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Abstract

Current Reinforcement Learning from Human Feedback (RLHF) techniques cannot1

account for differences in human preferences across a diverse population. When2

these differences arise, these frameworks average over them, leading to inaccurate3

rewards and poor performance for individual subgroups. To address the need for4

pluralistic alignment, we develop a class of multimodal RLHF methods based on5

a latent variable formulation - inferring a novel user-specific latent and learning6

reward models and policies conditioned on this latent without additional user-7

specific data. While conceptually simple, we show that in practice, this reward8

modeling requires careful algorithmic considerations around model architecture9

and reward scaling. To empirically validate our proposed technique, we first show10

that it can provide a way to combat under-specification in simulated control prob-11

lems, inferring and optimizing user-specific reward functions. Next, we conduct12

experiments on pluralistic language datasets representing diverse user preferences13

and demonstrate improved reward function accuracy. We additionally show the14

benefits of this probabilistic framework in actively learning user preferences. This15

work enables learning from diverse populations, an important challenge naturally16

occurring in problems from robot learning to foundation model alignment.17

1 Introduction18

Reinforcement learning from human feedback (RLHF) has become the predominant technique for19

aligning foundation AI models to human values. The question then becomes: whose values? Current20

RLHF approaches [42] typically assume all end-users share the same set of values, not accounting21

for the range of social, moral, and political values informing preferences in real human populations.22

Specifically, RLHF relies on the Bradley-Terry-Luce (BTL) [12] preference model, which makes23

the unimodal assumption that all human preferences are derived from a single utility function.24

This fails to capture scenarios where preferences are multi-modal—due to fundamentally different25

utilities, e.g., one group prefers detailed responses, while another prefers concise ones (Figure 3). By26

doing maximum likelihood under the unimodal model, current methods learn a reward function that27

averages the multi-modal preferences, and this misspecification leads to inaccurate reward models.28

The policies optimized on these rewards fail to accomplish tasks per any of the distinct preferences.29

To build foundation models serving a population, we need pluralistic alignment [48] methods that30

explicitly account for and adapt to the inherent plurality in human preferences. This suggests that31

preferences are not derived from a single utility function, but are affected by a hidden user context [47].32

To address this, we formulate RLHF as a latent variable problem. Building on techniques from33

variational inference [9, 31], we propose a method—Variational Preference Learning (VPL) for34

multi-modal reward modeling. Intuitively, given a few user preference annotations, VPL leverages a35

variational encoder to infer a distribution over user contexts, allowing for a latent conditional reward36
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model that accurately captures diverse user preferences. We derive an evidence lower bound (ELBO)37

for optimizing these rewards, facilitating the learning of reward distributions from large datasets38

of user preferences. In Section 3 we use our approach to learn latent-conditioned policies that can39

personalize to particular users at test time.40

A challenge here is that binary comparisons lack information about reward scales (i.e. preference41

labels between A and B can only provide information about rA− rB), which leads to inconsistencies42

in the reward function across different users. To mitigate this, we show that a simple pairwise43

classification scheme [50, 40] can appropriately scale reward estimates, improving the optimization44

landscape for multi-user RL and enhancing downstream policy performance. Additionally, the latent45

variable reward models can measure uncertainty in the reward distribution [45]. So, in Section 3, we46

use our approach to actively query [6, 8, 7] users to infer their distinct preferences with fewer queries.47

Overall, we introduce a latent variable framework for reward modeling that captures and adapts to48

diverse user preferences. We conduct a range of experiments across simulated robotics environments49

and two language tasks with conflicting user preferences. Our results show that in simulated domains,50

VPL accurately models rewards and improves task performance and personalization. We scale this51

method and further, use active learning to adapt efficiently to particular users with significantly52

fewer test-time queries. In the language domain, our approach outperforms existing models by more53

precisely predicting rewards that align with different users and objectives across multiple datasets.54

2 Related Work55

Reinforcement Learning from Human Feedback (RLHF): We focus on the problem of RLHF56

using the BTL model [12]. This has a rich history in the field of RL and robotics [53, 23, 1, 6, 8].57

We specifically build on the framework outlined in Christiano et al. [14] and expanded in recent58

works [42, 2, 60, 49, 30, 47]. Our proposed method applies to any preference learning method,59

including recent techniques [44, 20] that circumvent reward modeling altogether.60

RLHF under non-BTL models: Prior work has aimed to study non-BTL models of human prefer-61

ences [10, 36, 35, 30, 50] to account for irrationality, or intransitivity [40, 50, 52]. However, our key62

argument is not about human irrationality, but about divergent but equally valid preferences between63

rational users. Thus, our work is complementary—VPL can easily be adapted to a non-BTL model.64

Personalized RLHF: Some works [32, 33, 28] on pluralistic preferences largely focus on exploring65

the societal issues underpinning the need for personalization and introduce datasets with diverse66

annotations. Conitzer et al. [16] argues that Social Choice Theory provides insights for aggregating67

diverse preferences, but does not propose a technical method. Prior works looked at trading off68

conflicting alignment objectives (such as helpfulness vs harmlessness) through techniques like69

Pareto-optimal optimization [11, 13] or multi-objective RL [55, 18, 27]. Further, previous methods70

have approached personalization assuming explicit user groups or classes [21, 37, 58], while VPL71

doesn’t assume access to such data. The closest work to ours is Distributional Preference Learning72

(DPL) [47], which aims to account for hidden context in RLHF, and proposes using a learned Gaussian73

or categorical distribution as the reward function. While DPL captures uncertainty in the inferred74

rewards, unlike VPL it cannot accurately predict a personalized reward for a particular user, perform75

active learning, or specialize a policy to particular users at test time.76

3 VPL: Incorporating Latent Context into Preference-Based Learning77

Technical Preliminaries In this work, we focus on preference-based learning [14, 1], which has78

two phases: (1) inferring a reward function from human-provided labels of ordinal preferences using79

a maximum likelihood objective (MLE) on the preferences; (2) reinforcement learning (RL) to train a80

decision-making policy that maximizes the rewards inferred in step (1). We note that while the BTL81

model accounts for some IID noise in preferences through the probabilistic formulation [14, 3, 19], it82

does not account for hidden-context and divergent human preferences [47], and does not allow the83

underlying reward models and policies to be personalized to specific users.84

Variational Preference Learning The standard BTL formulation assumes all annotators h ∈ H85

share a single underlying reward function rϕ(s), but this doesn’t hold in practice for diverse annotators.86

