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ABSTRACT

Formulas are the language of communication between humans and nature. It is an
important research topic of artificial intelligence to find expressions from observed
data to reflect the relationship between each variable in the data, which is called a
symbolic regression problem. The existing symbolic regression methods directly
generate expressions according to the given observation data, but we cannot require
the algorithm to generate expressions that meet specific requirements according
to the known prior knowledge. For example, the expression needs to contain the
symbol ‘sin’ or be periodicity, and so on. Even if it can, it often requires very com-
plex operations, which is very inconvenient. In this paper, based on multi-modal
large language models, we propose ChatSR, a conversational symbolic regression
method that can generate expressions that meet the requirements simply by de-
scribing the requirements with natural language instructions. By experimenting
on the test datasets, we can demonstrate that ChatSR leads the state-of-the-art
baselines in fitting performance. More notably, ChatSR can well understand the
prior knowledge contained in natural language prompts, and can further improve
the quality of generated expressions according to the prior knowledge. In addition,
it is exciting that ChatSR has good zero-shot capability.

1 INTRODUCTION

Mathematical formulas are the language of communication between nature and human beings. With
the succinct expression, we can obtain the potential relationship between the individual variables in
the formula. The goal of scientists is to summarize a concise expression to reflect the law behind the
physical phenomenon from the observation data. Because manual discovery of formula theorems
often requires a long period. Moreover, the demands on scientists are high. So people are trying to
use artificial intelligence algorithms to make computers discover mathematical formulas from data on
their own. This is where the symbolic regression problem comes in. Specifically, given observations
D = {X, y}, SR seeks a function f that satisfies y = f(X), where X ∈ Rn×d, y ∈ Rn, d, n are
the dimension of variable and number of data points, respectively. f is composed of several basic
primitive operators such as +,−,×,÷, sin, cos, x1, ....

The traditional methods regard symbolic regression as a combinatorial optimization problem, and use
GP algorithm and reinforcement learning algorithm to deal with symbolic regression problem. This
kind of method is trained from scratch for each new data, which has good anti-noise and versatility.

However, in actual scientific research, scientists have a lot of priors or assumptions when modeling
observation data with expressions. For example, suppose we use time t as a variable and want a
function f(t) that models the intensity of light over a month. We almost know that f(t) is a periodic
function, so we tend to model f(t) using periodic functions like sin() or cos(). In addition, scientists
may want to obtain expressions that conform to symmetry, periodicity, translation invariance, and
so on. Although current methods based on reinforcement learning can achieve some of the people’s
needs by adding certain constraints to the search process. But it will be very troublesome, requiring
us to change the code, which is very unfriendly to non-computer science people.

In recent years, multimodal large language models (MLLMs), represented by GPT-4v, have achieved
significant advancements. MLLMs can answer our questions based on input from various modalities
such as images, PDF files, or videos. For example, if we input an image containing a person and
a dog and then ask the MLLM, ‘What are in the image?’ it will describe the image by stating that
’There are a person and a dog’. If we add some conditions and ask, ‘What pets is in the image?’ it
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will respond that ’There is a pet dog in the image’. So can we develop a multimodal large language
model for symbolic regression, where we just take the input data [X,y], describe the requirements in
natural langue, and it can generate the expression we need to fit the data [X,y]?

In this paper, we propose a symbolic regression method based on MLLM called ChatSR. ChatSR
only needs to describe the requirements in simple natural language, and it can generate an expression
that satisfies the requirements and fits the observed data. Specifically, we will consider the observed
data as one modality and then consider the text (Question and answer pairs about expressions) as
another modality. We first freeze the Large Language Model(LLM) and SetTransformer(Data Feature
Extractor ) and then perform feature alignment by training a fully connected layer to map the observed
data features to the literal feature space. In the second step, we unfreeze the parameters of LLM to
train ChatSR End-to-End.

• This paper presents ChatSR, a conversational symbolic regression method based on multi-
modal large language models, which allows describing requirements in natural language
during chat interactions and generates expressions that meet those requirements.

• We find that trained ChatSR can leverage the powerful language understanding capabilities
of large language models to have good zero-shot ability on properties or requirements
outside the training set.

• We provide new potential research directions for using multimodal large language models.

2 RELATION WORK

2.1 MULTI-MODAL LARGE LANGUAGE MODELS

Recently, models such as CLIP Radford et al. (2021) and ALIGN Jia et al. (2021) have been pre-
trained on noisy image and text pairs from the web using contrastive loss, which is recognized as
one of the most effective methods for feature learning He et al. (2020)Chen et al. (2020)Li et al.
(2020b)Li et al. (2020a). These models achieve remarkable performance on image-text retrieval tasks
but are limited in their ability to model more complex interactions between images and text necessary
for other vision-and-language (V+L) tasks Kim et al. (2021), such as visual question answering
(VQA) Antol et al. (2015). Subsequent studies Wang et al. (2021) Wang et al. (2022a) Piergiovanni
et al. (2022) have introduced encoder-decoder frameworks trained using generative loss functions,
demonstrating robust performance across various vision-language benchmarks. Simultaneously, the
visual encoders in these models maintain competitive accuracy in image classification tasks. Research
Singh et al. (2022) Li et al. (2021) Li et al. (2022)Chen et al. (2023)Liu et al. (2024a) has explored the
unification of image and text representations, which typically involves multiple pretraining stages for
both unimodal and multimodal modules to achieve high performance. For instance, ALBEF Li et al.
(2021) employs a dual-encoder architecture that integrates contrastive loss with Masked Language
Modeling (MLM) to enhance learning efficiency. CoCa Yu et al. (2022) focuses on training an image-
text foundation model from scratch in a single pretraining stage, thereby unifying these approaches in
a simpler and more efficient manner. BEITv3 Wang et al. (2022b) treats images as a type of language,
mapping images into the language space through a mapping layer before integrating them with
encoded text features in a large GPT model. LLava Liu et al. (2024b) is an open-source multi-modal
large model that aligns image features with text features to transform images into a ’language’ that a
large language model (LLM) Chang et al. (2023)Zhao et al. (2023)Touvron et al. (2023)Zeng et al.
(2022)Ouyang et al. (2022) can understand. These image features are then concatenated with text
features and fed into the large language model.

2.2 SYMBOLIC REGRESSION

Based on genetic programming This kind of method is a classical kind of algorithm in the field
of symbolic regression. GP Arnaldo et al. (2014), McConaghy (2011), Nguyen et al. (2017) is
the main representative of this kind of method, its main idea is to simulate the process of human
evolution. Firstly, it initialized an expression population, then generated new individuals by crossover
and mutation, and finally generated a new population by fitness. The above process is repeated
until the target expression is obtained. RSRMXu et al. integrates the GP algorithm with Double Q-
learningHasselt (2010) and the MCTS algorithmCoulom (2006). a Double Q-learning block, designed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

for exploitation, that helps reduce the feasible search space of MCTS via properly understanding
the distribution of reward, In short, the RSRM model consists of a three-step symbolic learning
process: RLbased expression search, GP tuning, and MSDB. In this paperFong et al. (2022), the
fitness function of the traditional GP algorithm is improved, which promotes the use of an adaptability
framework in evolutionary SR which uses fitness functions that alternate across generations. LLM-
SRChang et al. (2023) and ICSRZhao et al. (2023) use the large language model to aid the search
process, just let the LLM produce a series of expressions, and then use the good expressions as a hint
to let the LLM continue to produce a new batch of expressions until the target expression is reached.

