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ABSTRACT

Complex hierarchies and branching patterns underlie numerous biological pro-
cesses, from organismic development to signal divergence across individual cells.
Single-cell RNA sequencing has enabled the study of such complex biologi-
cal processes at high resolution. However, classical analysis methods represent
single-cell data in low-dimensional Euclidean space, distorting the complex hier-
archies inherent in such data. A recent line of work proposes to represent hier-
archical data in hyperbolic space instead, which mitigates much of the distortion
effects observed in the Euclidean setting. However, existing approaches for hy-
perbolic representation learning emphasise the preservation of local structure at
the cost of decreased global representation accuracy and are computationally in-
efficient. To overcome these limitations, we develop Contrastive Poincaré Maps,
a novel self-supervised approach for learning hyperbolic representations of tabu-
lar data. Through a series of experiments on synthetic and real, single-cell data,
we show that Contrastive Poincaré Maps accurately represent global structure in
complex hierarchical data in a computationally efficient manner.

1 INTRODUCTION

Rapid advances in sequencing technology over the past decade have enabled the measurement of
transcriptome-wide gene expressions at the level of single cells (Single-cell RNA sequencing), pro-
viding insight into complex biological processes, such as cellular differentiation. Computational
data analysis tools are employed to discover and study the complex branching patterns exhibited
by these processes. Notable examples include UMAP (McInnes et al., 2018) and t-SNE (Van der
Maaten & Hinton, 2008), which are standard tools employed for data analysis across diverse do-
mains, as well as specialised tools such as PHATE (Moon et al., 2019). A common feature of these
tools is that they represent data in a Euclidean space. However, there are fundamental limitations
in the accuracy with which hierarchical (or tree-like) data can be represented in low-dimensional
Euclidean space. A remedy comes in the form of hyperbolic spaces, negatively curved manifolds,
which are known to represent hierarchical data with high accuracy in low dimensions. Motivated
by this realisation, Klimovskaia et al. (2020) recently proposed to analyse single-cell data in hy-
perbolic spaces. They propose Poincaré Maps, a method for learning representations of tabular
data in hyperbolic space. Their work builds on a growing body of literature, which studies hyper-
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bolic graph embeddings (Nickel & Kiela, 2017; Chamberlain et al., 2017; Chami et al., 2019) and
their utility in downstream machine learning applications (Ganea et al., 2018; Weber et al., 2020).
Poincaré Maps (PM) have been shown to learn high-quality representations for several single-cell
data sets (Klimovskaia et al., 2020). However, there are also some crucial caveats that impact the
method’s utility in practice: While PM perform well at learning representations of shallow trees,
their representation accuracy decreases, as the tree’s depth increases. Importantly, single-cell data
often exhibits complex branching patterns that form deep trees. This limits the applicability of PM to
complex, large-scale single-cell data sets. In addition, PM often requires feature engineering to learn
good representations, have a memory-intensive training process and cannot be updated efficiently.

In this work, we introduce an alternate architecture for learning hyperbolic representations of tabular
data. Our approach, Contrastive Poincaré Maps (CPM), employs contrastive learning (Bahri et al.,
2022) to train an encoder, which allows for efficiently learning hyperbolic representations. We
systematically test the accuracy and computational complexity of CPM against PM on synthetic data,
demonstrating that CPM significantly improves over PM along the axes identified above. We further
compare CPM and PM on a single-cell data set, demonstrating that the observed improvements also
translate to real data.

2 METHODS

2.1 REPRESENTING DATA IN HYPERBOLIC SPACE

Hyperbolic spaces are smooth Riemannian manifolds with constant negative curvature. In this work,
we consider the Poincaré ball model of hyperbolic space, one of several known parametrizations. It
defines a hyperbolic space within the Euclidean unit ball, i.e.,

Pd = {x ∈ Rd+1 : ∥x∥ < 1} (1)

dP(x, y) = acosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
, (2)

where ∥ · ∥ denotes the usual Euclidean norm. The exponential map Expx : TxPd → Pd, an
important geometric tool, which, e.g., characterises geodesics in the space, is given by

Expx(v) = cosh(∥v∥M )x+ sinh(∥v∥M )
v

∥v∥M
,

where ∥v∥M =
√

⟨v, v⟩M is computed with respect to the Minkowski product ⟨u, v⟩M = −u0v0 +∑d
i=1 uivi.

