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Abstract

In this ever changing world, Large Language001
Models (LLMs) pose a major challenge on fre-002
quently retraining as they consume enormous003
resources. Direct knowledge editing emerged004
as an efficient alternative, where it locates a005
stale factual knowledge in the LLM’s layers006
and edits those layers’ weights in order for the007
LLM to generate new factual knowledge. We008
observed that MEMIT (Meng et al., 2023b),009
state-of-the art knowledge editing algorithm is010
not used at its full potential. In this paper, we011
empirically demonstrated the limitations of ex-012
ecuting only one single MEMIT update. We013
then proposed an intuitive and straightforward014
solution, Running MEMIT twice, and showed015
its effectiveness over two knowledge editing016
datasets compared to strong baselines. We con-017
ducted extensive analysis to understand the ef-018
fectiveness of our solution. In particular we019
analyzed multiple runs of MEMIT and found020
out the performance to plateaus at second run021
of MEMIT. To discern the reason we analyzed022
the gradients between each run and found neg-023
ligible change in gradients between second and024
third run of MEMIT.025

1 Introduction026

Large language models (LLMs) have been widely027

used as source of knowledge (Radford et al., 2019a;028

Brown et al., 2020; Wang and Komatsuzaki, 2021;029

Black et al., 2022; Petroni et al., 2020) to retrieve030

factual or specialized knowledge. However, knowl-031

edge can change, facts can become outdated. For032

example, Twitter re-branded to ’X’. So, it’s de-033

sirable in many application domains like content034

generation, question answering and knowledge re-035

trieval to have flexible models capable to adapting036

to these changes. Since re-training an LLM con-037

sumes a lot of resources (Patterson et al., 2021),038

knowledge editing has emerged as an efficient al-039

ternative to update the stale knowledge (Lazaridou040

et al., 2021; Agarwal and Nenkova, 2022; Liška 041

et al., 2022). 042

MEMIT (Meng et al., 2023b) stands as the one 043

of the most efficient knowledge editing technique 044

in literature (Meng et al., 2023a; Zhu et al., 2020; 045

Cao et al., 2021; Hase et al., 2021; Mitchell et al., 046

2022a,b). It can edit effectively thousands of 047

knowledge instances simultaneously in an LLM. 048

Given a factual knowledge tuple (s, r, o) with sub- 049

ject s, relation r, and object o, MEMIT views the 050

subject s as key and the object o as a value under 051

the relation r. MEMIT modifies the transformer 052

weights such that the edited model generates new 053

object o∗ instead of o given the (s, r) pair. Figure 1 054

shows an example. 055

MEMIT begins by identifying the relevant layers 056

(the green layers in Figure 1) that contribute the 057

most to the knowledge tuple (s, r, o) using causal 058

tracing (Pearl, 2013; Vig et al., 2020; Meng et al., 059

2023a). Then, the update process consists of two 060

stages. In Stage 1, the model learns a hidden vector 061

δ denoting the change at the final relevant layer 062

L through a standardized optimization method, in 063

order to generate the new token o∗ from the final 064

output layer. In Stage 2, the updated final relevant 065

layer L is spread across all relevant layers such 066

that each of them contributes roughly equally to 067

the final prediction. 068

While an advance over existing methods, 069

MEMIT still makes many errors in practice. We hy- 070

pothesize that the failed cases may be attributed to 071

the optimization process in Stage 1. Although the 072

last relevant layer L is one of the most important 073

layers for making the final prediction identified by 074

casual tracing, all parameters in the relevant lay- 075

ers contribute significantly to the prediction, too. 076

When MEMIT only optimizes vector δ at layer L, 077

all other layer parameters remain unchanged, thus 078

limiting the final loss landscape in predicting the 079

new token. 080

To validate our hypothesis, we pose the follow- 081
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Figure 1: Stages of MEMIT and MEMIT×2. The goal is to make the model generate ’Microsoft’ instead of ’Apple’
given the prompt - ’Steve Jobs founder of.’ Causal layers (indicated in green) are responsible for recalling facts and
are identified through causal tracing. MEMIT finds the updated value for the last causal layer and then spreads it
across all layers (shown with shades of yellow). MEMITx2 repeats this process again.