To model pluralistic preferences, we frame reward learning as a latent variable problem, where the87
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latent variable z represents the hidden context influencing an annotator’s underlying reward function88

(and thereby the preferences). This leads to a latent-conditional reward rϕ(s, z) and BTL model:89

pϕ(y = 1 | sA, sB , z) = pϕ(sA ≻ sB | z) =
erϕ(sA,z)

erϕ(sA,z) + erϕ(sB ,z)
(1)

The MLE objective for this model is intractable due to marginalization over the unobserved latent90

variable z i.e. max
ϕ

E
sA,sB ,y∼D

[log pϕ(y | sA, sB)] = E
sA,sB ,y∼D

[
log

∫
pϕ(y | sA, sB , z)p(z)dz

]
. To91

tackle this, a variational posterior approximation qψ(z | {(siA, siB , yi)}Ni=1), conditional on multiple92

annotations {(siA, siB , yi = h(siA, s
i
B)}Ni=1 provided by the same user h1. This results in a corre-93

sponding evidence lower bound (ELBO), L(ϕ, ψ), for the intractable marginal log pϕ(y | sA, sB):94

95

E
h∼H

{siA,s
i
B ,y

i=h(siA,s
i
B)}Ni=1∼D

(sA,sB ,y=h(sA,sB))∼D

[
E

z∼qψ(z|{(siA,siB ,yi)}Ni=1)
[log pϕ(y | sA, sB , z)]−DKL(qψ(z | {(siA, siB , yi)}Ni=1) ∥ p(z))

]
(2)

Intuitively this objective encodes a set of user-provided annotations {(siA, siB , yi)}Ni=1 into a latent96

distribution using the encoder qψ , and then learns a latent-conditional reward function r(s, z) using97

the contextual BTL model, with a regularization term (DKL(qψ(z | {(siA, siB , yi)}Ni=1)) ∥ p(z)))98

against a prior p(z). We describe details further in Appendix E.5. VPL clusters users without explicit99

class labels, unlike previous methods [58, 21, 37]. It only requires a few preferences from the same100

user, a minimal addition to standard RLHF [14], and can be easily collected in batch mode [8].101

Personalized, latent-conditioned policies. We can learn a latent-conditioned policy πθ(·|s, z)102

using any RL algorithm [46, 24, 34] to optimize the latent-conditional reward maximization objective:103

πθ = argmax
θ

E
πθ,z∈p(z)

[
∑
t γ

trϕ(st, z)], where z ∼ p(z). At test time, a user’s latent context z is104

estimated via posterior inference using preference queries. The personalized policy πθ(·|s, z) is then105

deployed (complete algorithms in Appendix F). We further introduce an approach to scale the rewards106

across different z in Appendix A to improve optimization for this multi-objective problem.107

Active Learning of preferences to minimize latent uncertainty. Using the posterior distribution108

in VPL over the latent vector z, we can leverage active learning to select preference queries that109

most effectively reduce uncertainty about z. An information gain-based approach based on prior110

work [6, 8, 41] ensures that users are required to answer the minimal number of questions necessary111

to effectively personalize the model to user preferences. (Details in Appendix B).112

Scaling VPL to Large Language Models (LLMs). The architectural considerations for scaling113

VPL to LLMs are presented in Appendix C.114

4 Experiments115

(a) GT (b) BTL (c) VPL

Figure 1: Ground truth (a) shows annotators pre-
fer the robot to navigate to two different goals.
Unimodal BTL (b) averages over the two modes,
leading to an inaccurate reward function and poor
policy performance. VPL (c) reconstructs diverse
preferences and learns z conditioned policies that
can reach either goal.

In our experiments, we address four key questions:116

(1) Can VPL learn a multi-modal reward distribu-117

tion from diverse user preferences? (2) Do the in-118

ferred latent user vectors enable multi-task personal-119

ized policy learning? (3) Can the posterior be used120

to actively query preferences for improved latent121

estimation? (4) Does VPL help to make LLM re-122

ward models more pluralistically aligned? We val-123

idate VPL on four diverse simulated control tasks:124

Figure 2): Maze-Navigation, Ravens-Manipulation,125

Habitat-Rearrange, and Habitat-Tidy (details in Ap-126

pendix E). For LLMs, we compare the reward model-127

ing performance of our method against two baselines:128

the vanilla BTL model and DPL [47]. We experiment129

with two LLMs: GPT2 [43] and Llama2-7B [51], and two pluralistic preference datasets - Pets and130

UF-P-N. (Details in Appendix E.4)131

1Having multiple annotations are important here to be able to accurately infer the user’s latent vector z
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Can VPL capture multi-modal reward functions from a dataset of diverse preferences? We132

generate preferences using multi-modal reward functions across various didactic and control experi-133

ments, as shown in Figures 6, 1, 2, 12 and 11. The BTL baseline with an MLP averages different134

underlying rewards, leading to inaccurate reward models (Figure 1b). It converges to majority prefer-135

ences, ignoring minority groups (Figure 12). DPL [47] captures uncertainty due to underspecification136

but cannot recover individual rewards, estimating high-variance rewards for each user (Figures 6, 11).137

In contrast, VPL infers hidden user contexts via a latent variable approach, accurately recovering the138

multi-modal reward distribution.139

Figure 2: Performance of a downstream policy on diverse control and reasoning tasks, using the rewards trained
using different baselines. We report the mean and standard error over five seeds. Note: Habitat tasks have a
one-step greedy policy so reward scaling and SPO+VPL are not required.