In this work, we are concerned with representing data in hyperbolic space, i.e., we want to learn a
map ϕ : X → Pd between a data space X and hyperbolic representation space Pd, which maps a
data point x ∈ X to ϕ(x) ∈ Pd. Classical results on metric embeddings provide theoretical guaran-
tees on the representation accuracy achieved when embedding trees into low-dimensional Euclidean
or hyperbolic space. Here, representation error is measured with respect to how well pairwise dis-
tances between data points are preserved from data space to representation space. Gupta (1999)
shows that a tree with L leaves (i.e., number of nodes in the last level of the tree) can be repre-
sented in d-dimensional Euclidean space with representation error not better than a multiplicative
factor O(L1/(d−1)). In contrast, Sarkar (2011) shows that a tree of any size may be represented in
d-dimensional hyperbolic space while preserving distances almost perfectly, i.e., with representation
error at most a multiplicative factor of O(1 + ϵ).

Hierarchical or tree-like data is ubiquitous in machine learning. The complexity of machine learning
algorithms usually depends on the dimension of the data space. Hence, the fact that hyperbolic
spaces allow for representing tree-like data accurately in low dimensions, holds great promise for
the design of efficient data analysis. A growing body of literature studies methods for computing
hyperbolic representations of data (e.g., Nickel & Kiela (2017); Chamberlain et al. (2017); Chami
et al. (2019)). We briefly comment on PM (Klimovskaia et al., 2020), a state-of-the-art hyperbolic
embedding approach for single-cell data, which will serve as a baseline in subsequent sections.
PM is a shallow embedding technique that maps the similarities in feature space (inferred geodesic
distances) to a Poincaré disk. The computation of similarities in feature space is memory intensive
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and often requires the input to be low-dimensional. When applied to single-cell data, the feature
representations correspond to gene expressions and the samples to cells. In contrast to PM, our
proposed approach is a deep embedding technique that learns to map the rich information in feature
space to a Poincaré disk in an end-to-end manner without the need for additional pre-processing
steps. Consequently, the proposed approach scales well with the increasing number of samples or
cells.

2.2 CONTRASTIVE POINCARÉ MAPS

Concurrent studies have demonstrated success in obtaining good hyperbolic representations using
contrastive learning approach for image analysis tasks (Ge et al., 2023; Yue et al., 2023). Nonethe-
less, the application of hyperbolic contrastive learning for tabular data, especially for tree-like bi-
ological data remains unexplored. Our proposed approach, Contrastive Poincaré Maps (CPM),
builds on SCARF Bahri et al. (2022), a contrastive learning approach for tabular data. In contrastive
learning, similarity structure in the data is inferred from samples of positive (similar) and negative
(dissimilar) instances. CPM utilises the same sampling strategy as SCARF; it samples positive in-
stances by generating an additional corrupted view of the data for each minibatch, by replacing a
randomly selected fixed percentage of feature observations from the minibatch with feature obser-
vations from other data points, randomly selected from the training data. The encoder is composed
of a projection block and a hyperbolic block (see Figure 3). The projection block consists of linear
layers with ReLU activation. The hyperbolic block is composed of hyperbolic linear layers with
ReLU activation. A similar setup for integrating hyperbolic geometry into deep architectures was
previously considered in Chami et al. (2019). The following equations summarise one forward pass
of the model, H = σ(WeX

e + b1), where H is the latent representation learnt by the projection
block, We are the parameters of the projection block, Xe is the input data, b1 is the bias, and σ(.) is
the non-linear ReLU activation unit. These representations are projected to the Poincaré ball using
the exponential map Expo(.) and consequently fed to the hyperbolic block, as seen in the following
equation:

Zh = σ⊗(Wh ⊗ Expo(H)⊕ Expo(b2)) .

Here, Wh and b2 are the trainable parameters of the hyperbolic block and Zh is the hyperbolic
representation learnt by the model; σ⊗(.) = Expo(σ(Logo(.))) and Logo(.) is the logarithmic map
(Chami et al., 2019).