ing research questions. RQ1: Is it true that the082

optimization failure is due to constrained loss land-083

scape and that it is not because of an insufficient084

training of the optimization algorithm? RQ2: What085

if we update the other relevant layers and then uti-086

lize the optimization algorithm to find a new update087

value, i.e run MEMIT twice? RQ3: How many088

time do we need the updates? Is it true that, the089

more, the better? To address these questions, we090

performed extensive experiments and analysis on a091

hard knowledge editing subset, i.e MEMIT failed092

to edit these examples.093

We first show that extending the optimization094

steps to find δ does not result in edit success but095

sometimes leads to diminished model performance.096

We then illustrate that simply running MEMIT097

again, i.e., updating model parameters in the other098

relevant layers followed by another optimization099

step to find the new δ value, yields significant gain.100

We also illustrated that twice is enough; the perfor-101

mance plateaus after the second update, indicating102

the importance of the relevant layers. Only updat-103

ing the relevant layers without updating any other104

layers yields almost 100% edit successes. Addi-105

tionally, we intuitively demonstrate the update gra-106

dient difference between MEMIT, MEMIT×2, and107

MEMIT×3. This confirms the importance of the108

second update in guiding δ in a different but correct109

direction. Finally, we report a more comprehensive110

results table using two models on two datasets, and111

show significant performance improvement when112

running MEMIT twice as opposed to just once. 113

2 Background 114

MEMIT performs edits on a given model. Specifi- 115

cally, the method takes an input prompt x consist- 116

ing of the concatenation of the subject s and verb 117

v and directly edits the model parameters such that 118

the model predicts the new object o∗ instead of the 119

previous object o as the prediction y. 120

To achieve this, MEMIT identifies the model 121

layers responsible for knowledge prediction using 122

causal tracing (Pearl, 2013; Vig et al., 2020; Meng 123

et al., 2023a). These layers are viewed as the crit- 124

ical layers in predicting the object token given s 125

and v. We briefly describe the intuition of casual 126

tracing, please refer to Meng et al. (2023b) for 127

more details. If the model input is noisy, the output 128

should also be noisy. The substitution of any layer 129

value in the noise network produces the original 130

output; the layer plays a crucial role, and the layers 131

are considered responsible for the original output. 132

MEMIT selects the layer L with the most signifi- 133

cant impact on the final output layer and includes 134

its four preceding layers as the critical causal layer, 135

L− 1 to L− 4. 136

MEMIT then performs parameter updates on 137

these layers. The update process includes two 138

stages. In the first stage, the method aims to find 139

the update needed for the final casual layer L, rep- 140

resented by z. The calculation of z is shown below: 141
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z = hL + argminδ
1