Do distributional reward functions enable learning a steerable multi-task policy? As discussed,140

baselines like BTL [14] and DPL [47] average reward modes across users, leading to inaccurate141

reward functions. Across the different environments, this results in the policy converging to inaccurate142

goals or randomly selecting one, failing to adapt to user preferences at test time. In contrast, VPL143

outperforms the baselines in task success rate, aligning with users’ reward functions. VPL accurately144

infers goals and achieves performance comparable to a goal-conditioned oracle. We note that scaling145

the rewards via VPL + SPO improves the performance of multi-task RL for optimizing diverse user146

preferences. In Appendix D.3, we scale to settings with a larger (∼100) number of user-providing147

preferences, and we analyse the affect of context length on performance in Appendix D.5.148

Can we use the posterior to actively query preferences for better latent estimation? In Appendix149

B, we show that active learning enables personalization to users with as low as ∼2 test-time queries.150

Does VPL help to make LLM reward models more pluralistically aligned? In Table 1, VPL151

is able to learn a more accurate reward model across all the datasets, capturing the multi-modality152

in the language preference data. This indicates that VPL can infer the latent representation of the153

user’s preferences z from a few annotated samples, and successfully adapt the reward model. In154

Figure 13, we observe that the encoder can implicitly cluster users based on their preferences. In155

contrast, the baselines are unable to fit the datasets because they are unable to account for divergent156

preferences. Because the datasets are imbalanced, the baselines can sometimes perform better than157

random guessing by fitting only the preferences of the majority group.158

Table 1: We compare the accuracy of different reward models trained on the two datasets. We report the mean
and standard deviation of performance of GPT2-based models on three seeds, and one seed for Llama models.

GPT2 Llama2-7b

Pets (Divergent) Pets (Full) UF-P-2 UF-P-4 UF-P-2

BTL [42] 63.27 ± 0.57 94.92 ± 0.00 49.84 ± 0.14 53.48 ± 0.03 47.17
DPL [47] 70.62 ± 1.13 95 ± 0.00 49.57 ± 0.42 52.92 ± 0.06 49.51

VPL (Ours) 100 ± 0.00 100 ± 0.00 74.75 ± 2.01 61.49 ± 0.03 76.41

5 Conclusion159

In this work, we presented VPL, a technique for pluralistic alignment of preference-based RLHF160

models via variational inference. We show that VPL can capture diverse preferences, and can be used161

for steerable personalized model learning while capturing uncertainty and divergence in preferences.162

We discussed practical considerations for enabling VPL to scale up for LLMs and policy learning and163

showed results across simulated control problems and LLM-based RLHF, significantly outperforming164

current RLHF techniques.165
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Figure 3: Current RLHF approaches [42] incorrectly assume an unimodal reward model for a diverse population
of users. In this example, users have diverging preference over the length of the responses from a large language
model. Without additional context, the BTL model considers both responses to be equally likely. In contrast, our
method, VPL, is a personalized approach to RLHF. Using a few samples from a particular user, we infer the
distribution over their distinct preferences. Based on this distribution, we condition the reward model to more
accurately predict rewards, and enable steering the resulting policy to personalize to the specific user.

A Scaled Rewards for Multi-Task Learning337

In practice, optimizing latent-conditioned reward functions learned with the VPL objective poses338

unique challenges. The pairwise preferences used to train the reward model in Section 3 do not have339

information about the scale of rewards, but only their relative ordering. As a simple illustration,340

if we have a pair of states sA, sB , where the users prefer sA i.e. sA ≻ sB , two different reward341

functions: r(sA) = 100, r(sB) = 50 or r(sA) = 50, r(sB) = 0 have the same likelihood under the342

BTL model. Empirically, we observe that this poses problems for optimizing Equation 2; different343

values of the latent variable z result in learned reward functions of vastly different scales. This is344

an issue for several reasons: 1) varying reward scales adversely affect the landscape of multi-user345

policy optimization (often observed in multi-task RL) [25], and 2) it is challenging to identify states346

where user preferences diverge across the population as differently scaled rewards cannot be directly347

compared.348

To address this issue, we experiment with several different techniques for scaling the learned reward349

functions (see Appendix D.3). Our key insight in solving this challenge lies in the observation350

that while raw rewards from BTL are not scaled equally across z, probabilities from the preference351

likelihood model p(y | sA, sB , z) are appropriately scaled. This suggests that an effective solution to352

the reward scaling issue is to replace the raw rewards from the BTL model (r(s, z)) with likelihoods353

suggested by the pairwise preference likelihood model p(y | sA, sB , z). In particular, a natural choice354

of scaled rewards for a state sA is the expected likelihood that the state sA is “preferred" to all other355

states (or a sampled set of states) sB observed in the data - rϕ(sA, z) = E
sB∈S

[pϕ(y = 1 | sA, sB , z)].356

Since these are probabilities, normalized in the [0, 1] range, the scaling of rewards is consistent across357

latents z. Note that these expected likelihood rewards can easily be obtained from the objective in358

Equation 2 since we already train a latent-conditional preference classifier via maximum likelihood.359

While proposed from a very different perspective, we note the similarity of this reward scaling360

approach to recent work [50, 40], in particular, Self-Play Preference Optimization (SPO) [50], which361

was originally proposed to address the issue of intransitive preferences. Similar to [50] we assume362

that the oracle / user providing preference labels is Non-Markovian. Due to this similarity2, we use363

VPL-SPO to indicate this approach of preference likelihood-based reward scaling throughout our364

experiments (See Algorithm 3 for details).365

2There are some differences in setup with SPO likelihoods being computed against on-policy samples, while
VPL-SPO likelihoods are computed against a fixed offline dataset of comparator states.
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B Active Learning366

In VPL, the probabilistic modeling of the variational encoder naturally allows for active selection367

of the most informative query set based on maximal information gain, following prior work [6, 8,368

41].Here the provision of preference labels {yi}Ni=1 will provide the maximum information about the369

latent distribution (and indirectly, the user preferences). This active query selection procedure can be370

expressed as the following optimization problem, maximizing the mutual information between the371

labels and the latent distribution.372

{(siA, siB)}Ni=1 ← argmax
{(siA,siB)}Ni=1

I
(
z; {yi}Ni=1 | qψ, {(siA, siB)}Ni=1

)
(3)

The posterior qψ is a multivariate Gaussian, and assuming a uniform distribution over the set of373

labels, qψ(z | {(siA, siB)}Ni=1) allows for closed form solution for mutual information I . To solve the374

maximization objective, we chose the query set (siA, s
i
B)