Based on reinforcement learning Reinforcement learning-based algorithms treat symbolic regres-
sion as a combinatorial optimization problem. The typical algorithm is DSRPetersen et al. (2019),
which uses a recurrent neural network as a policy network to generate a probability distribution P
for sampling, and then samples according to the probability P to obtain multiple expressions. The
reward value of the sampled expressions is calculated and the policy network is updated with the
risky policy, and the loop continues until the target expression is obtained. DSOMundhenk et al.
(2021) is based on DSR by introducing the GP algorithm. The purpose of the policy network is to
generate a better initial population for the GP algorithm. Then, the risk policy gradient algorithm
is also used to update the policy network. Although the above two algorithms are very good, the
efficiency is low, and the expression is more complex, especially the DSO algorithm is more obvious.
There have been many recent symbolic regression algorithms based on the Monte Carlo tree search.
SPLSun et al. (2022) uses MCTS in the field of symbolic regression and introduces the concept
of modularity to improve search efficiency. However, due to the lack of guidance of MCTS, the
search efficiency of this algorithm is low. To improve the search efficiency of the algorithm, the two
algorithms DGSR-MCTS Kamienny et al. (2023) and TPSR Shojaee et al. (2024a) introduced the
policy network to guide the MCTS process based on the previous algorithm. While maintaining the
performance of the algorithm, it greatly improves the search efficiency of the algorithm. However,
although the above two algorithms improve the search efficiency of the algorithm, they reduce the
Versatility of the algorithm, and the noise robustness ability of the algorithm is also greatly reduced.
To solve the above problems and balance the Versatility and efficiency of the algorithm, SR-GPT Li
et al. (2024a) uses a policy network that learns in real-time to guide the MCTS process. It achieves
high performance while efficient search.

Based on pre-training Many SR methods based on reinforcement learning have good Versatility.
However, its search efficiency is relatively low, and it often takes a long time to get a good expression.
In contrast, pre-trained models treat the SR problem as a translation problem and train a transformer
with a large amount of artificially synthesized data in advance. Each prediction only needs one
forward propagation to get the result, which is relatively efficient. SymbolicGPTValipour et al. (2021)
was the first large-scale pre-trained model to treat each letter in a sequence of symbols as a token,
(e.g.[’s’,’ i’,’n’, ’(’, ’x’, ’)’]). A data feature extractor is used as the encoder, and then each token
is generated by the Decoder in turn. Finally, the predicted sequence and the real sequence are used
for cross-entropy loss. BFGS is used to optimize the constant at placeholder ’C’. NeSymReSBiggio
et al. (2021) builds on symbolicGPT by not thinking of each individual letter in the sequence of
expressions as a token. Instead, Nesymres represents the expression in the form of a binary tree,
which is then expanded by preorder traversal, and considers each operator as a token (e.g. [’sin’,’x’]).
Then SetTransformer is used as the Encoder of the data, and finally, Decoder is used to generate
the expression sequence. The overall framework and idea of the EndtoEndKamienny et al. (2022)
algorithm are not much different from NeSymReS, but EndtoEnd abandons the constant placeholder
’C’, encodes the constant, and directly generates the constant from the decoder. The constants are
then further optimized by Broyden-Fletcher-Goldfarb-Shanno (BFGS) Liu & Nocedal (1989). Based
on EndtoEnd, NSRwHBendinelli et al. (2023) tries to apply some prefixes to prompt the model
to generate expressions that conform to the prior. But the effect is not obvious. SymformerVastl
et al. (2024) is slightly different from the previous pre-trained models in that it directly generates
the constant values in the expression as well as the sequence of expressions. LLM-SRShojaee et al.
(2024b) and ICSRMerler et al. (2024) use LLM as a guide, but do not train LLM specifically for SR
tasks. SNIPMeidani et al. (2023) first applies contrastive learning to train the feature encoder and
then freezes the encoder to train the decoder. But SNIP works well only when combined with a latent
space optimization (LSO)Bojanowski et al. (2017) algorithm. MMSRLi et al. (2024b) solves the
symbolic regression problem as a pure multimodal problem, takes the input data and the expression
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Larger Language Model 𝑓!

Projection  𝑾	

SetTransformer𝑬

H!H"
Language Instruction

Please output an expression that does not 
include 'exp' to fit the observed data.

…
🤖 The expression we get is: [ +, sin, 𝐱𝟏, *, C, 𝒙𝟐 ]ChatSR

𝐲 = 𝐬𝐢𝐧(𝐱𝟏) + 𝟐. 𝟑 𝒙𝟐

BFGS 𝐲 = 𝐬𝐢𝐧(𝐱𝟏) + 𝟐. 𝟑 𝒙𝟐

[𝑋, 𝑦]	

🔥

🔥

🔥

🔥 Training parameters Freezing	parameters

Figure 1: This figure shows a schematic diagram of the overall process of ChatSR.

sequence as two modalities, introduces contrastive learning in the training process, and adopts a
one-step training strategy to train contrastive learning with other losses.

Based on deep learning This class of methods combines symbolic regression problems with
artificial neural networks, where EQL replaces the activation function in ordinary neural networks
with [sin, cos,...] And then applies pruning methods to remove redundant connections and extract an
expression from the network. EQLKim et al. (2020) is very powerful, however, it can’t introduce
division operations, which can lead to vanishing or exploding gradients. The main idea of AI Feynman
1.0 Udrescu & Tegmark (2020) and AI Feynman 2.0Udrescu & Tegmark (2020) series algorithms is
to “Break down the complex into the simple” by first fitting the data with a neural network, and then
using the trained neural network to discover some properties (e.g. Symmetry, translation invariance,
etc.) to decompose the function hierarchically. AI Feynman 2.0 introduces more properties based on
AI Feynman 1.0, which makes the scope of its application more extensive relative to AI Feynman
1.0. MetaSymNetLi et al. (2023) takes advantage of the differences between symbolic regression and
traditional combinatorial optimization problems and uses more efficient numerical optimization to
solve symbolic regression.

3 METHOD

We manually generate 15M Q&A data about expressions. Each piece of data contains a set of
observations, [X, Y], and a question-answer pair. Where the problem contains our requirements for
generating expressions. (e.g., sin() free, symmetry, etc.). The answer mainly consists of a preorder
traversal of the generates expression. We first train a SetTransformer as the data feature extractor
E of ChatSR using contrastive learning with 1M pairs of [X, Y] and the corresponding expression
preorder traversal (e.g.[sin, ∗, x, x])Meidani et al. (2023).Its training process is shown in Fig.2 Then,
we freeze the parameters of SetTransformer and LLM and separately pre-train the parameters of the
projection layer to map data features to word features. Finally, only the parameters SetTransformer
for are frozen, and the parameters of the projection layer and LLM are trained. The flow chart of the
ChatSR is shown in Fig.1. Note the parameters of the LLM we trained with LoRAHu et al. (2021).