N

N∑
i=1

−logP(o∗|xi ⊕ (s, r))142

where hL is the hidden value of layer L, δ is143

optimized to generate the desired object o∗ given144

N prompts, the prompts are the concatenation145

of random factual prefixes xi and the knowledge146

prompt s and r. The optimization is done via147

Adam (Kingma and Ba, 2014).148

In the second stage, MEMIT spreads the learned149

z vector across all causal layers. The method as-150

sumes the last causal layer contributes the most,151

and the contribution decreases as we go to the pre-152

ceding layers. The spread is done proportionately153

relative to the distance from the layer L. This im-154

plies that the furthest causal layer gets the lowest155

weight update. We follow the exact update equa-156

tions as MEMIT (Meng et al., 2023b).157

3 Experiments158

The two-stage update in MEMIT has its limita-159

tions, resulting in imperfect editing outcomes. We160

hypothesize that the one of the main causes of the161

failed cases is attributed to the optimization pro-162

cess in the first stage. A typical optimization failure163

could be a lack of training time. We thus investi-164

gated whether the update was terminated prema-165

turely. To address RQ1, we design our experiments166

by adjusting MEMIT’s final step to various values.167

We expect to see an improvement in edit success if168

this is the cause of the failed cases. If running time169

is not the cause of the failed case, this indicates that170

gradient descent algorithms were unable to find the171

optimal σ that results in the new object o∗ in the172

final layer. Our second RQ2 studies if changing the173

optimization loss landscape by updating the other174

model parameters helps. To answer RQ2, we made175

two changes to the typical MEMIT running. Firstly,176

instead of executing MEMIT a single time, we ran177

it twice with two updates. Secondly, we maintained178

the number of gradient steps consistent with the179

default value (i.e., 20) during the second update.180

This aims to study the update effects independent181

of the number of gradient steps used.182

Datasets Similar to Meng et al. (2023b), we per-183

formed our experiments on COUNTERFACT (Meng184

et al., 2023a) and zsRE (Levy et al., 2017) datasets.185

Both consists of ~20k factual knowledge. In partic-186

ular, COUNTERFACT consists of factual statements187

which are converted to counterfactual, whereas 188

zsRE is an question-answering dataset from which 189

real-world facts are extracted (please refer to Meng 190

et al. (2023b) for more details). So, the former 191

test’s MEMIT’s ability to add counterfactual infor- 192

mation and the later test’s the ability to add correct 193

information. 194

LLMs We run our experiments on three auto re- 195

gressive LLMs: GPT-2 L (774M parameter; Rad- 196

ford et al. (2019b)), GPT-2 XL (1.5B parameters; 197

Radford et al. (2019b)) and GPT-J (6B parame- 198

ters; Wang and Komatsuzaki (2021)). We used the 199

same hyper-parameters and causal layers reported 200

by Meng et al. (2023b). Although, during certain 201

experiments we varied the gradient steps, discussed 202

in later sections. See Appendix A for resource and 203

computation details. 204

Evaluation We used the same evaluation metrics 205

as MEMIT - Efficacy, Generalization, and Speci- 206

ficity. Efficacy measures the success of knowledge 207

rewrite, i.e., the edited model should output “Mi- 208

crosoft” for the example in Figure 1. Generaliza- 209

tion measures if the edit is superficial and overfitted 210

by testing the edited model on paraphrases where 211

the output should also be changed. On the other 212

hand, specificity measures the neighboring knowl- 213

edge that should not be changed. 214

For each of these three metrics, we report two 215

evaluation numbers – success and accuracy. To be 216

specific, success gauges the relative score between 217

the new target o∗ and the previous target o. Effi- 218

cacy success means the score of o∗ surpasses that 219

of o. Conversely, specificity success is true when 220

the reverse is observed. Accuracy, however, is a 221

more stringent measure. Accuracy is true when 222

o∗ emerges as the top-1 prediction given (s, r) for 223

both efficacy and generalization, while for speci- 224

ficity, o remains the top-1 generation. To provide a 225

comprehensive evaluation, we report the harmonic 226

mean of the three metrics: efficacy, generalization, 227

and specificity, thereby encapsulating all relevant 228

information into a singular score, resulting in SUC- 229

CESS SCORE and ACCURACY SCORE. 230

4 RQ1: More gradient descent steps does 231

not help 232

To measure the significance of gradient steps (used 233

in stage-1) in MEMIT’s performance we evaluated 234

the edited model at multiple step values, by in- 235

creasing the steps by 5 from 20 (default setting in 236
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Figure 2: MEMIT vs MEMIT×2. We aim to examine the significance of optimization steps in MEMIT’s stage
1. We plot the evaluation results on HARD EDIT SET for gradient steps from 20 to 50. Circle (◦) lines represent
MEMIT. We also aim to compare MEMIT and MEMIT×2, so we also plot the evaluations results for MEMIT×2
on HARD EDIT SET, represented with triangle (∆) line.

