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Abstract

In this ever changing world, Large Language
Models (LLMs) pose a major challenge on fre-
quently retraining as they consume enormous
resources. Direct knowledge editing emerged
as an efficient alternative, where it locates a
stale factual knowledge in the LLM’s layers
and edits those layers’ weights in order for the
LLM to generate new factual knowledge. We
observed that MEMIT (Meng et al., 2023b),
state-of-the art knowledge editing algorithm is
not used at its full potential. In this paper, we
empirically demonstrated the limitations of ex-
ecuting only one single MEMIT update. We
then proposed an intuitive and straightforward
solution, Running MEMIT twice, and showed
its effectiveness over two knowledge editing
datasets compared to strong baselines. We con-
ducted extensive analysis to understand the ef-
fectiveness of our solution. In particular we
analyzed multiple runs of MEMIT and found
out the performance to plateaus at second run
of MEMIT. To discern the reason we analyzed
the gradients between each run and found neg-
ligible change in gradients between second and
third run of MEMIT.

1 Introduction

Large language models (LLMs) have been widely
used as source of knowledge (Radford et al., 2019a;
Brown et al., 2020; Wang and Komatsuzaki, 2021;
Black et al., 2022; Petroni et al., 2020) to retrieve
factual or specialized knowledge. However, knowl-
edge can change, facts can become outdated. For
example, Twitter re-branded to *X’. So, it’s de-
sirable in many application domains like content
generation, question answering and knowledge re-
trieval to have flexible models capable to adapting
to these changes. Since re-training an LLM con-
sumes a lot of resources (Patterson et al., 2021),
knowledge editing has emerged as an efficient al-
ternative to update the stale knowledge (Lazaridou

et al., 2021; Agarwal and Nenkova, 2022; LiSka
et al., 2022).

MEMIT (Meng et al., 2023b) stands as the one
of the most efficient knowledge editing technique
in literature (Meng et al., 2023a; Zhu et al., 2020;
Cao et al., 2021; Hase et al., 2021; Mitchell et al.,
2022a,b). It can edit effectively thousands of
knowledge instances simultaneously in an LLM.
Given a factual knowledge tuple (s, r, 0) with sub-
ject s, relation 7, and object o, MEMIT views the
subject s as key and the object o as a value under
the relation . MEMIT modifies the transformer
weights such that the edited model generates new
object o* instead of o given the (s, r) pair. Figure 1
shows an example.

MEMIT begins by identifying the relevant layers
(the green layers in Figure 1) that contribute the
most to the knowledge tuple (s, r, 0) using causal
tracing (Pearl, 2013; Vig et al., 2020; Meng et al.,
2023a). Then, the update process consists of two
stages. In Stage 1, the model learns a hidden vector
6 denoting the change at the final relevant layer
L through a standardized optimization method, in
order to generate the new token o* from the final
output layer. In Stage 2, the updated final relevant
layer L is spread across all relevant layers such
that each of them contributes roughly equally to
the final prediction.

While an advance over existing methods,
MEMIT still makes many errors in practice. We hy-
pothesize that the failed cases may be attributed to
the optimization process in Stage 1. Although the
last relevant layer L is one of the most important
layers for making the final prediction identified by
casual tracing, all parameters in the relevant lay-
ers contribute significantly to the prediction, too.
When MEMIT only optimizes vector § at layer L,
all other layer parameters remain unchanged, thus
limiting the final loss landscape in predicting the
new token.

To validate our hypothesis, we pose the follow-
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Figure 1: Stages of MEMIT and MEMIT x 2. The goal is to make the model generate *Microsoft’ instead of *Apple’
given the prompt - ’Steve Jobs founder of.” Causal layers (indicated in green) are responsible for recalling facts and
are identified through causal tracing. MEMIT finds the updated value for the last causal layer and then spreads it
across all layers (shown with shades of yellow). MEMITx2 repeats this process again.

ing research questions. RQ1: Is it true that the
optimization failure is due to constrained loss land-
scape and that it is not because of an insufficient
training of the optimization algorithm? RQ2: What
if we update the other relevant layers and then uti-
lize the optimization algorithm to find a new update
value, i.e run MEMIT twice? RQ3: How many
time do we need the updates? Is it true that, the
more, the better? To address these questions, we
performed extensive experiments and analysis on a
hard knowledge editing subset, i.e MEMIT failed
to edit these examples.