N
i=1 with the maximum information gain,375

across samples from the preference dataset. Finally, we elicit user labels on this maximal query set,376

infer the latent, and condition the policy on this latent at deployment.377

In our active inference technique, we use a sampling-based method inspired by [6] to generate the378

active queries for the model. Given a dataset of D queries (siA, s
i
B)

|K|
i=1, we sample S query batches of379

size Q, where Q is number of annotations per batch we get from a user (total possible combinations380

are KCN ). Here, Q ∈ [2, 8], so we need to perform O(S * Q) passes over the model with batch size381

2Q ∼ [4, 256]. Furthermore, this process only needs to be performed once after the model is trained382

to obtain the most discriminative set of queries for the given model. Finally, whenever a new user383

interacts with the system, we need to get labels on the actively inferred queries (usually 2-4) but do384

not require any additional passes over the query dataset. In our experiments (Figure 4), we show that385

using active learning allows the model to achieve comparable performance with fewer queries (∼ 2),386

as compared to randomly sampled larger (∼ 8) queries.387

B.1 Can VPL enable active query selection for latent estimation?388

Figure 4: Active learning enables personalizing
policies to user preferences with fewer queries.

In Appendix B, we present an objective to actively389

query users at test time to efficiently infer user prefer-390

ences. Figure 4 shows that this technique leads to bet-391

ter performance of the learned policy across varying392

numbers of queries ∥N∥. This implies that the active393

learning objective 3 which maximizes information394

gain over the latent distribution generates queries that395

are more discriminative and provides a more informa-396

tive posterior for user identification. This results in a397

more efficient adaptation of the downstream policy to398

the distinct user preferences, achieving the same per-399

formance with only half the queries. These methods400

can be potentially transferred to LLMs to query and401

identify user preferences with minimal questions.402

C Scaling VPL for Reward Learning in Large Language Models (LLMs)403

VPL can be used to train pluralistic reward models for LLMs, accounting for diverse human prefer-404

ences and values. Here we discuss the key details that are essential to scale our method to LLMs.405

The architecture of our LLM reward model is shown in Figure 5. Unlike prior work which attempted406

to insert summary embedding layers into LLMs (see e.g. [15]), we find that we can successfully com-407

press user preference information into a concise, probabilistic embedding vector z without sacrificing408

reward model performance. Further details and hyperparameters are discussed in Appendix E.409

Prompt and Response Embeddings. Since using raw representations of the prompt and responses410

can increase the context length significantly, we use a pre-trained LLM to encode prompt and response411

pairs together [5] (to be consistent with previous notation, we assume a preferred state sA contains412

both a prompt and response [x, r], and we obtain eA = LLM(sA)). For efficient training, we413

pre-compute and freeze the encoded embeddings.414
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reward model r(s, z) respectively.

Latent Encoder. Given a set of multiple encoded preference queries from the same user,415

{(eAi , eBi , yi)}Ni=1, we pass each through the same pair encoder to obtain hi = enc(eAi , e
B
i ). The416

latent representation z is generated using a self-attention layer over the set of encoded pairs, {hi}Ni=1.417

Reward learning. Here, the representation eA
′

of a new state sA
′

is concatenated with a z sampled418

from the posterior distribution which is passed into an MLP to predict the rewards. The LLM is419

fine-tuned using low-rank adaptation (LoRA) [26], and unlike typical RLHF settings, we find that we420

need to train the reward model for ≥ 1 epochs to fit the encoder and the reward model.421

Data augmentation. As we scale VPL to larger datasets with more users, augmenting the training422

dataset with multiple context samples from the same user for each new data point is essential to423

learning an effective encoder. At training time, given a prompt and response pair s′A, s
′
B from a424

particular user, we generate M = 8 duplicates of this labeled response with different contexts, i.e., an-425

notated prompt and response pairs ({(siA, siB , yi)}Ni=1)
M
j=1; where each context ({(siA, siB , yi)}Ni=1)j426

is sampled from a user annotated subset of size K (K > N ).427

D Experiments428

D.1 Didactic example on a toy reward learning problem.429

To more carefully understand the behavior of VPL empirically, we construct a didactic example [19]430

as shown in Figure 6. In this problem, let us consider a mixture of M different annotators providing431

preferences, where each annotator i has a reward function specified by N (µi, σi)
M
i=1 that they use to432

assign binary preferences. Mathematically, we sample the preferences from a mixture of Gaussians:433

p(sA ≻ sB | i) =
eri(sA)

eri(sA) + eri(sB)
; where eri ∼ 1

σi
√
2π
e
− 1

2

(
x−µi
σi

)2

Multi-annotator preferences are simulated by sampling an annotator from this mixture distribution434

and then assigning binary preferences according to the chosen reward function. We train VPL as435

described in Section 3 to recover the underlying distribution over reward functions. As expected436

in Figure 6, standard RLHF [14] averages over the different modes since it can only represent a437

single reward function. While prior work accounts for hidden context in RLHF (DPL [47]) and learns438

uncertainty in the reward functions due to hidden context, it cannot accurately disambiguate different439

modes. Meanwhile, VPL is able to infer the underlying context using the approximate posterior qψ440

and the recover the individual reward modes through the latent-conditional reward function r(s, z).441

D.2 Does VPL scale with the number of diverse users?442

In order to test the effectiveness of VPL in scaling to a control problem with larger modes of443

underlying preferences, we create a task with ten underlying locations that the users could prefer. So,444

the challenge here is to disambiguate the user preference among a larger space of possible goals and445

condition the policy to navigate successfully to the goal. Figure 7a shows that our method is able446

to navigate to the individual goals with a higher success rate, whereas the baseline DPL model [14]447

11



Figure 6: Didactic experiments comparing standard BTL [14], DPL [47] and VPL (Ours). Four Gaussian
reward functions generate different binary preference data. The traditional BTL approach [14] averages the
different modes, and DPL [47] captures the uncertainty in the rewards due to the multi-modality but cannot
accurately predict the true modes. VPL (ours) infers the hidden latent as described in Section 3 and recovers the
individual distribution of reward functions.