Hyperbolic representations are learnt for both views of the data by passing them through the en-
coder blocks with shared weights. The similarities between the two views, which we term Poincaré
similarities, are calculated based on Poincaré distances (Eq. 1) as 1/(1 + dP(x, y)). These similari-
ties are subsequently used in the classical InfoNCE contrastive loss for training our model. We use
RiemannianAdam Chami et al. (2019) for optimising the model parameters. The parameters for the
projection and hyperbolic blocks are optimised using different learning rates.

3 EXPERIMENTAL RESULTS

We describe our experimental setup and present experimental results for synthetic and real single-
cell data. This allows for a systematic comparison of CPM and PM in terms of representation
accuracy, computational efficiency and utility in downstream tasks.

3.1 EXPERIMENTAL SETUP

Data. The synthetic data for the experiments in this section was generated using PHATE Moon
et al. (2019), a method based on diffusion limited aggregation. The ground truth hierarchies (trees)
have two branches at every depth level. To increase the heterogeneity of the trees, one of the branches
at every depth level was set to contain one third of the total samples per level. The total number of
samples in the tree is equal to nl (root level) +(d×nl), where nl is the number of samples per level
and d is the depth of the tree. The features of the synthetic data were standardised to have zero mean
and unit variance.
Training. The following parameters were used for CPM, unless otherwise specified. The rate of
corruption was set to 0.2 for generating the corrupted view of the data. For the projection block,
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Table 1: Quantitative metrics for the performance of CPM and PM across different depths of the
synthetic data tree.

Depth Method Qlocal ↑ Qglobal ↑ MAP ↑ Dwc ↓
5 PM 0.82 0.76 0.91 125.15

CPM 0.78 0.88 0.90 1.20

10 PM 0.85 0.75 0.91 175.74
CPM 0.82 0.90 0.84 1.37

15 PM 0.85 0.74 0.92 93.42
CPM 0.81 0.93 0.82 1.28

20 PM 0.83 0.67 0.88 252.28
CPM 0.79 0.89 0.82 1.67

25 PM 0.84 0.66 0.89 498.07
CPM 0.81 0.91 0.80 1.00

30 PM 0.84 0.63 0.88 693.48
CPM 0.81 0.91 0.81 1.00

the number of linear layers was set to 1, the learning rate was 1e-3 and the embedding dimension
was 128. For the hyperbolic block, the embedding dimension was set to 2, and the number of
hyperbolic linear layers and learning rate were varied based on the depth of the tree. The model was
trained for 1000 epochs in batches of 128 samples with an early stopping criterion. Poincaré Maps
(PM) Klimovskaia et al. (2020) was used as the baseline. The experiments were conducted on one
NVIDIA V100 GPU and 8 threads of Intel Xeon Gold 5120 processor.
Evaluation. Both the baseline and our proposed method were evaluated by visualisation and via
Q-scores (Qlocal and Qglobal) (Lee & Verleysen, 2010). In addition, we compare the methods’ worst-
case distortion (Dwc) and k-MAP score. The value of k for MAP score was set to 150. Definitions
for all quality metrics and details of visualisation methods can be found in the appendix.

3.2 RESULTS FOR SYNTHETIC DATA

Hypothesis 1: CPM achieves higher global representation accuracy for non-shallow trees. In
contrast to PM, CPM makes use of the rich information available in observation space to learn a
robust representation of the data, which is unaffected by the depth of the tree. To corroborate this
hypothesis, we conducted experiments on synthetic data by varying the depth of the tree from 5 to
30. The dimension of the observation space was set to 1000. The number of samples per level was
equal to 750. The number of hyperbolic linear layers in CPM was varied from 2 at d = 5, 10, to 3 at
d = 15, 20, 25, 30. The learning rate for the optimisation of the hyperbolic block parameters was set
to 1e-5. The results in Table 1 indicate a clear advantage of CPM over PM in terms of representation
accuracy. Although PM shows higher local representation accuracy (reflected in Qlocal and MAP
score), the global representation accuracy (reflected in Qglobal and Dwc) worsens with the depth of
the tree. However, CPM maintains a high global representation accuracy across all depths, while
maintaining a competitive local representation accuracy. Example embeddings for PM and CPM at
d = 25 can be found in the appendix (Figure 4).