We first show that extending the optimization
steps to find J does not result in edit success but
sometimes leads to diminished model performance.
We then illustrate that simply running MEMIT
again, i.e., updating model parameters in the other
relevant layers followed by another optimization
step to find the new § value, yields significant gain.
We also illustrated that twice is enough; the perfor-
mance plateaus after the second update, indicating
the importance of the relevant layers. Only updat-
ing the relevant layers without updating any other
layers yields almost 100% edit successes. Addi-
tionally, we intuitively demonstrate the update gra-
dient difference between MEMIT, MEMIT x 2, and
MEMIT x 3. This confirms the importance of the
second update in guiding ¢ in a different but correct
direction. Finally, we report a more comprehensive
results table using two models on two datasets, and
show significant performance improvement when

running MEMIT twice as opposed to just once.

2 Background

MEMIT performs edits on a given model. Specifi-
cally, the method takes an input prompt x consist-
ing of the concatenation of the subject s and verb
v and directly edits the model parameters such that
the model predicts the new object o* instead of the
previous object o as the prediction y.

To achieve this, MEMIT identifies the model
layers responsible for knowledge prediction using
causal tracing (Pearl, 2013; Vig et al., 2020; Meng
et al., 2023a). These layers are viewed as the crit-
ical layers in predicting the object token given s
and v. We briefly describe the intuition of casual
tracing, please refer to Meng et al. (2023b) for
more details. If the model input is noisy, the output
should also be noisy. The substitution of any layer
value in the noise network produces the original
output; the layer plays a crucial role, and the layers
are considered responsible for the original output.
MEMIT selects the layer L with the most signifi-
cant impact on the final output layer and includes
its four preceding layers as the critical causal layer,
L—1to L —4.

MEMIT then performs parameter updates on
these layers. The update process includes two
stages. In the first stage, the method aims to find
the update needed for the final casual layer L, rep-
resented by z. The calculation of z is shown below:
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where h” is the hidden value of layer L, ¢ is
optimized to generate the desired object o* given
N prompts, the prompts are the concatenation
of random factual prefixes x; and the knowledge
prompt s and r. The optimization is done via
Adam (Kingma and Ba, 2014).

In the second stage, MEMIT spreads the learned
z vector across all causal layers. The method as-
sumes the last causal layer contributes the most,
and the contribution decreases as we go to the pre-
ceding layers. The spread is done proportionately
relative to the distance from the layer L. This im-
plies that the furthest causal layer gets the lowest
weight update. We follow the exact update equa-
tions as MEMIT (Meng et al., 2023b).

3 Experiments

The two-stage update in MEMIT has its limita-
tions, resulting in imperfect editing outcomes. We
hypothesize that the one of the main causes of the
failed cases is attributed to the optimization pro-
cess in the first stage. A typical optimization failure
could be a lack of training time. We thus investi-
gated whether the update was terminated prema-
turely. To address RQ1, we design our experiments
by adjusting MEMIT’s final step to various values.
We expect to see an improvement in edit success if
this is the cause of the failed cases. If running time
is not the cause of the failed case, this indicates that
gradient descent algorithms were unable to find the
optimal o that results in the new object o* in the
final layer. Our second RQ2 studies if changing the
optimization loss landscape by updating the other
model parameters helps. To answer RQ2, we made
two changes to the typical MEMIT running. Firstly,
instead of executing MEMIT a single time, we ran
it twice with two updates. Secondly, we maintained
the number of gradient steps consistent with the
default value (i.e., 20) during the second update.
This aims to study the update effects independent
of the number of gradient steps used.

Datasets Similar to Meng et al. (2023b), we per-
formed our experiments on COUNTERFACT (Meng
et al., 2023a) and zsRE (Levy et al., 2017) datasets.
Both consists of ~20k factual knowledge. In partic-
ular, COUNTERFACT consists of factual statements

which are converted to counterfactual, whereas
zsRE is an question-answering dataset from which
real-world facts are extracted (please refer to Meng
et al. (2023b) for more details). So, the former
test’s MEMIT’s ability to add counterfactual infor-
mation and the later test’s the ability to add correct
information.