MEMIT) to 501.237

4.1 Experiment238

We perform this experiment on COUNTERFACT239

dataset with GPT-2 XL. We choose the causal lay-240

ers for GPT-2 XL reported by Meng et al. (2023b)241

to perform the edit. We randomly sample 1000 ex-242

amples from this dataset due to the time complexity243

in running these experiments, denoted as SAMPLE244

SET.245

We first run and evaluate MEMIT on SAMPLE246

SET with default number of gradient steps (20).247

This results in a collections of examples for which248

MEMIT failed to edit (evaluated by EFFICACY AC-249

CURACY). We report the evaluation results (should250

be 0) on this subset. We call this a HARD EDIT SET.251

By extracting this subset, we are able to magnify252

the performance changes on these hard examples.253

Then we run and evaluate MEMIT on an un-edited254

model with SAMPLE SET again, however, increase255

the number of gradient steps by 5. Same as be-256

fore, we report results on HARD EDIT SET. We257

gradually increase the gradient steps on un-edited258

models until it reached 50.259

We acknowledged that the failed instances may260

vary between different MEMIT runs. However,261

the set of failed instances for lower gradient steps262

is likely to include examples with more gradient263

updates. So we report results on HARD EDIT SET264

extracted from the first run.265

4.2 Analysis266

The results are illustrated as circle (◦) lines in Fig-267

ure 2. We delineate the pattern of efficacy, general-268

ization, specification, and average success/accuracy269

1We did not see much performance change so we stopped
at step 50.

measure as the number of gradient steps increased. 270

The overall success/accuracy revealed that increas- 271

ing the number of gradient steps adversely af- 272

fects MEMIT’s performance, especially SUCCESS 273

SCORE. 274

Looking at the individual metrics, both efficacy 275

and generalization performance show a downward 276

trend. The EFFICACY ACCURACY starts at 0% by 277

experimental design. It increases marginally at 25 278

gradient steps then starts decreasing and remains 279

stagnant around lower single-digit % values. The 280

EFFICACY SUCCESS and GENERALIZATION SUC- 281

CESS showed a much bigger drop. Both metrics 282

initiated around 50%, followed by a much bigger 283

performance drop after a small increase at 25 steps. 284

This could happen when the number of examples 285

that achieved success but not accuracy at gradient 286

step 20 decreases. Further optimization of δ results 287

in a lower probability of o∗ compared to o. We 288

think that the decline in performance is attributable 289

to the gradient deviating from the minima, indicat- 290

ing that MEMIT did not terminate early. 291

The specificity performance shows a slight in- 292

crease in success. This could be caused by the “un- 293

dercorrecting” behavior of the model. In instances 294

where the model is unable to effectively edit the 295

original example, it tends to retain the same predic- 296

tion for neighboring knowledge elements due to the 297

similarity in their representations. However, when 298

assessing the overall performance, it is evident that 299

increasing the number of steps does not positively 300

impact the HARD EDIT SET. 301

5 RQ2: Run MEMIT again is effective 302

The optimization problem of finding the updated 303

value of δ for the final relevant layer L to maxi- 304

mize the probability of the target o∗ is in stage 1 305
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Model GPT 2 XL GPT 2 L GPT J

Metric ROME MEMIT MEMIT×2 ROME MEMIT MEMIT×2 ROME MEMIT MEMIT×2

Efficacy success 66.8 94.2 99.5 (+5.3) 49.7 86.3 99.3 (+13) 55.2 98.7 99.9 (+1.2)
Efficacy accuracy 31.0 88.3 98.1 (+9.8) 0.4 78.7 97.6 (+18.9) 6.8 97.9 99.1 (+1.2)

Generalization success 64.75 88.35 97.55 (+9.2) 49.4 78.25 96.85 (+18.6) 53.65 92.15 98.45 (+6.3)
Generalization accuracy 27.2 72.95 90.3 (+17.35) 0.45 60.85 88.8 (+27.95) 8.4 83.4 92.0 (+8.6)

