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Abstract

Conformal prediction is widely adopted in uncertainty quantification, due to its post-
hoc, distribution-free, and model-agnostic properties. In the realm of modern deep
learning, researchers have proposed Feature Conformal Prediction (FCP), which de-
ploys conformal prediction in a feature space, yielding reduced band lengths. How-
ever, the practical utility of FCP is limited due to the time-consuming non-linear op-
erations required to transform confidence bands from feature space to output space.
In this paper, we present Fast Feature Conformal Prediction (FFCP), a method that
accelerates FCP by leveraging a first-order Taylor expansion to approximate these
non-linear operations. The proposed FFCP introduces a novel non-conformity
score that is both effective and efficient for real-world applications. Empirical
validations showcase that FFCP performs comparably with FCP (both outperform-
ing the Split CP version) while achieving a significant reduction in computational
time by approximately 50x in both regression and classification tasks. The code is
available at https://github.com/ElvisWang1111/FastFeatureCP.

1 Introduction

Machine learning has been successfully applied in numerous fields such as computer vision, natural
language processing, and gaming [Jordan and Mitchell, 2015, Silver et al., 2017]. However, machine
learning models usually suffer from overconfidence issues [Wei et al., 2022] and even hallucinations
in large language models (LLMs) [Ji et al., 2023], which makes them unreliable and unable to be
deployed in fields like finance and medicines [Gelijns et al., 2001, Thirumurthy et al., 2019, Morduch
and Schneider, 2017]. Therefore, it is essential to develop techniques for uncertainty quantification
and calibrate the original machine learning models Abdar et al. [2021], Guo et al. [2017], Chen et al.
[2021], Gawlikowski et al. [2021].

Among the uncertainty quantification techniques, Conformal Prediction (Split CP, or split conformal
prediction, Vovk et al. [2005]; Shafer and Vovk [2008b]; Burnaev and Vovk [2014]) stands out,
because it is distribution-free, does not require retraining, and can be directly applied to various
models. Conformal prediction deploys a calibration step to calibrate a base model and then construct
the confidence band. The goal of conformal prediction is to return a band C1−α(X

′) such that

P(Y ′ ∈ C1−α(X
′)) ≥ 1− α, (1)

where (X ′, Y ′) denotes a test point and 1− α represents the confidence level.

In deep learning regimes, researchers try to utilize feature information in Split CP, since the feature
space usually contains meaningful semantic information in neural networks [Shen et al., 2014]. This
leads to Feature Conformal Prediction (FCP, Teng et al. [2022]).
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Figure 1: Comparison among Split CP, FCP, and FFCP. FCP and FFCP are more efficient compared
to Split CP since they return different band lengths for different individuals. This is achieved by
calculating a non-conformity score in the feature space. Besides, FFCP approximates FCP using a
Taylor expansion, which leads to a different non-conformity score and accelerates the transformation
from feature space to output space.

Fortunately, one may get different band lengths on different individuals by utilizing the feature
information, leading to a shorter confidence band. As a comparison, Split CP only returns the same
band length for all individuals in regression tasks, which indicates a longer length.

However, the practical applications of FCP are limited because (a) it is time-consuming, and (b) it
only returns estimated bands on the output space, making it less efficient. These two issues come
from the step Band Estimation, which transfers the confidence band from feature space to output
space. This step involves complex non-linear operations called LiPRA [Xu et al., 2020] and therefore
(a) the non-linear operation requires high computational costs, and (b) the configurations in LiPRA
might finally influence the estimated band, further harming the performance of FCP.

In this paper, we present Fast Feature Conformal Prediction (FFCP), which offers a fast version
for handling the aforementioned nonlinear operations in FCP. Different from Split CP and FCP,
FFCP introduces a novel non-conformity score sff(·) that is simple to compute and does not require
additional training,

sff(X,Y, g ◦ h) = |Y − g ◦ h(X)|/∥∇g(v̂)∥, (2)

where (X,Y ) denotes a sample, g ◦h denotes a neural network with a feature layer h and a prediction
head g, and the gradient∇g(v̂) denotes the gradient of g(·) on the trained feature v̂ ≜ h(X), namely,
∇g(v̂) = dg◦h(X)

dh(X) . We refer to Algorithm 2 for more details and illustrate the algorithm in Figure 1.

The above non-conformity score is closely related to FCP. Specifically, FFCP with this non-
conformity score can be regarded as a fast version of FCP, since it equivalently approximates
the prediction head using a Taylor expansion, which simplifies the aforementioned nonlinear
operations. Fortunately, FFCP inherits the merits of FCP, for example, it also utilizes the semantic
information in the feature.

From a theoretical perspective, we first demonstrate that FFCP is effective in Theorem 4.1, in
that it returned a confidence band with empirical coverage larger than the given confidence 1− α.
Additionally, we demonstrate in Theorem 4.2 that FFCP produces a shorter confidence band than
Split CP under a proposed square condition. The square conditions outline the properties of the
feature space from two perspectives: expansion and quantile stability, implying that the feature space
has a smaller distance between individual non-conformity scores and their quantiles. This reduces
the cost of the quantile operation and therefore leads to a shorter confidence band. We also validate
the square conditions using empirical observations.
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From an empirical perspective, we conduct several experiments on real-world datasets and show
that FFCP performs comparably with FCP, both outperforming Split CP, while achieving nearly
50 times the speed of FCP in terms of runtime for regression tasks. We further validate the
approximation ability of FFCP with FCP using the correlation between the non-conformity score
of FFCP and FCP. We also apply FFCP to the image segmentation problems to verify its general
applications. Besides, we show that the concept in FFCP is pretty general, and can be combined with
other variants of CP, e.g., CQR [Romano et al., 2019a] and LCP [Guan, 2023] in regression tasks,
and RAPS [Angelopoulos et al., 2020] in classification tasks.

Overall, our main contributions are summarized as follows:

• This work proposes FFCP, which serves as a fast version of FCP. FFCP achieves around 50x
faster speed compared to FCP (Table 1) by utilizing Taylor expansions to approximate the
prediction head in FCP. Besides, FFCP inherits the merits of FCP and efficiently exploits
semantic information in the feature space.

• Theoretical insights demonstrate that FFCP returns shorter band length compared to Split
CP (Theorem 4.2) while ensuring coverage exceeds the given confidence level under mild
conditions (Theorem 4.1).

• Extensive experiments with both synthetic and real data demonstrate the effectiveness of the
proposed FFCP algorithm (Table 2). Additionally, we demonstrate the universal applicability
of our gradient-level techniques by extending them to other tasks such as classification
(FFRAPS, Algorithm 5) and segmentation, and to various conformal prediction variants,
including CQR (Algorithm 3) and LCP (Algorithm 4).

2 Related Work

Conformal prediction is a post-hoc calibration method dealing with uncertainty quantification [Vovk
et al., 2005, Shafer and Vovk, 2008a, Barber et al., 2020], which is deployed in numerous fields [Ye
et al., 2024, Kumar et al., 2023, Quach et al., 2023]. The variants of conformal prediction typically
revolve around the concept of non-conformity scores, with four main branches of development.

Relaxing Exchangeability. The first branch relaxes the exchangeability requirement [Tibshirani
et al., 2019, Hu and Lei, 2020, Podkopaev and Ramdas, 2021, Barber et al., 2022], leveraging
weighted or reweighted quantiles to relax exchangeability. By doing so, it gains more flexibility and
broader applicability in handling data that may not satisfy the standard exchangeability assumptions.

Diverse Structures. The second branch applies conformal prediction to various data structures, for
example, classification tasks [Romano et al., 2020, Angelopoulos et al., 2020], time series data [Xu
and Xie, 2021, Gibbs and Candès, 2021], censored data in survival analysis [Teng et al., 2021, Candès
et al., 2023], high-dimensional data [Candès et al., 2021, Lei et al., 2013], Bellman-based data [Yang
et al., 2024], counterfactuals and individual treatment effects [Lei and Candès, 2021], etc.

Another way involves model structures, such as k-NN regression [Papadopoulos et al., 2011a],
quantiles incorporated [Romano et al., 2019b, Sesia and Candès, 2020], density estimators [Izbicki
et al., 2020b], and conditional histograms [Sesia and Romano, 2021]. These methods further enrich
the application scenarios of conformal prediction by adapting it to diverse model frameworks.

Enhancing Methods. The third branch focuses on enhancing the original conformal prediction
with band length. Izbicki et al. [2020a] introduce CD-split and HPD-split methods, and Yang and
Kuchibhotla [2021] develop selection methods to minimize band length. Of particular note is feature
conformal prediction [Teng et al., 2022], which leverages neural network training information via
feature spaces to improve band length.

Localized Conformal Prediction. The fourth branch focuses on enhancing the non-conformity
score normalization by incorporating difficulty-related terms like ∥Y−Ŷ ∥

σ(X′) where Y denotes the true

label, Ŷ denotes the predicted label, and σ(X ′) denotes the standard deviation related to X ′. Here
are three key approaches:
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(1) Weight Adjustment via Calibration Distances. This approach calculates the distance from the test
point to the calibration points and then uses these distances to define the weights of non-conformity
scores in the calibration process [Han et al., 2022, Guan, 2023]. Our gradient-level techniques can be
used to combine with this branch (see FFLCP in Algorithm 4).

(2) Normalization Using Proximity to Training Set. This approach utilizes the observation that a
testing point exhibits smaller uncertainty when it is close to the training set, and uses such metrics to
approximate σ(X ′) [Papadopoulos et al., 2008, 2011b, Papadopoulos and Haralambous, 2011]. In
the deep learning regimes, we believe that such procedures can be further improved by calculating
the distance in the feature space rather than the input space, since feature layers usually contain more
semantic information.