3.1 EXPRESSIONS GENERATION

In ChatSR, we use symbols [+,−, ∗, /, sin, cos, log, sqrt, C, x1, x2, ..., xn]. Here, C denotes a
constant placeholder (for example, sin(2.6x) can be written as sin(C*x), with its preorder traversal
of expression binary tree being [sin, *, C, x]), and [x1, ..., xn] represents variables. Expressions
composed of these symbols can be represented in the form of a binary tree. Then,by performing a
preorder traversal of the binary tree, we can obtain a sequence of symbols. Therefore, we randomly
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𝑥!! 𝑥!" 𝑥!#
𝑥"! 𝑥"" 𝑥"#
𝑥#! 𝑥#" 𝑥##

⋯
𝑦!
𝑦"
𝑦#

⋮ ⋱ ⋮
𝑥$! 𝑥$" 𝑥$# ⋯ 𝑦$

Symbolic 
Encoder

SetTransformer

[*, sin, x, +, x, *, x, cos, x]

[+, x, sin, *, x, sqrt, x]

[sin, +, x, *, x, exp, x]

…

[/, sin, x, +, exp, x, cos, x]

Figure 2: The feature extractor Setransformer is pretrain by contrastive learning.

sample a sequence of symbols in the above symbol library in some rule3.1.1. The sequence of
symbols is then restored to an expression and sampled to obtain [X, Y].

3.1.1 GENERATION STOP DECISION: count = 0

To determine whether the expression generation should be stopped, we import a counter variable,
count, and initialize it to 1. In addation, we introduce the Arity(s) function, if s is a binary operator,
e.g. [+,−, ∗, /], then Arity(s)=2; Similarly, if s is a unary operator, e.g. [sin, cos, ...], then Arity(s)=1;
If s is a variable [x1, ..., xn] or a constant placeholder ‘C’, then Arity(s)=0. First, we randomly select
a symbol, s, from the symbol library and update the count according to the formula count =
count−Arity(s)− 1. This process is repeated until count = 0. At this point, we have constructed
a complete sequence of expressions.

3.1.2 GENERATION CONSTRAINTS

To ensure the generated expressions are meaningful, we impose the following restrictions:
1. Trigonometric functions cannot be nested (e.g., sin(cos(x))), as such forms are rarely encountered
in real-life scenarios.
2. For functions like log(x) and

√
x, the argument x cannot be negative. For instance, expressions

like log(sin(x)) and
√
cos(x) are invalid because both sin(x) and cos(x) can take negative values.

3.2 CONSTANT OPTIMIZATION

LLM will first generate the preorder traversal of the expression, and then for the expression with
constant C, we will use function-calling technology to call BFGS and other numerical optimization
algorithms to optimize the constant. Finally, we will output the optimized expression with a specific
value. For example, if we get a preorder traversal of an expression, [∗, C, sin, x], the corresponding
expression is C ∗ sin(x), then we need to use the BFGS algorithm to optimize the constant value at
C with X as input and y as output.

3.3 TRAINING DATA COLLECTION

In section3.1, we generated a number of expressions, and for each expression, we can generate
multiple Q&A text data according to certain rules. For each expression, we have the expression
preorder traversal, various properties (periodicity, symmetry), and preorder traversal length. With this
information, we can generate question-answering data like the one in Fig.3. To be specific, For each
piece of data. We generate question-answer pairs by the following method. Specifically, we have a
<Data> symbol in front of each request sentence, indicating that this is a data feature.
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{𝑋, 𝑌}

y= 2 sin 𝑥! cos	(𝑥")		Expression:

Preorder traversal : [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"]	

Properties：Periodicity, symmetry

Number of symbols：7

Human: <Data> Generate an expression to fit the data for me based on the uploaded data.
Assistant: Of course, according to your requirements, the expression I generated is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

Conversation 1

Conversation 2
Human: : <Data> I want to expression with periodicity on the variable x1 to fit the above data.
Assistant: According to your requirements, we will generate the expression for you is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

Conversation 3

Human: : <Data> I want to generate an expression with symbols [sin, cos] to fit the above data.
Assistant: Well, we get an expression for you is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

Conversation 4

Human: : <Data> I want to generate an expression with 10 symbols or less to fit the above data.
Assistant: OK, the expression I found is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

Conversation 5

Human: : <Data> I want to generate an expression consisting of the symbols to fit the above data.
Assistant: We generate the expression for you is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

[∗, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑥!	, 𝑥"]	

Data details

Conversations

Conversation 6

Human: : <Data> Generate an expression to fit the data. Note that the data is noisy, so be careful about robustness.
Assistant: We generate the expression for you is [∗, 𝑐, ∗, 𝑠𝑖𝑛, 𝑥!, 𝑐𝑜𝑠, 𝑥"].	

Figure 3: Data details and templates. Schematic representation of the expression y =
2 sin(x1) cos(x1) related question-answer pair generation.

• 1, we generate a question-answer pair that only asks the model to generate expressions that
fit the data, as in traditional symbolic regression.

• 2, generate expressions that satisfy some property, such as the expression
y = 2sin(x1)cos(x2), which is periodic with respect to both variables. We can
then ask the model to generate expressions that are periodic with respect to x1, periodic with
respect to x2, and periodic with respect to each variable. The same goes for symmetries.

• 3, In order to require that certain symbols must be included in the expressions generated by
ChatSR, we randomly choose k symbols at a time from the preorder traversal S, where
k < len(S), is a random integer between 1 and len(S). Then, the selected symbols are
embedded into the corresponding sentence to obtain a complete sentence.

• 4, We require the length of the preorder traversal of the expression generated by ChatSR to
be less than a certain number ML. We will add a random integer between 0 and 20 to the
length of the expression preorder traversal to obtain the number ML. Then ML is embedded
into the corresponding statement to obtain a complete dialogue.
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• 5, We want ChatSR to generate expressions using only certain symbols. We will process
the preorder traversal of the expression to filter out repeated symbols and then embed
the resulting sequence of symbols into the corresponding statement to obtain a complete
dialogue.

• 6, If we want ChatSR to have some noise immunity, we randomly add some Gaussian
noise with different levels to the clean data. We then generate question-answer pairs about
generating robust expressions from noisy data.

3.4 MODEL ARCHITECTURE

In ChatSR1, we use SetTransformer trained with contrastive learning as the data feature extractor,
whose parameters are frozen throughout. Then the data features extracted by SetTransformer are
mapped to the word embedding space of LLM through the projection layer. Finally, we train the
parameters of the projection layer and LLM together. We choose VicunaChiang et al. (2023) as our
LLM fφ parameterized by φ.

3.4.1 SETTRANSFORMER

The data information plays a crucial role in guiding the Decoder. To accommodate the permutation
invariance of data features—where the dataset’s features should remain unchanged regardless of the
input order—we utilize the SetTransformer as our data encoding method, as described by Lee et al.
(2019). Our encoder takes a set of data points D = {X, y} ∈ Rn×d. These data points undergo an
initial transformation via a trainable affine layer, which uplifts them into a latent space hn ∈ Rdh .
Subsequently, the data is processed through a series of Induced Set Attention Blocks (ISABs)Lee
et al. (2019), which employ several layers of cross-attention mechanisms. Initially, a set of learnable
vectors serves as queries, with the input data acting as the keys and values for the first cross-attention
layer. The outputs from this first layer are then repurposed as keys and values for a subsequent
cross-attention process, with the original dataset vectors as queries. Following these layers of cross-
attention, we introduce a dropout layer to prevent overfitting. Finally, the output size is standardized
through a final cross-attention operation that uses another set of learnable vectors as queries, ensuring
that the output size remains consistent and does not vary with the number of inputs.