Hypothesis 2: CPM is memory-efficient. Single-cell RNA sequencing often results in large data
sets due to the exponential growth of the cells, which leads to high memory consumption. This,
in turn, requires complex infrastructure to run single-cell data analysis. From energy-efficiency
and accessibility perspective there is an urgent need for memory-efficient tools for single-cell data
analysis (Stein, 2010). As the total number of samples increases, we observe that CPM is more
memory efficient than PM. To illustrate this claim, we conducted experiments on synthetic data
by varying sample sizes and measured the performance of CPM and PM. The dimension of the
observation space was set to 104, and the depth of the tree was kept constant at d = 5. For the
CPM’s hyperbolic block, the number of hyperbolic linear layers was 1 and the learning rate was 1e-
4. The dimension of the observation space was reduced to 20 principal components for the baseline.
Figure 1 illustrates the results of the experiment; we observe that memory and computing time grow
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Figure 1: Comparison of CPM with PM in terms of memory and time consumption across different
sample sizes.

Table 2: Performance of CPM and PM for chicken heart development dataset. Best results in bold
font.

Method Qlocal ↑ Qglobal ↑ MAP ↑ Dwc ↓
CPM (Prj. block + Hyp. block) 0.46 0.81 0.10 5.93
CPM (PCA + Hyp. block) 0.40 0.81 0.05 10.27
CPM (PCA + Prj. block + Hyp. block) 0.43 0.84 0.05 5.98

PM w. PCA 0.32 0.73 0.13 6.75
PM w/o PCA 0.31 0.74 0.11 12.30

Abbreviations: Prj. - projection, Hyp. - hyperbolic, w. - with, w/o - without.
linearly with the number of the samples in CPM as opposed to exponential growth in PM. Table 5
(see appendix) shows the evaluation results of the embeddings. The Qglobal score for PM worsens
with increasing sample size, while CPM is able to maintain both Qglobal and Qlocal across different
sample sizes. The worst case distortion, Dwc for both methods deplete with increasing sample size,
but the decline is sharper for PM than CPM.

3.3 APPLICATION TO SINGLE-CELL DATA ANALYSIS

To validate the results observed on synthetic data, we conducted experiments on single-cell RNA
sequencing data from Mantri et al. (2021). The data consists of 22,315 cells, which include progeni-
tor and mature cell types from multiple lineages driving cardiogenesis in chicken embryos. The raw
data was normalised to 10000 counts per cell, Log1p transformed and filtered to contain 2000 highly
variable genes. For CPM’s hyperbolic block, the number of hyperbolic linear layers was 2 and the
learning rate was 1e-5. For the baseline, experiments were conducted both without dimensionality
reduction, and with dimensionality reduction (number of principal components equal to 128). Table
3 compares the embedding quality of CPM with PM and also with other state of the art euclidean
embedding methods. As observed in the case of synthetic data, CPM is able to achieve higher
global representation accuracy than PM. CPM also respects and preserves local hierarchies within
individual lineages, and relative hierarchies among different lineages. For example, CPM preserves
hierarchies within the myocardial, epicardial and endocardial lineages in the dataset (Figure 2). It
also separates and resolves structures within the non-cardiac erythrocyte, macrophages and dendritic
cell types as seen in Figure 2. The lineages in Figure 2 were visualised by translating different parts
of the same embedding to the origin (see Appendix C).
Hypothesis 3: CPM does not need additional feature processing steps. CPM can resolve hier-
archies without feature engineering and dimensionality reduction. PM requires feature processing
steps like PCA to reduce distortion in the embeddings (Table 2).
Hypothesis 4: CPM learns representations that can be efficiently updated, as new data be-
comes available. The Contrastive Poincaré model can be used in an inductive setting to generate
embeddings for data held out from the training process. To corroborate this hypothesis, experiments
were conducted by dividing the data set into train and test data in a 3:1 ratio. The test data was held
out from model training. The trained model was used in inference mode to generate embeddings of
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Figure 2: Illustration of CPM resolving multiple cardiac cell lineages in the chicken heart develop-
ment dataset.

Table 3: Comparison of performance of CPM on chicken heart development dataset with state of
the art embedding methods for single cell data analysis.