(3) Modeling σ(X ′). This approach trains a separate model to estimate σ(X ′), thereby enhancing the
accuracy and adaptability of CP [Seedat et al., 2023, 2024]. However, this line of work heavily relies
on the model performance and incurs high computational costs. As a comparison, our approach does
not require additional training procedures.

Uncertainty Quantification. Uncertainty quantification is one of the most fundamental questions in
machine learning. In addition to conformal prediction, many other approaches exist for quantifying
uncertainty, including calibration-based techniques [Guo et al., 2017, Kuleshov et al., 2018, Nixon
et al., 2019, Abdar et al., 2021, Chang et al., 2024] and Bayesian-based techniques [Blundell et al.,
2015, Hernández-Lobato and Adams, 2015, Li and Gal, 2017, Izmailov et al., 2021, Jospin et al.,
2022].

3 Preliminaries

We begin by introducing a dataset D = {(Xi, Yi)}i∈[n] indexed by I. We split the dataset into two
folds: a training fold Dtra indexed by Itra, and a calibration fold Dcal indexed by Ical. Denote the
testing point by (X ′, Y ′). For the model part, define f as a neural network. We partition f = g ◦ h,
where h denotes the feature function (the initial layers of the neural network) and g denotes the
prediction head. For a sample (X,Y ), we define v̂ = h(X) as the trained feature. We follow the
ideas in Teng et al. [2022] and define the surrogate feature as any feature v such that g(v) = Y .
Assumption 1 (exchangeability). Assume that the calibration data (Xi, Yi) ∈ Dcal and the testing
point (X ′, Y ′) are exchangeable. Formally, define Zi, i = 1, . . . , |Ical|+ 1, as the above data pair.
Then Zi are exchangeable if arbitrary permutation follows the same distribution, i.e.,

(Z1, . . . , Z|Ical|+1)
d
= (Zπ(1), . . . , Zπ(|Ical|+1)), (3)

with arbitrary permutation π over {1, · · · , |Ical|+ 1}.

Typically, Split CP is composed of three key steps.
I. Training Step. We first train a base model using the training fold Dtra.
II. Calibration Step. We calculate a non-conformity score Ri = |Yi − f(Xi)| using the calibration
foldDcal. The form of the score function might vary case by case, quantifying the divergence between
ground truth and predicted values.
III. Testing Step. We construct the confidence band for the testing point (X ′, Y ′) using the quantile
of the non-conformity score Q1−α.

We present Split CP* in Algorithm 1, and provide its theoretical guarantee in Theorem 3.1.
Theorem 3.1. Under Assumption 1, the confidence band C1−α(X

′) returned by Algorithm 1 satisfies
P(Y ′ ∈ C1−α(X

′)) ≥ 1− α. (4)

4 Methodology

In this section, we first illustrate the motivation behind FFCP in Section 4.1. Specifically, we
address the complexity of non-linear operators in FCP and derive FFCP from FCP. We then formally
present the specific form of FFCP, including the non-conformity score, the returned bands, and the
corresponding pseudocode. We finally provide theoretical analyses on the coverage and band length
in Section 4.2.

*δ represents the Dirac function.
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Algorithm 1 Split Conformal Prediction

Input: Confidence level α, dataset D = {(Xi, Yi)}i∈I , testing point X ′

1: Randomly split the dataset D into a training fold Dtra ≜ {(Xi, Yi)}i∈Itra and a calibration fold
Dcal ≜ {(Xi, Yi)}i∈Ical ;

2: Train a base model f(·) with training fold Dtra ;
3: For each i ∈ Ical, calculate the non-conformity score Ri = |Yi − f(Xi)|;
4: Calculate the (1− α)-th quantile Q1−α of the distribution 1

|Ical|+1

∑
i∈IcalδRi

+δ∞
.

Output: CSplitcp
1−α (X ′) = [f(X ′)−Q1−α, f(X

′) +Q1−α].

Algorithm 2 Fast Feature Conformal Prediction

Input: Confidence level α, dataset D = {(Xi, Yi)}i∈I , testing point X ′

1: Randomly split the dataset D into a training fold Dtra ≜ {(Xi, Yi)}i∈Itra and a calibration fold
Dcal ≜ {(Xi, Yi)}i∈Ical ;

2: Train a base neural network with training fold f(·) = g ◦ h(·) with training fold Dtra;
3: For each i ∈ Ical, calculate the non-conformity score R̃i = |Yi − f(Xi)|/∥∇g(v̂i)∥, where
∇g(v̂i) denotes the gradient of g(·) on the feature v̂i ≜ h(Xi), namely ∇g(v̂i) = dg◦h(Xi)

dh(Xi)
;

4: Calculate the (1− α)-th quantile Q1−α of the distribution 1
|Ical|+1

∑
i∈Ical

δR̃i
+ δ∞;

Output: Cffcp
1−α(X

′) = [f(X ′)− ∥∇g(v̂′)∥Q1−α, f(X ′) + ∥∇g(v̂′)∥Q1−α], where v̂′ = h(X ′).

4.1 Relationship between FFCP and FCP

In this section, we discuss the motivation behind FFCP. FFCP is inspired by FCP [Teng et al., 2022],
which conducts conformal prediction in the feature space. However, since the band is constructed
in the feature space, FCP requires a Band Estimation process to go from feature space to output
space. Specifically, FCP applies LiPRA [Xu et al., 2020] which derives the band in the output space
{g(v) : ∥v − v̂∥ ≤ Q1−α}. Unfortunately, the exact band is difficult to represent explicitly since
the prediction head g is usually highly non-linear, thereby resulting in significant computational
complexity in terms of time. Therefore, we propose approximating g using a first-order Taylor
expansion to simplify the aforementioned non-linear operator. The core steps of FCP include (a)
calculating the non-conformity score (from output space to feature space), followed by (b) deriving
the confidence band (from feature space to output space). We next introduce the concrete formulation
of how FFCP approximates FCP.

From output space to feature space. FCP uses the non-conformity score sf(·) in the feature space:

sf(X,Y, g ◦ h) = inf
v∈{v:g(v)=Y }

∥v − v̂∥. (5)

By using the Taylor expansion, one approximates g with g(v) ≈ g(v̂) +∇g(v̂)(v − v̂). Plugging
into the approximation of g leads to a new non-conformity score sff(·)

sff(X,Y, g ◦ h) = |Y − f(X)|/∥∇g(v̂)∥, (6)

where ∇g(v̂) denotes the gradient of g(v̂) on the feature v̂, namely ∇g(v̂) = dg◦h(X)
dh(X) .

From feature space to output space. After constructing the confidence band in the feature space,
FCP maps this band to the output space. Specifically, FCP derives the following band in the output
space which is called Band Estimation:

{g(v) : ∥v − v̂∥ ≤ Q1−α}. (7)

FCP proposes to use LiPRA in this process, which is time-consuming. By plugging into the Taylor
approximation of g, one can construct the band Cffcp

1−α as

Cffcp
1−α(X) = [g(v̂)− ∥∇g(v̂)∥Q1−α, g(v̂) + ∥∇g(v̂)∥Q1−α] . (8)

Remark 1 (High-dimensional Response). When the response Yi = [Y 1
i , Y

2
i , . . . , Y

m
i ], i =

1, 2, · · · , n is high-dimensional, one can deploy conformal prediction at a coordinate-wise level.
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Specifically, for dimension j ∈ [m], we define the non-conformity score as

sjff(Xi, Yi, g ◦ h) = |Y j
i − f(Xi)

j |/∥∇g(v̂i)j∥, (9)

where ∇g(v̂i)j =
(

∂f(Xi)
∂h(Xi)

)
j

represents the j-th row of the Jacobian matrix of f with respect to h at

Xi.

We then compute a single quantile Q1−α shared across all dimensions, defined by aggregating
non-conformity scores from all coordinates and samples in the calibration set:

Q1−α = Quantile
({

sjff(Xi, Yi, g ◦ h) : i ∈ Ical, j ∈ [m]
}
, 1− α

)
. (10)

The resulting confidence band for the j-th coordinate at test point Xi is given by:

C ffcp
1−α(Xi)j =

[
g(v̂i)

j − ∥∇g(v̂i)j∥Q1−α, g(v̂i)
j + ∥∇g(v̂i)j∥Q1−α

]
. (11)

Based on the above discussion, we present the full algorithm in Algorithm 2. Notably, the Taylor
expansion in FFCP is usually different for each sample X,Y , which further leads to confidence
bands that are individually different. Besides, FFCP inherits the advantages of FCP. For example, this
framework is pretty general and can be combined with other variants of Split CP, e.g., CQR [Romano
et al., 2019a].

4.2 Theoretical Guarantee for FFCP

This section outlines the theoretical guarantee for FFCP concerning coverage (effectiveness) and band
length (efficiency). Below, we offer the main theorems and defer the full proofs to Appendix A.1
and A.2. We first demonstrate that the confidence band produced by Algorithm 2 is valid under
Assumption 1.
Theorem 4.1 (Coverage). Under Assumption 1, for any α > 0, the confidence band returned by
Algorithm 2 satisfies:

P(Y ′ ∈ Cffcp
1−α(X

′)) ≥ 1− α, (12)

where the probability is taken over the calibration fold and the testing point (X ′, Y ′).