Specificity success 51.33 63.56 59.4 (-4.16) 50.29 70.41 60.89 (-9.52) 55.0 74.74 66.38 (-8.36)
Specificity accuracy 8.81 17.21 14.37 (-2.84) 0.22 21.44 14.32 (-7.12) 2.66 27.0 23.2 (-3.8)

Score success 60.12 79.64 80.78 (+1.14) 49.79 77.78 81.48 (+3.7) 54.60 87.30 85.14 (-2.16)
Score accuracy 16.43 36.08 33.01 (-3.07) 0.32 39.58 32.84 (-6.7) 4.67 50.63 46.82 (-3.81)

Table 1: Result of multiple runs of MEMIT on COUNTERFACT (1000 Examples)

Model GPT 2 XL GPT 2 L GPT J

Metric ROME MEMIT MEMIT×2 ROME MEMIT MEMIT×2 ROME MEMIT MEMIT×2

Efficacy acc 61.11 79.6 98.59 (+18.99) 77.58 66.11 96.02 (+29.91) 88.05 99.4 99.78 (+0.38)
Generalization acc 54.01 72.96 94.03 (+21.07) 76.6 60.37 91.26 (+30.89) 83.64 94.37 97.56 (+3.19)

Specificity acc 22.47 25.96 25.2 (-0.76) 18.75 23.89 24.25 (+0.36) 24.5 28.32 28.13 (-0.19)

Score acc 37.79 46.30 49.61 (+3.31) 37.84 40.78 47.91 (+7.31) 46.78 53.60 53.74 (+0.14)

Table 2: Result of multiple runs of MEMIT on zsRE (1000 Examples). Similar to Meng et al. (2023b) we report
accuracy values.