3.5 MODEL TRAINING

For each piece of data XD = [X, y], we have multi-turn question and answer pairs
[X1

q , X
1
a , X

2
q , X

2
a , ..., X

T
q , X

T
a ]. Where T stands for the total turns of question-answering. We orga-

nize them as a sequence [XD, X1
q , X

1
a , X

2
q , X

2
a , ..., X

T
q , X

T
a ] by treating all answers as the assistant’s

response, and the instruction Xt
instruct at the tth turn as follows:

Xt
instruct =

{
[XD, X1

q ], When t = 1
Xt

q, When t > 1
(1)

We perform instruction-tuning of the LLM on the prediction tokens, using its original auto-regressive
training objective. Specifically, for a sequence of length L, we compute the probability of the target
answers Xa by:

p(Xa | XD, Xinstruct) =

L∏
i=1

pθ(xi | XD, Xinstruct,<i, Xa,<i) (2)

where θ is the trainable parameters, Xinstruct,<i and Xa,<i are the instruction and answer tokens in
all turns before the current prediction token xi, respectively. We explicitly add XD to emphasize the
fact that the data is grounded for all answers. For ChatSR model training, we consider a two-stage
instruction-tuning procedure.

Stage 1: Pre-training for Feature Alignment. In the first training step, we take 600K samples
from all the datasets (including [XD, Xq, Xa]) for feature alignment training. During training, we
keep both the SetTransformer and LLM weights frozen and maximize the likelihood of Eq.2 using
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only the trainable parameters θ = W (the projection matrix). This allows the data features Hv to
be aligned with the pre-trained LLM word embeddings. This stage can be understood as training a
compatible data tokenizer for the frozen LLM.

Stage 2: Fine-tuning End-to-End. We always keep the SetTransformer weights frozen, and
continue to update both the pre-trained weights of the projection layer and LLM in LLaVA; (the
trainable parameters are θ = {W,φ} in Fig.1).

Group Dataset ChatSR MMSR SNIP NeSymRes TPSR
R2 ↑ Nodes ↓ R2 ↑ Nodes ↓ R2 ↑ Nodes ↓ R2 ↑ Nodes ↓ R2 ↑ Nodes ↓

St
an

da
rd

s

Nguyen 0.9999±0.001 12.1 0.9999±0.001 14.5 0.9936±0.004 17.1 0.8568±0.003 18.2 0.9942±0.005 35.2
Keijzer 0.9992±0.003 13.4 0.9924±0.003 16.3 0.9862±0.005 20.4 0.7992±0.003 21.3 0.9819±0.004 36.4
Korns 0.9941±0.003 16.4 0.9927±0.003 19.2 0.9418±0.004 21.9 0.8011±0.005 23.5 0.9288±0.005 39.4
Constant 0.9925±0.002 20.5 0.9946±0.002 24.5 0.9299±0.003 23.4 0.8344±0.003 24.1 0.9344±0.004 42.1
Livermore 0.9885±0.003 23.6 0.9726±0.003 29.4 0.8948±0.004 34.6 0.6836±0.005 2.9 0.8828±0.005 56.3
Vladislavleva 0.9884±0.003 16.8 0.9812±0.003 21.7 0.9212±0.005 39.4 0.6892±0.004 36.2 0.9433±0.004 69.8
R 0.9948±0.004 14.3 0.9811±0.004 16.4 0.9614±0.004 24.8 0.7703±0.005 27.3 0.9529±0.005 47.2
Jin 0.9962±0.003 21.6 0.9902±0.003 28.3 0.9877±0.004 17.2 0.8327±0.003 19.9 0.9626±0.006 43.3
Neat 0.9943±0.004 12.7 0.9952±0.004 17.3 0.9401±0.004 18.9 0.7596±0.005 20.6 0.9528±0.005 38.2
Others 0.9936±0.002 15.3 0.9968±0.002 20.6 0.9702±0.003 30.4 0.8026±0.003 32.2 0.9625±0.004 48.5

SR
B

en
ch Feynman 0.9910±0.002 16.4 0.9874±0.002 20.8 0.8899±0.004 21.1 0.7025±0.005 22.4 0.9184±0.005 45.1

Strogatz 0.9861±0.003 28.7 0.9819±0.003 39.6 0.8307±0.003 26.8 0.6022±0.003 28.1 0.8611±0.004 32.3
Black-box 0.8921±0.004 18.9 0.9037±0.004 26.7 0.8692±0.004 29.2 0.6525±0.005 33.9 0.9024±0.005 54.2

Average 0.9854 17.7 0.9820 21.3 0.9321 25.0 0.7528 26.2 0.9368 45.2

Table 1: The results of performance comparison. At a 0.95 confidence level, a comparison of the
coefficient of determination (R2) and the expression complexity(Nodes) was conducted between
ChatSR and four baselines.

4 EXPERIMENT

To verify the performance of the ChatSR algorithm, we tested it on the 13 datasets. We selected four
state-of-the-art baselines to compare with ChatSR. The details of the four baselines are as follows:

• MMSRLi et al. (2024b). A pre-training method that treats symbolic regression as a multi-
modal problem and uses contrastive learning for modal alignment.

• TPSRShojaee et al. (2024a). A symbolic Regression algorithm combining large-scale
pre-trained models and Monte Carlo Tree Search.

• NeSymReSBiggio et al. (2021). This algorithm is categorized as a large-scale pre-training
model.

• SNIPMeidani et al. (2023). A large-scale pre-trained model with a feature extractor trained
with contrastive learning before training.

4.1 COMPARISON WITH BASELINES

4.1.1 COMPARISON OF R2

The most important goal of symbolic regression is to find an expression from the observed data
that accurately fits the given data. A very important indicator to judge the goodness of fit is the
coefficient of determination (R2). Therefore, we tested the five algorithms on 13 datasets (Detail
in AppendixD,C), using R2 as the standard. We run each expression in the dataset 20 times and
then take the average R2 of all the expressions in the dataset. And the confidence levelJunk (1999),
Costermans et al. (1992) is taken to be 0.95. The specific results are shown in Table 1(R2).

4.1.2 COMPARISON OF RECOVER RATE

Recovery rate is also a more stringent metric than R2. It is a test of how well an algorithm can fully
recover an expresse.R2 must be equal to or have the potential to be equal to 1.0. For example, for the
expression sin(x), sin(x)+c and sin(c*x) both count as full recovery. Specifically, for each dataset, we
count the ratio of the number of times the expression is fully recovered across all tests and the total
number of tests. The detailed average recovery of each dataset is shown in Fig.4.
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4.1.3 COMPARISON OF COMPLEXITY(NODES OF EXPRESSION)

The complexity of the expression (the number of nodes) is also an important index to evaluate
symbolic regression algorithms. Because for symbolic regression, it doesn’t make sense to apply
a very complex expression to fit the data. In this experiment, for each algorithm, we tested each
expression 20 times, and then recorded the average R2 and the average expression complexity. The
results are shown in Table1 (Nodes).

Nguyen Keijzer Korns Constant Livermore Vladislavleva R Jin Neat Others Feynman Strogatz
Datasets

0

20

40

60

80

Re
co

ve
ry

 ra
te

 (%
)

0 0 0 0 0

Method Performance on Different Datasets

ChatSR ChatSR* MMSR SNIP NeSymReS TPSR

Figure 4: Recover rate of various algorithms. Note: ChatSR’s prompt does not contain prior knowledge.
However, ChatSR*’s prompt carries prior knowledge. From the figure, we can see that introducing
prior knowledge into the instruction can effectively improve the recover rate.

