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Abstract

In this paper, we present conditions for identifying the generator of a linear
stochastic differential equation (SDE) from the distribution of its solution process
with a given fixed initial state. These identifiability conditions are crucial in causal
inference using linear SDEs as they enable the identification of the post-intervention
distributions from its observational distribution. Specifically, we derive a sufficient
and necessary condition for identifying the generator of linear SDEs with additive
noise, as well as a sufficient condition for identifying the generator of linear SDEs
with multiplicative noise. We show that the conditions derived for both types of
SDEs are generic. Moreover, we offer geometric interpretations of the derived
identifiability conditions to enhance their understanding. To validate our theoretical
results, we perform a series of simulations, which support and substantiate the
established findings.

1 Introduction

Stochastic differential equations (SDEs) are a powerful mathematical tool for modelling dynamic
systems subject to random fluctuations. These equations are widely used in various scientific
disciplines, including finance [11, 30, 40], physics [53, 55, 58], biology [2, 8, 61] and engineering
[18, 44, 55]. In recent years, SDEs have garnered growing interest in the machine learning research
community. Specifically, they have been used for tasks such as modelling time series data [19, 21, 33]
and estimating causal effects [5, 36, 47].

To enhance understanding we first introduce the SDEs of our interest, which are multidimensional
linear SDEs with additive and multiplicative noise, respectively. Consider an m-dimensional standard
Brownian motion defined on a filtered probability space (Ω,F ,P, {Ft}), denoted by W := {Wt =
[W1,t, . . . ,Wm,t]

⊤ : 0 ⩽ t < ∞}. Let Xt ∈ Rd be the state at time t and let x0 ∈ Rd be a constant
vector denoting the initial state of the system, we present the forms of the aforementioned two linear
SDEs.
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1. Linear SDEs with additive noise.
dXt = AXtdt+GdWt , X0 = x0 , (1)

where 0 ⩽ t < ∞, A ∈ Rd×d and G ∈ Rd×m are some constant matrices.
2. Linear SDEs with multiplicative noise.

dXt = AXtdt+
∑m

k=1 GkXtdWk,t , X0 = x0 , (2)

where 0 ⩽ t < ∞, A,Gk ∈ Rd×d for k = 1, . . . ,m are some constant matrices.

Linear SDEs are wildly used in financial modeling for tasks like asset pricing, risk assessment,
and portfolio optimization [3, 10, 24]. Where they are used to model the evolution of financial
variables, such as stock prices and interest rates. Furthermore, linear SDEs are also used in genomic
research, for instance, they are used for modeling the gene expression in the yeast microorganism
Saccharomyces Cerevisiae [17]. The identifiability analysis of linear SDEs is essential for reliable
causal inference of dynamic systems governed by these equations. For example, in the case of
Saccharomyces Cerevisiae, one aims to identify the system such that making reliable causal inference
when interventions are introduced. Such interventions may involve deliberate knockout of specific
genes to achieve optimal growth of an organism. In this regard, identifiability analysis plays a pivotal
role in ensuring reliable predictions concerning the impact of interventions on the system.

Previous studies on identifiability analysis of linear SDEs have primarily focused on Gaussian
diffusions, as described by the SDE (1) [6, 16, 23, 28, 35, 42]. These studies are typically based
on observations located on one trajectory of the system and thus require restrictive identifiability
conditions, such as the ergodicity of the diffusion or other restrictive requirements on the eigenvalues
of matrix A. However, in practical applications, multiple trajectories of the dynamic system can often
be accessed [15, 31, 45, 54]. In particular, these multiple trajectories may start from the same initial
state, e.g., in experimental studies where repeated trials or experiments are conducted under the same
conditions [9, 12, 26, 29] or when the same experiment is performed on multiple identical units [48].
To this end, this work presents an identifiability analysis for linear SDEs based on the distribution of
the observational process with a given fixed initial state. Furthermore, our study is not restricted to
Gaussian diffusions (1), but also encompasses linear SDEs with multiplicative noise (2). Importantly,
the conditions derived for both types of SDEs are generic, meaning that the set of system parameters
that violate the proposed conditions has Lebesgue measure zero.

Traditional identifiability analysis of dynamic systems focuses on deriving conditions under which a
unique set of parameters can be obtained from error-free observational data. However, our analysis
of dynamic systems that are described by SDEs aims to uncover conditions that would enable a
unique generator to be obtained from its observational distribution. Our motivation for identifying
generators of SDEs is twofold. Firstly, obtaining a unique set of parameters from the distribution
of a stochastic process described by an SDE is generally unfeasible. For example, in the SDE (1),
parameter G cannot be uniquely identified since one can only identify GG⊤ based on the distribution
of its solution process [17, 28]. Secondly, the identifiability of an SDE’s generator suffices for reliable
causal inferences for this system. Note that, in the context of SDEs, the main task of causal analysis
is to identify the post-intervention distributions from the observational distribution. As proposed in
[17], for an SDE satisfying specific criteria, the post-intervention distributions are identifiable from
the generator of this SDE. Consequently, the intricate task of unraveling causality can be decomposed
into two constituent components through the generator. This paper aims to uncover conditions under
which the generator of a linear SDE attains identifiability from the observational distribution. By
establishing these identifiability conditions, we can effectively address the causality task for linear
SDEs.

In this paper, we present a sufficient and necessary identifiability condition for the generator of linear
SDEs with additive noise (1), along with a sufficient identifiability condition for the generator of
linear SDEs with multiplicative noise (2).

2 Background knowledge

In this section, we introduce some background knowledge of linear SDEs. In addition, we provide a
concise overview of the causal interpretation of SDEs, which is a critical aspect of understanding
the nature and dynamics of these equations. This interpretation also forms a strong basis for the
motivation of this research.
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2.1 Background knowledge of linear SDEs

The solution to the SDE (1) can be explicitly expressed as (cf. [50]):

Xt := X(t;x0, A,G) = eAtx0 +

∫ t

0

eA(t−s)GdWs . (3)

Note that in the context of our study, the solution stands for the strong solution, refer to [22] for its
detailed definition.

In general, obtaining an explicit expression for the solution to the SDE (2) is not feasible. In fact, an
explicit solution can be obtained when the matrices A,G1, . . . , Gk commute, that is when

AGk = GkA and GkGl = GlGk (4)

holds for all k, l = 1, . . . ,m (cf. [25]). However, the conditions described in (4) are too restrictive
and impractical. Therefore, this study will focus on the general case of the SDE (2).

We know that both the SDE (1) and the SDE (2) admit unique solutions that manifest as continuous
stochastic processes [22]. A d-dimensional stochastic process is a collection of Rd-valued random
variables, denoted as X = {Xt; 0 ⩽ t < ∞} defined on some probability space. When comparing
two stochastic processes, X and X̃ , that are defined on the same probability space (Ω,F ,P), various
notions of equality may be considered. In this study, we adopt the notion of equality with respect
to their distributions, which is a weaker requirement than strict equivalence, see [22] for relevant
notions. We now present the definition of the distribution of a stochastic process.
Definition 2.1. Let X be a random variable on a probability space (Ω,F ,P) with values in a
measurable space (S,B(S)), i.e., the function X : Ω → S is F/B(S)-measurable. Then, the
distribution of the random variable X is the probability measure PX on (S,B(S)) given by

PX(B) = P(X ∈ B) = P{ω ∈ Ω : X(ω) ∈ B} , B ∈ B(S) .
When X := {Xt; 0 ⩽ t < ∞} is a continuous stochastic process on (Ω,F ,P), and S = C[0,∞),
such an X can be regarded as a random variable on (Ω,F ,P) with values in (C[0,∞),B(C[0,∞))),
and PX is called the distribution of X . Here C[0,∞) stands for the space of all continuous, real-
valued functions on [0,∞].

It is noteworthy that the distribution of a continuous process can be uniquely determined by its
finite-dimensional distributions. Hence, if two stochastic processes, labelled as X and X̃ , share
identical finite-dimensional distributions, they are regarded as equivalent in distribution, denoted by
X

d
= X̃ . Relevant concepts and theories regarding this property can be found in [22].

The generator of a stochastic process is typically represented by a differential operator that acts
on functions. It provides information about how a function evolves over time in the context of
the underlying stochastic process. Mathematically, the generator of a stochastic process Xt can be
defined as

(Lf)(x) = lim
s→0

E[f(Xt+s)− f(Xt)|Xt = x]

s
,

where f is a suitably regular function.

In the following, we present the generator of the SDEs under consideration. Obviously, both the SDE
(1) and the SDE (2) conform to the general form:

dXt = b(Xt)dt+ σ(Xt)dWt , X0 = x0 . (5)

where b and σ are locally Lipschitz continuous in the space variable x. The generator L of the SDE
(5) can be explicitly computed by utilizing Itô’s formula (cf. [50]).
Proposition 2.1. Let X be a stochastic process defined by the SDE (5). The generator L of X on
C2

b (Rd) is given by

(Lf)(x) :=
d∑

i=1

bi(x)
∂f(x)

∂xi
+

1

2

d∑
i,j=1

cij(x)
∂2f(x)

∂xi∂xj
(6)

for f ∈ C2
b (Rd) and x ∈ Rd, where c(x) = σ(x) · σ(x)⊤ is a d× d matrix, and C2

b (Rd) denotes the
space of continuous functions on Rd that have bounded derivatives up to order two.
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2.2 Causal interpretation of SDEs

An important motivation for the identification of the generator of an SDE lies in the desire to infer
reliable causality within dynamic models described by SDEs. In this subsection, we aim to provide
some necessary background knowledge on the causal interpretation of SDEs. Consider the general
SDE framework described as:

dXt = a(Xt)dZt , X0 = x0 , (7)

where Z is a p-dimensional semimartingale and a : Rd → Rd×p is a continuous mapping. By writing
the SDE (7) in integral form

Xi
t = xi

0 +
∑p

j=1

∫ t

0
aij(Xs)dZ

j
s , i ⩽ d . (8)

The authors of [17] proposed a mathematical definition of the SDE resulting from an intervention to
the SDE (8). In the following, X(−l) denotes the (d− 1)-dimensional vector that results from the
removal of the l-th coordinate of X ∈ Rd.
Definition 2.2. [17, Definition 2.4.] Consider some l ⩽ d and ζ : Rd−1 → R. The SDE arising from
(8) under the intervention X l

t := ζ(X
(−l)
t ) is the (d− 1)-dimensional equation

(Y (−l))it = xi
0 +

∑p
j=1

∫ t

0
bij(Y

(−l)
s )dZj

s , i ̸= l , (9)

where b : Rd−1 → R(d−1)×p is defined by bij(y) = aij(y1, . . . , ζ(y), . . . , yd) for i ̸= l and j ⩽ p
and the ζ(y) is on the l-th coordinate.

Definition 2.2 presents a natural approach to defining how interventions should affect dynamic
systems governed by SDEs. We adopt the same notations as used in [17]. Assuming (8) and (9) have
unique solutions for all interventions, we refer to (8) as the observational SDE, to its solution as the
observational process, to the distribution of its solution as observational distribution, to (9) as the
post-intervention SDE, to the solution of (9) as the post-intervention process, and to the distribution
of the solution of (9) as the post-intervention distribution. The authors in [17] related Definition 2.2 to
mainstream causal concepts by establishing a mathematical connection between SDEs and structural
equation models (SEMs). Specifically, the authors showed that under regularity assumptions, the
solution to the post-intervention SDE is equal to the limit of a sequence of interventions in SEMs
based on the Euler scheme of the observational SDE. Despite the fact that the parameters of the SDEs
are generally not identifiable from the observational distribution, the post-intervention distributions
can be identified, thus enabling causal inference of the system. To this end, Sokol and Hansen [17]
derived a condition under which the generator associated with the observational SDE allows for the
identification of the post-intervention distributions. We present the corresponding theory as follows.
Lemma 2.1. [17, Theorem 5.3.] Consider the SDEs

dXt = a(Xt)dZt , X0 = x0 , (10)

dX̃t = ã(X̃t)dZ̃t , X̃0 = x̃0 , (11)
where Z is a p-dimensional Lévy process and Z̃ is a p̃-dimensional Lévy process. Assume that
(10) and (11) have the same generator, that a : Rd → Rd×p and ζ : Rd−1 → R are Lipschitz and
that the initial values have the same distribution. Then the post-intervention distributions of doing
X l := ζ(X(−l)) in (10) and doing X̃ l := ζ(X̃(−l)) in (11) are equal for any choice of ζ and l.

A main task in the causality research community is to uncover the conditions under which the
post-intervention distributions are identifiable from the observational distribution. In the context of
dynamic systems modelled in SDEs, similar conditions need to be derived. Lemma 2.1 establishes
that, for SDEs with a Lévy process as the driving noise, the post-intervention distributions can be
identifiable from the generator. Nevertheless, a gap remains between the observational distribution
and the SDE generator’s identifiability. This work aims to address this gap by providing conditions
under which the generator is identifiable from the observational distribution.

