bt| ≫ |bt|, the extra computation
overhead would be significant.

3 Irreducible Curriculum
Aiming to reduce the computation cost while improving the training efficiency and robustness, we
tend to design a pre-defined curriculum to simulate the online assessment of the scores L[y|x;Dt]
along the training process. We refer to our algorithm as IRREDUCIBLE CURRICULUM, since it is
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determined only by a proxy-model trained on a holdout dataset without resorting any large model’s
training dynamics.

Specifically, we train a small proxy model Mproxy(θ
′) on holdout set Dho for T overall

steps while saving an early-stage checkpoint at t0 steps (Mproxy(θ
′)[t0]) and a late-stage

checkpoint(Mproxy(θ
′)[T ]). We define the learnability score for every sample (x, y) ∈ Dt of the

training set as the gap between the loss from early-stage and the late-stage proxy model checkpoints1:

Learnability(x) := Learly − Llate = L
[
x;θ′[t0]

]
− L

[
x;θ′[T ]

]
(3)

To differentiate better among data points, we take the average of loss from last three checkpoints as
the late-stage loss.

The initial threshold of learnability is set as the top-λ0% instance’s score among the training set. The
first training batch would be uniformly selected from these top-λ0% instances whose learnability
scores are above the threshold. To simulate the decreasing training loss in online data selection (Equ.
2), the threshold of learnability is decreasing along the training process following a step function.
Specifically, consider that we are applying the curriculum on model M(θ) during the first Tc steps
(train for T steps in total), at step t < Tc, the training batch for M(θ) is uniformly sampled from
(λ0 + (1 − λ0)t/Tc) instances from the training set with highest learnability. Thus, the sampling
probability distribution across training set Dt is:

P(t) = Unif ({learnability(x) > S(t), x ∈ Dt}) , (4)

where S(t) satisfies
|Dt > S(t)|

|Dt|
= λ0 + (1− λ0)t/Tc.

After Tc steps, the uniform random sampling would be applied on the whole dataset. Our proposed
IRREDUCIBLE CURRICULUM introduces no extra forward passes through the large language model
M(θ) when we pre-compute the learnability score using the proxy model. Instead, the only extra
overhead comes from the proxy model as O(C2 · (|Dt|)) ≥ O(TcC2 · (|bt|)) forward FLOPs, which
could be negligible comparing with O(TC1 · (|Bt|+ |bt|)+TC2|Bt|) overhead from RHO-LOSS2.

4 Experiments and Results
In this section, we present our initial inquiry experimental results on RedPajama-1B dataset, includ-
ing 7 domains3. We randomly split each domain dataset into two subsets Dproxy and Dtrain. Dproxy

is used to train the proxy model, which is applied to score Dtrain and construct the curriculum.
Considering a severe unbalance in domain scale, we uniformly sample from each domain, while
applying our proposed IRREDUCIBLE CURRICULUM inside each domain. We also provide the results
applying the curriculum on the whole dataset in Section 5.

We use a 6-layer (82M) model as the proxy model Mproxy(θ
′) to construct the curriculum, which is

applied to train a 12-layer (124M) model M(θ). Both the proxy model and the full size model follow
the decoder-only transformer architecture [Vaswani et al., 2023] and share the same set of training
hyperparameters (batch size 64, context length 512, learning rate 3e-4). We compare IRREDUCIBLE
CURRICULUM (CURRICULUM) with random uniformly sampling baseline (RS) and anti-curriculum
(ANTI-CURRICULUM), where we start with a fraction of λ0 samples with lowest score, and then
increase the sampling upper bound with the same rate.

4.1 Result and Analysis
IRREDUCIBLE CURRICULUM consistently improve downstream performance on all domains.
We apply the irreducible curriculum across every domain within the RedPajama-1B4 dataset, with
λ0 = 50%, early stage checkpoint is saved at t0 = 2000 steps. We train the proxy model (82M)
and full model (124M) for T = 10′000 steps. Since the large model would learn faster than
the proxy model, we set Tc = 5000 < T to compensate the learning pace. According to Figure 1,
IRREDUCIBLE CURRICULUM consistently reaches a lower validation perplexity across all 7 domains

1we omit writing y here, as for language modelling the labels y refers to next-token prediction on the current
sequence x.

2C1, C2, Bt, bt notations are kept consistent with Sec. 2.1
3Arxiv, Wikipedia, Book, Common-Crawl, C4, Stackexchange, Github.
4https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
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Figure 1: Domain-wise Validation Log-Perplexity on RedPajama-1B. It demonstrates IRREDUCIBLE
CURRICULUM consistently outperforms BASELINE and ANTI-CURRICULUM.

Table 1: The table presents results for different methods evaluated on average 5-shot accuracy on
MMLU benchmark and average validation log-perplexity across 7 domains in RedPajama-1B. The
best results are in Red and all the results outperform the baseline are in Bold. GPT-3 results refer to
Hendrycks et al. [2021b].