of MEMIT. The learning takes place when all the306

relevant layers are fixed in the model. However,307

all relevant layers should make a significant con-308

tribution to the final prediction according to causal309

tracing. This motivates us to spread the changes310

across layers (stage 2 of MEMIT) and then find311

the optimal value δ∗ again (stage 1 of MEMIT), as312

depicted in Figure 1. This is essentially, running313

MEMIT twice, i.e two updates.314

5.1 Experiment315

We follow a similar experimental setup outlined in316

subsection 4.1 with one modification. The modifi-317

cation is that we ran MEMIT for two updates in-318

stead of one. To achieve this, the updated weights319

learned from the first update were saved and used320

as the initial parameters for the second update. To321

study the implications of conducting two MEMIT322

updates, we only vary the number of gradient steps323

during the first update (same as subsection 4.1),324

while the number of gradient steps in the second325

update was fixed at the default value of 20.326

5.2 Analysis327

Figure 2 shows the results of MEMIT×2 as lines328

with triangle marker. When comparing MEMIT329

and MEMIT×2, a notable observation is that both330

the success score and accuracy score of MEMIT×2331

significantly surpass those of MEMIT, regardless332

of the gradient update steps. Furthermore, some333

individual categories reveal a comparable improve-334

ment, specifically, in efficacy and generalization 335

for both success and accuracy measures. However, 336

a drop is observed in the specificity performance. 337

We hypothesize that MEMIT×2 "overcorrected" 338

the output. Due to the representation similarity be- 339

tween neighbors, the model generates the new ob- 340

ject o∗ instead of the original object o even for the 341

neighbor prompts. Nonetheless, the gains achieved 342

in other metrics markedly outweigh the drop in 343

specificity, leading to an overall score improvement 344

in comparison to MEMIT. 345

The second observation is that the number of 346

gradient steps is irrelevant in terms of the overall 347

score for MEMIT×2, the overall score remains 348

relatively flat. The same is true for the individ- 349

ual categories. It was interesting to observe the 350

change in relationships between the number of gra- 351

dient steps, with MEMIT and MEMIT×2. The 352

SUCCESS SCORE decreased as the gradient step 353

increased in MEMIT, while SUCCESS SCORE re- 354

mains unchanged in MEMIT×2. This observation 355

also suggests that spreading the updates from stage 356

1 facilitates the optimization problem of finding the 357

updated value for the prediction of the new object. 358

5.3 Additional Quantative Results 359

To strengthen our findings and generalize the re- 360

sults we evaluated MEMIT and MEMIT×2 on two 361

benchmark datasets COUNTERFACT and zsRE and 362

used GPT-2 L, GTP-2 XL and GPT-J LLMs. We 363

also compared our results with strong baseline in- 364
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Figure 3: Performance trend through multiple updates of MEMIT

cluding ROME (Meng et al., 2023a) and MEMIT.365

The results for COUNTERFACT are shown in Table366

1 and for zsRE in Table 2.367

It can be observed from Table 1 and Table 2 that368

there’s a significant increase in efficacy and gener-369

alization for both success and accuracy measures.370

The gain for COUNTERFACT and zsRE in percent-371

age points for both GPT-2 L and GPT-2 XL is huge372

ranging from 5 to as high as 30 points.373

As expected, we observed a drop in specificity374

across the board, with GPT-2 L on zsRE being an375

exception (see Table 2). The drop in percentage376

points is less compared to gains achieved in efficacy377

and generalization. This drop didn’t negatively ef-378

fect SUCCESS SCORE and ACCURACY SCORE for379

COUNTERFACT and zsRE, respectively. However,380

do negatively effect on ACCURACY SCORE for381

COUNTERFACT.382

In case of GPT J, the gain is not as significant383

as compared to other two models because the mar-384

gin for improvement is very small in GPT J from385

MEMIT to MEMIT×2. Due to this lower improve-386

ment margin, there’s more negative effect on the387

overall score for the COUNTERFACT.388

To summarize, MEMIT×2 give significant boost389

to efficacy and generalization performance across390

success and accuracy measures. This proves our hy-391

pothesis that re-optimization (stage 1) after spread-392

ing initial δ to relevant layers (stage 2) will result in393

better loss landscape, in turn finding a better δ and394

improving MEMIT’s performance. However speci-395

ficity do take a slight hit which we hypothesize is396

due to "overcorrected" output.397

6 RQ3: Performance plateaus with398

multiple MEMIT runs399

Since, our analysis of RQ2 made it clear that run-400

ning MEMIT for two updates improves the per-401

formance, The next question is how many updates402

are required? What is the relationship between 403

the number of updates and the performance? To 404

address RQ3 we ran MEMIT for multiple updates. 405

6.1 MEMIT×n 406

Experiments To accomplish this goal, we con- 407

ducted an experiment by frequently updating the 408

model through multiple iterations of MEMIT. We 409

reduced the number of gradient steps in stage 1 410

allowing us to run stage 2 more frequently. With 411

this experiment we want to analyse the chance in 412

MEMIT’s performance wrt to number of updates. 413

To conduct this experiment, we used the same ex- 414

perimental setup described in subsection 4.1, i.e all 415

results are reported on HARD EDIT SET, and edits 416

are done on SAMPLE SET. However, instead of 417

starting from an unedited model at every step inter- 418

val we started with an edited model of the previous 419

step interval. So, after every 5 steps of gradient 420

descent in stage 1 the model is updated through 421

parameter spreading, i.e stage 2. Update n always 422

displays results of a MEMIT run with five gradi- 423

ent steps in the first stage, and this MEMIT run is 424

editing the model from update n− 1. 425

It is important to emphasize that this edited 426

model at “Update 1” (Fig. 3) is different from 427

that used at step 25 (Fig. 2) while addressing RQ1. 428

“Update 1” edited on the “Update 0” model, while 429

step 25 edited on the original model. 430

Analysis Fig. 3 shows the experiment results, 431

looking at SUCCESS SCORE and ACCURACY 432

SCORE, there is a huge jump from update 0 to up- 433

date 1, indicating the effectiveness of MEMIT×2, 434

the performance starts to platues after update 1. 435

Looking closer, we saw a continuous subtle im- 436

provements in ACCURACY SCORE, EFFICACY AC- 437

CURACY, and GENERALIZATION ACCURACY. Re- 438

call that it’s easier to achieve success before accu- 439

racy as the former requires the LLM probability of 440
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new object (o∗) to be greater than the old object441