LLMs We run our experiments on three auto re-
gressive LLMs: GPT-2 L (774M parameter; Rad-
ford et al. (2019b)), GPT-2 XL (1.5B parameters;
Radford et al. (2019b)) and GPT-J (6B parame-
ters; Wang and Komatsuzaki (2021)). We used the
same hyper-parameters and causal layers reported
by Meng et al. (2023b). Although, during certain
experiments we varied the gradient steps, discussed
in later sections. See Appendix A for resource and
computation details.

Evaluation We used the same evaluation metrics
as MEMIT - Efficacy, Generalization, and Speci-
ficity. Efficacy measures the success of knowledge
rewrite, i.e., the edited model should output “Mi-
crosoft” for the example in Figure 1. Generaliza-
tion measures if the edit is superficial and overfitted
by testing the edited model on paraphrases where
the output should also be changed. On the other
hand, specificity measures the neighboring knowl-
edge that should not be changed.

For each of these three metrics, we report two
evaluation numbers — success and accuracy. To be
specific, success gauges the relative score between
the new target o* and the previous target o. Effi-
cacy success means the score of 0™ surpasses that
of 0. Conversely, specificity success is true when
the reverse is observed. Accuracy, however, is a
more stringent measure. Accuracy is true when
o* emerges as the top-1 prediction given (s, r) for
both efficacy and generalization, while for speci-
ficity, o remains the top-1 generation. To provide a
comprehensive evaluation, we report the harmonic
mean of the three metrics: efficacy, generalization,
and specificity, thereby encapsulating all relevant
information into a singular score, resulting in SUC-
CESS SCORE and ACCURACY SCORE.

4 RQI1: More gradient descent steps does
not help

To measure the significance of gradient steps (used
in stage-1) in MEMIT’s performance we evaluated
the edited model at multiple step values, by in-
creasing the steps by 5 from 20 (default setting in
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Figure 2: MEMIT vs MEMIT x2. We aim to examine the significance of optimization steps in MEMIT’s stage
1. We plot the evaluation results on HARD EDIT SET for gradient steps from 20 to 50. Circle (o) lines represent
MEMIT. We also aim to compare MEMIT and MEMIT x 2, so we also plot the evaluations results for MEMIT x 2

on HARD EDIT SET, represented with triangle (A) line.

MEMIT) to 50'.

4.1 Experiment

We perform this experiment on COUNTERFACT
dataset with GPT-2 XL.. We choose the causal lay-
ers for GPT-2 XL reported by Meng et al. (2023b)
to perform the edit. We randomly sample 1000 ex-
amples from this dataset due to the time complexity
in running these experiments, denoted as SAMPLE
SET.

We first run and evaluate MEMIT on SAMPLE
SET with default number of gradient steps (20).
This results in a collections of examples for which
MEMIT failed to edit (evaluated by EFFICACY AcC-
CURACY). We report the evaluation results (should
be 0) on this subset. We call this a HARD EDIT SET.
By extracting this subset, we are able to magnify
the performance changes on these hard examples.
Then we run and evaluate MEMIT on an un-edited
model with SAMPLE SET again, however, increase
the number of gradient steps by 5. Same as be-
fore, we report results on HARD EDIT SET. We
gradually increase the gradient steps on un-edited
models until it reached 50.

We acknowledged that the failed instances may
vary between different MEMIT runs. However,
the set of failed instances for lower gradient steps
is likely to include examples with more gradient
updates. So we report results on HARD EDIT SET
extracted from the first run.

4.2 Analysis

The results are illustrated as circle (o) lines in Fig-
ure 2. We delineate the pattern of efficacy, general-
ization, specification, and average success/accuracy

'We did not see much performance change so we stopped
at step 50.

measure as the number of gradient steps increased.
The overall success/accuracy revealed that increas-
ing the number of gradient steps adversely af-
fects MEMIT’s performance, especially SUCCESS
SCORE.