METHOD 5-shot MMLU Acc.↑ (%) Avg. Log Perplexity↓
RS BASELINE 22.9 3.810
GPT-3 (6.7B) 24.9 /
GPT-3 (13B) 26.0 /
GPT-3 (175B) 43.9 /

CURRICULUM (λ0 = 25%, Tc = 2000) 26.0 3.799
CURRICULUM (λ0 = 25%, Tc = 5000) 26.9 3.802
CURRICULUM (λ0 = 25%, Tc = 10000) 23.5 3.840
CURRICULUM (λ0 = 50%, Tc = 2000) 23.2 3.800
CURRICULUM (λ0 = 50%, Tc = 5000) 24.7 3.794
CURRICULUM (λ0 = 50%, Tc = 10000) 24.7 3.800

ANTI-CURRICULUM (λ0 = 25%, Tc = 2000) 26.9 3.819
ANTI-CURRICULUM (λ0 = 25%, Tc = 5000) 24.7 3.838
ANTI-CURRICULUM (λ0 = 25%, Tc = 10000) 26.9 3.892
ANTI-CURRICULUM (λ0 = 50%, Tc = 2000) 26.9 3.814
ANTI-CURRICULUM (λ0 = 50%, Tc = 5000) 26.9 3.827
ANTI-CURRICULUM (λ0 = 50%, Tc = 10000) 24.9 3.860

compared with the uniformly random baseline, even trained on a relatively small dataset. Conversely,
the ANTI-CURRICULUM approach leads to a deterioration in the evaluation performance across all
domains.

We also perform experiments by varying the values of λ0 and Tc (Table 1). Notably, all the settings
applying IRREDUCIBLE CURRICULUM outperform the random uniform sampling baseline, except
for the case of (λ0 = 25%, Tc = 10′000). A possible explanation for this is that the step function
determined by the proxy model inadequately addresses the differing learning paces between the large
and small proxy models. On the contrary, all experiment settings in the ANTI-CURRICULUM group
yield worse validation perplexity results.

Additionally, the empirical results shows that both IRREDUCIBLE CURRICULUM and ANTI-
CURRICULUM approaches outperform the baseline on the 5-shot inference accuracy on MMLU
benchmark [Hendrycks et al., 2021a]. Specifically, (λ0 = 25%, Tc = 5000) works best among all the
CURRICULUM settings. Besides, it is worth noting that both CURRICULUM and ANTI-CURRICULUM
improve the reasoning capability compared to baseline, which indicates the subset which contributes
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the most in perplexity not necessarily contains valuable factual knowledge. How to tackle with this
mis-alignment towards our final target could also be a future challenge.
IRREDUCIBLE CURRICULUM reduces sharpness during training. Several recent research shows
that applying sharpness aware minimization could effectively improve the generalization ability of
the network [Foret et al., 2021]. Thus, we resort to inspect into how the IRREDUCIBLE CURRICULUM
could impact the loss landscape by estimating its sharpness along the training trajectory. Following
[Wu, 2018, Li et al., 2022b], we adopt the popular definition of sharpness as the largest eigenvalue of
the Hessian matrix. We compute the Hessian of all the dense layers and record its top-eigenvalue
every 200 steps along the training process. More details on sharpness computation are provided in
Appendix A.1.

Figure 2: Network sharpness along training process (RedPajama-1B). The sharpness is measured as
the largest eigenvalue of the hessian matrix.

According to Fig. 2, training with IRREDUCIBLE CURRICULUM results to a lower sharpness compared
with random baseline. On the opposite, the anti-curriculum would lead to a sharper training trajectory.
However, whether and how this lower-sharpness correlates with the generalization ability of the
network need further explorations on larger scale models and datasets.

5 Analysis and Failure Mode of Global Curriculum on the Data Mixture
Assuming that we have no access to the domain information during training, we can only apply the
curriculum on globally on the entire data mixture. Instead of starting with top-λ0 fraction of samples
in each domains, we rank all samples in the global dataset and start sampling from top-scored λ0

fraction, which could mostly come from one specific domain.

Here, we compare to the anti-curriculum applied on the whole data mixture, and the baseline with
uniformly sampling across all instances. The model scale, architecture, and hyperparameters are the
same as in Section 4.1.

Global curriculum lowers average validation perplexity and reduces sharpness. According
to Fig. 3, the blue lines denote IRREDUCIBLE CURRICULUM with various combination of λ0 and
Tc

5, while the green lines apply ANTI-CURRICULUM. Across the entire domain-mixture corpus, the
proposed IRREDUCIBLE CURRICULUM could still effectively reduce the validation perplexity and
sharpness compared with baseline and ANTI-CURRICULUM by a large margin.