(a) VPL scales to Maze-Navigation task with
ten modes of user preferences. BTL expect-
edly averages the modes and fails to learn.
We also see the benefits of scaling rewards
across this domain as well, where VPL +SPO
performs better than VPL.

(b) We compare the performance of base-
lines and VPL on a Habitat-Rearrange envi-
ronment with 100 users. VPL can scale to
a much larger set of diverse users, comple-
menting the real-world capabilities shown in
Table 1 and Figure 2.

Figure 7: Comparison of VPL’s scalability on different tasks and user bases.

collapses to a single user mode. This demonstrates the benefits of scaling VPL to a setting with a448

large population of diverse users. To test the method at a larger scale, we increase the number of449

users in the Habitat-Rearrange tasks to ∼100. It is a combinatorial problem as the users provide450

rankings over five locations, so all possible users/orderings are 5!. We observe in Figure 7b that VPL451

significantly outperforms the baselines in inferring the user preference and steering the robot policy.452

D.3 Does scaling rewards help improve performance?453

Figure 8: Comparing scaling
methods on Maze-Navigation.

To avoid the problem of high variance rewards (Section 3), we com-454

pare the performance of VPLno-norm with VPL + SPO. We further455

compare against two normalizing schemes: VPLbatchnorm where456

the rewards for each latent is normalized by the mean rewards457

across a set of state samples i.e. r′(s, z) = r(s,z)
1
M

∑
s′∈S r(s

′,z)
, and458

VPLmax-norm where all the rewards in the offline dataset are nor-459

malized by the maximum reward for any latent.460

In Section A, we discuss the problem of generating scaled rewards461

from latent variable-based reward models and compare the perfor-462

mance across multiple baselines discussed above. As shown in463

Figure 8, the batch norm scaling generates highly biased estimates464

of the rewards, which is catastrophic for the method. However, VPL465

methods have decent performance at test-time, but are an unprinci-466
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pled approach to the scaling problem. Our SPO + VPL presents a general method for estimating467

normalized rewards. Thus, in Figure 8 we can see that our method outperforms the baseline ap-468

proaches in terms of success rate. The baselines have an unscaled or a biased estimate of the469

multi-modal rewards leading to sub-optimal performance. For the ravens-manipulation environment,470

the dataset doesn’t contain sub-optimal trajectories, VPL (with max norm) performs comparably.471

D.4 Does VPL scale to real-world settings with larger and noisy users?472

Figure 9: Reward accuracy with varying levels of
noisy labels introduced at test time.

A key assumption in our approach is that context473

questions accurately represent individual users with-474

out noise in the underlying dataset. To test VPL’s475

robustness to noisy context labels at test time, we476

injected noise by flipping the questions answered by477

each user and evaluated the trained model’s accuracy478

in predicting rewards. This experiment can help us479

evaluate how well the model would generalize to new480

users that have similar preferences to those experi-481

enced during training, but may not answer questions482

in exactly the same way. Figure 9 illustrates that VPL483

is able to outperform prior work even when 25% of484

preference labels are flipped at test time. Notably, we485

observed that longer context lengths result in more486

accurate reward modeling, even with higher noise487

injection. This is because the encoder can generate488

more accurate inferences of the latent distribution489

when provided with more user information through490

a larger number of context and response labels.491

We note further that when 50% of the preference labels are flipped, the context preference queries492

provide no information about the user, and the performance of VPL is equivalent to the baseline BTL493

model. This mirrors the additional findings presented in Appendix D.7, which demonstrate that when494

VPL is trained on a unimodal preference language dataset, it gives equivalent performance to BTL.495

Essentially, when extra preference data is available for a user, VPL can personalize the reward model496

effectively and attain higher performance. But without that information, it performs just as well as the497

default BTL model. These findings, as shown in Table 1, Figure 9, and the Appendix, demonstrate498

VPL’s effectiveness in handling multi-modality and noise in large-scale preference datasets, without499

compromising performance even when no additional preference information is available. This500

capability suggests the potential for VPL to contribute to the development of next-generation LLMs501

that are more personalized, inclusive, and efficient.502

D.5 How does context length affect VPL?503

Figure 10: In the Habitat-TidyBot tasks, the
agent has to relocate objects in the house
based on the user’s preferences. We show
that the accuracy of user modeling and choos-
ing the right location for the object increases
with the number of queries the agent makes
to infer the latent distribution.

In Habitat-TidyBot, the robot’s task is to relocate504

an object in the kitchen (fork, knife, spoon, bowl,505

pitcher) to a specific location based on user prefer-506

ences. The user can prefer to arrange objects ac-507

cording to the object function (i.e. kitchenware or508

tableware), or material (metal or plastic). The agent509

has to query the location of some of the objects, in-510

fer the user type, and arrange the requested object511

accordingly. Fig 2 shows that the baselines converge512

to the correct location for the objects agreed upon513

by the different users, but converge to one mode for514

the divergent choices. Meanwhile, VPL infers and515

adapts to user preferences and aligns with humans516

perfectly. However, one caveat to this is the context517

length i.e. the number of queries to each user. In Figure 10 we show that as the query length increases518

VPL can identify users with higher accuracy and achieve higher performance. This happens because519

certain queries are uninformative about the user preferences (such as things users agree on), and thus,520

it generates a high variance posterior. As a result, longer context length increases the probability521
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of useful queries, which enables low variance posterior inference and improved alignment during522

decision-making. In Appendix B, we also show how to use an active learning approach to generate523

queries based on a max information gain objective. For LLMs, in Figure 9, we show that a higher524

context length also provides robustness to noise in the annotated queries.525

D.6 Visualizing Learned Rewards and Embeddings526

We visualize the rewards generated by the baseline and the latent conditioned rewards models on the527

diverse domains described in Section 4. We observe that VPL reconstructs the multi-modal reward528

functions, based on the inferred latent distribution. Figure 1 shows that the BTL models averages the529

reward over the user-preferred goals, while VPL accurately reconstructs the individual user-specific530

rewards. Figure 11 shows that for optimal trajectories solving the task, VPL can accurately match531

the ground rewards for the two modes. At the same time, DPL [47] predicts high-variance rewards532

for both cases due to the inherent multi-modality. Finally, in Figure 12 we see that the majority of533

users consider the desk to be the preferred location of the bowl, and standard BTL models converge534

to the majority population. Meanwhile, VPL can generate user-specific rewards, satisfying all the535

user groups.536

Figure 11: In the Ravens-Manipulation task, we compare the predicted rewards for states st along
timesteps t in oracle trajectories to either of the goals the user prefers. VPL (Ours) can learn the
individual reward functions for the two different (closely matching the ground truth rewards for both
users) leading to more performant policies (see Figure 2), while DPL [47] learns a high variance
reward function due to the multi-modality.