Points Monotonically increasing Monotonically decreasing central symmetry convexity concavity

Prior-k (Use/No) Use Prior-k No Prior-k Use Prior-k No Prior-k Use Prior-k No Prior-k Use Prior-k No Prior-k Use Prior-k No Prior-k

R2 0.9992 0.9936 0.9993 0.9902 0.9953 0.9885 0.9999 0.9905 0.9998 0.9902
Recover rate 88.6% 56.2% 83.0% 52.7% 73.4% 44.9% 80.5% 48.3% 76.0% 46.7%
Success rate 96.2% 66.2% 97.0% 62.2% 90.4% 38.8% 98.5% 88.2% 97.0% 86.2%

Table 2: The Zero-shot proficiency test. In the table, ‘Prior-k’ denotes ‘Prior knowledge’. Here, ‘Use
prior-k’ and ‘No prior-k’ denote whether Prior knowledge of the relevant properties is introduced in
the prompt, respectively. The ‘Success rate’ represents the proportion of generated expressions that
conform to the corresponding property.

4.1.4 ANALYSIS OF RESULT

From the above results we can see that although ChatSR is only slightly ahead of MMSR in average
R2. However, ChatSR is significantly better than the others in terms of expression complexity, which
we think may be due to the fact that large language models already know that "the more concise the
expression, the better". As a result, ChatSR produces much more concise expressions than MMSR
and the other baselines. It is worth noting that on the more difficult recovery rate, thanks to the
powerful knowledge reserve of the large language model, ChatSR significantly outperforms the other
algorithms after introducing prior knowledge in the prompt.

4.2 ABLATION EXPERIMENT: THE EFFECT OF PRIOR KNOWLEDGE ON THE RESULTS

Expression recovery rate is a very challenging metric to evaluate symbolic regression algorithms.
In order to test whether introducing prior knowledge into the prompts improves ChatSR’s recovery
rate, we tested them on the datasets. First, in the prompt, we don’t give it any prior knowledge (no
requirements), we just ask it to generate an expression to fit the data. Then, we give the model some
prior knowledge (requirements) in the prompt, according to the properties and form of the expressions
. For example, for Nguyen-5 sin(x2) cos(x)− 1, we’ll ask it to generate an expression that contains
the symbols sin and cos.

For each expression, we do the above two kinds of experiments 20 times each. Finally, the recovery
rate was calculated. The specific results are shown in Fig.4(ChatSR, no prior knowledge in prompt )
and ChatSR*, giving prior knowledge in prompt). From the figure, we can clearly see that giving
prior knowledge of the prompt can significantly improve the recovery rate. This also proves that our
aim of improving the quality of generated expressions by providing priors through natural language

9
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is achieved. More importantly, ChatSR does have the ability to generate expressions that match our
needs.

4.3 ZERO-SHOT ABILITY TEST

The general language model has a strong natural language understanding ability and a rich knowledge
reserve. Previous experiments have found that it has a strong zero-shot ability on many tasks.
Therefore, we would like ChatSR to inherit this capability as well. For example, if we only included
symmetries and periodicity in our training dataset, could ChatSR use the zero-shot power of large
language models to directly understand and generate expressions with other properties? (e.g., the
generated expression should be monotonic, etc.).

To test ChatSR’s zero-shot capability, we chose several properties not covered in the training dataset
to test (monotonicity, symmetry with respect to the origin, convexity, concavity, and boundedness).
The main test is whether ChatSR can understand and generate expressions that meet the requirements
according to its zero-shot ability. Specifically, for each property above, we artificially synthesize 10
expressions(Appendix B) that conform to this property. Then we run each expression 20 times with
different prompts (whether we want the generated expression to satisfy a certain property or not).
The averaged R2, recover rate and the proportion (Success rate) of generated expressions conforming
to the specified properties are then counted. The test results are shown in Table 2. As we can see,
ChatSR shows good zero-shot ability. When prompted, ChatSR was able to generate expressions that
matched the requirements, even if those properties were not present in the training dataset. And R2

and recover rate are also improved. This is due to the powerful language understanding capabilities
of large language models.

5 CONCLUSION AND DISCUSSION

In this work, we present ChatSR, a novel symbolic regression paradigm based on multimodal large
language models that can conduct conversations and make requests in natural language. Specifically,
we use many data and dialog pairs to train a multimodal large language model with the ability to
fit the data by generating expressions based on the data and natural language prompts. Moreover,
we experimentally find that ChatSR has good zero-shot capability. This means that we can rely on
the powerful understanding power of large language models to impose various requirements on
expression generation. This approach promises to change the way symbolic regression can be applied.
When we want the generated expression to satisfy some constraint, we only need to describe our
requirements in natural language instead of changing the code. This greatly reduces the threshold
for the use of symbolic regression and improves the flexibility of the symbolic regression algorithm.
ChatSR will have great potential applications in finance, healthcare, and other fields that have
very high requirements for interpretability because ChatSR can get an interpretable mathematical
expression from the data. In addition, we believe ChatSR has great potential for applications in
scientific discovery and AI for Science.

Last but not least, ChatSR also has some problems, such as poor noise robustness. Next, we will try
to improve its noise robustness by contrastive learning or other methods.
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APPENDIX FOR “CHATSR: CONVERSATIONAL
SYMBOLIC REGRESSION”
A APPENDIX: DETAILED SETTINGS OF HYPERPARAMETERS DURING

TRAINING THE SETTRANSFORMER.

Table 3: Hyperparameters of SetTransformer

hyperparameters Numerical value
N_p 0
activation ‘relu’
bit16 True
dec_layers 5
dec_pf_dim 512
dim_hidden 512
dim_input 3
dropout 0
input_normalization False
length_eq 60
linear False
ln True
lr 0.0001
mean 0.5
n_l_enc 5
norm True
num_features 20
num_heads 8
num_inds 50
output_dim 60
sinuisodal_embeddings False
src_pad_idx 0
std 0.5
trg_pad_idx 0
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B APPENDIX: DETAILS OF THE EXPRESSIONS FOR THE VARIOUS PROPERTIES
INVOLVED IN THE ZERO-SHOT EXPERIMENT

To test ChatSR’s Zero-shot capability, we designed some properties not included in the training dataset
for testing. They include Continuous Monotonic Decreasing, Continuous Globally Monotonically
Increasing, Origin-Centered Symmetric, Continuous Convex and Continuous Concave are the five
properties. For each property, 10 functions satisfying this property are designed. The form of the
function is as follows Table 4,5,6,7,8.