Looking at the individual metrics, both efficacy
and generalization performance show a downward
trend. The EFFICACY ACCURACY starts at 0% by
experimental design. It increases marginally at 25
gradient steps then starts decreasing and remains
stagnant around lower single-digit % values. The
EFFICACY SUCCESS and GENERALIZATION SUC-
CESS showed a much bigger drop. Both metrics
initiated around 50%, followed by a much bigger
performance drop after a small increase at 25 steps.
This could happen when the number of examples
that achieved success but not accuracy at gradient
step 20 decreases. Further optimization of § results
in a lower probability of 0* compared to 0. We
think that the decline in performance is attributable
to the gradient deviating from the minima, indicat-
ing that MEMIT did not terminate early.

The specificity performance shows a slight in-
crease in success. This could be caused by the “un-
dercorrecting” behavior of the model. In instances
where the model is unable to effectively edit the
original example, it tends to retain the same predic-
tion for neighboring knowledge elements due to the
similarity in their representations. However, when
assessing the overall performance, it is evident that
increasing the number of steps does not positively
impact the HARD EDIT SET.

5 RQ2: Run MEMIT again is effective

The optimization problem of finding the updated
value of 9 for the final relevant layer L to maxi-
mize the probability of the target o* is in stage 1



Model | GPT 2 XL | GPT2L \ GPTJ
Metric ‘ ROME MEMIT MEMIT %2 ‘ ROME MEMIT MEMITx2 ‘ ROME MEMIT MEMITx2
Efficacy success 66.8 94.2 99.5 (+5.3) 49.7 86.3 99.3 (+13) 55.2 98.7 99.9 (+1.2)
Efficacy accuracy 31.0 88.3 98.1 (+9.8) 0.4 78.7 97.6 (+18.9) 6.8 97.9 99.1 (+1.2)
Generalization success 64.75 88.35 97.55 (+9.2) 49.4 7825  96.85 (+18.6) | 53.65 92.15 98.45 (+6.3)
Generalization accuracy | 27.2 7295  90.3(+17.35) | 045 60.85  88.8 (+27.95) 8.4 83.4 92.0 (+8.6)
Specificity success 51.33 63.56 59.4 (-4.16) 50.29 70.41 60.89 (-9.52) 55.0 7474  66.38 (-8.36)
Specificity accuracy 8.81 17.21 14.37 (-2.84) 0.22 21.44 14.32 (-7.12) 2.66 27.0 23.2(-3.8)
Score success 60.12 79.64 80.78 (+1.14) | 49.79 77.78 81.48 (+3.7) 54.60 87.30 85.14 (-2.16)
Score accuracy 16.43 36.08 33.01 (-3.07) 0.32 39.58 32.84 (-6.7) 4.67 50.63  46.82(-3.81)

Table 1: Result of multiple runs of MEMIT on CounterFacT (1000 Examples)

Model \ GPT 2 XL \ GPT2L \ GPTJ
Metric ‘ ROME MEMIT MEMIT x2 ‘ ROME MEMIT MEMITx2 ‘ ROME MEMIT MEMIT %2
Efficacy acc 61.11 79.6 98.59 (+18.99) | 77.58 66.11 96.02 (+29.91) | 88.05 99.4 99.78 (+0.38)
Generalization acc | 54.01 7296  94.03 (+21.07) | 76.6 60.37 91.26 (+30.89) | 83.64 94.37 97.56 (+3.19)
Specificity acc 22.47 25.96 25.2 (-0.76) 18.75 23.89 24.25 (+0.36) 24.5 28.32 28.13 (-0.19)
Scoreacc | 37.79 4630  49.61(+3.31) | 37.84 4078  47.91(+7.31) | 4678  53.60  53.74 (+0.14)

Table 2: Result of multiple runs of MEMIT on zsRE (1000 Examples). Similar to Meng et al. (2023b) we report

accuracy values.

of MEMIT. The learning takes place when all the
relevant layers are fixed in the model. However,
all relevant layers should make a significant con-
tribution to the final prediction according to causal
tracing. This motivates us to spread the changes
across layers (stage 2 of MEMIT) and then find
the optimal value §* again (stage 1 of MEMIT), as
depicted in Figure 1. This is essentially, running
MEMIT twice, i.e two updates.