Next, we show that FFCP is provably more efficient than the Split CP. To simplify the discussion, we
present an informal version of Theorem 4.2 here and postpone the formal version to Theorem A.1.
Theorem 4.2 (Band Length). Under mild assumptions, if the following square conditions hold:

1. Expansion. The feature space expands the differences between individual lengths and their
quantiles.

2. Quantile Stability. Given a calibration set Dcal, the quantile of the band length is stable in
both feature space and output space.

Then FFCP provably outperforms Split CP in terms of average band length.

By Theorem 4.2, FFCP is guaranteed to achieve a smaller average band length than Split CP.
The square conditions imply that the feature space has a smaller distance between individual non-
conformity scores and their quantiles. This reduction in the computational overhead of the quantile
operation subsequently yields a shorter band length. We provide empirical verifications on this
assumption, see Figure 4 for more details. The intuition behind Theorem 4.2 is as follows: Initially,
FFCP and Split CP perform quantile operations in different spaces, with the Expansion condition
ensuring that the quantile step in FFCP costs less. The ultimate Quantile Stability condition confirms
that the band can be generalized from the calibration folds to the test folds.

5 Experiments

This section presents the experiments to validate the utility of FFCP. Firstly, we detail the experimental
setup in Section 5.1. Secondly, we present that FFCP achieves both effectiveness and efficiency with
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Table 1: Time comparison among Split CP, FCP, and FFCP. FFCP ensures faster running speed
compared to FCP. The last column represents the speed improvement factor of FFCP compared to
FCP. The time unit is in seconds.

DATASET SPLIT CP FCP FFCP FASTER

SYNTHETIC 0.0088±0.0003 3.8939±0.3725 0.0902±0.0056 43X
COM 0.0047±0.0010 4.9804±0.8588 0.0844±0.0187 59X
FB1 0.0245±0.0059 5.9822±0.9871 0.1940±0.0564 31X
FB2 0.0414±0.0070 9.3534±0.0927 0.2510±0.0058 37X

MEPS19 0.0106±0.0010 3.3237±0.0431 0.0755±0.0037 44X
MEPS20 0.0152±0.0016 5.4003±0.3945 0.0948±0.0077 57X
MEPS21 0.0137±0.0008 4.1657±0.0670 0.0854±0.0146 49X

STAR 0.0030±0.0006 3.5842±0.3722 0.0332±0.0066 108X
BIO 0.0291±0.0053 7.5417±1.1028 0.2042±0.0344 37X

BLOG 0.0340±0.0024 8.0913±1.2072 0.2239±0.0261 36X
BIKE 0.0072±0.0007 3.5806±0.0285 0.0534±0.0021 67X

Table 2: Comparisons of coverage and band length among Split CP, FCP, and FFCP. FFCP runs faster
while performing comparably to FCP in most datasets and outperforming Split CP. For FFCP, we
select the shortest band length among all layers.

METHOD SPLIT CP FCP FFCP

DATASET COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SYNTHETIC 90.080±0.951 0.176±0.015 89.930±0.956 0.081±0.041 90.080±0.951 0.176±0.015

COM 89.875±0.985 1.974±0.071 89.724±1.087 1.939±1.408 90.226±2.179 1.838±0.180

FB1 90.254±0.170 2.004±0.191 90.198±0.207 2.010±0.182 90.168±0.220 1.472±0.232

FB2 89.933±0.206 2.016±0.218 89.966±0.130 1.371±0.370 89.868±0.062 1.425±0.109

MEPS19 90.567±0.311 3.982±0.614 90.605±0.340 3.493±2.734 90.352±0.469 3.134±0.309

MEPS20 89.923±0.715 4.184±0.316 89.929±0.770 2.730±0.962 89.615±0.661 3.268±0.283

MEPS21 90.019±0.341 3.732±0.555 90.038±0.303 3.393±1.313 89.745±0.344 3.146±0.506

STAR 90.393±1.494 0.208±0.004 90.300±1.362 0.174±0.038 90.393±1.494 0.208±0.004

BIO 89.875±0.488 1.661±0.019 89.930±0.501 1.412±0.265 89.875±0.488 1.661±0.019

BLOG 90.176±0.241 3.524±0.850 90.151±0.405 2.795±1.385 90.059±0.101 2.741±0.517

BIKE 89.871±0.568 0.703±0.016 89.394±0.633 2.147±0.249 89.624±0.688 0.635±0.030

faster execution in Section 5.2. Thirdly, in Section 5.3.1, we verify that FFCP can be easily deployed
and performs robustly across various tasks, including classification and segmentation. Finally, in
Section 5.3.2, we show that the gradient-level techniques used in FFCP can be extended to classic CP
models such as CQR [Romano et al., 2019a] and LCP [Guan, 2023]. A more detailed account of this
extension can be found in Section 5.3.

5.1 Experiments Setups

Datasets. We consider both synthetic datasets and realistic datasets, including (a) synthetic dataset:
Y = WX + ϵ, where X ∈ [0, 1]100, Y ∈ R, ϵ ∼ N (0, 1), W is a fixed random matrix. (b) real-
world unidimensional target datasets: ten datasets from UCI machine learning [Asuncion, 2007]
and other sources: community and crimes (COM), Facebook comment volume variants one and two
(FB1 and FB2), medical expenditure panel survey (MEPS19–21) [Cohen et al., 2009], Tennessee’s
student teacher achievement ratio (STAR) [Achilles et al., 2008], physicochemical properties of
protein tertiary structure (BIO), blog feedback (BLOG) [Buza, 2014], and bike sharing (BIKE), (c)
real-world semantic segmentation dataset: Cityscapes [Cordts et al., 2016], and (d) real-world
semantic classification dataset: Imagenet-Val [Deng et al., 2009].

Algorithms. We compare three methods: Split CP, FCP, and FFCP, with Split CP serving as the
baseline. For the one-dimensional scenario, we perform direct calculations. For higher-dimensional
cases, we use a coordinate-wise level non-conformity score.

Evaluation. The algorithmic empirical performance is evaluated with the following metrics:
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Table 3: Coverage and Band Length based on Gradient from Different Layers of Neural Networks.
FFCP LAYER(·) represents using the gradient between the LAYER(·) and the input. The results in
LAYER4 are equivalent to Split CP.

LAYER LAYER1 LAYER2 LAYER3 LAYER4

DATASET COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SYNTHETIC 89.810±0.784 0.184±0.018 90.050±0.534 0.184±0.017 89.960±0.910 0.182±0.023 90.220±0.983 0.189±0.033

COM 90.476±1.889 1.878±0.224 90.226±2.179 1.838±0.180 89.674±1.465 1.853±0.136 89.825±0.646 2.037±0.188

FB1 90.112±0.199 3.540±0.327 90.212±0.357 2.860±0.327 90.083±0.216 1.597±0.052 90.168±0.220 1.472±0.232

FB2 89.953 ±0.250 3.530±0.384 89.897±0.235 3.048±0.510 89.956±0.159 2.077±0.517 89.868±0.062 1.425±0.109

MEPS19 90.155±0.643 3.251±0.396 90.352±0.469 3.134±0.309 90.440±0.183 3.184±0.482 90.586±0.246 3.795±0.640

MEPS20 89.934±0.520 4.302±1.377 89.889±0.621 3.573±0.488 89.615±0.661 3.268±0.283 89.82±0.689 3.817±0.308

MEPS21 89.496±0.262 3.443±0.487 89.623±0.275 3.218±0.239 89.745±0.344 3.146±0.506 90.026±0.301 3.452±0.711

STAR 90.901±1.732 0.221±0.002 90.993±1.807 0.217±0.003 91.039±1.442 0.210±0.004 90.300±1.248 0.209±0.004

BIO 89.937±0.391 2.292±0.077 90.022±0.375 2.042±0.067 89.991±0.594 2.080±0.063 90.127±0.476 1.822±0.025

BLOG 89.968±0.420 4.772±0.614 89.918±0.319 3.404±0.598 90.059±0.101 2.741±0.517 90.017±0.197 3.058±0.873

BIKE 89.917±0.791 1.701±0.254 89.568±0.476 1.138±0.114 89.495±0.579 0.794±0.068 89.624±0.688 0.635±0.030

• Runtime For runtime evaluation, the timing starts at the score calculation and ends with the
final prediction bands returned. FFCP method records the total computation time for each
layer, and then selects the layer that achieves the best results.

• Coverage (Effectiveness) Coverage refers to the observed frequency with which a test point
falls within the predicted confidence interval. Ideally, a predictive inference method should
yield a coverage rate slightly higher than 1− α for a given significance level α.

• Band length (Efficiency) When the coverage exceeds 1− α, our goal is to minimize the
length of the confidence band. For FFCP, since we use a 5-layers neural network, each layer
can be viewed as a feature layer. Therefore, in the experiments, we obtain the band length
returned by each of the 5 layers of the neural network. In the subsequent results, if only a
single band length is presented, it corresponds to the shortest band length returned by the
different neural network layers. Otherwise, the results for all layers from layer 0 to layer 4
(with the last layer typically representing the Split CP result) will be shown.

Let Y = (Y 1, . . . , Y d) ∈ Rd denote the d-dimensional response variable, and let C(X) ⊆ Rd be the
confidence band associated with predictor X . The length of this confidence band in each dimension
is represented by the vector

(
|C(X)1|, . . . , |C(X)d|

)
∈ Rd. Denote the indices of the test set by Ites

and the set of dimensions by [d] = {1, . . . , d}. We then define the coverage and band length as:

Coverage =
1

|Ites|
∑
i∈Ites

I (Yi ∈ C(Xi)) , Band Length =
1

|Ites|
∑
i∈Ites

1

d

d∑
j=1

|C(Xi)
j |

 , (13)

where I(·) is the indicator function that equals 1 if its argument is true and 0 otherwise.