Function Index Expression Domain

1 f(x) = −x− ln(x+ 1) x ≥ 0

2 f(x) = e−x − x2 R
3 f(x) = 1

x+1 −
√
x x > 0

4 f(x) = 10− x2 − arctan(x) R
5 f(x) = 1√

x+1
− ln(x+ 2) x ≥ 0

6 f(x) = e−x cos(x) + 1
x+1 x > 0

7 f(x) = − ln(x+ 1) + x−0.5 x > 0

8 f(x) =
√
x+ 1− 3 ln(x+ 2) x ≥ 0

9 f(x) = e−x2 − x R
10 f(x) = −x3/2 − tan−1(x) x ≥ 0

Table 4: List of Continuous Monotonic Decreasing Functions

Function Index Expression Domain

1 f(x) = x+ ln(x2 + 1) R
2 f(x) = ex + x2 R
3 f(x) = x+ arctan(x) R
4 f(x) = x

√
x2 + 1 R

5 f(x) = x3 + 3x R
6 f(x) = x+

√
x+ 2 + ln(x2 + 1) x ≥ −2

7 f(x) = ex + ln(x2 + 1) R
8 f(x) =

√
x2 + 1 + x3 R

9 f(x) = x+ arcsin(tanh(x)) R
10 f(x) = ln(x+ 2) + ex x > −2

Table 5: List of Continuous Globally Monotonically Increasing Functions
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Function Index Expressions Domain

1 f(x) = x sin(x) x ∈ R
2 f(x) = 3x3 − 2x x ∈ R
3 f(x) = log(1 + x)− log(1− x) x ∈ (−1, 1)

4 f(x) = ex − e−x x ∈ R
5 f(x) = arctan(x)− arctan(−x) x ∈ R
6 f(x) = x(x2 + 3) x ∈ R
7 f(x) = x5 − 10x3 + 9x x ∈ R
8 f(x) = sinh(x) = ex−e−x

2 x ∈ R
9 f(x) = 7x− x7 x ∈ R
10 f(x) = x cos(x) + sin(x) x ∈ R

Table 6: Expressions that are Origin-Centered Symmetric (Odd Functions)

Function Index Expression Domain

1 f(x) = x4 + 2x2 + 1 x ∈ R
2 f(x) = ex + x2 R
3 f(x) = x2 + log(1 + ex) x ∈ R
4 f(x) = x sinh(x) + cosh(x) x ∈ R
5 f(x) = x2 +

√
x2 + 1 x ∈ R

6 f(x) = ex
2 − x x ∈ R

7 f(x) = x2 + arctan(x) x ∈ R
8 f(x) =

√
1 + ex x ∈ R

9 f(x) = x+ log(1 + x2) x ∈ R
10 f(x) = x6 + x4 − x3 + x+ e−x x ∈ R

Table 7: List of Continuous Convex Functions

Function Index Expression Domain

1 f(x) = −x4 + 2x2 + 1 x ∈ R
2 f(x) = −ex + 3x− 2 x ∈ R
3 f(x) = −x2 + log(1 + x2) x ∈ R
4 f(x) = − cosh(x) x ∈ R
5 f(x) = −x2 −

√
x2 + 1 x ∈ R

6 f(x) = −ex/2 − x2 x ∈ R
7 f(x) = log(1 + e−x) x ∈ R
8 f(x) = −

√
1 + x2 x ∈ R

9 f(x) = − log(x2 + 1) x ∈ R
10 f(x) = −x6 − x4 + x3 − x+ e−x2

x ∈ R

Table 8: List of Continuous Concave Functions

C APPENDIX: TEST DATASET IN DETAIL

Table 9,10,11 shows in detail the expression forms of the data set used in the experiment, as well as
the sampling range and sampling number. Some specific presentation rules are described below

• The variables contained in the regression task are represented as [x1, x2, ..., xn].
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• U(a, b, c) signifies c random points uniformly sampled between a and b for each input
variable. Different random seeds are used for training and testing datasets.

• E(a, b, c) indicates c points evenly spaced between a and b for each input variable.

Name Expression Dataset

Nguyen-1 x3
1 + x2

1 + x1 U(−1, 1, 20)

Nguyen-2 x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20)

Nguyen-3 x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 20)

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20)

Nguyen-5 sin(x2
1) cos(x1) − 1 U(−1, 1, 20)

Nguyen-6 sin(x1) + sin(x1 + x2
1) U(−1, 1, 20)

Nguyen-7 log(x1 + 1) + log(x2
1 + 1) U(0, 2, 20)

Nguyen-8
√
x1 U(0, 4, 20)

Nguyen-9 sin(x1) + sin(x2
2) U(0, 1, 20)

Nguyen-10 2 sin(x1) cos(x2) U(0, 1, 20)

Nguyen-11 x
x2
1 U(0, 1, 20)

Nguyen-12 x4
1 − x3

1 + 1
2x

2
2 − x2 U(0, 1, 20)

Nguyen-2′ 4x4
1 + 3x3

1 + 2x2
1 + x1 U(−1, 1, 20)

Nguyen-5′ sin(x2
1) cos(x1) − 2 U(−1, 1, 20)

Nguyen-8′ 3
√
x1 U(0, 4, 20)

Nguyen-8′′ 3
√

x2
1 U(0, 4, 20)

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x U(−1, 1, 20)

Nguyen-5c sin(x2
1) cos(x) − 0.75 U(−1, 1, 20)

Nguyen-7c log(x + 1.4) + log(x2
1 + 1.3) U(0, 2, 20)

Nguyen-8c √
1.23x U(0, 4, 20)

Nguyen-10c sin(1.5x) cos(0.5x2) U(0, 1, 20)

Korns-1 1.57 + 24.3 ∗ x4
1 U(−1, 1, 20)

Korns-2 0.23 + 14.2
(x4+x1)

(3x2)
U(−1, 1, 20)

Korns-3 4.9
(x2−x1+

x1
x3

(3x3))
− 5.41 U(−1, 1, 20)

Korns-4 0.13sin(x1) − 2.3 U(−1, 1, 20)

Korns-5 3 + 2.13log(|x5|) U(−1, 1, 20)

Korns-6 1.3 + 0.13
√

|x1| U(−1, 1, 20)

Korns-7 2.1(1 − e−0.55x1 ) U(−1, 1, 20)

Korns-8 6.87 + 11
√

|7.23x1x4x5| U(−1, 1, 20)

Korns-9 12
√

|4.2x1x2x2| U(−1, 1, 20)

Korns-10 0.81 + 24.3
2x1+3x2

2
4x3

3+5x4
4

U(−1, 1, 20)

Korns-11 6.87 + 11cos(7.23x3
1) U(−1, 1, 20)

Korns-12 2 − 2.1cos(9.8x3
1)sin(1.3x5) U(−1, 1, 20)

Korns-13 32.0 − 3.0
tan(x1)

tan(x2)

tan(x3)

tan(x4)
U(−1, 1, 20)

Korns-14 22.0 − (4.2cos(x1) − tan(x2))
tanh(x3)

sin(x4)
U(−1, 1, 20)

Korns-15 12.0 − 6.0tan(x1)

ex2 (log(x3) − tan(x4)))) U(−1, 1, 20)

Jin-1 2.5x4
1 − 1.3x3

1 + 0.5x2
2 − 1.7x2 U(−3, 3, 100)

Jin-2 8.0x2
1 + 8.0x3

2 − 15.0 U(−3, 3, 100)

Jin-3 0.2x3
1 + 0.5x3

2 − 1.2x2 − 0.5x1 U(−3, 3, 100)

Jin-4 1.5 exp x + 5.0cos(x2) U(−3, 3, 100)

Jin-5 6.0sin(x1)cos(x2) U(−3, 3, 100)

Jin-6 1.35x1x2 + 5.5sin((x1 − 1.0)(x2 − 1.0)) U(−3, 3, 100)

Table 9: Specific formula form and value range of the three data sets Nguyen, Korns, and Jin.
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Name Expression Dataset

Neat-1 x4
1 + x3

1 + x2
1 + x U(−1, 1, 20)

Neat-2 x5
1 + x4

1 + x3
1 + x2

1 + x U(−1, 1, 20)