Method Qlocal ↑ Qglobal ↑ MAP ↑ Dwc ↓
CPM 0.46 0.81 0.10 5.93
PM 0.31 0.74 0.11 12.30
t-SNE (Van der Maaten & Hinton, 2008) 0.32 0.75 0.05 123.89
UMAP (McInnes et al., 2018) 0.36 0.77 0.06 111.47
PHATE (Moon et al., 2019) 0.45 0.81 0.11 3.00

the held out test data. Table 4 illustrates the generalisation power of CPM by comparing the quality
of training data embedding with unseen test data embedding.

Table 4: Quantitative metrics for the performance of CPM in an inductive setting.
Data Qlocal Qglobal MAP Dwc

Train (75%) 0.47 0.81 0.12 6.01
Unseen test (25%) 0.46 0.81 0.23 5.13

4 DISCUSSION

We introduced Contrastive Poincaré Maps (CPM), a novel contrastive learning method for learning
hyperbolic representation of single-cell data. In comparison with Poincaré Maps (PM) (Klimovskaia
et al., 2020), an earlier, shallow hyperbolic representation method, CPM shows significant improve-
ments along several axes: Through systematic experiments, we have demonstrated that CPM outper-
forms PM by (i) achieving high global representation accuracy for deep trees, (ii) reducing memory
complexity, (iii) eliminating additional feature processing steps, and (iv) providing an inductive
training setup, which facilitates downstream analyses (Table 4). In future work, we will expand the
scale and breadth of the experiments, and apply the proposed method for other real world scenar-
ios. In addition, we will perform a systematic comparison with Euclidean baselines on downstream
tasks across different datasets. Euclidean tools, such as UMAP or t-SNE, are widely used visualisa-
tion tools for the qualitative assessment of single-cell data. However, representations in (Euclidean)
UMAP space cannot be quantitatively interpreted due to representation error (see Section 2.1). In
contrast, the preservation of global and local data geometry in hyperbolic space could enable the
interpretability of latent features, e.g. by analysing feature variation along geodesics.

6



Machine Learning for Genomics Explorations workshop at ICLR 2024

ACKNOWLEDGMENTS

Nithya Bhasker is funded by German Federal Ministry of Health (BMG) within the “Surgomics”
project (Grant Number: BMG 2520DAT82) and partially by German Federal Ministry of Education
and Research (BMBF) within the DAAD Konrad Zuse AI school SECAI (School of Embedded
Composite AI, https://secai.org/) (Project number: 57616814). The authors would like to
thank Alice Bizeul for her input during the initial phase of the project. The authors would also like
to express their sincere gratitude to the anonymous reviewers for their valuable feedback.

REFERENCES

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. In International Conference on Learning Representations, 2022.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.
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Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems, 30, 2017.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
Conference on Graph Drawing, pp. 355–366, 2011.

Lincoln D Stein. The case for cloud computing in genome informatics. Genome biology, 11:1–7,
2010.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

7

https://secai.org/


Machine Learning for Genomics Explorations workshop at ICLR 2024

Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya K Menon, and Sanjiv Kumar. Robust
large-margin learning in hyperbolic space. Advances in Neural Information Processing Systems,
33:17863–17873, 2020.

Yun Yue, Fangzhou Lin, Kazunori D Yamada, and Ziming Zhang. Hyperbolic contrastive learning.
arXiv preprint arXiv:2302.01409, 2023.

8



Machine Learning for Genomics Explorations workshop at ICLR 2024

A MODEL ARCHITECTURE: CONTRASTIVE POINCARÉ MAPS
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Figure 3: Contrastive Poincaré Maps

B EMBEDDING QUALITY METRICS

In the following, let ϕ : X → Pd denote an embedding of a data set X . We define the quality metrics
reported in the main text.

Distortion. Following conventions in the classical metric embedding literature, we can measure
the representation error of ϕ with respect to distortion:

1

cM
dP(ϕ(x), ϕ(y)) ≤ dX (x, y) ≤ cM (ϕ)dP(ϕ(x), ϕ(y)) ∀x, y ∈ X .