5.2 Results on Coverage, Band Length and Runtime

Runtime Comparison. The runtime comparison is presented in Table 1. The results show that FFCP
outperforms FCP with an approximate 50x speedup in runtime. Notably, since Split CP is the most
basic method and does not utilize additional tools, it exhibits the fastest runtime.

Coverage. Table 2 summarizes the coverage for the one-dimensional response. Experimental results
indicate that the coverage of FFCP all exceeds the confidence level 1− α, affirming its effectiveness
as stated in Theorem 4.1.

Band Length. The band length is detailed in Table 2 for a one-dimensional response. It is noteworthy
that FFCP surpasses Split CP by achieving a shorter band length, thereby validating the efficiency of
the algorithm.

5.3 Extensions of FFCP

This section provides the extensions of FFCP, which is divided into two parts. Section 5.3.1 mainly
discusses the applications of FFCP beyond regression tasks, specifically in image classification [An-
gelopoulos et al., 2020] and segmentation tasks. Section 5.3.2 focuses on how the gradient-level
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Figure 2: Segmentation uncertainty (FFCP vs. FCP). Both FFCP and FCP capture uncertainty
concentrated around object boundaries, with FFCP producing more refined and sharper uncertainty
bands. Notably, the two methods aim at slightly different goals: FCP operates at the image level,
ensuring coverage for the entire predicted mask as a whole, while FFCP adopts a coordinate-wise
approach, offering per-pixel statistical guarantees that better reflect local uncertainty.

techniques in FFCP can be extended to other CP variants, e.g., CQR [Romano et al., 2019a] and
LCP [Guan, 2023].

5.3.1 Other Tasks

Classification. We extend the FFCP techniques to classification tasks using the baseline RAPS [An-
gelopoulos et al., 2020] model, creating a new variant called FFRAPS (Fast Feature RAPS, Algo-
rithm 5 in Appendix B.7). According to the experimental findings presented in Table 15, FFRAPS
returns shorter band lengths while preserving the coverage compared to RAPS under most model
structures.

Segmentation. The gradient-level techniques of FFCP also prove effective in segmentation tasks.
The segmentation results in Figure 2 reveal that FFCP returns appropriate bands across different
regions. Specifically, larger bands are observed in less informative areas, such as at object boundaries,
whereas narrower bands are found in more informative regions. This validates the efficiency of FFCP
in segmentation tasks.

5.3.2 Extending FFCP into Other Models

Conformalized Quantile Regression (CQR, Romano et al. [2019a]) The gradient-level tech-
niques of FFCP are adaptable to other conformal prediction frameworks like CQR. We develop
FFCQR (Fast Feature CQR, Algorithm 3 in Appendix B.5), which not only significantly reduces
runtime compared to FCQR but also exhibits better performance than CQR. Additionally, we observe
that for the neural network significant level setting [α, 1 − α] in the CQR method, as the α value
increases, approaching 1 − α/2, the performance of FFCQR gradually improves. For detailed
experimental results in Table 8,9, 10, 11, 12 in the Appendix B.5.

Locally Adaptive Conformal Prediction (LCP, Guan [2023]) Integrating gradient-level tech-
niques from FFCP into the LCP method leads to FFLCP (Fast Feature LCP, Algorithm 4 in Ap-
pendix B.6). Experimental results in Table 13 indicate that FFLCP outperforms LCP in terms of
group coverage, highlighting an improvement in the adaptability of LCP to locally adaptive methods.

5.3.3 Comparison of FFCP with Other Baselines

Self-Supervised Conformal Prediction (SSCP, Seedat et al. [2023]) We additionally evaluate the
recent feature-CP method SSCP in Appendix B.10. SSCP entails training two extra networks and is
roughly 50× slower than FFCP. In all cases, FFCP also yields shorter bands, likely because SSCP
depends more heavily on the base model’s accuracy and on effective auxiliary-network training.

9



Full CP with CV+ [Barber et al., 2021] framework Although FFCP is a Split CP procedure,
we also benchmark it against the full CP baseline CV+ and observe consistent advantages—most
notably improved efficiency with comparable coverage. Complete experimental details and results
are provided in the Appendix B.9.

6 Conclusion

In this paper, we propose FFCP, a gradient-based non-conformity score that is 50× faster than FCP.
We establish its theoretical validity under mild assumptions and demonstrate its broad applicability
across regression, classification, and segmentation tasks. We also introduce FFCQR and FFLCP,
based on CQR and LCP, respectively. Finally, we evaluate FFCP in comparison with SSCP and the
full CP baseline, CV+.

Although FFCP is gradient-based, it can be extended to settings where gradients are not available or
are unreliable—e.g., when gradients vanish or the function is non-differentiable—by incorporating
zero-th order methods such as finite difference approximations or perturbation-based surrogates.
This further broadens the applicability of our framework beyond differentiable models. For future
work, the following points could be considered: (1) We use information from the first derivative and
have not delved into higher-order derivatives, which may contain more feature information; (2) The
gradient at a single point may be unstable, especially when the gradient is zero, so methods such as
random smoothing could be considered.
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Appendix
The complete proofs are presented in Section A, and the experiment details are outlined in Section B.

A Theoretical Proofs

We prove the theoretical guarantee for FFCP concerning coverage (effectiveness) in Section A.1 and
band length (efficiency) in Section A.2.

A.1 Proofs of Theorem 4.1

The proof is based on the exchangeability of data (Assumption 1) on the calibration fold and test
fold, hence the key step we need to derive is the exchangeability of the non-conformity scores
sff(X,Y, g ◦ h) = |Y − f(X)|/∥∇g(v̂)∥. We define the relevant symbols: Dtra represents the train
fold, Dtes represents the test fold, Dcal represents the calibration fold, and D′ = {(Xi, Yi)}i∈[m] is
the intersection of the two folds. m is the number of data points in D′.

Similar to Teng et al. [2022], we first prove that for any function h̃ : X × Y → R, which is
independent of D′, h̃(Xi, Yi) satisfies exchangeability. For the CDF FR of h̃ and its perturbation
CDF Fπ

R , π is a random perturbation. We can conclude,

FR(u1, . . . , un | Dtra)

=P(h̃(X1, Y1) ≤ u1, . . . , h̃(Xn, Yn) ≤ un | Dtra),

=P((X1, Y1) ∈ Ch̃−1(u1−), . . . , (Xn, Yn) ∈ Ch̃−1(un−) | Dtra),

=P((Xπ(1), Yπ(1)) ∈ Ch̃−1(u1−), . . . , (Xπ(n), Yπ(n)) ∈ Ch̃−1(un−) | Dtra),

=P(h̃(Xπ(1), Yπ(1)) ≤ u1, . . . , h̃(Xπ(n), Yπ(n)) ≤ un | Dtra),

=Fπ
R(u1, . . . , un | Dtra),

(14)

where Ch̃−1(u−) = {(X,Y ) : h̃(X,Y ) ≤ u}.
Next, we need to show the non-conformity score function

sff(X,Y, g ◦ h) = |Y − f(X)|/∥∇g(v̂)∥, (15)

which is independent of the dataset D′.

We can see that the non-conformity score sff(X,Y, g ◦ h) on D′ uses information from g and h, both
of which depend only on the training set Dtra. Moreover, calculating this non-conformity score in the
Algorithm 2 uses only single-point information, not the entire dataset D′.

By integrating the aforementioned, we deduce that the non-conformity scores sff(X,Y, g ◦ h) on D′

exhibit exchangeability. This exchangeability, as per Lemma 1 in Tibshirani et al. [2019], lends
theoretical support to the efficacy of FFCP.

A.2 Proofs of Theorem 4.2

Our main conclusions are inspired by Theorem 4 in Teng et al. [2022]. The details are as follows

Definitions. Let P denote the overall population distribution. The calibration set Dcal consists of
n samples drawn from P . We denote the specific distribution of these samples as Pn. The model
under consideration, f = g ◦ h, includes h as the feature extractor and g as the prediction head, with
g assumed to be a continuous function. V o

D represent the individual length in output space, given data
set D. The term Q1−α(R) represents the (1− α)-quantile of the set R, which is adjusted to include
the value 0. Furthermore, M[·] signifies the mean value of a set, and subtracting a real number from a
set indicates that the subtraction is applied uniformly to all elements within the set.

Split CP. Let V o
Dcal

= {voi }i∈Ical denote the individual length in the output space for Split CP, given
the calibration set Dcal. Since Split CP returns band length with 1− α quantile of non-conformity
score, the resulting average band length is derived by 2Q1−α(V

o
Dcal

).
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Fast Feature CP. According to the definition of FFCP, V f
D = V o

D/∥∇g(v̂)∥,

The resulting band length in FFCP is denoted by 2E(X′,Y ′)∼P(∥∇g(v̂′)∥ ·Q1−α(V
o
Dcal

/∥∇g(v̂cal)∥).
Theorem A.1. (FFCP is provably more efficient). Assume that the non-conformity score is in norm-
type. We assume a Holder assumption that there exist α > 0, L > 0 such that |H(x;X)−H(y;X)| ≤
L|x− y|α for all X , where H denotes the length of the prediction interval in the output space for
samples. Then if the feature space satisfies the following square conditions:

1. Expansion. The feature space expands the differences between individual length
and their quantiles, namely, LED∼PnM|Q1−α(V

o
D/∥∇g(v̂)∥) − V o

D/∥∇g(v̂)∥|α <

ED∼PnM[Q1−α(V
o
D)− V o

D]− 2max{L, 1}(c/
√
n)min{α,1}.