3 Main results

In this section, we present some prerequisites first, and then we present the main theoretical results of
our study, which include the condition for the identifiability of generator that is associated with the
SDE (1) / SDE (2) from the distribution of the corresponding solution process.

4



3.1 Prerequisites

We first show that both the SDE (1) and the SDE (2) satisfy the conditions stated in Lemma 2.1.
Lemma 3.1. Both the SDE (1) and the SDE (2) can be expressed as the form of (10), with Z being a
p-dimensional Lévy process, and a : Rd → Rd×p being Lipschitz.

The proof of Lemma 3.1 can be found in Appendix A.1. This lemma suggests that Lemma 2.1
applies to both the SDE (1) and the SDE (2), given that they meet the specified conditions. Therefore,
for either SDE, deriving the conditions that allow for the generator to be identifiable from the
observational distribution is sufficient. By applying Lemma 2.1, when the intervention function ζ
is Lipschitz, the post-intervention distributions can be identified from the observational distribution
under these conditions.

We then address the identifiability condition of the generator L defined by (6).

Proposition 3.1. Let L and L̃ be generators of stochastic processes defined by the form of the SDE
(5) on C2

b (Rd), where L is given by (6) and L̃ is given by the same expression, with b̃(x) and c̃(x)

substituted for b(x) and c(x). It then holds that the two generators L = L̃ if and only if b(x) = b̃(x)
and c(x) = c̃(x) for all x ∈ Rd.

The proof of Proposition 3.1 can be found in Appendix A.2. This proposition states that for stochastic
processes defined by the SDE (5), the generator is identifiable from functions associated with its
coefficients: b(x) and c(x) = σ(x) · σ(x)⊤.

3.2 Conditions for identifying generators of linear SDEs with additive noise

Expressing the SDE (1) in the form given by (5) yields b(x) = Ax and c(x) = GG⊤. Therefore,
based on Proposition 3.1, we define the identifiability of the generator of the SDE (1) as follows.
Definition 3.1 ((x0, A,G)-identifiability). For x0 ∈ Rd, A ∈ Rd×d and G ∈ Rd×m, the generator
of the SDE (1) is said to be identifiable from x0, if for all Ã ∈ Rd×d and all G̃ ∈ Rd×m, with

(A,GG⊤) ̸= (Ã, G̃G̃⊤), it holds that X(·;x0, A,G)2
d
̸= X(·;x0, Ã, G̃).

In the following, we begin by introducing two lemmas that serve as the foundation for deriving our
main identifiability theorem.

Lemma 3.2. For x0 ∈ Rd, A, Ã ∈ Rd×d and G, G̃ ∈ Rd×m, let Xt := X(t;x0, A,G), X̃t :=

X(t;x0, Ã, G̃), then X(·;x0, A,G)
d
= X(·;x0, Ã, G̃) if and only if the mean E[Xt] = E[X̃t] and

the covariance E{(Xt+h −E[Xt+h])(Xt −E[Xt])
⊤} = E{(X̃t+h −E[X̃t+h])(X̃t −E[X̃t])

⊤} for
all 0 ⩽ t < ∞ and 0 ⩽ h < ∞.

The proof of Lemma 3.2 can be found in Appendix A.3. This lemma states that for stochastic processes
modelled by the SDE (1), the equality of the distribution of two processes can be deconstructed as
the equality of the mean and covariance of the state variables at all time points. Calculation shows

E[Xt] = eAtx0 ,

V (t, t+ h) :=E{(Xt+h − E[Xt+h])(Xt − E[Xt])
⊤}

= eAhV (t) ,

(12)

where V (t) := V (t, t). Please refer to the proof A.5 of Theorem 3.4 for the detailed calculations. It
can be easily checked that E[Xt] follows the linear ordinary differential equation (ODE)

ṁ(t) = Am(t), m(0) = x0 , (13)

where ṁ(t) denotes the first derivative of function m(t) with respect to time t. Similarly, each column
of the covariance V (t, t+ h) also follows the linear ODE (13) but with a different initial state: the
corresponding column of V (t). This observation allows us to leverage not only the characteristics of
the SDE (1), but also the established theories [43, 57] on identifiability analysis for the ODE (13), to
derive the identifiability conditions for the generator of the SDE (1).

2X(·;x0, A,G) = {X(t;x0, A,G) : 0 ⩽ t < ∞}
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We adopt the same setting as in [43], discussing the case where A has distinct eigenvalues. Because
random matrix theory suggests that almost every A ∈ Rd×d has d distinct eigenvalues with respect
to the Lebesgue measure on Rd×d [43]. And the Jordan decomposition of such a matrix A follows
a straightforward form which is helpful for deriving the geometric interpretation of the proposed
identifiability condition. The Jordan decomposition can be expressed as A = QΛQ−1, where

Λ =

J1 . . .
JK

 ,with Jk =


λk, if k = 1, . . . ,K1 ,[
ak −bk
bk ak

]
, if k = K1 + 1, . . . ,K .

Q = [Q1| . . . |QK ] = [v1| . . . |vd] ,

Qk =

{
vk, if k = 1, . . . ,K1 ,
[v2k−K1−1|v2k−K1 ] , if k = K1 + 1, . . . ,K ,

where λk is a real eigenvalue of A and vk is the corresponding eigenvector of λk, for k = 1, . . . ,K1.
For k = K1 + 1, . . . ,K, [v2k−K1−1|v2k−K1 ] are the corresponding “eigenvectors” of complex
eigenvalues ak ± bki. Inspired by [43, Definition 2.3., Lemma 2.3.], we establish the following
Lemma.

Lemma 3.3. Assuming A ∈ Rd×d has d distinct eigenvalues, with Jordan decomposition A =
QΛQ−1. Let γj ∈ Rd and γ̃j := Q−1γj ∈ Rd for all j = 1, . . . , n with n ⩾ 2. We define

wj,k :=

{
γ̃j,k ∈ R1, for k = 1, . . . ,K1 ,
(γ̃j,2k−K1−1, γ̃j,2k−K1

)⊤ ∈ R2, for k = K1 + 1, . . . ,K ,

where γ̃j,k denotes the k-th entry of γ̃j . rank([γ1|Aγ1| . . . |Ad−1γ1| . . . |γn|Aγn| . . . |Ad−1γn]) < d
if and only if there exists k ∈ {1, . . . ,K}, such that |wj,k| = 0 for all j = 1, . . . , n, where |wj,k| is
the absolute value of wj,k for k = 1, . . . ,K1, and the Euclidean norm of wj,k for k = K1+1, . . . ,K.

The proof of Lemma 3.3 can be found in Appendix A.4. From a geometric perspective, γj can be
decomposed into a linear combination of Qk’s

γj = Qγ̃j =
∑K

k=1 Qkwj,k .

Let Lk := span(Qk). According to [43, Theorem 2.2], each Lk is an A-invariant subspace of
Rd. Recall that a space L is called A-invariant, if for all γ ∈ L, Aγ ∈ L. We say L is a proper
subspace of Rd if L ⊂ Rd and L ̸= Rd. If |wj,k| = 0 (i.e., wj,k = 0 in R1 or R2), then γj
does not contain any information from Lk. In this case, γj is contained in an A-invariant proper
subspace of Rd that excludes Lk, denoted as L−k. It is worth emphasizing that L−k ⊂ Rd is
indeed a proper subspace of Rd. This further implies that the trajectory of the ODE (13) gen-
erated from initial state γj is confined to L−k [57, Lemma 3.2]. Lemma 3.3 indicates that if
rank([γ1|Aγ1| . . . |Ad−1γ1| . . . |γn|Aγn| . . . |Ad−1γn]) < d then all γj for j = 1, . . . , n are confined
to an A-invariant proper subspace of Rd, denoted as L. Therefore, all trajectories of the ODE (13)
generated from initial states γj are also confined to L. Furthermore, based on the identifiability
conditions proposed in [57], the ODE (13) is not identifiable from observational data collected in
these trajectories. This lemma provides an approach to interpreting our identifiability conditions from
a geometric perspective.

Now we are ready to present our main theorem.

Theorem 3.4. Let x0 ∈ Rd be fixed. Assuming that the matrix A in the SDE (1) has d distinct
eigenvalues. The generator of the SDE (1) is identifiable from x0 if and only if

rank([x0|Ax0| . . . |Ad−1x0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d]) = d , (14)

where H := GGT , and H·j stands for the j-th column vector of matrix H , for all j = 1, · · · , d.

The proof of Theorem 3.4 can be found in Appendix A.5. The condition in Theorem 3.4 is both
sufficient and necessary when the matrix A has distinct eigenvalues. It is worth noting that almost
every A ∈ Rd×d has d distinct eigenvalues concerning the Lebesgue measure on Rd×d. Hence, this
condition is both sufficient and necessary for almost every A in Rd×d. However, in cases where A
has repetitive eigenvalues, this condition is solely sufficient and not necessary.
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Remark. The identifiability condition stated in Theorem 3.4 is generic, that is, let

S := {(x0, A,G) ∈ Rd+d2+dm : condition (14) is violated} ,

S has Lebesgue measure zero in Rd+d2+dm. Refer to Appendix B.2 for the detailed proof.

From the geometric perspective, suppose matrix A has distinct eigenvalues, the generator of the SDE
(1) is identifiable from x0 when not all of the vectors: x0, H·1, . . . ,H·d are confined to an A-invariant
proper subspace of Rd. A key finding is that when all the vectors H·j , j = 1, . . . , d are confined to
an A-invariant proper subspace L of Rd, each column of the covariance matrix V (t) in Equation (12)
is also confined to L, for all 0 ⩽ t < ∞. Thus, the identifiability of the generator of the SDE (1) can
be fully determined by x0 and the system parameters (A,GG⊤). Further details can be found in the
proof A.5 of Theorem 3.4.

By rearranging the matrix in (14), the identifiability condition can also be expressed as

rank([x0|Ax0| . . . |Ad−1x0|GG⊤|AGG⊤| . . . |Ad−1GG⊤]) = d . (15)

Based on the identifiability condition (15), we derive the following corollary.
Corollary 3.4.1. Let x0 ∈ Rd be fixed. If rank([G|AG| . . . |Ad−1G]) = d, then the generator of the
SDE (1) is identifiable from x0 .

The proof of Corollary 3.4.1 can be found in Appendix A.6. This corollary indicates that the generator
of the SDE (1) is identifiable from any initial state x0 ∈ Rd when the pair [A,G] is controllable
(rank([G|AG| . . . |Ad−1G]) = d). Notably, this identifiability condition is stricter than that proposed
in Theorem 3.4, as it does not use the information of x0.

3.3 Conditions for identifying generators of linear SDEs with multiplicative noise

Expressing the SDE (2) in the form given by (5) yields b(x) = Ax and σ(x) = [G1x| . . . |Gmx] ∈
Rd×m, thus, c(x) = σ(x)σ(x)⊤ =

∑m
k=1 Gkxx

⊤G⊤
k . Let X(t;x0, A, {Gk}mk=1) denote the solu-

tion to the SDE (2), then based on Proposition 3.1, we define the identifiability of the generator of the
SDE (2) as follows.
Definition 3.2 ((x0, A, {Gk}mk=1)-identifiability). For x0 ∈ Rd, A,Gk ∈ Rd×d for all k = 1, . . . ,m,
the generator of the SDE (2) is said to be identifiable from x0, if for all Ã, G̃k ∈ Rd×d, there
exists an x ∈ Rd, such that (A,

∑m
k=1 Gkxx

⊤G⊤
k ) ̸= (Ã,

∑m
k=1 G̃kxx

⊤G̃⊤
k ), it holds that

X(·;x0, A, {Gk}mk=1)
d
̸= X(·;x0, Ã, {G̃k}mk=1).

Based on Definition 3.2, we present the identifiability condition for the generator of the SDE (2).
Theorem 3.5. Let x0 ∈ Rd be fixed. The generator of the SDE (2) is identifiable from x0 if the
following conditions are satisfied:

A1 rank([x0|Ax0| . . . |Ad−1x0]) = d ,

A2 rank([v|Av| . . . |A(d2+d−2)/2v]) = (d2 + d)/2 ,

where A = A⊕A+
∑m

k=1 Gk ⊗Gk ∈ Rd2×d2

, ⊕ denotes Kronecker sum and ⊗ denotes Kronecker
product, v is a d2-dimensional vector defined by v := vec(x0x

⊤
0 ), where vec(M) denotes the

vectorization of matrix M .

The proof of Theorem 3.5 can be found in Appendix A.7. This condition is only sufficient but
not necessary. Specifically, condition A1 guarantees that matrix A is identifiable, and once A is
identifiable, condition A2 ensures that the identifiability of

∑m
k=1 Gkxx

⊤G⊤
k holds for all x ∈ Rd.