5.1 Experiment

We follow a similar experimental setup outlined in
subsection 4.1 with one modification. The modifi-
cation is that we ran MEMIT for two updates in-
stead of one. To achieve this, the updated weights
learned from the first update were saved and used
as the initial parameters for the second update. To
study the implications of conducting two MEMIT
updates, we only vary the number of gradient steps
during the first update (same as subsection 4.1),
while the number of gradient steps in the second
update was fixed at the default value of 20.

5.2 Analysis

Figure 2 shows the results of MEMIT %2 as lines
with triangle marker. When comparing MEMIT
and MEMIT x 2, a notable observation is that both
the success score and accuracy score of MEMIT x 2
significantly surpass those of MEMIT, regardless
of the gradient update steps. Furthermore, some
individual categories reveal a comparable improve-

ment, specifically, in efficacy and generalization
for both success and accuracy measures. However,
a drop is observed in the specificity performance.
We hypothesize that MEMIT x2 "overcorrected"
the output. Due to the representation similarity be-
tween neighbors, the model generates the new ob-
ject o* instead of the original object o even for the
neighbor prompts. Nonetheless, the gains achieved
in other metrics markedly outweigh the drop in
specificity, leading to an overall score improvement
in comparison to MEMIT.

The second observation is that the number of
gradient steps is irrelevant in terms of the overall
score for MEMIT x 2, the overall score remains
relatively flat. The same is true for the individ-
ual categories. It was interesting to observe the
change in relationships between the number of gra-
dient steps, with MEMIT and MEMIT x2. The
SUCCESS SCORE decreased as the gradient step
increased in MEMIT, while SUCCESS SCORE re-
mains unchanged in MEMIT x 2. This observation
also suggests that spreading the updates from stage
1 facilitates the optimization problem of finding the
updated value for the prediction of the new object.

5.3 Additional Quantative Results

To strengthen our findings and generalize the re-
sults we evaluated MEMIT and MEMIT x 2 on two
benchmark datasets COUNTERFACT and zsRE and
used GPT-2 L, GTP-2 XL and GPT-J LLMs. We
also compared our results with strong baseline in-
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Figure 3: Performance trend through multiple updates of MEMIT

cluding ROME (Meng et al., 2023a) and MEMIT.
The results for COUNTERFACT are shown in Table
1 and for zsRE in Table 2.

It can be observed from Table 1 and Table 2 that
there’s a significant increase in efficacy and gener-
alization for both success and accuracy measures.
The gain for COUNTERFACT and zsRE in percent-
age points for both GPT-2 L and GPT-2 XL is huge
ranging from 5 to as high as 30 points.

As expected, we observed a drop in specificity
across the board, with GPT-2 L on zsRE being an
exception (see Table 2). The drop in percentage
points is less compared to gains achieved in efficacy
and generalization. This drop didn’t negatively ef-
fect SUCCESS SCORE and ACCURACY SCORE for
COUNTERFACT and zsRE, respectively. However,
do negatively effect on ACCURACY SCORE for
COUNTERFACT.

In case of GPT J, the gain is not as significant
as compared to other two models because the mar-
gin for improvement is very small in GPT J from
MEMIT to MEMIT x 2. Due to this lower improve-
ment margin, there’s more negative effect on the
overall score for the COUNTERFACT.

To summarize, MEMIT x 2 give significant boost
to efficacy and generalization performance across
success and accuracy measures. This proves our hy-
pothesis that re-optimization (stage 1) after spread-
ing initial J to relevant layers (stage 2) will result in
better loss landscape, in turn finding a better 6 and
improving MEMIT’s performance. However speci-
ficity do take a slight hit which we hypothesize is
due to "overcorrected” output.

6 RQ3: Performance plateaus with
multiple MEMIT runs

Since, our analysis of RQ2 made it clear that run-
ning MEMIT for two updates improves the per-
formance, The next question is how many updates

are required? What is the relationship between
the number of updates and the performance? To
address RQ3 we ran MEMIT for multiple updates.