(o). Whereas in later the same probability has to442

be maximum across the vocabulary given (s, r),443

which is harder to achieve than the former. So intu-444

itively, model reached success bar, and continues445

to increase the desired object project, resulting in a446

slow increase in accuracy.447

In case of specificity, as expected, we saw a re-448

verse trend compared to the other two metrics, as449

show in Fig. 3. We observed sharp decrease for450

first update then slight improvement in the second451

a then a plateau for the rest. Both success and accu-452

racy metric followed the same trend. An interesting453

thing to notice was that the decrease in specificity454

performance is way less compared to the increase455

in efficacy and generalization performance. So456

with small sacrifice of specificity performance, we457

achieve a bigger boost in the efficacy and general-458

ization performance (shown in Table 1 and Table459

2).460

These results in general shows the strong effec-461

tiveness of MEMIT×2, and limited effectiveness462

of ×n where n > 2.463
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Figure 4: Gradient Analysis. We aim to analyze the
difference between the gradients of multiple updates of
MEMIT. We plot 2 principle components for last four
gradients of 1st and all gradients of 2nd and 3rd update.
Since the gradients are very close (blue region) we also
plot its zoomed view. The first gradient of MEMIT×2
is very different from all the other points indicating its
importance in finding the optimal value.

6.2 PCA analysis of the update gradient464

Experiments In intuitively understand the cause465

of the effectiveness of MEMIT×2, we check the466

gradients values in steps 1 update. We hypothe-467

size that MEMIT×2 direction of gradient is dif-468

ferent from MEMIT but is similar to MEMIT×3.469

It can also be understood as the change in gradi- 470

ent is big between MEMIT and MEMT×2. How- 471

ever, the change in gradient is negligible between 472

MEMIT×2 and MEMIT×3. 473

To test our hypothesis we ran MEMIT for multi- 474

ple consecutive updates and compared the gradients 475

in each update. Here each update was performed on 476

top of previous update. In particular we ran three 477

updates on GPT2-XL with the same random sam- 478

ple to 1000 examples of COUNTERFACT dataset - 479

SAMPLE SET. Number of gradient steps was set 480

to 20 for all three updates. During each update, we 481

collected the gradient for all 20 steps of stage 1. We 482

wanted to plot these gradients together for analysis. 483

Since, the gradients were high dimensional, we ap- 484

plied PCA to extract out two principle components. 485

We plot these two principle components in the 2D 486

space as shown in Fig. 4. In particular, we plot the 487

last four gradients for first update, represented with 488

orange color, and all gradients for the second and 489

third update represented with green and red color 490

respectively. 491

Analysis We analyzed the relative positioning of 492

the gradients for the three updates and found out 493

that initial gradient for 2nd update (bottom right 494

green point) is far from the final gradient of the 495

1st update (top left orange points). This shows 496

that second gradient update provides a different 497

direction then the end of the first one, indicating 498

its important in finding the optimal update value. 499

Whereas, analyzing the relative positioning of all 500

gradients of second update (except first) and third 501

update, we found negligible scope for optimization. 502

This finding is evident in Fig. 3 where all green 503

and red points are gathered in the top left area of 504

the plot overlapping each other very close to the 505

(0, 0) co-ordinate suggesting the gradients are not 506

changing. 507

This analysis proved our hypothesis that 508

change in gradient is big between MEMIT and 509

MEMT×2, but is negligible between MEMIT×2 510

and MEMIT×3. Which in turn established running 511

MEMIT×2 as optimal because after that there is 512

negligible scope for improvement. 513

7 Related Work 514

Large language models (LLMs) require constant 515

updates to adapt to the ever-changing world. A 516

straightforward approach to updating an LLM’s 517

knowledge is through fine-tuning. However, fine- 518

tuning lacks precision, as it does not allow for spe- 519
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cific control over the internal changes within the520