2. Quantile Stability. Given a calibration set Dcal, the quantile of the band length is
stable in both feature space and output space, namely, ED∼Pn |Q1−α(V

o
D/∥∇g(v̂)∥) −

Q1−α(V
o
Dcal

/∥g(∇v̂cal)∥)| ≤ c√
n

and ED∼Pn |Q1−α(V
o
D)−Q1−α(V

o
Dcal

)| ≤ c√
n

.

Then FFCP provably outperforms Split CP in terms of average band length, namely,

E(X′,Y ′)∼P(∥∇g(v̂′)∥ ·Q1−α(V
o
Dcal

/∥∇g(v̂cal)∥) < Q1−α(V
0
Dcal

),

where the expectation is taken over the calibration fold and the testing point (X ′, Y ′).

Proof of Theorem A.1. We first proof with Expansion Assumption,

LED∼PnM|Q1−α(V
o
D/∥∇g(v̂)∥)− V o

D/∥∇g(v̂)∥|α < ED∼PnM[Q1−α(V
o
D)− V o

D]

− 2max{L, 1}(c/
√
n)min{α,1}.

(16)

And we can obtain
EDMV o

D <EDQ1−α(V
o
D)

− 2max{L, 1}(c/
√
n)min{α,1} − LED∼PnM|Q1−α(V

o
D/∥∇g(v̂)∥)− V o

D/∥∇g(v̂)∥|α.
(17)

According to Holder condition for quantile function, we obtain that M(∥∇g(v̂)∥ ·
Q1−α(V

o
D/∥∇g(v̂)∥))

≤MV o
D + LM|Q1−α(V

o
D/∥∇g(v̂)∥)− V o

D/∥∇g(v̂)∥|α, therefore

EDM(∥∇g(v̂)∥ ·Q1−α(V
o
D/∥∇g(v̂)∥)) < EDQ1−α(V

o
D)− 2max{1, L}[c/

√
n]min{1,α}. (18)

As the Quantile Stability assumption, we have that ED∼Pn |Q1−α(V
o
D/∥∇g(v̂)∥) −

Q1−α(V
o
Dcal

/∥∇g(v̂cal)∥)|
≤ c√

n
and ED∼Pn |Q1−α(V

o
D)−Q1−α(V

o
Dcal

)| ≤ c√
n

. Therefore,

2E(∥∇g(v̂)∥ ·Q1−α(V
o
Dcal

/∥∇g(v̂cal)∥)
<2Q1−α(V

o
D)− 2max{1, L}[c/

√
n]min{1,α},

<2Q1−α(V
o
D).

(19)

B Experimental Details

Section B.1 introduces the omitted experimental details. Section B.2 certifies the square conditions.
Section B.3 discusses discusses the robustness of FFCP coverage with respect to the splitting point
and across each network layer. Section B.4 demonstrates that FFCP performs similarly to Split CP
in untrained neural networks, confirming that FFCP’s efficiency is due to the semantic information
trained in the feature space. Section B.5 proposes FFCQR after applying the gradient-level techniques
of FFCP to CQR. Section B.6 proposes FFLCP after applying the gradient-level techniques of FFCP
to LCP. Section B.7 proposes FFRAPS after applying the gradient-level techniques of FFCP to RAPS.
Finally, Section B.8 provides additional experimental results.
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(a) Layer1 (b) Layer2 (c) Layer3 (d) Layer4

Figure 3: Scatter plot of FCP Score and FFCP Score at different layers. The relationship between
the FCP Score and the FFCP Score is positively correlated, which indicates that the FFCP Score
effectively approximates the FCP Score.

B.1 Experimental Details

All the tests are performed on a desktop with an Intel Core i9-12900H CPU, NVIDIA GeForce RTX
4090 GPU, and 32 GB memory.

We conduct several more experiments in to establish the close relationship between FFCP and FCP, to
demonstrate the benefits of FFCP from the good representation of gradient, and to provide empirical
validations for the theoretical insights.

Model Architecture. For the one-dimensional we employ a four-layer neural network, with each
layer consisting of 64 dimensions. For the semantic segmentation experiment, we utilize a network
architecture combining ResNet50 with two additional convolutional layers. We use ResNet50 as the
base feature extractor h, and the two subsequent convolution layers form the prediction head g.

Correlation Between FCP and FFCP Scores Across Layers. We compare the relationship between
the scores of FCP and FFCP through experiments. Figure 3 indicates a positive correlation between
the non-conformity scores of the two algorithms, suggesting that FFCP shares similarities with
FCP in score function. This suggests that FFCP, while computationally efficient, provides a close
approximation to FCP. The observed discrepancies may be attributed to the complex, layer-dependent
non-linear transformations introduced by the decoder, under which the accuracy of the Taylor-based
linear approximation tends to decline as the degree of non-linearity increases.

Decoder Runtime Comparison. We conducted additional experiments to evaluate how the decoder’s
layer depth influences computational efficiency. The running times presented below consider the
decoder at various depths, explicitly showing the proportional relationship between decoder depth
and computational cost.

In our primary comparison (FFCP vs. FCP), we maintained consistency by selecting the layer index
as 2 for the FFCP, aligning it with the depth used by FCP. The detailed experimental results are
summarized in Table 4:

Table 4: Running time comparison (mean ± std) for different decoder depths in STAR dataset.

LAYER DEPTH SPLIT CP FCP FFCP FASTER

2 LAYER 0.0044±0.0009 3.1302±0.4795 0.0247±0.0053 127X
4 LAYER 0.0047±0.0001 5.8031±0.2011 0.0239±0.0010 243X
6 LAYER 0.0058±0.0003 9.4411±0.5270 0.0277±0.0011 341X
8 LAYER 0.0064±0.0002 12.2794±0.1668 0.0294±0.0012 418X

10 LAYER 0.0072±0.0001 15.8716±0.3363 0.0335±0.0015 474X
12 LAYER 0.0077±0.0003 19.4352±0.8947 0.0373±0.0021 521X

These results demonstrate that while the computational cost of FCP grows significantly with the
increasing depth of the decoder network, FFCP remains computationally efficient, only exhibiting
marginal increases in runtime. Thus, FFCP provides substantial efficiency benefits, especially when
employing deep network architectures.
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Robustness for FFCP. The empirical performance of FFCP demonstrates its robustness, as seen in
the ablation studies on splitting points. We demonstrate that coverage remains robust across different
splitting points in neural networks, as detailed in Table 5 in Appendix B.3. Furthermore, the results
from different layers of the FFCP network are consistent, as presented in Table 3

B.2 Verifying Square Conditions

We verify the square conditions in this section. The key component of the square conditions is
Expansion condition, which states that performing the quantile step does not result in a significant
loss of efficiency.

For computational simplicity, We take exponent α = 1 and do not consider the Lipschitz factor L.
We next provide experiment results in Figure 4 on comparing the distribution of the scores between
Split CP with FFCP.

From the figure, we observe that the overall distribution of FFCP non-conformity scores is closer
to the quantile. This numerically validates that M |Q1−α(V

o
D/|∇g(v̂)|)− V o

D/|∇g(v̂)|| is less than
M [Q1−α(V

o
D)− V o

D].��������������� 	
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(b) FFCP

Figure 4: Empirical validation of Theorem A.1. We plot the score distributions and their corresponding
quantiles (α = 0.1) of Split CP (left) and FFCP (right). Compared to Split CP, the non-conformity
scores of FFCP are closer to their quantiles, leading to a shorter band. Compared to Split, FFCP
exhibits a more stable distribution with higher quantiles, leading to better performance for FFCP.
FFCP selects layer 2 for display.

B.3 Robustness of FFCP

To verify that the coverage by FFCP maintains its robustness despite changes in the splitting point,
we performed a network split. The experimental results, detailed in Table 5, demonstrate that FFCP
is indeed robust.

Table 5: Ablation study of the number of layers in h and g in unidimensional tasks. For the sake of
avoiding redundancy, we set α = 0.05.

DATASET FACEBOOK1 MEPS19 BLOG

METHOD NUMBER(g ◦ h) COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SPLIT CP / 95.24 ± 0.16 4.60 ± 0.50 95.35 ± 0.23 7.34 ± 1.01 95.08 ± 0.11 7.88 ± 0.97

FFCP

h : 0 g : 4 94.88 ± 0.19 5.35 ± 0.42 95.18 ± 0.40 5.36 ± 0.52 94.97 ± 0.31 8.28 ± 0.59
h : 1 g : 3 94.84 ± 0.14 4.21 ± 0.46 95.13 ± 0.38 5.15 ± 0.49 94.99 ± 0.18 6.37 ± 1.22
h : 2 g : 2 95.14 ± 0.13 2.48 ± 0.09 95.19 ± 0.36 5.57 ± 0.87 95.08 ± 0.12 5.36 ± 0.93
h : 3 g : 1 95.16 ± 0.18 2.59 ± 0.72 95.34 ± 0.22 6.95 ± 1.13 95.05 ± 0.11 6.46 ± 1.52
h : 4 g : 0 95.24 ± 0.16 4.60 ± 0.50 95.35 ± 0.23 7.34 ± 1.01 95.08 ± 0.11 7.88 ± 0.97
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Table 6: Untrained model comparison between Split CP and FFCP. When the model has not been
sufficiently trained, FFCP performs similarly to Split CP. This means that the model’s performance
determines the quality of the feature information in the gradient. When the model performs poorly,
the gradient information obtained by FFCP is inaccurate. On the other hand, this also suggests that
FFCP effectively utilizes the feature information in the gradient when the model is well-trained.