Neat-3 sin(x2
1) cos(x) − 1 U(−1, 1, 20)

Neat-4 log(x + 1) + log(x2
1 + 1) U(0, 2, 20)

Neat-5 2 sin(x) cos(x2) U(−1, 1, 100)

Neat-6
∑x

k=1
1
k E(1, 50, 50)

Neat-7 2 − 2.1 cos(9.8x1) sin(1.3x2) E(−50, 50, 105)

Neat-8 e−(x1)2

1.2+(x2−2.5)2
U(0.3, 4, 100)

Neat-9 1

1+x
−4
1

+ 1

1+x
−4
2

E(−5, 5, 21)

Keijzer-1 0.3x1sin(2πx1) U(−1, 1, 20)

Keijzer-2 2.0x1sin(0.5πx1) U(−1, 1, 20)

Keijzer-3 0.92x1sin(2.41πx1) U(−1, 1, 20)

Keijzer-4 x3
1e

−x1cos(x1)sin(x1)sin(x1)
2cos(x1) − 1 U(−1, 1, 20)

Keijzer-5 3 + 2.13log(|x5|) U(−1, 1, 20)

Keijzer-6 x1(x1+1)
2 U(−1, 1, 20)

Keijzer-7 log(x1) U(0, 1, 20)

Keijzer-8
√

(x1) U(0, 1, 20)

Keijzer-9 log(x1 +
√

x2
1 + 1) U(−1, 1, 20)

Keijzer-10 x
x2
1 U(−1, 1, 20)

Keijzer-11 x1x2 + sin((x1 − 1)(x2 − 1)) U(−1, 1, 20)

Keijzer-12 x4
1 − x3

1 +
x2
2
2 − x2 U(−1, 1, 20)

Keijzer-13 6sin(x1)cos(x2) U(−1, 1, 20)

Keijzer-14 8

2+x2
1+x2

2
U(−1, 1, 20)

Keijzer-15
x3
1
5 +

x3
2
2 − x2 − x1 U(−1, 1, 20)

Livermore-1 1
3 + x1 + sin(x2

1)) U(−3, 3, 100)

Livermore-2 sin(x2
1) ∗ cos(x1) − 2 U(−3, 3, 100)

Livermore-3 sin(x3
1) ∗ cos(x2

1)) − 1 U(−3, 3, 100)

Livermore-4 log(x1 + 1) + log(x2
1 + 1) + log(x1) U(−3, 3, 100)

Livermore-5 x4
1 − x3

1 + x2
2 − x2 U(−3, 3, 100)

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 U(−3, 3, 100)

Livermore-7 (exp(x1)−exp(−x1)
2 ) U(−1, 1, 100)

Livermore-8 (exp(x1)+exp(−x1)
3 U(−3, 3, 100)

Livermore-9 x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100)

Livermore-10 6 ∗ sin(x1)cos(x2) U(−3, 3, 100)

Livermore-11
x2
1x2

2
(x1+x2)

U(−3, 3, 100)

Livermore-12
x5
1

x3
2

U(−3, 3, 100)

Livermore-13 x
1
3
1 U(−3, 3, 100)

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
2) U(−1, 1, 100)

Livermore-15 x
1
5
1 U(−3, 3, 100)

Livermore-16 x
2
3
1 U(−3, 3, 100)

Livermore-17 4sin(x1)cos(x2) U(−3, 3, 100)

Livermore-18 sin(x2
1) ∗ cos(x1) − 5 U(−3, 3, 100)

Livermore-19 x5
1 + x4

1 + x2
1 + x1 U(−3, 3, 100)

Livermore-20 e(−x2
1) U(−3, 3, 100)

Livermore-21 x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20)

Livermore-22 e(−0.5x2
1) U(−3, 3, 100)

Table 10: Specific formula form and value range of the three data sets neat, Keijzer, and Livermore.
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Name Expression Dataset

Vladislavleva-1 (e−(x1−1)2 )

(1.2+(x2−2.5)2))
U(−1, 1, 20)

Vladislavleva-2 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1) U(−1, 1, 20)

Vladislavleva-3 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1)(x2 − 5) U(−1, 1, 20)

Vladislavleva-4 10
5+(x1−3)2+(x2−3)2+(x3−3)2+(x4−3)2+(x5−3)2

U(0, 2, 20)

Vladislavleva-5 30(x1 − 1)
x3−1

(x1−10)
x2
2 U(−1, 1, 100)

Vladislavleva-6 6sin(x1)cos(x2) E(1, 50, 50)

Vladislavleva-7 2 − 2.1 cos(9.8x) sin(1.3x2) E(−50, 50, 105)

Vladislavleva-8 e−(x−1)2

1.2+(x2−2.5)2
U(0.3, 4, 100)

Test-2 3.14x2
1 U(−1, 1, 20)

Const-Test-1 5x2
1 U(−1, 1, 20)

GrammarVAE-1 1/3 + x1 + sin(x2
1)) U(−1, 1, 20)

Sine sin(x1) + sin(x1 + x2
1)) U(−1, 1, 20)

Nonic x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100)

Pagie-1 1

1+x
−4
1 + 1

1+x2−4

E(1, 50, 50)

Meier-3
x2
1x2

2
(x1+x2)

E(−50, 50, 105)

Meier-4
x5
1

x3
2

U(0.3, 4, 100)

Poly-10 x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 E(−1, 1, 100)

Constant-1 3.39 ∗ x3
1 + 2.12 ∗ x2

1 + 1.78 ∗ x1 U(−4, 4, 100)

Constant-2 sin(x2
1) ∗ cos(x1) − 0.75 U(−4, 4, 100)

Constant-3 sin(1.5 ∗ x1) ∗ cos(0.5 ∗ x2) U(0.1, 4, 100)

Constant-4 2.7 ∗ x
x2
1 U(0.3, 4, 100)

Constant-5 sqrt(1.23 ∗ x1) U(0.1, 4, 100)

Constant-6 x0.426
1 U(0.0, 4, 100)

Constant-7 2 ∗ sin(1.3 ∗ x1) ∗ cos(x2) U(−4, 4, 100)

Constant-8 log(x1 + 1.4) + log(x1, 2 + 1.3) U(−4, 4, 100)

R1 (x1+1)3

x2
1−x1+1)

U(−5, 5, 100)

R2
(x2

1−3∗x2
1+1

x2
1+1)

U(−4, 4, 100)

R3
x6
1+x5

1)

(x4
1+x3

1+x2
1+x1+1)

U(−4, 4, 100)

Table 11: Specific formula form and value range of the three data sets Vladislavleva and others.
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D APPENDIX: CHATSR TESTS ON AIFEYNMAN DATASET.

In our study, we conducted an evaluation of our novel symbol regression algorithm, termed ChatSR,
leveraging the AI Feynman dataset, which comprises a diverse array of problems spanning various
subfields of physics and mathematics, including mechanics, thermodynamics, and electromagnetism.
Originally, the dataset contained 100,000 data points; however, for a more rigorous assessment of
ChatSR’s efficacy, our analysis was deliberately confined to a subset of 100 data points. Through the
application of ChatSR for symbol regression on these selected data points, we meticulously calculated
the R2 values to compare the algorithm’s predictions against the true solutions.