Remark. The identifiability condition stated in Theorem 3.5 is generic, that is, let

S := {(x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

: either condition A1 or A2 in Theorem 3.5 is violated} ,

S has Lebesgue measure zero in Rd+(m+1)d2

. This signifies that the conditions are satisfied for most
of the combinations of x0, A and Gk’s, except for those that lie in a set of Lebesgue measure zero.
The corresponding proposition and detailed proof can be found in Appendix B.1.
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Since obtaining an explicit solution for the SDE (2) is generally infeasible, we resort to utilizing the
first- and second-order moments of this SDE to derive the identifiability conditions. Let m(t) :=
E[Xt] and P (t) := E[XtX

⊤
t ], it is known that these moments satisfy ODE systems. Specifically,

m(t) satisfies the ODE (13), while P (t) satisfies the following ODE (cf. [56]):

Ṗ (t) = AP (t) + P (t)A⊤ +
∑m

k=1 GkP (t)G⊤
k , P (0) = x0x

⊤
0 . (16)

An important trick to deal with the ODE (16) is to vectorize P (t), then it can be expressed as:

vec(Ṗ (t)) = Avec(P (t)) , vec(P (0)) = v , (17)

where A and v are defined in Theorem 3.5. In fact, the ODE (17) follows the same mathematical
structure as that of the ODE (13), which is known as homogeneous linear ODEs. Thus, in addition
to the inherent properties of the SDE (2), we also employ some existing identifiability theories for
homogeneous linear ODEs to establish the identifiability condition for the generator of the SDE (2).

From the geometric perspective, condition A1 indicates that the initial state x0 is not confined
to an A-invariant proper subspace of Rd [57, Lemma 3.1.]. And condition A2 implies that the
vectorization of x0x

⊤
0 is not confined to an A-invariant proper subspace of W , with W ⊂ Rd2

, and
dim(W ) = (d2 + d)/2, where dim(W ) denotes the dimension of the subspace W , that is the number
of vectors in any basis for W . In particular, one can construct a basis for W as follows:

{vec(E11), vec(E21), vec(E22), . . . , vec(Edd)} ,

where Eij denotes a d× d matrix whose ij-th and ji-th elements are 1, and all other elements are 0,
for all i, j = 1, . . . , d and i ⩾ j. Refer to the proof A.7 of Theorem 3.5 for more details.

4 Simulations and examples

In order to assess the validity of the identifiability conditions established in Section 3, we present the
results of simulations. Specifically, we consider SDEs with system parameters that either satisfy or
violate the proposed identifiability conditions. We then apply the maximum likelihood estimation
(MLE) method to estimate the system parameters from discrete observations sampled from the
corresponding SDE. The accuracy of the resulting parameter estimates serves as an indicator of the
validity of the proposed identifiability conditions.

Simulations. We conduct five sets of simulations, which include one identifiable case and one
unidentifiable case for the SDE (1), and one identifiable case and two unidentifiable cases with either
condition A1 or A2 in Theorem 3.5 unsatisfied for the SDE (2). We set both the system dimension,
d, and the Brownian motion dimension, m, to 2. Details on the true underlying system parameters
for the SDEs can be found in Appendix C. We simulate observations from the true SDEs for each of
the five cases under investigation. Specifically, the simulations are carried out for different numbers
of trajectories (N ), with 50 equally-spaced observations sampled on each trajectory from the time
interval [0, 1]. We employ the Euler-Maruyama (EM) method [34], a widely used numerical scheme
for simulating SDEs, to generate the observations.

Estimation. We use MLE [38, 50] to estimate the system parameters. The MLE method requires
knowledge of the transition probability density function (pdf) that governs the evolution of the system.
For the specific case of the SDE (1), the transition density follows a Gaussian distribution, which can
be computed analytically based on the system’s drift and diffusion coefficients (cf. [50]). To compute
the covariance, we employ the commonly used matrix fraction decomposition method [4, 49, 50].
However, in general, the transition pdf of the SDE (2) cannot be obtained analytically due to the
lack of a closed-form solution. To address this issue, we implement the Euler-Maruyama approach
[32, 34], which has been shown to be effective in approximating the transition pdf of SDEs.

Metric. We adopt the commonly used metric, mean squared error (MSE), to assess the accuracy
of the parameter estimates. To ensure reliable estimation outcomes, we perform 100 independent
random replications for each configuration and report the mean and variance of their MSEs.

Results analysis. Table 1 and Table 2 present the simulation results for the SDE (1) and the SDE
(2), respectively. In Table 1, the simulation results demonstrate that in the identifiable case, as the
number of trajectories N increases, the MSE for both A and GG⊤ decreases and approaches zero.
However, in the unidentifiable case, where the identifiable condition (14) stated in Theorem 3.4 is not
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Table 1: Simulation results of the SDE (1)

N
Identifiable Unidentifiable

MSE-A MSE-GG⊤ MSE-A MSE-GG⊤

5 0.0117± 0.0115 5.28E-05± 4.39E-05 3.66± 0.10 0.05± 0.03
10 0.0063± 0.0061 2.39E-05± 1.82E-05 3.88± 0.06 0.64± 0.59
20 0.0029± 0.0027 1.87E-05± 1.51E-05 3.70± 0.06 0.09± 0.07
50 0.0013± 0.0010 8.00E-06± 5.68E-06 3.76± 0.07 0.11± 0.08

100 0.0007± 0.0004 4.34E-06± 2.70E-06 3.66± 0.02 2.09± 1.98

satisfied, the MSE for both A and GG⊤ remains high regardless of the number of trajectories. These
findings provide strong empirical evidence supporting the validity of the identifiability condition
proposed in Theorem 3.4. The simulation results presented in Table 2 show that in the identifiable
case, the MSE for both A and Gsx decreases and approaches zero with the increase of the number of
trajectories N . Here, Gsx :=

∑m
k=1 Gkxx

⊤G⊤
k , where x is a randomly generated vector from R2

(in these simulations, x = [1.33, 0.72]⊤). Interestingly, even in unidentifiable case 1, the MSE for
both A and Gsx decreases with an increasing number of trajectories N , indicating that the generator
of the SDE utilized in this particular case is still identifiable, although a larger number of trajectories
is required compared to the identifiable case to achieve the same level of accuracy. This result is
reasonable, because it aligns with our understanding that condition A1 is only sufficient but not
necessary for identifying A, as the lack of an explicit solution for the SDE (2) results in condition A1
not incorporating any information from Gk’s. The identifiability condition derived for the SDE (1) in
Theorem 3.4 leverages the information of G, similarly, if information regarding Gk’s is available, a
weaker condition for identifying A could be obtained. For illustration, in Appendix E, we present
such a condition assuming the SDE (2) has a closed-form solution. In the case of unidentifiable case
2, the MSE for A decreases with an increasing number of trajectories N ; however, the MSE for Gsx
remains high, indicating that A is identifiable, while Gsx is not, albeit requiring more trajectories
compared to the identifiable case to achieve the same level of accuracy of A (since the Gsx is far away
from its true underlying value). This finding is consistent with the derived identifiability condition,
as condition A1 is sufficient to identify A, whereas condition A2 governs the identifiability of Gsx.
Worth noting that in cases where neither condition A1 nor condition A2 is satisfied, the estimated
parameters barely deviate from their initial values, implying poor estimation of both A and Gsx.
These results indicate the validity of the identifiability condition stated in Theorem 3.5.

Table 2: Simulation results of the SDE (2)

Identifiable Unidentifiable

N
case1: A1-False, A2-True case2: A1-True, A2-False

MSE-A MSE-Gsx MSE-A MSE-Gsx MSE-A MSE-Gsx

10 0.069± 0.061 0.3647± 0.3579 0.509± 0.499 0.194± 0.140 2.562± 2.522 9763± 8077

20 0.047± 0.045 0.1769± 0.1694 0.195± 0.180 0.088± 0.058 0.967± 0.904 8353± 6839

50 0.018± 0.018 0.1703± 0.1621 0.132± 0.131 0.081± 0.045 0.423± 0.410 4779± 4032

100 0.006± 0.006 0.0015± 0.0012 0.065± 0.065 0.068± 0.036 0.207± 0.198 3569± 3150

500 0.001± 0.001 0.0004± 0.0001 0.008± 0.008 0.059± 0.004 0.046± 0.046 4490± 3991

Illustrative instances of causal inference for linear SDEs (with interventions). To illustrate how
our proposed identifiability conditions can guarantee reliable causal inference for linear SDEs, we
present examples corresponding to both the SDE (1) and the SDE (2). In these examples, we show
that under our proposed identifiability conditions, the post-intervention distributions are identifiable
from their corresponding observational distributions. Please refer to Appendix D.1 and D.2 for the
details of the examples.

5 Related work

Most current studies on the identifiability analysis of SDEs are based on the Gaussian diffusion
processes that conform to the form described in the SDE (1). In particular, the authors of [27, 28, 42]
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have conducted research on the identifiability or asymptotic properties of parameter estimators of
Gaussian diffusions in view of continuous observations of one trajectory, and have highlighted the
need for the diffusion to be ergodic. A considerable amount of effort has also been directed towards
the identifiability analysis of Gaussian diffusions, relying on the exact discrete models of the SDEs
[6, 16, 23, 35, 41]. Typically, these studies involve transferring the continuous-time system described
in the SDE (1) to a discrete-time model such as a vector autoregressive model, based on equally-
spaced observations sampled from one trajectory, and then attempting to determine conditions under
which (A,GG⊤) is identifiable from the parameters of the corresponding exact discrete models.
These conditions often have requirements on eigenvalues of A among other conditions, such as
requiring the eigenvalues to have only negative real parts, or the eigenvalues to be strictly real. Due
to the limitation of the available observations (continuous or discrete observations located on one
trajectory of the SDE system), the identifiability conditions proposed in these works are restrictive.

Causal modelling theories have been well-developed based on directed acyclic graphs (DAGs),
which do not explicitly incorporate a time component [39]. In recent years, similar concepts of
causality have been developed for dynamic systems operating in both discrete and continuous time.
Discrete-time models, such as autoregressive processes, can be readily accommodated within the
DAG-based framework [13, 14]. On the other hand, differential equations offer a natural framework
for understanding causality in dynamic systems within the context of continuous-time processes
[1, 52]. Consequently, considerable effort has been devoted to establishing a theoretical connection
between causality and differential equations. In the deterministic case, Mooij et al. [37] and
Rubenstein et al. [46] have established a mathematical link between ODEs and structural causal
models (SCMs). Wang et al. [60] have proposed a method to infer the causal structure of linear
ODEs. Turning to the stochastic case, Boogers and Mooij have built a bridge from random differential
equations (RDEs) to SCMs [7], while Hansen and Sokol have proposed a causal interpretation of
SDEs by establishing a connection between SDEs and SEMs [17].

6 Conclusion and discussion

In this paper, we present an investigation into the identifiability of the generators of linear SDEs
under additive and multiplicative noise. Specifically, we derive the conditions that are fully built on
system parameters and the initial state x0, which enables the identification of a linear SDE’s generator
from the distribution of its solution process with a given fixed initial state. We establish that, under
the proposed conditions, the post-intervention distribution is identifiable from the corresponding
observational distribution for any Lipschitz intervention ζ.

The main limitation of our work is that the practical verification of these identifiability conditions
poses a challenge, as the true underlying system parameters are typically unavailable in real-world
applications. Nevertheless, our study contributes to the understanding of the intrinsic structure of
linear SDEs. By offering valuable insights into the identifiability aspects, our findings empower
researchers and practitioners to employ models that satisfy the proposed conditions (e.g., through
constrained parameter estimation) to learn real-world data while ensuring identifiability. We believe
the paramount significance of this work lies in providing a systematic and rigorous causal inter-
pretation of linear SDEs, which facilitates reliable causal inference for dynamic systems governed
by such equations. It is worth noting that in our simulations, we employed the MLE method to
estimate the system parameters. This necessitates the calculation of the transition pdf from one state
to the successive state at each discrete temporal increment. Consequently, as the state dimension and
Brownian motion dimension increase, the computational time is inevitably significantly increased,
rendering the process quite time-consuming. To expedite parameter estimation for scenarios involving
high dimensions, alternative estimation approaches are required. The development of a more efficient
parameter estimation approach remains an important task in the realm of SDEs, representing a
promising direction for our future research. We claim that this work does not present any foreseeable
negative social impact.
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Appendix for "Generator Identification for
Linear SDEs with Additive and
Multiplicative Noise"
A Detailed proofs

A.1 Proof of Lemma 3.1

Proof. We start by presenting the mathematical definition of a Lévy process. (cf. [51])

Definition A.1. A stochastic process X := {Xt : 0 ⩽ t < ∞} is said to be a Lévy process if it
satisfies the following properties:

1. X0 = 0 almost surely;

2. Independence of increments: For any 0 ⩽ t1 < t2 < . . . < tn < ∞, Xt2 −Xt1 , Xt3 −Xt2 ,
. . . , Xtn −Xtn−1 are independent;

3. Stationary increments: For any s < t, Xt −Xs is equal in distribution to Xt−s;

4. Continuity in probability: For any ε > 0 and 0 ⩽ t < ∞ it holds that limh→0 P(|Xt+h −
Xt| > ε) = 0.

In the following, we first show that the SDE (1) can be expressed as the form of (10), with Z being a
p-dimensional Lévy process and a : Rd → Rd×p being Lipschitz. The first equation in the SDE (1)
can be rearranged as

dXt = AXtdt+GdWt

= [AXt G]

[
dt
dWt

]
= a(Xt)dZt ,

(18)

with
a(Xt) = [AXt G] ∈ Rd×(m+1) ,

and

dZt =

[
dt
dWt

]
=

[
1

0m×1

]
︸ ︷︷ ︸

r

dt+

[
01×1 01×m

0m×1 Im×m

]
︸ ︷︷ ︸

E

[
dW0,t

dWt

]
, (19)

where 0i×j denotes an i × j zero matrix, let W̃ := {W̃t : 0 ⩽ t < ∞} with W̃t =
[W0,t,W1,t, . . . ,Wm,t]

⊤ denote a (m + 1)-dimensional standard Brownian motion, then one can
find a process Z := {Zt : 0 ⩽ t < ∞} with

Zt = rt+ EW̃t ,

Z0 = 0 ,
(20)

satisfying dZt described in Equation (19). Then we will show that the process Z described in (20) is
a Lévy process, that is, it satisfies the four properties stated in Definition A.1.