METHOD SPLIT CP FFCP

DATASET COVERAGE LENGTH COVERAGE LENGTH

SYNTHETIC 90.23±0.45 2.34±0.01 90.22±0.96 2.41±0.01

COM 90.33±1.81 4.86±0.13 90.43±1.99 4.73±0.08

FB1 90.18±0.19 3.57±0.09 90.10±0.13 3.57±0.08

FB2 90.16±0.11 3.66±0.11 90.12±0.14 3.66±0.06

MEPS19 90.80±0.43 4.33±0.07 90.85±0.58 4.38±0.07

MEPS20 90.15±0.55 4.41±0.23 90.27±0.63 4.46±0.25

MEPS21 89.80±0.45 4.41±0.17 89.89±0.56 4.41±0.15

STAR 89.79±0.51 1.88±0.01 89.98±0.56 1.94±0.01

BIO 90.16±0.20 4.09±0.02 90.07±0.14 4.04±0.02

BLOG 90.11±0.30 2.53±0.12 90.12±0.28 2.55±0.14

BIKE 89.55±0.82 4.56±0.09 89.57±0.86 4.60±0.10

Table 7: Untrained model comparison between Split CP and FFCP by Layer on Each Dataset (lower
is better).

DATASET LAYER1 LAYER2 LAYER3 LAYER4 LAYER5 (SPLIT)

SYNTHETIC 2.87±0.03 2.81±0.03 2.89±0.01 2.41±0.01 2.34±0.01

COM 5.41±0.14 5.30±0.18 5.03±0.09 4.73±0.08 4.86±0.13

FB1 3.90±0.01 3.77±0.10 3.62±0.08 3.56±0.08 3.56±0.09
FB2 4.02±0.09 3.90±0.8 3.74±0.08 3.66±0.06 3.66±0.11

MEPS19 4.38±0.06 4.41±0.07 4.42±0.07 4.38±0.07 4.33±0.07
MEPS20 4.43±0.21 4.44±0.23 4.48±0.25 4.46±0.25 4.41±0.23

MEPS21 4.41±0.18 4.46±0.18 4.48±0.18 4.41±0.15 4.41±0.17

STAR 2.49±0.06 2.40±0.05 2.15±0.03 1.94±0.01 1.88±0.01
BIO 4.27±0.02 4.14±0.02 4.07±0.02 4.04±0.02 4.08±0.02

BLOG 2.56±0.15 2.54±0.15 2.57±0.13 2.55±0.14 2.53±0.12
BIKE 4.69±0.09 4.67±0.07 4.57±0.09 4.60±0.10 4.56±0.09

B.4 FFCP works due to semantic information in feature space

One of our primary advantages is that FFCP leverages the semantic information of gradient in feature
space. This is due to the fact that gradient-level techniques in feature space improve efficiency via the
robust feature embedding abilities of well-trained neural networks.

On the other hand, when the base model is untrained and initialized randomly, lacking meaningful
semantic representation in gradient, the band length produced by FFCP is comparable to Split CP.
For results, see Table 6.

FFCP on untrained network. We propose that FFCP returns shorter band lengths through its
deployment of deep representations from the gradients. To test this view, we contrast FFCP’s
performance using an untrained neural network against a baseline model. Using an incompletely
trained neural network, FFCP’s performance deteriorates and becomes comparable to that of Split CP.
This is due to the partially incorrect semantic information in the gradient, which misleads FFCP. We
defer the results to Table 6 and have updated the results in Table 7 by selecting the best-performing
layer, which confirms that FFCP underperforms when the model is not sufficiently trained.
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B.5 FFCQR

This section highlights the adaptability of FFCP’s gradient-level techniques, showing their suitability
for a wide range of existing conformal prediction algorithms. We choose Conformalized Quantile
Regression (CQR, Romano et al. [2019b]) to propose Fast Feature Conformalized Quantile Regression
(FFCQR). The fundamental concept is similar to FFCP Algorithm 2, where calibration steps are
performed within the gradient information. FFCQR algorithm is proposed in Algorithm 3.

Algorithm 3 Fast Feature Conformalized Quantile Regression (FFCQR)

Input: Confidence level α, dataset D = {(Xi, Yi)}i∈I , test point X ′;
1: Randomly split the dataset D into a training fold Dtra ≜ (Xi, Yi)i∈Itra together with a calibration

fold Dcal ≜ (Xi, Yi)i∈Ical ;
2: Train a base machine learning model f lo = glo ◦ h(·) and f hi = ghi ◦ h(·) using Dtra to estimate

the quantile of response Yi, which returns [f lo(Xi), f
hi(Xi)];

3: For each i ∈ Ical, calculate the non-conformity score R̃lo
i = (f lo(Xi) − Yi)/∥∇glo(v̂i)∥ and

R̃hi
i = (Yi − f hi(Xi))/∥∇ghi(v̂i)∥, where ∇g(·) denote the gradient of g(·) on the feature

v̂i ≜ h(Xi), namely ∇glo(v̂i) =
dglo◦h(Xi)
dh(Xi)

and ∇ghi(v̂i) =
dghi◦h(Xi)
dh(Xi)

4: Calculate the (1− α/2)-th quantile Q1−α/2 of the distribution 1
|Ical|+1

∑
i∈Ical

δR̃i
+ δ∞, where

R̃i = max
{
R̃lo

i , R̃
hi
i

}
Output: Cffcqr

1−α/2(X
′) =

[
f lo(X ′)− ∥∇glo(v̂′)∥ ·Q1−α/2, f

hi(X ′) + ∥∇ghi(v̂′)∥ ·Q1−α/2

]
,

where v̂′ = h(X ′).

We summarize run time in Table 8 and the experiments result in Table 9 (meps19), Table 10 (com),
and Table 11 (bike). FFCQR reduces runtime compared to FCQR, while achieving better efficiency
compared to CQR.

Furthermore, we have observed that as the values of [α, 1 − α] used by the neural networks in all
CQR methods (CQR, FCQR and FFCQR) become increasingly closer in the training process (The
level difference between [0.1, 0.9] is 0.8, while the level difference between [0.49, 0.51] is 0.02,
with the difference gradually decreasing), the band length returned by FFCQR gradually narrows.
This implies that our method holds an advantage on returned band length when the narrower neural
network confidence level.

Table 8: Time Comparison among CQR, FCQR and FFCQR. For quantile regression tasks, FFCQR
also demonstrates more efficient performance. The last column represents the speed improvement
factor of FFCQR compared to FCQR. The time unit is in seconds.

DATASET CQR FCQR FFCQR FASTER

SYNTHETIC 0.0125±0.0062 0.3237±0.0152 0.0742±0.0091 4X
COM 0.0045±0.0015 0.2730±0.1088 0.0210±0.0011 13X
FB1 0.0446±0.0157 1.7276±0.1389 0.2532±0.0166 7X
FB2 0.0812±0.0187 3.9967±0.7330 0.0617±0.0123 65X

MEPS19 0.0187±0.0018 0.7671±0.0438 0.1189±0.0048 6X
MEPS20 0.0438±0.0079 1.1876±0.2206 0.1505±0.0138 8X
MEPS21 0.0187±0.0027 0.8004±0.0657 0.1120±0.0053 7X

STAR 0.0047±0.0009 0.2352±0.0419 0.0214±0.0005 11X
BIO 0.0774±0.0541 6.9365±4.5494 0.6473±0.4879 11X

BLOG 0.1121±0.0153 1.9591±0.1346 0.3941±0.0618 5X
BIKE 0.0138±0.0045 1.8528±2.3969 0.2382±0.3261 6X
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Table 9: Coverage and Band Length at Different Net Confidence Levels Used By the Neural Networks
in CQR methods with Meps19 detaset. FFCQR yields shorter band lengths compared to CQR.

CONFIDENCE LEVELS [0.1, 0.9] [0.2, 0.8] [0.3, 0.7] [0.4, 0.6] [0.49, 0.51]

METRICS COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SPLIT CQR 90.28±0.47 2.43±0.11 90.19±0.46 2.58±0.45 90.63±0.32 2.93±0.51 90.48±0.42 3.47±0.16 90.44±0.36 3.48±0.08

FCQR 91.32±0.37 1.50±0.37 90.26±0.33 2.61±2.01 90.45±0.54 2.30±2.38 90.58±0.33 6.11±0.89 90.47±0.45 4.59±1.73

FFCQR

LAYER0 90.29±0.60 2.61±0.13 90.22±0.26 2.58±0.54 90.31±0.43 3.03±0.90 89.95±0.29 5.30±0.57 89.84±0.12 5.96±1.26

LAYER1 90.29±0.57 2.56±0.13 90.10±0.33 2.49±0.52 90.34±0.46 2.92±0.85 90.02±0.33 5.07±0.50 89.88±0.24 5.71±1.22

LAYER2 90.14±0.60 2.34±0.12 90.24±0.65 2.22±0.32 90.34±0.43 2.60±0.68 89.96±0.40 4.10±0.22 89.97±0.33 4.76±1.17

LAYER3 90.21±0.45 2.18±0.12 90.14±0.42 2.10±0.19 90.35±0.36 2.34±0.19 90.28±0.33 2.76±0.15 89.86±0.49 3.16±0.62

LAYER4 90.28±0.47 2.43±0.11 90.19±0.46 2.58±0.45 90.63±0.32 2.93±0.51 90.48±0.42 3.47±0.16 90.44±0.36 3.48±0.08

Table 10: Coverage and Band Length at Different Net Confidence Levels Used By the Neural
Networks in CQR methods with com dataset. FFCQR yields shorter band lengths compared to CQR.