(a) Ground truth (b) BTL (c) Our method

Figure 12: In the Habitat-Rearrange task, annotators have rankings, i.e. preferences over the different locations
they want the robot to place their bowl in their home. Accordingly, (a) shows the rewards associated with a
particular location ("column") for each annotator ("row"). We see that a majority of the users rank the desk as
the most preferred location. Consequently, in (b), unimodal BTL converges to this majority preference ignoring
other users. However, in (c) we see that VPL accurately reconstructs diverse preferences and aligns to all five
users.
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Figure 13: We train GPT2-based VPL, on the UltraFeedback-P dataset. In this plot, we visualize the
T-SNE features of the latent distribution z produced by the encoder qψ on a set of annotated prompts
and responses {siA, siB , yi}Ni=1 from the two users in the dataset. We see that the encoder clusters the
users in the latent space, allowing the decoder to personalize the reward models according to multiple
objectives preferred by the diverse users belonging to a cluster.

In Figure 13, we show that the VPL-Encoder effectively learns a latent space with clusters that537

correspond to the user types in the dataset. Previous work has shown that attempting to compress538

information within an LLM into a single bottleneck embedding layer can hinder performance [15].539

However, using the architectural design of VPL as well as user-context data augmentation, VPL540

is able to learn a compressed user representation that accurately separates users according to their541

preferences, from only a few preference labels.542

D.7 Does VPL under uni-modal settings?543

To test that the introduction of a variational framework does not decrease performance in settings544

where all users have single/aligned preferences, we run an experiment on the UF-P-4 dataset, where545

we considered the preferences of a single user (preferring the model to be “honest” over all other546

attributes) to analyze the single-modal case as suggested. The standard BTL model gives a 77.04%547

eval accuracy while our VPL model gives a 77.16% eval accuracy. Our model matches the baseline548

performance, indicating no drop in performance when using VPL compared to traditional RLHF over549

an unimodal dataset.550

D.8 Limitations and Social Impact551

A key limitation of this work is that as yet, realistic preference datasets containing the opinions552

of diverse users do not yet exist at scale. This limitation necessitated creating our own synthetic553

preference datasets. Although this was also the approach taken in prior work on personalized RLHF554

(e.g. [47, 59]), an important direction for future work will be to apply VPL to more realistic preference555

data from diverse groups of users. Further, our current experiments on the UltraFeedback dataset556

assume that when adapting to a new user’s preference, it is possible to ask them to provide preferences557

over a sample from a fixed set of survey questions. In the future, it would be good to relax this558

assumption so that VPL could be applied to preferences obtained naturally during a conversation559

with the user.560

We believe VPL could also provide promising safety benefits, beyond modeling the preferences561

of diverse users. Because uncertainty detection can be used to prevent jailbreak attacks that arise562

from conflicting rewards [47], and since VPL could capture uncertainty in the distribution over user563

preferences, this could potentially be used to improve safety by having the model stop or refuse to564

answer when uncertainty cannot be reduced [29].565

This work has a clear social impact when deployed on user-facing systems like LLMs or household566

robots. In pluralistic alignment, we assume that some differences in user preferences reflect divergent567

but equally valid perspectives on which moral or cultural values an LLM should align to; for example,568

15



individuals from one culture may hold collectivist moral values, while another culture is more569

individualist. Both value systems should be respected, and as such LLMs should be able to recognize570

and adapt to the values held by a particular user. However, the personalized model could potentially571

either be sycophantic or align with adversarial users, which is undesirable. This raises very interesting572

questions, such as: At what point should the LLM embrace a more universal set of values? How can573

we detect when such a point has occurred in a particular conversation? The probabilistic framework574

of the user distribution could allow us to identify low probability or rare behavior, and also the575

distributional nature of reward functions can help us point out responses where the users are divergent576

(maybe signifying disagreement). Additionally, a model could flexibly switch between adhering577

to the user’s personal preferences and conforming to a more universal perspective on topics where578

it could be biased, or is sensitive to jailbreak [2]. Taking inspiration from Constitutional AI [2],579

we can allow a system designer to specify the topics for which the LLM should not engage in user580

personalization. Overall, this presents an exciting future research direction toward building safe581

personalized LLMs.582

E Implementation Details583

E.1 Training and Evaluation Details:584

We test our hypothesis across evaluation domains in two steps: 1) We train a reward model on a585

dataset of preferences collected using diverse simulated humans; 2) We train a policy using RL to586

maximize the learned rewards. For these experiments, we use Implicit Q-Learning [34], an offline RL587

algorithm that achieves strong performance on offline RL benchmarks [22]. Using the learned reward588

function rϕ(s, z), and the prior p(z), we label the reward-free offline RL dataset D = (st, at, st+1),589

by sampling a latent z ∈ p(z), and setting the reward as rt = rϕ(st), or a one-step look-ahead method,590

where rt = rϕ(st+1) (refer to Algorithm 2 for complete method). We include the hyperparameters591

and the training details in the Appendix E.592

E.2 Baselines:593

We compare our method against multiple baselines: 1) Oracle [38]: This is a goal-conditioned offline594

RL method, that presents an oracle with access to the true reward functions for all annotators. 2)595

BTL [14]: This is the standard RLHF method from [14, 42] as a baseline, where the reward model596

is approximated using the unimodal BTL function. 3) DPL [47]: Following the work on accounting597

for hidden context in RLHF, we train a distributional reward model, using both the mean-variance598

(MeanVar) and categorical (Categorical) approximation for the reward functions. 4) VPL (Ours):599