Property 1: The first property is readily checked since Z0 = 0.

Property 2: For any 0 ⩽ t1 < t2 < t3 < ∞,

Zt2 − Zt1 = r(t2 − t1) + E(W̃t2 − W̃t1)

=

[
t2 − t1
0m×1

]
+

[
0

Wt2 −Wt1

]
.
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Similarly,

Zt3 − Zt2 =

[
t3 − t2
0m×1

]
+

[
0

Wt3 −Wt2

]
.

Since Wt2 −Wt1 and Wt3 −Wt2 are independent, Zt3 − Zt2 and Zt2 − Zt1 are independent.

Property 3: when s < t,

Zt − Zs =

[
t− s
0m×1

]
+

[
0

Wt −Ws

]
∼ N

([
t− s
0m×1

]
,

[
01×1 01×m

0m×1 (t− s)Im×m

])
.

And
Zt−s = r(t− s) + EW̃t−s

=

[
t− s
0m×1

]
+

[
0

Wt−s

]
∼ N

([
t− s
0m×1

]
,

[
01×1 01×m

0m×1 (t− s)Im×m

])
.

Therefore, property 3 is checked.

Property 4: Obviously, process Z described in (20) is continuous with probability one at t for all
0 ⩽ t < ∞, therefore, Z has continuity in probability.

Now that we have shown that process Z is a p-dimensional Lévy process with p = m+ 1. Then we
will show that a(Xt) = [AXt G] is Lipschitz.

∥ a(Xt)− a(Xs) ∥F =∥ [A(Xt −Xs) 0] ∥F
=∥ A(Xt −Xs) ∥2
⩽∥ A ∥F ∥ Xt −Xs ∥2

where ∥ M ∥F denotes the Frobenius norm of matrix M and ∥ v ∥2 denotes the Euclidean norm of
vector v. Now it is readily checked that function a : Rd → Rd×p is Lipschitz.

Similarly, we will show that the SDE (2) can also be expressed as the form of (10), with Z being a
p-dimensional Lévy process and a : Rd → Rd×p being Lipschitz. Let us rearrange the first equation
in the SDE (2):

dXt = AXtdt+

m∑
k=1

GkXtdWk,t

= [AXt G1Xt . . . GmXt]


dt

dW1,t

...
dWm,t


= a(Xt)dZt .

Since the dZt here has the same form as that of the SDE (1), we use the same process Z described in
Equation (20), which has been shown to be a Lévy process.

As for the function a(Xt),
∥ a(Xt)− a(Xs) ∥F =∥ [A(Xt −Xs) G1(Xt −Xs) . . . Gm(Xt −Xs)] ∥F

⩽∥ A(Xt −Xs) ∥2 +

m∑
k=1

∥ Gk(Xt −Xs) ∥2

⩽∥ A ∥F ∥ Xt −Xs ∥2 +

m∑
k=1

∥ Gk ∥F ∥ Xt −Xs ∥2

=

(
∥ A ∥F +

m∑
k=1

∥ Gk ∥F
)

∥ Xt −Xs ∥2 ,
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it is readily checked that function a : Rd → Rd×p is Lipschitz.

A.2 Proof of Proposition 3.1

Proof. For the backward direction, when b(x) = b̃(x) and c(x) = c̃(x) for all x ∈ Rd, it is obviously
that (Lf)(x) = (L̃f)(x) for all f ∈ C2

b (Rd) and x ∈ Rd, that is L = L̃.

For the forward direction, since (Lf)(x1) = (L̃f)(x1) for all f ∈ C2
b (Rd) and x1 ∈ Rd.

We first set
f(x) = xp ,

where xp denotes the p-th component of variable x. It is readily checked that

bp(x1) = b̃p(x1) ,

for all x1 ∈ Rd and p = 1, . . . , d. As a result,

b(x) = b̃(x) , for all x ∈ Rd .

Then we set
f(x) = (xp − x1p)(xq − x1q) ,

where x1p denotes the p-th component of x1. It is readily checked that

cpq(x1) = c̃pq(x1) ,

for all x1 ∈ Rd and p, q = 1, . . . , d. Consequently,

c(x) = c̃(x) , for all x ∈ Rd .

A.3 Proof of Lemma 3.2

Proof. For the forward direction, since

X(·;x0, A,G)
d
= X(·;x0, Ã, G̃) ,

one has
E[Xt] = E[X̃t] , ∀0 ⩽ t < ∞ .

Thus,
(Xt − E[Xt])0⩽t<∞

d
= (X̃t − E[X̃t])0⩽t<∞ ,

in particular, one has

E{(Xt+h−E[Xt+h])(Xt−E[Xt])
⊤} = E{(X̃t+h−E[X̃t+h])(X̃t−E[X̃t])

⊤} for all 0 ⩽ t, h < ∞ .

For the backward direction, we know that the solution of the SDE (1) is a Gaussian process. The
distribution of a Gaussian process can be fully determined by its mean and covariance functions.
Therefore, the two processes have the same distribution when the mean and covariance are the same
for both processes for all 0 ⩽ t, h < ∞.

A.4 Proof of Lemma 3.3

Proof. For the forward direction, since

rank([γ1|Aγ1| . . . |Ad−1γ1| . . . |γn|Aγn| . . . |Ad−1γn]) < d ,

then for all l = [l1, . . . , ln]
⊤ ∈ Rn,

rank([β|Aβ| . . . |Ad−1β]) < d ,

where β := l1γ1 + . . .+ lnγn. Consequently, the corresponding ODE system

ẋ(t) = Ax(t) ,

x(0) = β ,
(21)
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is not identifiable from β by [57, Theorem 2.5.], where ẋ(t) denotes the first derivative of x(t) with
respect to time t.

Let
β̃ := Q−1β ∈ Rd ,

and

wk :=

{
β̃k ∈ R1, for k = 1, . . . ,K1 ,

(β̃2k−K1−1, β̃2k−K1
)⊤ ∈ R2, for k = K1 + 1, . . . ,K .

Simple calculation shows that

β̃ = Q−1β

= Q−1(l1γ1 + . . .+ lnγn)

= l1γ̃1 + . . .+ lnγ̃n ,

therefore, one has

wk = l1w1,k + . . .+ lnwn,k , for all k ∈ {1, . . . ,K} . (22)

By [43, Theorem 2.4], we know that for any l ∈ Rn, there always exists k ∈ {1, . . . ,K} such that
wk = 0 (∈ R1 or R2) since the ODE (21) is not identifiable from initial state β. Next, we will
show that this result is satisfied only when there exists a k such that wj,k = 0 (∈ R1 or R2) for all
j = 1, . . . , n. Let us rearrange the Equation (22) asw1,1 . . . wn,1

...
. . .

...
w1,K . . . wn,K


l1...
ln

 =

w1

...
wK

 ,

assume for any k ∈ {1, . . . ,K}, [w1,k, . . . , wn,k]
⊤ ̸= 0, then there always exists a l ∈ Rn such that

wk ̸= 0 for all k = {1, . . . ,K}. The reason is that under this circumstance, for any k ∈ {1, . . . ,K},
the set of l’s such that wk = 0 has Lebesgue measure zero in Rn. Therefore, the set of l’s such
that there exists a k such that wk = 0 has Lebesgue measure zero in Rn. This result creates a
contradiction. Thus, there must exist a k, such that [w1,k, . . . , wn,k]

⊤ = 0, that is |wj,k| = 0 for all
j = 1, . . . , n.

For the backward direction, there exists k such that |wj,k| = 0 for all j = 1, . . . , n, that is wj,k =
0 (∈ R1 or R2) for all j = 1, . . . , n. Simple calculation shows that

γj = Qγ̃j =

k−1∑
p=1

Qpwj,p +

K∑
p=k+1

Qpwj,p ,

and

Aqγj = QΛqQ−1γj
= QΛqγ̃j

=

k−1∑
p=1

QpJ
q
pwj,p +

K∑
p=k+1

QpJ
q
pwj,p ,

recall that

Jk =


λk, if k = 1, . . . ,K1 ,[
ak −bk
bk ak

]
, if k = K1 + 1, . . . ,K .

Then matrix

M : = [γ1|Aγ1| . . . |Ad−1γ1| . . . |γn|Aγn| . . . |Ad−1γn]

= Q−kC ,

where
Q−k = [Q1| . . . |Qk−1|Qk+1| . . . |QK ] ,
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and matrix C denotes:

w1,1 J1w1,1 . . . Jd−1
1 w1,1 . . . wn,1 J1wn,1 . . . Jd−1

1 wn,1

...
...

. . .
...

. . .
...

...
. . .

...
w1,k−1 Jk−1w1,k−1 . . . Jd−1

k−1w1,k−1 . . . wn,k−1 Jk−1wn,k−1 . . . Jd−1
k−1wn,k−1

w1,k+1 Jk+1w1,k+1 . . . Jd−1
k+1w1,k+1 . . . wn,k+1 Jk+1wn,k+1 . . . Jd−1

k+1wn,k+1

...
...

. . .
...

. . .
...

...
. . .

...
w1,K JKw1,K . . . Jd−1

K w1,K . . . wn,K JKwn,K . . . Jd−1
K wn,K


We know that

rank(M) = rank(Q−kC) ⩽ min(rank(Q−k), rank(C)) .

When k ∈ {1, . . . ,K1}, Q−k ∈ Rd×(d−1), and rank(Q−k) = d − 1, while when k ∈ {K1 +
1, . . . ,K}, Q−k ∈ Rd×(d−2), and rank(Q−k) = d − 2. In both cases, rank(Q−k) < d, thus
rank(M) < d.

A.5 Proof of Theorem 3.4

Proof. Let Ã ∈ Rd×d and G̃ ∈ Rd×m, such that X(·;x0, A,G)
d
= X(·;x0, Ã, G̃), we denote as

X
d
= X̃ . For simplicity of notation, in the following, we denote A1 := A, A2 := Ã, G1 := G and

G2 := G̃, and denote X
d
= X̃ as X1 d

= X2.

Sufficiency. We will show that under the identifiability condition (14), one has (A1, G1G
⊤
1 ) =

(A2, G2G
⊤
2 ).

We first show that H1 = H2 (Hi := GiG
T
i ). Indeed, since X1, X2 have the same distribution, one

has
E[f(X1

t )] = E[f(X2
t )] (23)

for all 0 ⩽ t < ∞ and f ∈ C∞(Rd). By differentiating (23) at t = 0, one finds that

(L1f)(x0) = (L2f)(x0) , (24)

where Li is the generator of Xi (i = 1, 2). Based on the Proposition 2.1,

(Lif)(x0) =

d∑
k=1

d∑
l=1

(Ai)klx0l
∂f

∂xk
(x0) +

1

2

d∑
k,l=1

(Hi)kl
∂2f

∂xk∂xl
(x0) ,

where (M)kl denotes the kl-entry of matrix M , and x0l is the l-th component of x0. Since (24) is
true for all f , by taking

f(x) = (xp − x0p)(xq − x0q) ,

it is readily checked that
(H1)pq = (H2)pq ,

for all p, q = 1, . . . , d. As a result, H1 = H2. Let us call this matrix H .

Next, we show that A1 = A2. We first show the relationship between Ai and x0, and then show the
relationship between Ai and H . To this end, one first recalls that

Xi
t = eAitx0 +

∫ t

0

eAi(t−s)GidWs .

Set mi(t) := E[Xi
t ], we know that mi(t) satisfies the ODE

ṁi(t) = Aimi(t) , ∀0 ⩽ t < ∞ ,

mi(0) = x0 ,
(25)

where ḟ(t) denotes the first derivative of function f(t) with respect to time t.