model, resulting in “overcorrecting” (Meng et al.,521

2023b).522

A set of work uses a meta-learner to guide523

the knowledge editing. This area of study en-524

compasses various approaches. One approach525

suggests a new training objective, making the526

model easy to edit (Sinitsin et al., 2020). Other527

works focus on model update values. Cao et al.528

(2021) use a Knowledge Editor (KE) hypernet-529

work to predict the necessary model updat, while530

MEND (Mitchell et al., 2022a), uses the gradients531

of inserted knowledge to predict the model update.532

Finally, SERAC (Mitchell et al., 2022b) adopts a533

gradient-free approach, caching the new knowledge534

in an additional memory rather than updating the535

model directly.536

Different from all the above methods, MEMIT537

(Meng et al., 2023b) directly modifies the model538

weights to incorporate new knowledge. Similar to539

ROME (Meng et al., 2023a), MEMIT employs the540

localize-and-edit approach (described in Section 2).541

While ROME updates the weights of a single local-542

ized layer, MEMIT updates the weights across a543

range of localized layers. Furthermore, MEMIT ex-544

hibits high scalability, making it the most efficient545

among all prior works. Our work improves the546

effectiveness of MEMIT even more via a “simple547

trick”.548

8 Conclusion549

In this work, we present an intuitive and straightfor-550

ward approach to increase MEMIT’s performance,551

just by ruining it twice denoted at MEMIT×2. To552

understand the effectiveness of MEMIT×2, we553

poses three research questions and answered them554

by intuitive, yet extensive analysis. Our work555

demonstrate the effectiveness of MEMIT×2, mak-556

ing knowledge editing a more desirable tool for557

future usage.558

9 Limitations559

MEMIT, as discussed by Meng et al. (2023b), faces560

its own challenges while editing knowledge with561

certain relations. The experimentation is also lim-562

ited to knowledge editting, however, achieves best563

performance in terms of Efficacy, Generalization,564

and Specificity with scaling to thousands of knowl-565

edge edits, compared to related works.566

We propose a simple approach to improve567

MEMIT’s performance i.e. running it twice. This568

solution provides a significant performance boost 569

in terms of Efficacy and Generalization, however, it 570

comes with a small toll on Specificity. We were not 571

able to isolate this side effect, which opens a new 572

research direction for further investigation. One 573

plausible approach could be introducing an addi- 574

tional loss so that neighbourhood knowledge didn’t 575

change. 576

We were also limited by compute resources 577

which translated to our choices of using a subset 578

of the datasets for our experimentation. However, 579

we have chosen an adequate size to showcase and 580

validate our findings. 581
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A Experimental details 689

We used a single NVIDIA A100 (40 GB) GPU 690

for running experiments on GPT-2 L and GPT-2 691

XL and a single NVIDIA A100 (80 GB) GPU for 692

running experiments on GPT-J. Although size of 693

GPT-J is around 24 GB, but 40 GB GPU is not suf- 694

ficient even for 1000 examples. The reason behind 695

such high memory requirement is due to calcula- 696

tion of new vectors for each example. We did con- 697

duct experiment on entire dataset of ~20k examples 698

and report that 40 GB and 80 GB GPU memory 699

sufficient for GPT-2 L, GPT-2 XL and GPT-J, re- 700

spectively. In terms of time, single experiment on 701

1000 examples of COUNTERFACT or zsRE, with 702

default number of gradient steps, GT-2 XL took 703

3-4 hrs whereas GPT-J took an entire day. I/O op- 704

eration consume most time during the experiments, 705

so time will vary based on entire system hardware. 706

GPT-2 L takes comparative less time than GPT-2 707

XL. 708
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