We denote two versions of our method, VPL and VPL + SPO, discussed in Section 3.600

E.3 Task Details601

We evaluate our methods on three simulated control environments.602

Maze-Navigation. This task is adapted from the "maze2d-medium-v2" environment from the D4RL603

benchmark [22]. The observation space is the position and velocity of the robot (px, py, pz), and the604

pointmass is controlled using torque control. In this environment, point mass doesn’t have access to a605

goal, and diverse users guide the agent to (two or ten) different locations in the maze, marked with606

their preferred colors. The users label the preferences over two states based on the shortest path to607

the goal from each state, i.e, the user prefers states closer to their preferred color location. The offline608

dataset for IQL is collected using the waypoint controllers provided in the D4RL benchmark. For609

each episode, the agent is spawned at a random location in the maze, interacts with a random user,610

and navigates to the goal based on the learned reward model and corresponding policy trained on611

the offline dataset. The oracle reward function is the optimal Q-value of the state, generated using a612

dynamic programming solution, which is available in D4RL.613

Ravens-Manipulation This task is adapted from the ravens benchmark [57]. The observation space614

is the 3-D position of the object, the 3-D position of the end effector, and the grasp state of the object,615

i.e., (eex, eey, eez, px, py, pz, grasp). The agent commands absolute positions for the 3-DOF robot616

arm in end-effector space i.e. (ee′x, ee
′
y, ee

′
z). This setup resembles how a robot arm would infer user617
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preferences to organize a dining table. The users prefer two different locations for the box spawned at618

a random location at the beginning of each episode. To collect offline data, we use a motion planning619

oracle with some added noise, which tries to pick the box and place it randomly at one of the two620

locations. The oracle reward function is as follows:621

reward =
1

100


100 if goal_dist < 0.05 and not grasped
5 if goal_dist < 0.05 and grasped
2 + exp(−goal_dist) if not goal_dist < 0.05 and grasped
exp(−gripper_dist) if not goal_dist < 0.05 and not grasped

Habitat-Rearrange This is a task based on the Meta Habitat simulator [56]. Here, the objective622

for the Mobile Manipulator is to pick a bowl and place it at the user’s preferred location in the623

home. However, the exact location is underspecified and needs to be inferred from the user-annotated624

preferences. The robot uses a motion primitive to navigate and place the object at five possible625

locations (’desk’, ’room’, ’dining’, ’coffee table’, ’sofa’). This problem is reduced to a discrete626

one-step problem, where the robot has to reason about the best possible location to put the bowl.627

For ranking the states, the users are generated by randomly choosing a five random orderings of the628

locations, each corresponding to an individual user. At test time, the agent is greedy and chooses the629

location with the maximum inferred reward from the learned reward model.630

Habitat-TidyBot This task is based on Meta Habitat [56] and inspired from the TidyBot task [54].631

In this environment, there are 5 objects in the kitchen (spoon, knife, plate, bowl, and spatula). Each632

user has their preferences for sorting the objects according to particular attributes (material such as633

metal, plastic or function i.e. tableware or cooking ware). The robot observes or queries the user634

for the existing location of a subset of objects, then rearranges the misplaced object according to635

the inferred user preference and greedily selects the goal with the higher reward. The baseline here636

would converge to sort the objects according to one attribute only, while VPL would infer the latent,637

and choose the correct location for the given object.638

E.4 LLM Preference Learning Dataset Descriptions639

Prior RLHF works have focused mainly on unimodal BTL models, and as such there is a lack of640

publicly available datasets containing annotated preferences with divergent objectives. To evaluate641

our method on capturing multi-modality in preferences for LLMs, we consider two benchmarks.642

First, we introduce a synthetic dataset, Pets, that directly represents multimodal preferences, and643

second, we augment the publicly available UltraFeedback [17] dataset.644

Pets Here, the dataset is generated to reflect multi-modal user preferences, where each user has a645

preference ranking over four kinds of animals (in this case cats, dogs, birds, and rabbits). To simulate646

a setting where users agree on some comparisons and disagree on others, we consider two users who647

agree on the best and worst pet and disagree on the middle pair of rankings over pets. Preferences648

here are divergent in certain cases (middle pets), and agree in other instances (best and worst pets),649

requiring multimodal preference modeling. We evaluate our approach on two versions of the dataset:650

Pets (Full), and Pets (Divergent) which contains only those prompt and response pairs where the651

users are divergent (i.e. they have conflicting preferences). For the contexts {(siA, siB , yi)}Ni=1, we652

randomly sample 1-4 other prompts and ranked responses from the same user.653

This dataset is generated synthetically to specifically study the ability of models to perform divergent654

preference modeling. The goal here is to choose between different types of pets. For each animal,655

including bird, cat, dog, and rabbit, we use GPT-4 to generate 100 sentences that describe these kinds656

of pets. Then we define two user groups based on their preference order over the pets. So as to657

have mix of contexts where users agree and disagree, we construct a preference ordering where both658

groups like birds the most and rabbits the least. One group of users prefers dogs to cats while another659

group disagrees and prefers cats to dogs. That is to say, among all 6 comparisons between two kinds660

of pets, only one pair (dogs versus cats) leads to divergent opinions, while the users agree on other661

comparisons (birds better than dogs, dogs better than rabbits and so on). This tests the ability of the662

preference models to capture multimodality, even when the users do agree on some set of preferences.663

We then construct the Pets dataset by clustering the prompt and ranked responses according to the664

group of preferences that they align with. To generate the Pets dataset, we randomly sample a pair665
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of different pets as well as two corresponding sentences, and then label them to be “chosen” and666

“rejected” according to the preference of either “dog group” or “cat group”. The prompt is fixed to be667

“Human: Please talk about one kind of pet.” After all the chosen/rejected pairs are generated, we668

randomly sample 1-4 pairs of responses from the same user that are comparing dogs and cats for669

use as the context to the variational encoder. These are informative since a user’s choice over these670

contexts can clearly express the user’s preference group. In this way, we can generate a “full" Pets671

dataset, and based on that we filter out a “divergent" split that only contains controversial data points672

(comparing dogs and cats). This dataset is meant as a didactic test for language modeling capabilities,673

but scalability is further tested in the following section with the UltraFeedback-P dataset.674