6.1 MEMITxn

Experiments To accomplish this goal, we con-
ducted an experiment by frequently updating the
model through multiple iterations of MEMIT. We
reduced the number of gradient steps in stage 1
allowing us to run stage 2 more frequently. With
this experiment we want to analyse the chance in
MEMIT’s performance wrt to number of updates.
To conduct this experiment, we used the same ex-
perimental setup described in subsection 4.1, i.e all
results are reported on HARD EDIT SET, and edits
are done on SAMPLE SET. However, instead of
starting from an unedited model at every step inter-
val we started with an edited model of the previous
step interval. So, after every 5 steps of gradient
descent in stage 1 the model is updated through
parameter spreading, i.e stage 2. Update n always
displays results of a MEMIT run with five gradi-
ent steps in the first stage, and this MEMIT run is
editing the model from update n — 1.

It is important to emphasize that this edited
model at “Update 1 (Fig. 3) is different from
that used at step 25 (Fig. 2) while addressing RQ1.
“Update 1” edited on the “Update 0” model, while
step 25 edited on the original model.

Analysis Fig. 3 shows the experiment results,
looking at SUCCESS SCORE and ACCURACY
SCORE, there is a huge jump from update O to up-
date 1, indicating the effectiveness of MEMIT x 2,
the performance starts to platues after update 1.
Looking closer, we saw a continuous subtle im-
provements in ACCURACY SCORE, EFFICACY AcC-
CURACY, and GENERALIZATION ACCURACY. Re-
call that it’s easier to achieve success before accu-
racy as the former requires the LLM probability of



new object (o%) to be greater than the old object
(0). Whereas in later the same probability has to
be maximum across the vocabulary given (s, 7),
which is harder to achieve than the former. So intu-
itively, model reached success bar, and continues
to increase the desired object project, resulting in a
slow increase in accuracy.

In case of specificity, as expected, we saw a re-
verse trend compared to the other two metrics, as
show in Fig. 3. We observed sharp decrease for
first update then slight improvement in the second
a then a plateau for the rest. Both success and accu-
racy metric followed the same trend. An interesting
thing to notice was that the decrease in specificity
performance is way less compared to the increase
in efficacy and generalization performance. So
with small sacrifice of specificity performance, we
achieve a bigger boost in the efficacy and general-
ization performance (shown in Table 1 and Table
2).

These results in general shows the strong effec-
tiveness of MEMIT x 2, and limited effectiveness
of xn where n > 2.
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Figure 4: Gradient Analysis. We aim to analyze the
difference between the gradients of multiple updates of
MEMIT. We plot 2 principle components for last four
gradients of 1st and all gradients of 2nd and 3rd update.
Since the gradients are very close (blue region) we also
plot its zoomed view. The first gradient of MEMIT x 2
is very different from all the other points indicating its
importance in finding the optimal value.

6.2 PCA analysis of the update gradient

Experiments In intuitively understand the cause
of the effectiveness of MEMIT x 2, we check the
gradients values in steps 1 update. We hypothe-
size that MEMIT x 2 direction of gradient is dif-
ferent from MEMIT but is similar to MEMIT x 3.

It can also be understood as the change in gradi-
ent is big between MEMIT and MEMT x 2. How-
ever, the change in gradient is negligible between
MEMIT %2 and MEMIT X 3.

To test our hypothesis we ran MEMIT for multi-
ple consecutive updates and compared the gradients
in each update. Here each update was performed on
top of previous update. In particular we ran three
updates on GPT2-XL with the same random sam-
ple to 1000 examples of COUNTERFACT dataset -
SAMPLE SET. Number of gradient steps was set
to 20 for all three updates. During each update, we
collected the gradient for all 20 steps of stage 1. We
wanted to plot these gradients together for analysis.
Since, the gradients were high dimensional, we ap-
plied PCA to extract out two principle components.
We plot these two principle components in the 2D
space as shown in Fig. 4. In particular, we plot the
last four gradients for first update, represented with
orange color, and all gradients for the second and
third update represented with green and red color
respectively.

Analysis We analyzed the relative positioning of
the gradients for the three updates and found out
that initial gradient for 2nd update (bottom right
green point) is far from the final gradient of the
Ist update (top left orange points). This shows
that second gradient update provides a different
direction then the end of the first one, indicating
its important in finding the optimal update value.
Whereas, analyzing the relative positioning of all
gradients of second update (except first) and third
update, we found negligible scope for optimization.
This finding is evident in Fig. 3 where all green
and red points are gathered in the top left area of
the plot overlapping each other very close to the
(0,0) co-ordinate suggesting the gradients are not
changing.