Simple calculation shows that
mi(t) = eAitx0 .
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Since X1 d
= X2, one has

E[X1
t ] = E[X2

t ]

for all 0 ⩽ t < ∞. That is
eA1tx0 = eA2tx0 , ∀0 ⩽ t < ∞ .

Taking k-th derivative of eAitx0 with respect to t, one finds that

dk

dtk

∣∣∣
t=0

eAitx0 = Ak
i x0 ,

for all k = 1, 2, . . .. Consequently,
Ak

1x0 = Ak
2x0 .

Let us denote this vector Akx0. Obviously, one gets

A1A
k−1x0 = A2A

k−1x0 for all k = 1, 2, . . . . (26)

In the following, we show the relationship between Ai and H . Let us denote

Y i
t :=

∫ t

0

eAi(t−s)GidWs = Xi
t − E[Xi

t ]

and
Vi(t, t+ h) := E[Y i

t+h · (Y i
t )

T ] .

Simple calculation shows that

Vi(t, t+ h) = eAih

∫ t

0

eAi(t−s)HeA
⊤
i (t−s)ds

= eAihVi(t) ,

(27)

where Vi(t) := Vi(t, t).

Since X1 d
= X2, by Lemma 3.2, one has

V1(t, t+ h) = V2(t, t+ h) , ∀0 ⩽ t, h < ∞ .

To obtain information about Ai, let us fix t for now and take k-th derivative of (27) with respect to h.
One finds that

dk

dhk

∣∣∣
h=0

Vi(t, t+ h) = Ak
i Vi(t) , (28)

for all k = 1, 2, . . ..

On the other hand, the function Vi(t) satisfies the ODE [56]

V̇i(t) = AiVi(t) + Vi(t)A
⊤
i +H, 0 ⩽ t < ∞ ,

Vi(0) = 0 .

In particular,
V̇i(0) = AiVi(0) + Vi(0)Ai +H = H.

By differentiating (28) at t = 0, it follows that

d

dt

∣∣∣
t=0

dk

dhk

∣∣∣
h=0

Vi(t, t+ h) = Ak
iH ,

for all k = 1, 2, . . .. Consequently,
Ak

1H = Ak
2H .

Let us denote this matrix AkH . Obviously, by rearranging this matrix, one gets

A1A
k−1H = A2A

k−1H for all k = 1, 2, . . . . (29)

Recall our identifiability condition is that rank(M) = d with

M := [x0|Ax0| . . . |Ad−1x0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d] .

20



If we denote the j-th column in M as M·j , one gets

A1M·j = A2M·j ,

for all j = 1, . . . , d+ d2 by Equations (26) and (29).

This means one can find a full-rank matrix B ∈ Rd×d by horizontally stacking d linearly independent
columns of matrix M , such that A1B = A2B. Since B is invertible, one thus concludes that
A1 = A2. Hence, the sufficiency of the condition is proved.

Necessity. In the following, we will show that when A has distinct eigenvalues. The condition
(14) stated in Theorem 3.4 is also necessary. Specifically, we will show that when the identifiability
condition (14) is not satisfied, one can always find a Ã with (A,GG⊤) ̸= (Ã, GG⊤) such that
X

d
= X̃ . Recall that for simplicity of notation, we denote A1 := A, A2 := Ã, and denote X

d
= X̃ as

X1 d
= X2, where process Xi = {Xi

t : 0 ⩽ t < ∞}, and Xi
t = X(t;x0, Ai, G) following the form

described in the solution process (3). In the following, we may use both A and A1 interchangeably
according to the context.

By Lemma 3.2, to guarantee X1 d
= X2 one only needs to show that

E[X1
t ] = E[X2

t ] , ∀0 ⩽ t < ∞ ,

V1(t, t+ h) = V2(t, t+ h) , ∀0 ⩽ t, h < ∞ .

That is,

eA1tx0 = eA2tx0 , ∀0 ⩽ t < ∞ ,

eA1hV (t) = eA2hV (t) , ∀0 ⩽ t, h < ∞ ,

V1(t) = V2(t) , ∀0 ⩽ t < ∞ ,

(30)

where V (t) := V1(t) = V2(t).

Recall that H = GG⊤. For simplicity of notation, abusing notation a bit, we denote H·0 := x0. Let

H̃·j := Q−1H·j , for all j = 0, . . . , d ,

and

wj,k :=

{
H̃·j,k ∈ R1, for k = 1, . . . ,K1 ,
(H̃·j,2k−K1−1, H̃·j,2k−K1)

⊤ ∈ R2, for k = K1 + 1, . . . ,K .

When the identifiability condition (14) is not satisfied, that is

rank([H·0|AH·0| . . . |Ad−1H·0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d]) < d ,

by Lemma 3.3, there exists k such that |wj,k| = 0, i.e., wj,k = 0 (∈ R1 or R2), for all j = 0, . . . , d.
Recall that

V (t) = V1(t) =

∫ t

0

eA(t−s)HeA
⊤(t−s)ds

=

∫ t

0

QeΛ(t−s)Q−1Q[H̃·1| . . . |H̃·d]e
A⊤(t−s)ds

= Q

∫ t

0

eΛ(t−s)[H̃·1| . . . |H̃·d]e
A⊤(t−s)ds

:= Q

∫ t

0

WeA
⊤(t−s)ds ,

(31)

where
W = eΛ(t−s)[H̃·1| . . . |H̃·d] ,

and some calculation shows that

W =

 eJ1(t−s)w1,1 . . . eJ1(t−s)wd,1

...
. . .

...
eJK(t−s)w1,K . . . eJK(t−s)wd,K

 ,
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recall that

Jk =


λk, if k = 1, . . . ,K1 ,[
ak −bk
bk ak

]
, if k = K1 + 1, . . . ,K .

Since wj,k = 0 (∈ R1 or R2), for all j = 0, 1, . . . , d, then if k ∈ {1, . . . ,K1}, the k-th row of W

Wk· = 0 ;

and if k ∈ {K1 + 1, . . . ,K}, then the (2k −K1 − 1)-th and the (2k −K1)-th rows

W(2k−K1−1)· = W(2k−K1)· = 0 ,

where Wk· denotes the k-th row vector of matrix W .

If we denote
Ṽ (t)·j := Q−1V (t)·j , for all j = 1, . . . , d ,

and

w(t)j,k :=

{
Ṽ (t)·j,k ∈ R1, for k = 1, . . . ,K1 ,
(Ṽ (t)·j,2k−K1−1, Ṽ (t)·j,2k−K1

)⊤ ∈ R2, for k = K1 + 1, . . . ,K .

Then by multiplying Q−1 in both sides of Equation (31), one obtains that

w(t)j,k = 0 (∈ R1 or R2)

for all j = 1, . . . , d and all 0 ⩽ t < ∞. This indicates that when all the vectors H·j for j = 1, . . . , d
are confined to an A-invariant proper subspace of Rd, denotes as L, then each column of the
covariance matrix V (t) in Equation (30) is also confined to L, for all 0 ⩽ t < ∞. Therefore, under
condition (14), x0, H·j (for all j = 1, . . . , d) and each column of the covariance matrix V (t) (for all
0 ⩽ t < ∞) are confined to an A-invariant proper subspace of Rd. Thus, a matrix A2 exists, with
A2 ̸= A1 such that the first two equations in Equation (30) are satisfied.

In particular, by [43, Theorem 2.5], when k ∈ {1, . . . ,K1}, there exists matrix D ∈ Rd×d, with the
kk-th element Dkk = c ̸= 0 and all the other elements of D are zeros. Let

A2 = A1 +QDQ−1 ̸= A1 ,

then A1 and A2 satisfy the first two equations in Equation (30). Then we will show that such a A2

also satisfy the third equation in Equation (30).

Some calculation shows that

V1(t) =

∫ t

0

eA1(t−s)HeA
⊤
1 (t−s)ds

=

∫ t

0

QeΛ(t−s)Q−1H(QT )−1eΛ(t−s)QT ds

: =

∫ t

0

QeΛ(t−s)P1e
Λ(t−s)QT ds ,

(32)

where P1 := Q−1H(QT )−1. And

V2(t) =

∫ t

0

eA2(t−s)HeA
⊤
2 (t−s)ds

=

∫ t

0

e(A1+QDQ−1)(t−s)He(A1+QDQ−1)⊤(t−s)ds

=

∫ t

0

QeΛ(t−s)eD(t−s)Q−1H(QT )−1eD(t−s)eΛ(t−s)QT ds

: =

∫ t

0

QeΛ(t−s)P2e
Λ(t−s)QT ds ,

(33)
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where P2 := eD(t−s)Q−1H(QT )−1eD(t−s). If one can show that P1 = P2, then it is readily checked
that V1(t) = V2(t) for all 0 ⩽ t < ∞. Recall that

Q−1H = H̃,

where H̃ = [H̃·1| . . . |H̃·d]. And when condition (14) is not satisfied, the k-th row of H̃:

H̃k· = 0 .

Since
P1 = Q−1H(QT )−1 = H̃(QT )−1 ,

therefore, the k-th row of P1:
(P1)k· = 0 .

Simple calculation shows that matrix P1 is symmetric, thus, the k-th column of P1:

(P1)·k = 0 .

It is easy to obtain that eD(t−s) is a diagonal matrix expressed as

eD(t−s) =


1

. . .
ec(t−s)

. . .
1


where ec(t−s) is the kk-th entry. Then, simple calculation shows that

P2 = eD(t−s)Q−1H(QT )−1eD(t−s) = eD(t−s)P1e
D(t−s) = P1 .

Therefore, one obtains that
V1(t) = V2(t) , ∀0 ⩽ t < ∞ .

Hence, when k ∈ {1, . . . ,K1}, we find a A2, with A2 ̸= A1 such that Equation (30) is satisfied.

When k ∈ {K1 + 1, . . . ,K}, there exists matrix D′ ∈ Rd×d, with[
D′

2k−K1−1,2k−K1−1 D′
2k−K1−1,2k−K1

D′
2k−K1,2k−K1−1 D′

2k−K1,2k−K1

]
:=

[
c1 c2
c3 c4

]
,

where Mi,j denotes the ij-th entry of matrix M , c = [c1, c2, c3, c4]
⊤ ̸= 0, and all the other elements

of D′ are zeros. Let
A2 = A1 +QD′Q−1 ̸= A1 ,

then A1 and A2 satisfy the first two equations in Equation (30). Similar to the case where k ∈
{1, . . . ,K1}, one can also show that such a A2 also satisfies the third equation in Equation (30).

Therefore, assuming A has distinct eigenvalues, then when the identifiability condition (14) is not
satisfied, one can always find a A2 with (A1, GG⊤) ̸= (A2, GG⊤) such that Equation (30) is
satisfied, i.e., X1 d

= X2. Hence, the necessity of the condition is proved.

A.6 Proof of Corollary 3.4.1

Proof. There are two ways to prove this corollary, we will present both of them in the following.

Way1. By [62, Lemma 2.2],

span([G|AG| . . . |Ad−1G]) = span([GG⊤|AGG⊤| . . . |Ad−1GG⊤]) ,

where span(M) denotes the linear span of the columns of the matrix M . therefore, when

rank([G|AG| . . . |Ad−1G]) = d ,

then
span([G|AG| . . . |Ad−1G]) = Rd ,
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thus,
span([GG⊤|AGG⊤| . . . |Ad−1GG⊤]) = Rd .

Therefore,
rank([GG⊤|AGG⊤| . . . |Ad−1GG⊤]) = d ,

since the rank of a matrix is the dimension of its span. Then by Theorem 3.4, the generator of the
SDE (1) is identifiable from x0.

Way2. Let Ã ∈ Rd×d and G̃ ∈ Rd×m, such that X(·;x0, A,G)
d
= X(·;x0, Ã, G̃), we denote as

X
d
= X̃ , we will show that under our identifiability condition (A,GG⊤) = (Ã, G̃G̃⊤). By applying

the same notations used in the proof of Theorem 3.4, in the following, we denote A1 := A, A2 := Ã,
G1 := G and G2 := G̃.

In the proof of Theorem 3.4, we have shown that G1G
⊤
1 = G2G

⊤
2 , thus, we only need to show that

under the condition stated in this corollary, A1 = A2. According to the proof of Theorem 3.4, for all
0 ⩽ t < ∞, we have

V1(t) = V2(t) ,

A1V1(t) = A2V2(t) .

Let V (t) := Vi(t)(i = 1, 2), one gets

A1V (t) = A2V (t) , ∀0 ⩽ t < ∞ .

Therefore, if there exists a 0 ⩽ t < ∞, such that V (t) is nonsingular, then one can conclude that
A1 = A2.

By [20, Theorem 3.2], the covariance V (t) is nonsingular for all t > 0, if and only if

rank([G|AG| . . . |Ad−1G]) = d ,

that is the pair [A,G] is controllable. Therefore, under the condition stated in this corollary, A1 = A2,
thus the generator of the SDE (1) is identifiable from x0.