CONFIDENCE LEVELS [0.1, 0.9] [0.2, 0.8] [0.3, 0.7] [0.4, 0.6] [0.49, 0.51]

METRICS COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SPLIT CQR 89.87±1.68 1.57±0.12 90.13±0.89 1.71±0.18 89.87±1.06 1.74±0.16 89.27±0.94 2.07±0.55 89.57±0.49 1.99±0.12

FCQR 90.83±1.53 1.19±0.19 90.43±1.32 0.49±0.38 90.23±1.13 0.37±0.06 90.18±1.77 0.20±0.05 89.47±0.85 0.23±0.07

FFCQR

LAYER0 88.92±2.78 1.62±0.12 89.62±1.75 1.67±0.07 91.53±0.97 1.62±0.12 89.77±1.64 1.80±0.27 89.82±1.07 1.76±0.11

LAYER1 88.67±2.40 1.59±0.12 89.57±1.03 1.64±0.08 90.58±1.21 1.57±0.13 89.82±1.75 1.78±0.33 89.12±1.40 1.74±0.09

LAYER2 89.77±2.14 1.58±0.12 89.92±1.98 1.63±0.12 90.53±0.43 1.64±0.14 89.67±1.28 1.89±0.38 88.77±0.75 1.78±0.11

LAYER3 90.08±2.28 1.58±0.12 89.92±1.22 1.67±0.15 90.33±0.86 1.73±0.13 89.62±0.83 2.03±0.54 89.27±0.66 1.93±0.11

LAYER4 89.87±1.68 1.57±0.12 90.13±0.89 1.71±0.18 89.87±1.06 1.74±0.16 89.27±0.94 2.07±0.55 89.57±0.49 1.99±0.12

B.6 Group coverage

Group coverage is represented by the conditional probability P(Y ∈ C(X)|X). The test dataset was
categorized into three groups by splitting response Y based on the lower and upper tertiles, and we
have reported the minimum coverage for each group.

We present our results in two parts: (a) we present the group coverage provided by Split CP, FCP,
FFCP, detailed in Table 14 and (b) the group coverage provided by LCP and FFLCP, as shown in
Table 13.

Analyzing the experimental results, we believe that the group coverage achieved through gradient-
level techniques in FFCP reflects an improvement over Split CP, albeit with moderate overall
performance. We note that the group coverage of gradient-level conformal prediction is contingent
upon its Split version. That is, when the Split version demonstrates satisfying group coverage, the
gradient-level version tends to mirror this result. Thus, despite FFCP outperforming Split CP, the
overall performance is still considered average.

LCP, developed specifically to enhance group coverage, inherently achieves higher coverage. Ex-
perimental results further reveal that FFLCP surpasses LCP, demonstrating the superiority of our
gradient-level techniques.

Algorithm 4 Fast Feature Localized Conformal Prediction (FFLCP)

Input: Confidence level α, dataset D = {(Xi, Yi)}i∈I , tesing point X ′, localizer D(X,Y )

1: Randomly split the dataset D into a training fold Dtra ≜ {(Xi, Yi)}i∈Itra and a calibration fold
Dcal ≜ {(Xi, Yi)}i∈Ical ;

2: Train a base neural network with training fold f(·) = g ◦ h(·) with training fold Dtra;
3: For each i ∈ Ical, calculate the non-conformity score R̃i = |Yi − f(Xi)|/∥∇g(v̂i)∥, where
∇g(v̂i) denotes the gradient of g(·) on the feature v̂i ≜ h(Xi), namely ∇g(v̂i) = dg◦h(Xi)

dh(Xi)
;

4: Calculate the distance Di ≜ D(X ′, Xi), dDi := Di∑
i∈Ical

Di
and (1− α)-th quantile Q1−α of the

distribution
∑

i∈Ical
dDi δR̃i

+ δ∞;
Output: Cfflcp

1−α(X
′) = [f(X ′)− ∥∇g(v̂′)∥Q1−α, f(X

′) + ∥∇g(v̂′)∥Q1−α], where v̂′ = h(X ′).
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Table 11: Coverage and Band Length at Different Net Confidence Levels Used By the Neural
Networks in CQR methods with bike dataset. FFCQR yields shorter band lengths compared to CQR.

CONFIDENCE LEVELS [0.1, 0.9] [0.2, 0.8] [0.3, 0.7] [0.4, 0.6] [0.49, 0.51]

METRICS COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SPLIT CQR 89.38±0.73 0.82±0.07 89.99±0.69 0.73±0.03 89.63±0.84 0.77±0.03 90.25±0.62 0.84±0.02 89.72±0.51 0.96±0.08

FCQR 90.25±0.67 0.58±0.15 90.14±0.63 0.65±0.13 89.77±0.76 0.71±0.18 89.93±0.35 0.82±0.07 89.98±0.97 0.74±0.08

FFCQR

LAYER0 89.91±0.38 0.91±0.07 89.84±0.44 0.97±0.02 89.42±0.83 1.20±0.04 89.75±0.54 1.64±0.13 89.61±0.59 1.79±0.08

LAYER1 89.57±0.33 0.90±0.07 89.83±0.25 0.90±0.05 89.44±0.42 1.04±0.07 89.72±0.43 1.25±0.05 89.62±0.73 1.31±0.06

LAYER2 89.73±0.29 0.87±0.07 89.70±0.27 0.79±0.03 89.63±0.69 0.83±0.03 89.14±0.42 0.92±0.04 89.44±0.41 0.98±0.04

LAYER3 89.49±0.34 0.84±0.06 89.62±0.48 0.69±0.02 89.58±0.74 0.69±0.02 89.86±0.37 0.70±0.01 89.57±0.88 0.78±0.07

LAYER4 89.38±0.73 0.82±0.07 89.99±0.69 0.73±0.03 89.63±0.84 0.77±0.03 90.25±0.62 0.84±0.02 89.72±0.51 0.96±0.08

Table 12: Coverage and Band Length at Different Net Confidence Levels Used By the Neural
Networks in CQR methods with bio dataset. FFCQR yields shorter band lengths compared to CQR.

CONFIDENCE LEVELS [0.1, 0.9] [0.2, 0.8] [0.3, 0.7] [0.4, 0.6] [0.49, 0.51]

METRICS COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

SPLIT CQR 89.89±0.41 1.42±0.02 89.84±0.27 1.45±0.02 89.87±0.27 1.61±0.02 90.07±0.31 1.86±0.03 90.16±0.40 2.00±0.03

FCQR 90.18±0.35 0.95±0.50 90.45±0.45 2.09±0.41 90.16±0.48 1.84±0.43 90.25±0.46 2.37±0.76 90.21±0.46 2.02±0.34

FFCQR

LAYER0 89.74±0.32 1.47±0.01 89.98±0.22 1.56±0.04 89.89±0.25 1.73±0.04 89.87±0.24 2.22±0.15 89.64±0.20 2.55±0.06

LAYER1 89.77±0.33 1.45±0.01 89.99±0.21 1.48±0.03 89.92±0.37 1.59±0.03 89.92±0.21 1.99±0.12 89.69±0.28 2.21±0.04

LAYER2 89.77±0.40 1.43±0.02 90.01±0.23 1.41±0.01 90.02±0.32 1.49±0.03 90.01±0.49 1.76±0.11 89.79±0.35 1.94±0.07

LAYER3 89.75±0.41 1.41±0.02 89.98±0.34 1.38±0.02 89.93±0.41 1.47±0.01 90.07±0.12 1.68±0.04 89.97±0.34 1.78±0.02

LAYER4 89.89±0.41 1.42±0.02 89.84±0.27 1.45±0.02 89.87±0.27 1.61±0.02 90.07±0.31 1.86±0.03 90.16±0.40 2.00±0.03

B.7 FFRAPS

In this section, we show how to deploy gradient-level techniques in FFCP in classification problems.
The basic ideas follow Algorithm 5.

Comparing to the experimental part of RAPS, our core adjustments are as follows:

(a) During the calibration process, for the model’s output of sorted scores s, we divide each element by
the magnitude of its corresponding gradient: s+δ ·∥∇g(v)∥. Here, δ is an adjustable hyper-parameter
that can be tuned to optimize the performance of the model based on the specific characteristics of
the data and the problem at hand.

(b) In the stage of calculating the returned set, we multiply the generalized inverse quantile τ by the
magnitude of the gradient of the corresponding test data: s′ + δ · ∥∇g(v′)∥
We summarize the experiment results in Table 15, where we adhere to the statistical methodologies
of RAPS as described in Angelopoulos et al. [2020].