Global curriculum is not beneficial for every domain. We further evaluate the domain-wise
performance with the global curriculum applied on the entire corpus. According to Fig. 5, IRRE-
DUCIBLE CURRICULUM reduce the validation perplexity on 4 domains (C4, CommonCrawl, Book
and Wikipedia), while showing the opposite effect on the other 3 domains (Arxiv, Github and Stack-
exchange). This can be explained by the domain-wise differences in the learnability score. Figure
4 shows that most of the globally top-ranked samples are from Wikipedia, C4 and CommonCrawl
domains, which would be prioritized by the IRREDUCIBLE CURRICULUM while instances from
Github and Stackexchange are mostly within the quarter with lowest scores, which are primarily

5The combinations are (λ0, Tc): (25%, 2000), (25%, 5000), (50%, 2000), (50%, 5000).
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Figure 3: Validation log-perplexity on RedPajama-1B. The validation set is uniformly sampled from
all the domains. The Blue lines denotes the IRREDUCIBLE CURRICULUM with different λ0 and Tc,
Green lines denotes the ANTI-CURRICULUM.

learnt by the ANTI-CURRICULUM algorithm. In addition, the in-domain score distributions are highly
varying among domains. It illustrates that the an intra-domain learnability (Equ. 3) ranking would
offer a more fair comparison, while the naive global curriculum could risk from introducing too much
inter-domain sampling bias.

Figure 4: Learnability Scores Distribution. (Left) shows the portion of each domain in each quarter
(0-25%, 25%-50%, 50%-75%, 75%-100%) of global ranking; (Right) shows the average learnability
score of each quarter in each domain. It demonstrate that the learnability score are not necessarily
comparable between different domains because of various lexical distributions and semantic knowl-
edge.

6 Future work
Scaling up the model and training corpus. Given the emergency ability of large language
models, future work is warranted to explore how this IRREDUCIBLE CURRICULUM can improve the
performance of larger scale models, in particular with respect to scaling laws relating dataset size and
model size.

Relation between sharpness, generalization ability and curriculum learning. In Section 4.1, we
observed that the IRREDUCIBLE CURRICULUM could lead to a lower sharpness of the network along
the training process while the ANTI-CURRICULUM approach would lead to the opposite. According
to the recent debate on the correlation between sharpness and generalization ability of foundation
models [Dinh et al., 2017, Foret et al., 2021, Andriushchenko et al., 2023], it is fascinating to uncover
whether the curriculum learning algorithm could realize similar outcome as computation-heavy
sharpness-aware minimization optimization.

7 Conclusion
In this paper, we propose IRREDUCIBLE CURRICULUM as a curriculum learning algorithm with the
underlying hypothesis that small proxy model is capable to simulate the early stage training trajectory.
For language model pretraining, the method shows a consistent improvement in validation perplexity
across several domains and downstream few-shot inference accuracy on the MMLU benchmark.
Besides, we also observe our IRREDUCIBLE CURRICULUM can lead to a lower sharpness compared
to the random baseline. However, because of the limitation of computation resources, we leave the
scaling-up experiments and exploration of further generalization patterns to future investigations.
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A Appendix

A.1 Preliminary of Hessian and Sharpness

Hessian. Considering model parameter θ and input xi, the hessian is defined as the average second-
order derivative of the objective function ℓ:

∇2
θL(f(θ)) =

1

n

n∑
i=1

∇2
θℓ(f(θ,xi)) (5)

Specifically, we randomly sample 50 instances from validation set of each domain, and take the
average second-order derivative as the hessian matrix. We only consider parameters from all dense
layers as θ while skip the attention matrix.

Sharpness. Denote the hessian matrix as H, we adopt a popular definition of the sharpness as the
largest eigenvalue of the Hessian λmax(H), following [Wu, 2018, Li et al., 2022b].

When calculating the sharpness, we apply the numerical method, power method, following [Noah Gol-
mant, 2018] to calculate the top eigenvalue of the Hessian matrix.

A.2 Related Work

Curriculum Learning for Language Modeling. As a popular concept in education and cognitive
science, there have been plenty of attempts to apply curriculum learning on training language models,
by progressively expose the neural learner with samples with ascending difficulty level [Campos,
2021, Nagatsuka et al., 2021, Li et al., 2022a]. However, most of the effective methods increase the
difficulty by varying the context length of sequences, without focusing on the syntactic nor semantic
properties. Li et al. [2022a] empirically proves that with a incrementally increase context length, the
pretraining of language model could be more stable, reducing the number of loss spikes. Similarly,
Nagatsuka et al. [2021] shows that feed training samples with increasing block size could improve
the performance when pretraining BERT [Devlin et al., 2019], an encoder-only model with masked
language modeling objective.

Campos [2021] has conducted extensive experiments towards using linguistic-featured curriculum
learning for language model pretraining. However, the conclusion shows their curriculum fails to
effectively help with validation perplexity nor downstream performance.

Recently, Xie et al. [2023] has introduced a domain reweighting framework by sampling from
domains with various probability. They propose to use two small-scale auxiliary models to determine
the domain weights through a group distributional robust optimization game. However, all the
samples within one domain would share the same sampling weights, which fails to distinguish the
instance-wise attributes inside the domain barrier. How to combine the domain-level reweighting and
the in-domain curriculum could also be a promising direction for future exploration.

Figure 5: Domain-wise validation log-perplexity on RedPajama-1B.
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Figure 6: Network sharpness on RedPajama-1B.
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