A.7 Proof of Theorem 3.5

Proof. Let Ã, G̃k ∈ Rd×d for all k = 1, . . . ,m, such that X(·;x0, A, {Gk}mk=1)
d
=

X(·;x0, Ã, {G̃k}mk=1), we denote as X
d
= X̃ , we will show that under our identifiability condi-

tion, for all x ∈ Rd, (A,
∑m

k=1 Gkxx
⊤G⊤

k ) = (Ã,
∑m

k=1 G̃kxx
⊤G̃⊤

k ). For simplicity of notation, in

the following, we denote A1 := A, A2 := Ã, G1,k := Gk and G2,k := G̃k, and denote X
d
= X̃ as

X1 d
= X2.

We first show that A1 = A2. Set mi(t) := E[Xi
t ], we know that mi(t) satisfies the ODE

ṁi(t) = Aimi(t) , ∀0 ⩽ t < ∞ ,

mi(0) = x0 ,
(34)

where ḟ(t) denotes the first derivative of function f(t) with respect to time t.

Simple calculation shows that
mi(t) = eAitx0 .

Since X1 d
= X2, one has

E[X1
t ] = E[X2

t ]

for all 0 ⩽ t < ∞. That is
eA1tx0 = eA2tx0 , ∀0 ⩽ t < ∞ .

Taking j-th derivative of eAitx0 with respect to t, one finds that

dj

dtj

∣∣∣
t=0

eAitx0 = Aj
ix0 ,
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for all j = 1, 2, . . .. Consequently,
Aj

1x0 = Aj
2x0 .

Let us denote this vector Ajx0. Obviously, one gets

A1A
j−1x0 = A2A

j−1x0 for all j = 1, 2, . . . . (35)

By condition A1, it is readily checked that A1 = A2 from Equation (35).

In the following, we show that under condition A2, for all x ∈ Rd,
m∑

k=1

G1,kxx
⊤G⊤

1,k =

m∑
k=1

G2,kxx
⊤G⊤

2,k .

We know the function Pi(t) := E[Xi
t(X

i
t)

⊤] satisfies the ODE

Ṗi(t) = AiPi(t) + Pi(t)A
⊤
i +

m∑
k=1

Gi,kPi(t)G
⊤
i,k , ∀0 ⩽ t < ∞ ,

Pi(0) = x0x
⊤
0 .

(36)

Since X1 d
= X2,

P1(t) = P2(t) , ∀0 ⩽ t < ∞ ,

let us call it P (t). By differentiating Pi(t) one also gets that

Ṗ1(t) = Ṗ2(t) , ∀0 ⩽ t < ∞ .

Since we have shown that A1 = A2 under condition A1, from Equation (36) one observes that
m∑

k=1

G1,kP (t)G⊤
1,k =

m∑
k=1

G2,kP (t)G⊤
2,k , ∀0 ⩽ t < ∞ . (37)

By vectorizing P (t), some calculation shows that the ODE (36) can be expressed as

vec(Ṗ (t)) = Avec(P (t)) ,

vec(P (0)) = vec(x0x
⊤
0 ) ,

(38)

with an explicit solution
vec(P (t)) = eAtvec(x0x

⊤
0 ) ,

where A = A ⊕ A +
∑m

k=1 Gk ⊗ Gk ∈ Rd2×d2

, and vec(M) denotes the vector by stacking the
columns of matrix M vertically.

By definition, P (t) ∈ Rd×d is symmetric, thus vec(P (t)) for all 0 ⩽ t < ∞ is confined to a proper
subspace of Rd2

, let us denote this proper subspace W , simple calculation shows that

dim(W ) = (d2 + d)/2 ,

where dim(W ) denotes the dimension of the subspace W , that is the number of vectors in any basis
for W . In particular, one can find a basis of W denoting as

{vec(E11), vec(E21), vec(E22), . . . , vec(Edd)} ,

where Eij stands for a d× d matrix, with the ij-th and ji-th elements are 1 and all other elements
are 0, for all i, j = 1, . . . , d and i ⩾ j.

Suppose there exists ti’s, for i = 1, . . . , (d2 + d)/2, such that vec(P (t1)), . . . , vec(P (t(d2+d)/2))

are linearly independent, then for all x ∈ Rd,

vec(xx⊤) = l1vec(P (t1)) + . . .+ l(d2+d)/2vec(P (t(d2+d)/2)) ,

that is
xx⊤ = l1P (t1) + . . .+ l(d2+d)/2P (t(d2+d)/2) ,
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where l := {l1, . . . , l(d2+d)/2} ∈ R(d2+d)/2. According to Equation (37), it is readily checked that
for all x ∈ Rd,

m∑
k=1

G1,kxx
⊤G⊤

1,k =

m∑
k=1

G2,kxx
⊤G⊤

2,k .

By [57, Lemma 6.1], there exists (d2 + d)/2 ti’s such that vec(P (t1)), . . . , vec(P (t(d2+d)/2)) are
linearly independent, if and only if the orbit of vec(P (t)) (i.e., the trajectory of ODE (38) started
from initial state v), denoting as γ(A, v) with v = vec(x0x

⊤
0 ), is not confined to a proper subspace

of W .

Next, we show that under condition A2, orbit γ(A, v) is not confined to a proper subspace of W .

Assume orbit γ(A, v) is confined to a proper subspace of W . Then there exists w ̸= 0 ∈ W such that

w⊤eAtv = 0 , ∀0 ⩽ t < ∞ .

By taking j-th derivative with respect to t, we have

wTAjeAtv = 0 , ∀0 ⩽ t < ∞, j = 0, . . . , (d2 + d− 2)/2 .

In particular, for t = 0,

wTAjv = 0 , for j = 0, . . . , (d2 + d− 2)/2 .

Therefore,
wT [v|Av| . . . |A(d2+d−2)/2v] = 0 . (39)

Since w ∈ W , w ∈ span{vec(E11), vec(E21), . . . , vec(Edd)}, set vec(w) := w, then w is a d × d
symmetric matrix. Since P (t) is symmetric for all 0 ⩽ t < ∞, according to Equation (36),
simple calculation shows that the j-th derivative of P (t) is also symmetric for all 0 ⩽ t < ∞, for
j = 0, 1, . . .. Recall that

vec(P (t)) = eAtv ,

vec(P (j)(t)) = AjeAtv ,

where P (j)(t) denotes the j-th derivative of P (t) with respect to t. In particular, when t = 0, one has

vec(P (0)) = v ,

vec(P (j)(0)) = Ajv ,

then if we denote matrix Ajv by setting vec(Ajv) := Ajv, matrices Ajv are symmetric for all
j = 0, 1, . . ..

Therefore, we can say that there are only (d2 + d)/2 distinct elements in each of the vectors:
w, v,Av, . . . ,A(d2+d−2)/2v in Equation (39). Moreover, since these vectors all correspond to d× d
symmetric matrices, the repetitive elements in each vector appear in the same positions in each vector.
Hence, we can focus on checking those distinct elements in each vector, that is Equation (39) can be
expressed as

wT [v|Av| . . . |A(d2+d−2)/2v] = 0 , (40)

where w ∈ R(d2+d)/2 denotes as

w := [w11,
√
2w21, . . . ,

√
2wd1, w22, . . . ,

√
2wd2, . . . , wdd]

⊤ ,

where wij denotes the ij-th element of w, with i, j = 1, . . . , d and i ⩾ j. When i ̸= j, the element is
multiplied by a

√
2, that is, w only keeps the distinctive elements in w, and for each of the repetitive

element, we multiply
√
2. We define v,Av, . . . using the same way.

Under condition A2, matrix

[v|Av| . . . |A(d2+d−2)/2v] ∈ R
(d2+d)

2 × (d2+d)
2

is easily to be checked to be invertible, then w = 0, thus w = 0. This contradicts to w ̸= 0, therefore,
under condition A2, orbit γ(A, v) is not confined to a proper subspace of W . Hence, the theorem is
proved.
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B Genericity of the derived identifiability conditions

B.1 The identifiability condition stated in Theorem 3.5 is generic

We will show that the identifiability condition stated in Theorem 3.5 is generic. Specifically, we will
show that for the set of (x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

such that either condition A1 or A2 stated
in Theorem 3.5 is violated, has Lebesgue measure zero in Rd+(m+1)d2

. In the following, we first
present a lemma we will use to prove our main proposition.
Lemma B.1. Let p : Rn → R be a non-zero polynomial function. Let Z := {x ∈ Rn : p(x) = 0}.
Then Z has Lebesgue measure zero in Rn.

Proof. When n = 1, suppose the degree of x is k ⩾ 1, then by the fundamental theorem of algebra,
there are at most k x’s such that x ∈ Z. Therefore, Z has Lebesgue measure zero, since a finite set
has measure zero in R.

Suppose the lemma is established for polynomials in n− 1 variables. Let p be a non-zero polynomial
in n variables, say of degree k ⩾ 1 in xn, then we can write

p(x, xn) =

k∑
j=0

pj(x)x
j
n ,

where x = {x1, . . . , xn−1} and p0, . . . , pk are polynomials in the n− 1 variables {x1, . . . , xn−1},
and there exists j ∈ {0, . . . , k} such that pj is a non-zero polynomial since p is a non-zero polynomial.
Then we can denote Z as

Z = {(x, xn) : p(x, xn) = 0} .
Suppose (x, xn) ∈ Z, then there are two possibilities:

case 1 p0(x) = . . . = pk(x) = 0.

case 2 there exists i ∈ {0, . . . , k} such that pi(x) ̸= 0.

Let
A := {(x, xn) ∈ Z : case 1 is satisfied} ,
B := {(x, xn) ∈ Z : case 2 is satisfied} ,

then Z = A ∪B.

For case 1, recall that there exists j ∈ {0, . . . , k} such that pj is a non-zero polynomial, let

Aj := {x ∈ Rn−1 : pj(x) = 0} ,

then by the induction hypothesis, Aj has Lebesgue measure zero in Rn−1. Therefore, Aj × R has
Lebesgue measure zero in Rn. Since A ⊆ Aj × R, A has Lebesgue measure zero in Rn.

For case 2, let λn be Lebesgue measure on Rn, then

λn(B) =

∫
Rn

1B(x, xn)dλ
n

=

∫
Rn

1B(x, xn)dxdxn

=

∫
Rn−1

(∫
R
1B(x, xn)dxn

)
dx ,

(41)

where

1B(x, xn) =

{
1, if (x, xn) ∈ B ,
0, if (x, xn) /∈ B .

The inner integral in Equation (41) is equal to zero, since for a fixed x, there are finitely many (indeed,
at most k) xn’s such that p(x, xn) = 0 under the condition of case 2. Thus, λn(B) = 0, that is, B
has Lebesgue measure zero in Rn. Then it is readily checked that Z has Lebesgue measure zero.
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Now we are ready to present the main proposition.
Proposition B.1. Let

S := {(x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

: either condition A1 or A2 in Theorem 3.5 is violated} ,

then S has Lebesgue measure zero in Rd+(m+1)d2

.

Proof. Let
SA := {(x0, A) ∈ Rd+d2

: condition A1 is violated} ,

we first show that SA has Lebesgue measure zero in Rd+d2

. Suppose (x0, A) ∈ SA, then (x0, A)
satisfies

rank([x0|Ax0| . . . |Ad−1x0]) < d ,

that is the set of vectors {x0, Ax0, . . . , A
d−1x0} are linearly dependent, this means that

det([x0|Ax0| . . . |Ad−1x0]) = 0 . (42)

It is a simple matter of algebra that the left side of (42) can be expressed as some universal polynomial
of the entries of x0 and entries of A, denotes p(x0, A) = p(x01, . . . , x0d, a11, a12, . . . , add), where
x0j denotes the j-th entry of x0 and aij denotes the ij-th entry of A. Therefore, one concludes that

p(x0, A) = p(x01, . . . , x0d, a11, a12, . . . , add) = 0 .

Thus, SA can be expressed as

SA = {(x0, A) ∈ Rd+d2

: p(x0, A) = 0} .

Some calculation shows that

p(x0, A) =

d∑
i1,...,id=1

x0i1 . . . x0iddet([(A0)·i1 |(A1)·i2 | . . . |(Ad−1)·id ]) , (43)

where (M)·j denotes the j-th column vector of matrix M . Obviously, p(x0, A) is a non-zero
polynomial function of entries of x0 and entries of A, therefore, by Lemma B.1, SA has Lebesgue
measure zero in Rd+d2

. Let

S1 := {(x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

: condition A1 is violated} ,

then it is readily checked that S1 has Lebesgue measure zero in Rd+(m+1)d2

.