The empirical results from our investigation unequivocally affirm that ChatSR possesses an excep-
tional ability to discern the underlying mathematical expressions from a constrained sample size.
Notably, the R2 values achieved were above 0.99 for a predominant portion of the equations, under-
scoring the algorithm’s remarkable accuracy in fitting these expressions. These findings decisively
position ChatSR as a potent tool for addressing complex problems within the domains of physics and
mathematics. The broader implications of our study suggest that ChatSR holds considerable promise
for a wide range of applications across different fields. Detailed experimental results are presented in
Table 12 and Table 13.
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Feynman Equation R2

I.6.20a f = e−θ2/2/
√
2π 0.9989

I.6.20 f = e
− θ2

2σ2 /
√
2πσ2 0.9973

I.6.20b f = e
− (θ−θ1)2

2σ2 /
√
2πσ2 0.9421

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 0.9413
I.9.18 F = Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
0.9835

I.10.7 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

0.9724
I.11.19 A = x1y1 + x2y2 + x3y3 0.9891
I.12.1 F = µNn 0.9956
I.12.2 F = q1q2

4πϵr2
0.9999

I.12.4 Ef = q1
4πϵr2

0.9939
I.12.5 F = q2Ef 0.9999
I.12.11 F = Q(Ef +Bv sin θ) 0.9983
I.13.4 K = 1

2
m(v2 + u2 + w2) 0.9913

I.13.12 U = Gm1m2(
1
r2

− 1
r1
) 0.9859

I.14.3 U = mgz 1.0

I.14.4 U =
kspringx

2

2
0.9926

I.15.3x x1 = x−ut√
1−u2/c2

0.9828

I.15.3t t1 = t−ux/c2√
1−u2/c2

0.9732

I.15.10 p = m0v√
1−v2/c2

0.9810

I.16.6 v1 = u+v
1+uv/c2

0.9984
I.18.4 r = m1r1+m2r2

m1+m2
0.9818

I.18.12 τ = rF sin θ 0.9928
I.18.16 L = mrv sin θ 0.9993
I.24.6 E = 1

4
m(ω2 + ω2

0)x
2 0.9981

I.25.13 Ve = q
C

1.0
I.26.2 θ1 = arcsin(n sin θ2) 0.9992
I.27.6 ff = 1

1
d1

+ n
d2

0.9914

I.29.4 k = ω
c

1.0
I.29.16 x =

√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) 0.9827
I.30.3 I∗ = I∗0

sin2(nθ/2)

sin2(θ/2)
0.9937

I.30.5 θ = arcsin( λ
nd

) 0.9917
I.32.5 P = q2a2

6πϵc3
0.9933

I.32.17 P = ( 1
2
ϵcE2

f )(8πr
2/3)(ω4/(ω2 − ω2

0)
2) 0.991

I.34.8 ω = qvB
p

0.9999
I.34.10 ω = ω0

1−v/c
0.9913

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 0.9918

I.34.27 E = ℏω 0.9972
I.37.4 I∗ = I1 + I2 + 2

√
I1I2 cos δ 0.9827

I.38.12 r = 4πϵℏ2
mq2

0.9983
I.39.10 E = 3

2
pFV 0.9965

I.39.11 E = 1
γ−1

pFV 0.9792
I.39.22 PF = nkbT

V
0.9935

I.40.1 n = n0e
−mgx

kbT 0.9799
I.41.16 Lrad = ℏω3

π2c2(e
ℏω
kbT −1)

0.9983

I.43.16 v =
µdriftqVe

d
0.9981

I.43.31 D = µekbT 1.0
I.43.43 κ = 1

γ−1
kbv
A

0.9347
I.44.4 E = nkbT ln(V2

V1
) 0.9024

I.47.23 c =
√

γpr
ρ

0.9724

I.48.20 E = mc2√
1−v2/c2

0.8902

I.50.26 x = x1[cos(ωt) + α cos(ωt)2] 0.9999

Table 12: Tested Feynman Equations, part 1.
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Feynman Equation R2

II.2.42 P = κ(T2−T1)A
d

0.8824
II.3.24 FE = P

4πr2
0.9820

II.4.23 Ve = q
4πϵr

0.9888
II.6.11 Ve = 1

4πϵ
pd cos θ

r2
0.9837

II.6.15a Ef = 3
4πϵ

pdz
r5

√
x2 + y2 0.9235

II.6.15b Ef = 3
4πϵ

pd
r3

cos θ sin θ 0.9928
II.8.7 E = 3

5
q2

4πϵd
0.9827

II.8.31 Eden =
ϵE2

f

2
0.9999

II.10.9 Ef = σden
ϵ

1
1+χ

0.9933
II.11.3 x =

qEf

m(ω2
0−ω2)

0.9918

II.11.7 n = n0(1 +
pdEf cos θ

kbT
) 0.8927

II.11.20 P∗ =
nρp

2
dEf

3kbT
0.8355

II.11.27 P∗ = nα
1−nα/3

ϵEf 0.9925
II.11.28 θ = 1 + nα

1−(nα/3)
0.9992

II.13.17 B = 1
4πϵc2

2I
r

0.9993
II.13.23 ρc =

ρc0√
1−v2/c2

0.9902

II.13.34 j =
ρc0v√
1−v2/c2

0.9827

II.15.4 E = −µMB cos θ 0.9997
II.15.5 E = −pdEf cos θ 0.9973
II.21.32 Ve = q

4πϵr(1−v/c)
0.9910

II.24.17 k =
√

ω2

c2
− π2

d2
0.9837

II.27.16 FE = ϵcE2
f 0.9935

II.27.18 Eden = ϵE2
f 0.9972

II.34.2a I = qv
2πr

0.9980
II.34.2 µM = qvr

2
0.9903

II.34.11 ω = g_qB
2m

0.9937
II.34.29a µM = qh

4πm
0.9938

II.34.29b E = g_µMBJz

ℏ 0.9037
II.35.18 n = n0

exp(µmB/(kbT ))+exp(−µmB/(kbT ))
0.9738

II.35.21 M = nρµM tanh(µMB
kbT

) 0.8537
II.36.38 f = µmB

kbT
+ µmαM

ϵc2kbT
0.9928

II.37.1 E = µM (1 + χ)B 0.9999
II.38.3 F = Y Ax

d
0.9985

II.38.14 µS = Y
2(1+σ)

0.9988
III.4.32 n = 1

e
ℏω
kbT −1

0.9903

III.4.33 E = ℏω

e
ℏω
kbT −1

0.9984

III.7.38 ω = 2µMB
ℏ 0.9973

III.8.54 pγ = sin(Et
ℏ )2 0.9973

III.9.52 pγ =
pdEf t

ℏ
sin((ω−ω0)t/2)

2

((ω−ω0)t/2)2
0.8036

III.10.19 E = µM

√
B2

x +B2
y +B2

z 0.9935
III.12.43 L = nℏ 0.9999
III.13.18 v = 2Ed2k

ℏ 0.9935

III.14.14 I = I0(e
qVe
kbT − 1) 0.9927

III.15.12 E = 2U(1− cos(kd)) 0.9993
III.15.14 m = ℏ2

2Ed2
0.9927

III.15.27 k = 2πα
nd

0.9999
III.17.37 f = β(1 + α cos θ) 0.9938
III.19.51 E = −mq4

2(4πϵ)2ℏ2
1
n2 0.9974

III.21.20 j =
−ρc0qAvec

m
0.8668

Table 13: Tested Feynman Equations, part 2.
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