This analysis proved our hypothesis that
change in gradient is big between MEMIT and
MEMT %2, but is negligible between MEMIT x 2
and MEMIT x 3. Which in turn established running
MEMIT x2 as optimal because after that there is
negligible scope for improvement.

7 Related Work

Large language models (LLMs) require constant
updates to adapt to the ever-changing world. A
straightforward approach to updating an LLM’s
knowledge is through fine-tuning. However, fine-
tuning lacks precision, as it does not allow for spe-



cific control over the internal changes within the
model, resulting in “overcorrecting” (Meng et al.,
2023Db).

A set of work uses a meta-learner to guide
the knowledge editing. This area of study en-
compasses various approaches. One approach
suggests a new training objective, making the
model easy to edit (Sinitsin et al., 2020). Other
works focus on model update values. Cao et al.
(2021) use a Knowledge Editor (KE) hypernet-
work to predict the necessary model updat, while
MEND (Mitchell et al., 2022a), uses the gradients
of inserted knowledge to predict the model update.
Finally, SERAC (Mitchell et al., 2022b) adopts a
gradient-free approach, caching the new knowledge
in an additional memory rather than updating the
model directly.

Different from all the above methods, MEMIT
(Meng et al., 2023b) directly modifies the model
weights to incorporate new knowledge. Similar to
ROME (Meng et al., 2023a), MEMIT employs the
localize-and-edit approach (described in Section 2).
While ROME updates the weights of a single local-
ized layer, MEMIT updates the weights across a
range of localized layers. Furthermore, MEMIT ex-
hibits high scalability, making it the most efficient
among all prior works. Our work improves the
effectiveness of MEMIT even more via a “simple
trick”.

8 Conclusion

In this work, we present an intuitive and straightfor-
ward approach to increase MEMIT’s performance,
just by ruining it twice denoted at MEMIT x 2. To
understand the effectiveness of MEMIT x2, we
poses three research questions and answered them
by intuitive, yet extensive analysis. Our work
demonstrate the effectiveness of MEMIT x 2, mak-
ing knowledge editing a more desirable tool for
future usage.

9 Limitations

MEMIT, as discussed by Meng et al. (2023b), faces
its own challenges while editing knowledge with
certain relations. The experimentation is also lim-
ited to knowledge editting, however, achieves best
performance in terms of Efficacy, Generalization,
and Specificity with scaling to thousands of knowl-
edge edits, compared to related works.

We propose a simple approach to improve
MEMIT’s performance i.e. running it twice. This

solution provides a significant performance boost
in terms of Efficacy and Generalization, however, it
comes with a small toll on Specificity. We were not
able to isolate this side effect, which opens a new
research direction for further investigation. One
plausible approach could be introducing an addi-
tional loss so that neighbourhood knowledge didn’t
change.

We were also limited by compute resources
which translated to our choices of using a subset
of the datasets for our experimentation. However,
we have chosen an adequate size to showcase and
validate our findings.
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A Experimental details

We used a single NVIDIA A100 (40 GB) GPU
for running experiments on GPT-2 L and GPT-2
XL and a single NVIDIA A100 (80 GB) GPU for
running experiments on GPT-J. Although size of
GPT-J is around 24 GB, but 40 GB GPU is not suf-
ficient even for 1000 examples. The reason behind
such high memory requirement is due to calcula-
tion of new vectors for each example. We did con-
duct experiment on entire dataset of ~20k examples
and report that 40 GB and 80 GB GPU memory
sufficient for GPT-2 L, GPT-2 XL and GPT-J, re-
spectively. In terms of time, single experiment on
1000 examples of COUNTERFACT or zsRE, with
default number of gradient steps, GT-2 XL took
3-4 hrs whereas GPT-J took an entire day. I/O op-
eration consume most time during the experiments,
so time will vary based on entire system hardware.
GPT-2 L takes comparative less time than GPT-2
XL.
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