Let
S2 := {(x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

: condition A2 is violated} ,

we then show that S2 has Lebesgue measure zero in Rd+(m+1)d2

. Suppose (x0, A, {Gk}mk=1) ∈ S2,
then (x0, A, {Gk}mk=1) satisfies

rank([v|Av| . . . |A(d2+d−2)/2v]) < (d2 + d)/2 ,

recall that A = A⊕ A+
∑m

k=1 Gk ⊗Gk ∈ Rd2×d2

and v = vec(x0x
⊤
0 ) ∈ Rd2

. According to the
proof A.7 of Theorem 3.5, we obtain that the set of vectors {v,Av, . . . ,A(d2+d−2)/2} are linearly
dependent. Because all of these vectors are transferred from vectorizing d× d symmetric matrices,
thus each of these vectors has only (d2 + d)/2 distinct elements and the repetitive elements appear in
the same positions in all vectors. Hence, abuse notation a little bit, we can focus on checking those
distinct elements in each vector, that is

{v|Av| . . . |A(d2+d−2)/2v} , (44)

where v ∈ R(d2+d)/2 denotes the vector of deleting the repetitive elements of v. Since the set of vec-
tors {v,Av, . . . ,A(d2+d−2)/2} are linearly dependent, the set of vectors {v|Av| . . . |A(d2+d−2)/2v}
are linearly dependent, that is

det([v|Av| . . . |A(d2+d−2)/2v]) = 0 . (45)
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Each entry of v can be written as a non-zero polynomial function of entries of x0 since v = vec(x0x
⊤
0 ).

Each entry of A can be written as a non-zero polynomial function of entries of A and Gk with
k = 1, . . . ,m, since A = A⊕A+

∑m
k=1 Gk ⊗Gk ∈ Rd2×d2

. Hence, the left side of Equation (45)
can be expressed as some universal polynomial of the entries of x0, A and Gk’s, denotes

p(x0, A, {Gk}mk=1) = p(x01, . . . , x0d, a11, . . . , add, G1,11, . . . , G1,dd, . . . , Gm,11, . . . , Gm,dd) ,

where Gk,ij denotes the ij-th entry of matrix Gk. Therefore, one concludes that

p(x0, A, {Gk}mk=1) = 0 .

Thus, S2 can be expressed as

S2 := {(x0, A, {Gk}mk=1) ∈ Rd+(m+1)d2

: p(x0, A, {Gk}mk=1) = 0} .

Similar to the calculation of p(x0, A) in Equation (43), p(x0, A, {Gk}mk=1) can be expressed as a
non-zero polynomial function of entries of v and A, thus it can also be expressed as a non-zero
polynomial function of entries of x0, A and Gk’s. Therefore, by Lemma B.1, S2 has Lebesgue
measure zero in Rd+(m+1)d2

.

We know that S ⊆ S1 ∪ S2, let λ be Lebesgue measure on Rd+(m+1)d2

, then one has

λ(S) ⩽ λ(S1) + λ(S2) = 0.

Thus S has Lebesgue measure zero in Rd+(m+1)d2

.

B.2 The identifiability condition stated in Theorem 3.4 is generic

We will show that the identifiability condition stated in Theorem 3.4 is generic.
Proposition B.2. Let

S := {(x0, A,G) ∈ Rd+d2+dm : condition (14) in Theorem 3.4 is violated},

then S has Lebesgue measure zero in Rd+d2+dm.

Proof. Suppose (x0, A,G) ∈ S, then (x0, A,G) satisfies

rank([x0|Ax0| . . . |Ad−1x0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d]) < d ,

recall that H := GGT , and H·j stands for the j-th column vector of matrix H , for all j = 1, · · · , d.

Let
S′ := {(x0, A,G) ∈ Rd+d2+dm : rank([x0|Ax0| . . . |Ad−1x0]) < d},

one observes that S ⊆ S′. According to the proof of Proposition B.1, it is readily checked that S′ has
Lebesgue measure zero in Rd+d2+dm. Thus, S has Lebesgue measure zero in Rd+d2+dm.
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C Simulation settings

We present the true underlying system parameters along with the initial states of the SDEs employed
in the simulation experiments. We randomly generate the true system parameters that satisfy or
violate the corresponding identifiability conditions.

For the SDE (1):

1. identifiable case: satisfy condition (14) stated in Theorem 3.4:

xid
0 =

[
1.87
−0.98

]
, Aid =

[
1.76 −0.1
0.98 0

]
, Gid =

[
−0.11 −0.14
−0.29 −0.22

]
;

2. unidentifiable case: violate condition (14):

xun
0 =

[
1
−1

]
, Aun =

[
1 2
1 0

]
, Gun =

[
0.11 0.22
−0.11 −0.22

]
.

For the SDE (2):

1. identifiable case: satisfy both A1 and A2 stated in Theorem 3.5:

xid
0 =

[
1.87
−0.98

]
, Aid =

[
1.76 −0.1
0.98 0

]
, Gid

1 =

[
−0.11 −0.14
−0.29 −0.22

]
, Gid

2 =

[
−0.17 0.59
0.81 0.18

]
;

2. unidentifiable case1: violate A1 satisfy A2:

xun-A1
0 =

[
1
1

]
, Aun-A1 =

[
2 1
3 0

]
, Gun-A1

1 =

[
−0.11 −0.14
−0.29 −0.22

]
, Gun-A1

2 =

[
−0.17 0.59
0.81 0.18

]
;

3. unidentifiable case2: satisfy A1 violate A2:

xun-A2
0 =

[
1
−1

]
, Aun-A2 =

[
1 −2
−1 0

]
, Gun-A2

1 =

[
−0.3 0.4
−0.7 0.2

]
, Gun-A2

2 =

[
0.8 0.2
−0.2 −0.4

]
.

We have discussed in Section 4 that we use MLE method to estimate the system parameters from
discrete observations sampled from the corresponding SDEs. Specifically, the negative log-likelihood
function was minimized using the ‘scipy.optimize.minimize’ library in Python.

For all of our experiments, we initialized the parameter values as the true parameters plus 2. In the
case of the SDE (1), we utilized the ‘trust-constr’ method with the hyper-parameter ‘gtol’= 1e-3
and ‘xtol’= 1e-3. On the other hand, for the SDE (2), we applied the ‘BFGS’ method and set the
hyper-parameter ‘gtol’= 1e-2. The selection of the optimization method and the corresponding
hyper-parameters was determined through a series of experiments aimed at identifying the most
suitable configuration.
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D Examples for reliable causal inference for linear SDEs

D.1 Example for reliable causal inference for the SDE (1)

This example is inspired by [17, Example 5.4]. Recall that the SDE (1) is defined as

dXt = AXtdt+GdWt, X0 = x0,

where 0 ⩽ t < ∞, A ∈ Rd×d and G ∈ Rd×m are constant matrices, W is an m-dimensional
standard Brownian motion. Let X(t;x0, A,G) denote the solution to the SDE (1). Let Ã ∈ Rd×d

and G̃ ∈ Rd×m define the following SDE:

dX̃t = ÃX̃tdt+ G̃dWt, X̃0 = x0,

such that
X(·;x0, A,G)

d
= X̃(·;x0, Ã, G̃) .

Then under our proposed identifiability condition stated in Theorem 3.4, we have shown that the
generator of the SDE (1) is identifiable, i.e., (A,GG⊤) = (Ã, G̃G̃⊤). Till now, we have shown that

under our proposed identifiability conditions, the observational distribution
identity−−−−→ the generator of

the observational SDE. Then we will show that the post-intervention distribution is also identifiable.
For notational simplicity, we consider intervention on the first coordinate, making the intervention
X1

t = ξ and X̃1
t = ξ for 0 ⩽ t < ∞. It will suffice to show equality of the distributions of the

non-intervened coordinates (i.e., X(−1)
t and X̃

(−1)
t , note the superscripts do not denote reciprocals,

but denote the (d− 1)-coordinates without the first coordinate). Express the matrices of A and G in
blocks

A =

[
A11 A12

A21 A22

]
, G =

[
G1

G2

]
,

where A11 ∈ R1×1, A22 ∈ R(d−1)×(d−1), G1 ∈ R1×m and G2 ∈ R(d−1)×m. Also, consider
corresponding expressions of matrices Ã and G̃. By making intervention X1

t = ξ, one obtains the
post-intervention process of the first SDE satisfies:

dX
(−1)
t = (A21ξ +A22X

(−1)
t )dt+G2dWt , X

(−1)
0 = x

(−1)
0 ,

which is a multivariate Ornstein-Uhlenbeck process, according to [59, Corollary 1], this process is a
Gaussian process, assuming A22 is invertible, then the mean vector can be described as

E[X
(−1)
t ] = eA22tx

(−1)
0 − (I − eA22t)A−1

22 A21ξ,

and based on [59, Theorem 2], the cross-covariance can be described as

V (X
(−1)
t+h , X

(−1)
t ) : = E{(X(−1)

t+h − E[X(−1)
t+h ])(X

(−1)
t − E[X(−1)

t ])⊤}

=

∫ t

0

eA22(t+h−s)G2G
⊤
2 e

A⊤
22(t−s)ds .

Similarly, one can obtain that the mean vector and cross-covariance of the distribution of the post-
intervention process of the second SDE by making intervention X̃1

t = ξ satisfy:

E[X̃
(−1)
t ] = eÃ22tx

(−1)
0 − (I − eÃ22t)Ã−1

22 Ã21ξ,

and

V (X̃
(−1)
t+h , X̃

(−1)
t ) : = E{(X̃(−1)

t+h − E[X̃(−1)
t+h ])(X̃

(−1)
t − E[X̃(−1)

t ])⊤}

=

∫ t

0

eÃ22(t+h−s)G̃2G̃
⊤
2 e

Ã⊤
22(t−s)ds

.

Then we will show that E[X
(−1)
t ] = E[X̃

(−1)
t ], and V (X

(−1)
t+h , X

(−1)
t ) = V (X̃

(−1)
t+h , X̃

(−1)
t ) for

all 0 ⩽ t, h < ∞. Recall that we have shown (A,GG⊤) = (Ã, G̃G̃⊤), thus, A22 = Ã22 and
A21 = Ã21, then it is readily checked that E[X

(−1)
t ] = E[X̃

(−1)
t ] for all 0 ⩽ t < ∞.

31



Since

GG⊤ =

[
G1G

⊤
1 G1G

⊤
2

G2G
⊤
1 G2G

⊤
2

]
= G̃G̃⊤,

thus, G2G
⊤
2 = G̃2G̃

⊤
2 , then it is readily checked that V (X

(−1)
t+h , X

(−1)
t ) = V (X̃

(−1)
t+h , X̃

(−1)
t ) for all

0 ⩽ t, h < ∞. Since both of these two post-intervention processes are Gaussian processes, according
to Lemma 3.2, the distributions of these two post-intervention processes are the same. That is, the
post-intervention distribution is identifiable.

D.2 Example for reliable causal inference for the SDE (2)

Recall that the SDE (2) is defined as

dXt = AXtdt+
∑m

k=1 GkXtdWk,t, X0 = x0,

where 0 ⩽ t < ∞, A,Gk ∈ Rd×d for k = 1, . . . ,m are some constant matrices, W :=
{Wt = [W1,t, . . . ,Wm,t]

⊤ : 0 ⩽ t < ∞} is an m-dimensional standard Brownian motion. Let
X(t;x0, A, {Gk}mk=1) denote the solution to the SDE (2). Let Ã, G̃k ∈ Rd×d for k = 1, . . . ,m
define the following SDE:

dX̃t = ÃX̃tdt+
∑m

k=1 G̃kX̃tdWk,t, X̃0 = x0,

such that
X(·;x0, A, {Gk}mk=1)

d
= X̃(·;x0, Ã, {G̃k}mk=1) .

Then under our proposed identifiability condition stated in Theorem 3.5, we have shown that the
generator of the SDE (2) is identifiable, i.e., (A,

∑m
k=1 Gkxx

⊤G⊤
k ) = (Ã,

∑m
k=1 G̃kxx

⊤G̃⊤
k ) for all

x ∈ Rd. Till now, we have shown that under our proposed identifiability conditions, the observational

distribution
identity−−−−→ the generator of the observational SDE. Then we aim to show that the post-

intervention distribution is also identifiable. For notational simplicity, we consider intervention on the
first coordinate, making the intervention X1

t = ξ and X̃1
t = ξ for 0 ⩽ t < ∞. It will suffice to show

equality of the distributions of the non-intervened coordinates (i.e., X(−1)
t and X̃

(−1)
t ). Express the

matrices of A and Gk for k = 1, . . . ,m in blocks

A =

[
A11 A12

A21 A22

]
, Gk =

[
Gk,11 Gk,12

Gk,21 Gk,22

]
,

where A11, Gk,11 ∈ R1×1, A22, Gk,22 ∈ R(d−1)×(d−1). Also consider corresponding expressions
of matrices Ã and G̃k for k = 1, . . . ,m. By making intervention X1

t = ξ, one obtains the post-
intervention process of the first SDE satisfies:

dX
(−1)
t = (A21ξ +A22X

(−1)
t )dt+

∑m
k=1(Gk,21ξ +Gk,22X

(−1)
t )dWk,t, X

(−1)
0 = x

(−1)
0 .