Algorithm 5 Fast Feature Regularized Adaptive Prediction Sets (FFRAPS)

Input: Confidence level α, dataset D = {(Xi, Yi)}i∈I , tesing point X ′, and ground-truth label
y ∈ {0, 1, ...,K}n for X ∈ D and X ′; regularization hyperparameters kreg , δ and λ;

1: Randomly split the dataset D into a training fold Dtra ≜ {(Xi, Yi)}i∈Itra and a calibration fold
Dcal ≜ {(Xi, Yi)}i∈Ical ;

2: Train a base neural network with training fold f(·) = g ◦ h(·) with training fold Dtra;
3: For each i ∈ Ical, Li ← j such that Ii,j = yi, where I represents the associated permutation

of index. Calculate generalized inverse quantile conformity score Ei = ΣLi
j=1si,j + ∥∇g(v̂i)∥ ·

δ + λ(Li − kreg)
+ , where ∇g(v̂i) denotes the gradient of g(·) on the feature v̂i ≜ h(Xi),

namely ∇g(v̂i) = dg◦h(Xi)
dh(Xi)

, where s ≜ sortf(X) represents the sorted scores. Calculate
τ̂ccal ← ⌈(1− α)(1 + n)⌉ largest value in {Ei}ni=1

4: Calculate L ← | {j ∈ Y : Σj
i=1s

′
i + ∥∇g(v̂′i)∥ · δ + λ(j − kreg)

+ ≤ τ̂ccal∗} | + 1, where
v̂′ = h(X ′) and s′ = sortf(X ′);

Output: CFFRAPS
1−α (X ′) =

{
I1, ...IL

}
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Table 13: Comparison of LCP and FFLCP in group coverage. We divide the datasets into three
groups based on the size of Y , and calculate the coverage for each group, returning the maximum
coverage. FFLCP shows the results for the 5-layer neural network.

METHOD LCP FFLCP

DATASET COVERAGE LAYER0 LAYER1 LAYER2 LAYER3 LAYER4

SYNTHETIC 87.02±1.00 86.93±0.78 86.57±0.88 85.43±1.24 87.11±1.76 87.02±1.00

COM 80.33±3.24 81.84±2.52 79.56±3.34 77.42±4.12 79.41±2.88 80.33±3.24

FB1 52.51±1.76 78.61±0.91 76.39±1.21 67.16±1.61 57.82±1.88 52.51±1.76

FB2 54.33±1.75 75.86±0.83 75.44±0.91 70.45±0.99 60.18±1.73 54.33±1.75

MEPS19 67.35±1.21 68.19±2.31 66.44±2.01 64.94±1.53 67.14±1.24 67.35±1.21

MEPS20 65.49±1.64 69.30±1.09 68.80±1.55 65.14±1.44 65.47±1.99 65.49±1.64

MEPS21 66.38±0.95 67.82±1.10 67.96±1.21 66.21±1.33 65.54±1.02 66.38±0.95

STAR 77.20±3.97 79.69±2.88 79.28±1.72 77.47±5.21 77.33±4.12 77.20±3.97

BIO 81.10±0.61 86.33±0.51 86.06±0.50 86.78±0.57 83.26±0.71 81.10±0.61

BLOG 48.99±1.01 61.01±0.82 55.10±1.12 46.01±0.65 46.88±0.81 48.99±1.01

BIKE 77.61±1.52 81.02±1.73 82.42±2.08 82.97±1.29 84.41±1.71 77.61±1.52

Table 14: Comparison of Split CP, FCP and FFCP in group coverage.

METHOD SPLIT CP FCP FFCP

DATASET COVERAGE COVERAGE LAYER0 LAYER1 LAYER2 LAYER3 LAYER4

SYNTHETIC 87.08±1.03 87.92±1.08 86.96±0.81 86.63±0.79 85.64±1.13 88.46±1.44 87.08±1.03

COM 79.41±3.12 79.57±2.96 82.00±3.18 79.41±3.62 78.64±4.35 78.65±3.62 79.41±3.12

FB1 56.69±1.35 57.34±1.12 79.20±0.95 76.75±1.42 68.09±1.76 59.33±1.91 56.69±1.35

FB2 57.98±1.28 58.72±0.87 76.27±0.92 75.64±0.91 70.86±0.89 62.43±1.15 57.98±1.28

MEPS19 73.78±1.08 73.82±0.91 70.90±2.29 70.51±2.28 72.09±1.25 73.53±1.00 73.78±1.08

MEPS20 72.21±1.47 72.33±1.46 70.42±0.88 70.13±1.42 69.51±0.79 71.17±2.01 72.21±1.47

MEPS21 71.38±0.20 72.02±0.70 69.40±1.61 69.83±1.44 69.81±1.68 70.85±0.82 71.39±0.20

STAR 83.45±3.09 83.17±3.47 82.89±1.51 81.22±2.55 81.22±3.60 83.03±2.07 83.45±3.09

BIO 81.00±0.61 84.45±0.88 87.31±0.27 87.27±0.46 88.31±0.72 84.20±0.70 81.00±0.61

BLOG 58.32±0.90 60.43±1.46 65.21±0.58 59.03±1.03 54.55±0.77 55.76±1.26 58.32±0.90

BIKE 77.55±1.40 86.25±0.87 95.36±1.32 94.23±1.40 95.06±1.06 84.65±1.85 77.55±1.40

B.8 Additional Experiment Results

This section provides more experiment results. Additional visual results for the segmentation problem
are also presented in Figure 5.
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Table 15: Comparison of FFRAPS with the state-of-the-art method RAPS on Imagenet-Val. The
FFRAPS method outperforms RAPS in most datasets.

METHOD ACCURACY COVERAGE LENGTH

MODEL TOP-1 TOP-5 RAPS FFRAPS RAPS FFRAPS

RESNEXT101 0.793±0.001 0.945±0.001 0.908±0.002 0.907±0.002 2.012±0.035 2.006±0.039

RESNET152 0.784±0.001 0.941±0.001 0.909±0.003 0.907±0.003 2.144±0.034 2.128±0.058

RESNET101 0.774±0.001 0.935±0.001 0.906±0.004 0.906±0.003 2.348±0.151 2.256±0.037

RESNET50 0.761±0.001 0.929±0.001 0.907±0.004 0.907±0.003 2.560±0.104 2.594±0.069

RESNET18 0.698±0.001 0.891±0.001 0.906±0.003 0.903±0.003 4.560±0.147 4.434±0.168

DENSENET161 0.772±0.001 0.936±0.001 0.907±0.003 0.907±0.002 2.374±0.083 2.328±0.056

VGG16 0.716±0.001 0.904±0.001 0.904±0.002 0.902±0.002 3.566±0.098 3.521±0.065

INCEPTION 0.696±0.001 0.887±0.001 0.903±0.003 0.903±0.002 5.410±0.350 5.407±0.133

SHUFFLENET 0.694±0.001 0.883±0.001 0.902±0.001 0.901±0.002 5.001±0.121 4.971±0.073

Figure 5: Additional visualization results in segmentation task.

B.9 Additional Experiments on Full CP

We further validate the generality of our proposed approach by applying it to the CV+ (Barber et al.
[2021]) framework. Experiments were conducted on a synthetic multi-class classification dataset
generated using scikit-learn. A total of 1,200 samples were created, with 1,000 used for training and
200 for testing. The dataset contained 10 features, including 3 informative and 2 redundant ones,
distributed across 8 distinct classes, each consisting of a single cluster. Our method achieves higher
efficiency while maintaining comparable coverage to the standard CV+ approach.

Table 16: Comparison of FFCV+ with CV+ on synthetic dataset.

NUM CLASS = 3 CLASS = 5 CLASS = 8

METHOD COVERAGE SIZE COVERAGE SIZE COVERAGE SIZE

CV+ 90.50±0.01 1.23±0.01 90.00±0.01 1.57±0.01 92.00±0.01 2.13±0.01

FFCV+ 91.00±0.01 1.20±0.01 92.50±0.01 1.55±0.01 91.50±0.01 2.11±0.01
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B.10 Additional Experiments on Self-Supervised CP

SSCP (Seedat et al. [2023]) is a method that leverages self-supervised signals to enhance the
adaptability and efficiency of conformal prediction intervals. As shown in Table 1, however, SSCP
introduces substantially higher computational overhead due to the need to train two additional
networks, making it approximately 2 to 50 times slower than FFCP. Across all settings, FFCP
achieves shorter prediction bands, which may be attributed to SSCP’s stronger dependence on the
base model’s predictive quality and the complexity of its auxiliary network training.

Table 17: Results on FFCP and SSCP

METHOD SSCP FFCP

DATASET TIME LENGTH TIME LENGTH

SYNTHETIC 7.18±0.99 0.25±0.02 0.15±0.02 0.18±0.01

COM 1.33±0.16 2.52±0.14 0.03±0.01 1.84±0.18

MEPS19 10.86±0.76 5.32±0.33 0.14±0.01 3.13±0.30

STAR 1.96±0.02 0.67±0.06 0.67±0.06 0.21±0.01

BIO 13.49±3.81 1.53±0.03 0.39±0.04 1.66±0.02

BIKE 5.92±0.03 0.73±0.04 0.09±0.01 0.63±0.03
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Justification: The abstract and introduction clearly state the key theoretical and empirical
contributions, consistent with the main results.
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Answer: [Yes]
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a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are clearly stated alongside the theorems, with complete
proofs included in the appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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material along with usage instructions.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Full details about training, testing, hyperparameters, and optimizers are
included in the main text and appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviations across multiple runs to indicate the statistical
significance of the results.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]
Justification: Details on hardware specifications, runtime, and total compute budget are
provided in the appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics and presents no ethical
concerns.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical and does not directly relate to applications with
societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve any models or datasets with potential risk of
misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets are properly cited with license terms stated in the appendix
or main text.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced in this work.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve any human subjects or crowdsourcing.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: The study does not involve human subjects and thus does not require IRB
approval.
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