If ϕ is an isometric embedding, then cM (ϕ) = 1. Notice that cM is computed via a worst-case
analysis. In our analysis, we compute worst-case distortion as follows:

Dwc(ϕ) = sup
x,y∈X

∣∣∣∣∣
(
dP(x, y)

dX (x, y)

)2

− 1

∣∣∣∣∣ . (3)

k-MAP score. The MAP score is a ranking loss, which evaluates how well proximity is preserved
locally. We construct the similarity graph of X and evaluate how well the relationship of a point
x ∈ X with its k-hop neighbours is preserved by a hyperbolic embedding ϕ:

MAP(ϕ) =
1

|X |
∑
x∈X

1

deg(x)

|Nk(x)|∑
i=1

|N1(x) ∩Rx,i|
|Rx,i|

∈ [0, 1] . (4)

Here, Rx,i denotes the smallest set of nearest neighbours required to retrieve the ith neighbour of
ϕ(x) in Pd. If ϕ is an isometric (i.e., distance-preserving), then Dwc = 0 and MAP = 1.

Q-scores. Q-scores are standard metrics in the manifold embedding literature introduced by Lee
& Verleysen (2010). Let Q = {qkl}k,l∈[N ] denote the co-ranking matrix defined by

qkl := |{(k, l) : µij = k, νij = l}|
µij := |{k : dX (xi, xk) < dX (xi, xj) and {dX (xi, xk) = dX (xi, xj) if 1 ≤ k < j ≤ N}}|
νij := |{k : dP(xi, xk) < dP(ϕ(xi), ϕ(xj)) and {dP(ϕ(xi), ϕ(xk)) = dP(ϕ(xi), ϕ(xj)) if 1 ≤ k < j ≤ N}}|
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Here, |I|, denotes the cardinality of a set I . We define Q-curves as

Q(ϕ,K) :=
1

KN

∑
(k,l)∈IK

qkl , (5)

which are computed over blocks IK := {1, . . . ,K} × {1, . . . ,K} of the co-ranking matrix, where
we only consider the upper half of IK , due to symmetry. We then compute local and global Q-scores
of a hyperbolic embedding ϕ via

Kmax := argmax
K

(
Q(ϕ,K)− K

N − 1

)
(6)

Qlocal(ϕ) :=
1

Kmax

Kmax∑
K=1

Q(ϕ,K) (7)

Qglobal(ϕ) :=
1

N −Kmax

N−1∑
K=Kmax

Q(ϕ,K) . (8)

Here, the local and global regimes are distinguished by a split of the Q-curve at Kmax. Qlocal and
Qglobal attain values from 0 (worst) to 1 (best).

C VISUALISATION

Contrastive Poincaré Maps are visualised using three methods, as done in Klimovskaia et al. (2020).
All methods provide 2D visualisations on a circle of unit radius. The first method is a naı̈ve scatter
plot of the embedding. The second method provides a zoomed in view of the scatter plot by linearly
scaling the embedding. Both of these methods place a sample with shortest distances to all other
samples at the origin. The third method translates the entire embedding to place a sample of interest
at the origin, while still preserving all distances between the samples. Because of the amplified
spatial resolution at the origin in hyperbolic representations, the third method is useful to study
relative hierarchical structures when the root node is known, or to study individual cell lineages
when the dataset contains multiple lineages. The translation of the entire embedding x to place r at
the origin is defined as:

τϕ(r, x) =
(1 + 2⟨r, x⟩+ ∥x∥2)r + (1− ∥r∥2)x

1 + 2⟨r, x⟩+ ∥r∥2∥x∥2
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D ADDITIONAL EXPERIMENTAL RESULTS

d=1

d=2

d=25

...

PM CPM

Figure 4: Comparison of CPM with PM for depth, d = 25.

Table 5: Quantitative metrics for the performance of CPM and PM for various sample sizes.

Samples Method Qlocal ↑ Qglobal ↑ MAP ↑ Dwc ↓
2125 PM 0.88 0.91 0.93 8.84

CPM 0.79 0.91 0.88 1.81

4250 PM 0.88 0.79 0.91 210.93
CPM 0.81 0.92 0.91 2.02

8500 PM 0.90 0.75 0.92 342.73
CPM 0.84 0.90 0.93 2.06

17000 PM 0.89 0.69 0.92 1173.97
CPM 0.84 0.93 0.92 2.16

34000 PM 0.85 0.61 0.87 1559.02
CPM 0.87 0.91 0.94 8.46
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