Since this post-intervention process is not a Gaussian process, one cannot explicitly show that the
post-intervention distribution is identifiable. Instead, we check the surrogate of the post-intervention
distribution, that is the first- and second-order moments of the post-intervention process X

(−1)
t .

Which denote as m(t)(−1) = E[X(−1)
t ] and P (t)(−1) = E[X(−1)

t (X
(−1)
t )⊤] respectively. Then

m(t)(−1) and P (t)(−1) satisfy the following ODE systems:

dm(t)(−1)

dt
= A21ξ +A22m(t)(−1), m(0)−1 = x

(−1)
0 ,

and

dP (t)(−1)

dt
= m(t)(−1)ξ⊤A⊤

21 +A21ξ(m(t)(−1))⊤ + P (t)(−1)A⊤
22 +A22P (t)(−1)

+
∑m

k=1(Gk,21ξξ
⊤G⊤

k,21 +Gk,22m(t)(−1)ξ⊤G⊤
k,21 +Gk,21ξ(m(t)(−1))⊤G⊤

k,22

+Gk,22P (t)(−1)G⊤
k,22), P (0)(−1) = x

(−1)
0 (x

(−1)
0 )⊤.

(46)

Similarly, one can obtain the ODE systems describing the m̃(t)(−1) and P̃ (t)(−1). Then we will
show that m(t)(−1) = m̃(t)(−1) and P (t)(−1) = P̃ (t)(−1) for all 0 ⩽ t < ∞. Recall that we have
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shown A = Ã, thus A21 = Ã21 and A22 = Ã22, then it is readily checked that m(t)(−1) = m̃(t)(−1)

for all 0 ⩽ t < ∞.

In the proof of Theorem 3.5, we have shown that∑m
k=1 GkP (t)G⊤

k =
∑m

k=1 G̃kP (t)G̃⊤
k

for all 0 ⩽ t < ∞, where P (t) = E[XtX
⊤
t ]. Simple calculation shows that

m∑
k=1

GkP (t)G⊤
k =

m∑
k=1

([
Gk,11 Gk,12

Gk,21 Gk,22

] [
ξξ⊤ ξ(m(t)(−1))⊤

m(t)(−1)ξ⊤ P (t)(−1)

] [
G⊤

k,11 G⊤
k,21

G⊤
k,12 G⊤

k,22

])
,

Then one can get that the (2, 2)-th block entry of the matrix
∑m

k=1 GkP (t)G⊤
k is the same as the∑m

k=1(. . .) part in the ODE corresponds to P (t)(−1) (i.e., Equation (46)), since
∑m

k=1 GkP (t)G⊤
k =∑m

k=1 G̃kP (t)G̃⊤
k , then the

∑m
k=1(. . .) part in the ODEs correspond to both P (t)(−1) and P̃ (t)(−1)

are the same. Thus, it is readily checked that P (t)(−1) = P̃ (t)(−1) for all 0 ⩽ t < ∞.

Though we cannot explicitly show that the post-intervention distribution is identifiable, showing that
the first- and second-order moments of the post-intervention process is identifiable can indicate the
identification of the post-intervention distribution to a considerable extent.
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E Conditions for identifying the generator of a linear SDE with multiplicative
noise when its explicit solution is available

Proposition E.1. Let x0 ∈ Rd be fixed. The generator of the SDE (2) is identifiable from x0 if the
following conditions are satisfied:

C1 rank([x0|Ax0| . . . |Ad−1x0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d]) = d ,

C2 rank([v|Av| . . . |A(d2+d−2)/2v]) = (d2 + d)/2 ,

C3 AGk = GkA and GkGl = GlGk for all k, l = 1, . . . ,m .

where H :=
∑m

k=1 Gkx0x
⊤
0 G

⊤
k , and H·j stands for the j-th column vector of matrix H , for all

j = 1, · · · , d. And A = A ⊕ A +
∑m

k=1 Gk ⊗ Gk ∈ Rd2×d2

, ⊕ denotes Kronecker sum and ⊗
denotes Kronecker product, v is a d2-dimensional vector defined by v := vec(x0x

⊤
0 ), where vec(M)

denotes the vectorization of matrix M .

Proof. Let Ã, G̃k ∈ Rd×d and ÃG̃k = G̃kÃ, G̃kG̃l = G̃lG̃k for all k, l = 1, . . . ,m, such that
X(·;x0, A, {Gk}mk=1)

d
= X(·;x0, Ã, {G̃k}mk=1), we denote as X

d
= X̃ , we will show that under

our identifiability condition, for all x ∈ Rd, (A,
∑m

k=1 Gkxx
⊤G⊤

k ) = (Ã,
∑m

k=1 G̃kxx
⊤G̃⊤

k ). By
applying the same notations used in the proof of Theorem 3.5, in the following, we denote A1 := A,
A2 := Ã, G1,k := Gk and G2,k := G̃k, and denote X

d
= X̃ as X1 d

= X2.

We first show that H1 = H2 (Hi :=
∑m

k=1 Gi,kx0x
⊤
0 G

⊤
i,k). Indeed, since X1, X2 have the same

distribution, one has
E[f(X1

t )] = E[f(X2
t )] (47)

for all 0 ⩽ t < ∞ and f ∈ C∞(Rd). By differentiating (47) at t = 0, one finds that

(L1f)(x0) = (L2f)(x0) , (48)

where Li is the generator of Xi (i = 1, 2). Based on the Proposition 2.1,

(Lif)(x0) =

d∑
k=1

d∑
l=1

(Ai)klx0l
∂f

∂xk
(x0) +

1

2

d∑
k,l=1

(Hi)kl
∂2f

∂xk∂xl
(x0) ,

where (M)kl denotes the kl-entry of matrix M , and x0l is the l-th component of x0. Since (48) is
true for all f , by taking

f(x) = (xp − x0p)(xq − x0q) ,

it is readily checked that
(H1)pq = (H2)pq ,

for all p, q = 1, . . . , d. As a result, H1 = H2. Let us call this matrix H . That is

H := H1 =

m∑
k=1

G1,kx0x
⊤
0 G

⊤
1,k =

m∑
k=1

G2,kx0x
⊤
0 G

⊤
2,k = H2 .

In the proof of Theorem 3.5, we have shown that

A1A
j−1x0 = A2A

j−1x0 for all j = 1, 2, . . . , (49)

next, we will derive the relationship between Ai and H . Under condition C3, the SDE system (2) has
an explicit solution (cf. [25]):

Xt := X(t;x0, A, {Gk}mk=1) = exp

{(
A− 1

2

m∑
k=1

G2
k

)
t+

m∑
k=1

GkWk,t

}
x0 , (50)
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then the covariance of Xt, P (t, t+ h) = E[XtX
⊤
t+h] can be calculated as

E[XtX
⊤
t+h]

=E

[
exp

{(
A− 1

2

m∑
k=1

G2
k

)
t+

m∑
k=1

GkWk,t

}
x0x

⊤
0 exp

{(
A⊤ − 1

2

m∑
k=1

(G2
k)

⊤

)
(t+ h)

+

m∑
k=1

G⊤
k Wk,t+h

}]
= eAte−

1
2

∑m
k=1 G2

ktE
[
e
∑m

k=1 GkWk,tx0x
T
0 e

∑m
k=1 G⊤

k Wk,t+h
]
e−

1
2

∑m
k=1(G

2
k)

⊤(t+h)eA
⊤(t+h) ,

(51)

where

E
[
e
∑m

k=1 GkWk,tx0x
T
0 e

∑m
k=1 G⊤

k Wk,t+h
]

=E
[
e
∑m

k=1 GkWk,tx0x
T
0 e

∑m
k=1 G⊤

k Wk,te−
∑m

k=1 G⊤
k Wk,te

∑m
k=1 G⊤

k Wk,t+h
]

=E
[
e
∑m

k=1 GkWk,tx0x
T
0 e

∑m
k=1 G⊤

k Wk,te
∑m

k=1 G⊤
k (Wk,t+h−Wk,t)

]
=E

[
e
∑m

k=1 GkWk,tx0x
T
0 e

∑m
k=1 G⊤

k Wk,t
]
E
[
e
∑m

k=1 G⊤
k (Wk,t+h−Wk,t)

]
,

(52)

because the Brownian motion Wk,t has independent increments.

It is known that, for Z ∼ N (0, 1), we have that the jth moment is

E(Zj) =

{
0 , j is odd ,

2−j/2 j!
(j/2)! , j is even .

Since Wk,t ∼ N (0, t), we have

E[eGkWk,t ] = E

[ ∞∑
j=0

(Gk)
j(Wk,t)

j

j!

]

=

∞∑
j=0

(Gk)
jE[(Wk,t)

j ]

j!

=

∞∑
j=0,2,4...

(Gk)
j(t/2)j/2

(j/2)!

=

∞∑
i=0

(G2
kt/2)

i

i!

= eG
2
kt/2 .

Similarly, we have
E[eG

⊤
k (Wk,t+h−Wk,t)] = e(G

⊤
k )2h/2 .

Simple calculation shows that

E
[
e
∑m

k=1 G⊤
k (Wk,t+h−Wk,t)

]
= e

∑m
k=1(G

⊤
k )2h/2 . (53)

By combining Equations (51), (52) and (53), one readily obtains that

P (t, t+ h) = P (t, t)eA
⊤h , (54)

we denote P (t) := P (t, t). Set Pi(t, t+ h) = E[Xi
t(X

i
t+h)

⊤], since X1 d
= X2, it follows that

P1(t, t+ h) = E[X1
t (X

1
t+h)

⊤] = E[X2
t (X

2
t+h)

⊤] = P2(t, t+ h) ∀t, h ⩾ 0 .

To obtain information about A, let us fix t for now and take j-th derivative of (54) with respect to h.
One finds that

dj

dhj

∣∣∣∣
h=0

P (t, t+ h) = P (t)(A⊤)j , (55)
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for all j = 1, 2, . . .. It is readily checked that

P1(t)(A
⊤
1 )

j = P2(t)(A
⊤
2 )

j ∀0 ⩽ t < ∞ . (56)

We know the function Pi(t) satisfies the ODE

Ṗi(t) = AiPi(t) + Pi(t)A
⊤
i +

m∑
k=1

Gi,kPi(t)G
⊤
i,k , ∀0 ⩽ t < ∞ ,

Pi(0) = x0x
⊤
0 .

(57)

In particular,

Ṗi(0) = Aix0x
⊤
0 + x0x

⊤
0 A

⊤
i +

m∑
k=1

Gi,kx0x
⊤
0 G

⊤
i,k .

By differentiating (56) with respect to t at t = 0, it follows that

A1x0x
⊤
0 (A

⊤
1 )

j + x0x
⊤
0 (A

⊤
1 )

j+1 +

( m∑
k=1

G1,kx0x
⊤
0 G

⊤
1,k

)
(A⊤

1 )
j

=A2x0x
⊤
0 (A

⊤
2 )

j + x0x
⊤
0 (A

⊤
2 )

j+1 +

( m∑
k=1

G2,kx0x
⊤
0 G

⊤
2,k

)
(A⊤

2 )
j .

Since we have known that Aj
1x0 = Aj

2x0 for all j = 1, 2, . . ., it is readily checked that( m∑
k=1

G1,kx0x
⊤
0 G

⊤
1,k

)
(A⊤

1 )
j =

( m∑
k=1

G2,kx0x
⊤
0 G

⊤
2,k

)
(A⊤

2 )
j ,

that is Aj
1H = Aj

2H for all j = 1, 2, . . .. Let us denote this matrix AjH . Obviously, by rearranging
this matrix, one gets

A1A
j−1H = A2A

j−1H for all j = 1, 2, . . .

Therefore, under condition C1, that is rank(M) = d with

M := [x0|Ax0| . . . |Ad−1x0|H·1|AH·1| . . . |Ad−1H·1| . . . |H·d|AH·d| . . . |Ad−1H·d] . (58)

if we denote the j-th column in M as M·j , one gets A1M·j = A2M·j for all j = 1, . . . , d+ d2 by
equations (49) and (58).

This means one can find a full-rank matrix B ∈ Rd×d by horizontally stacking d linearly independent
columns from matrix M , such that A1B = A2B. Since B is invertible, one thus concludes that
A1 = A2.

In the proof of Theorem 3.5, we have shown that when A1 = A2, under condition C2, for all x ∈ Rd,
m∑

k=1

G1,kxx
⊤G⊤

1,k =

m∑
k=1

G2,kxx
⊤G⊤

2,k .

Thus the proposition is proved.

It is noteworthy that Proposition E.1 is established on the explicit solution assumption of the SDE
(2), which requires both sets of vectors {A, {Gk}mk=1} and {Ã, {G̃k}mk=1} to satisfy condition C3.
As aforementioned, condition C3 is very restrictive and impractical, rendering the identifiability
condition derived in this proposition unsatisfactory. Nonetheless, this condition is presented to
illustrate that condition C1 is more relaxed compared to condition A1 stated in Theorem 3.5 when
identifying A with the incorporation of Gk’s information.
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