Here we show an example data point for Pets.675

• Prompt: “Human: Please talk about one kind of pets.”676

• Response A: “Cats communicate through vocalizations.” (Rejected)677

• Response B: “Birds exhibit complex social behaviors within flocks.” (Chosen)678

• Contexts: ["chosen": "Cats have a preference for certain types of litter.","rejected":"Dogs679

enjoy exploring their surroundings."], ["chosen":"Cats have a preferred scratching sub-680

strate.","rejected": "Dogs have a unique personality."]681

UltraFeedback-P To construct this dataset UF-P (where P stands for personalized), we use the682

fine-grained scores over different attributes available in the UltraFeedback (UF) [17] dataset to683

construct different users, taking a similar approach to prior work [47].684

The UF dataset contains 64,000 response pairs evaluated across four dimensions: helpfulness, honesty,685

instruction following, and truthfulness. Instead of using averaged scores, we focus on fine-grained686

scores to create a dataset with multi-modal and divergent user preferences.687

We assume that each user ranks responses based on a single attribute. For instance, one user may688

prioritize helpfulness while another values honesty, leading to divergent labels for the same response689

pair. In line with prior work [2, 47], we first create UF-P-2, focusing on helpfulness and honesty as690

the two user preferences. To emphasize multi-modal reward modeling, we filter out response pairs691

where both users either agree or are indecisive, leaving approximately 4,000 prompt-response pairs692

per user. Finally, to generate the context {(siA, siB , yi)}Ni=1 for inferring latent distributions, for each693

prompt and response pair, we sample N different data points from a smaller subset of size K from694

the dataset (K = 100 for GPT2 and 16 for Llama2). For a deployed LLM system, this is analogous695

to having a known set of survey questions from which the user must answer a subset of 2-8 questions696

in order to personalize the model’s behavior to their needs.697

To evaluate VPL ’s ability to handle more users, we introduce UF-P-4, which includes all four698

attributes as distinct user preferences. We filter out response pairs where all four users agree, and699

within each user subset, we remove pairs where the user gives equal ratings to both responses. This700

results in approximately 7,500 prompt-response pairs per user. The context generation follows the701

same approach as UF-P-2, with the number of context samples randomly selected between 2 and 8.702

However, in UF-P-4 the context can still contain queries where at least two users overlap. Thus, this703

provides a dataset to evaluate VPL in cases in cases where different users agree on some responses,704

but not all of them. Overall, this creates a diverse and challenging benchmark for pluralistic alignment,705

constructed from open-source datasets [17].706

E.5 Implementation Details707

Learned Prior. While the methods described in the methods section only learn the reward model708

and the latent encoder, we can also use a prior p(z) as is common in variational inference methods.709

We assume that our prior is a multi-variate Gaussian with mean µ and covariance Σ = diag(σσT ),710

where µ, σ ∈ Rd; where d is the dimension of the latent embedding. In all experiments, they are711

initialized from a standard Gaussian. However, in our control experiments, we observed that using712

a learned Gaussian i.e. setting µ and σ to learnable parameters under the ELBO objective in Eq. 2713

improved performance and stability during training.714

LLM Embeddings. In our experiments, we use the embedding from the last token as our encoding715

for the prompt+response input. However, we also tried llm2vec [4] and a weighted pooling mecha-716
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nism [39]. However, we find that using the last token embedding as inputs to the encoder and for717

predicting the rewards performs the best.718

E.6 Hyperparameters719

Table 2: Hyperparameters for learning reward models using VPL. We sweep over these values and
report the best results on 5 seeds.

Hyperparameter Value
Encoder and Decoder Architecture MLP
Hidden layers 2 layers of width 256
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 3.0000 × 10−4

Latent dimension {8, 16, 32}
β Cosine annealing between 0 and 1 every 25% steps
VAE Prior Multi-variate gaussian with learnable parameters µ, σ ∈ Rd
Context set of queries ∥N∥ 2,4,8,16
Comparison set size (for SPO + VPL) 1000
Number of annotated sets 5000 (Maze), 10000(Ravens)

Table 3: Hyperparameters for IQL. We use the same parameters across all experiments.
Hyperparameter Value
Architecture MLP
Hidden layers 2 layers of width 256 (4 layers of width 1024 for users > 5)
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 3.0000 × 10−4

Discount 0.99
Expectile 0.9
Temperature 10
Dataset size 4M steps (Navigation), 5K trajectories (Manipulation)

Table 4: Hyperparameters for LLM experiments
Hyperparameter Value
Pair Encoder Architecture 2 layer MLP with LeakyReLU
Hidden Dimension 512 (GPT2), 1024 (Llama2-7b)
Latent Dimension 512 (GPT2), 1024 (Llama2-7b)
Learning rate 1.0000 × 10−4

Learning rate scheduler Cosine with 3% warmup steps
Context set size N 8
Full context sampling set K 100 (GPT2), 16 (Llama2-7b)
Batch size 32 (GPT2), 512 (Llama)
Optimizer AdamW(with weight decay = 0.001)
β 0.0001 (for Pets), 0.0 (for UltraFeedback-P)
Computational Resources 2 × RTX4090, 4 × A100

F Algorithms720
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Algorithm 1 Learning Multimodal Reward Functions using VPL

Require: Preference Data {(siA, siB , yi)}Ni=1
Require: Encoder E, Reward Model R, prior p(z)

1: while not done do
2: Sample a batch B ∼ D
3: Compute µB , σB = E(B)
4: Sample z ∼ N (µB , σB)
5: Append z to B: {(sA, sB , y)} → {((sA|z, sB |z), y)}
6: Compute rewards: rsA = R(sA|z) and rsB = R(sB |z)
7: Compute reconstruction loss: Lrecon = cross entropy(σ(rsA − rsB ), y)
8: Compute KL-loss: LKL = β ·DKL(N (µB ,

∑
B) ∥ p(z))

9: Compute total loss: Ltotal = Lrecon + LKL
10: Update E and R by optimizing Ltotal
11: end while =0

Algorithm 2 Policy Optimization using IQL and VPL

Require: Offline Dataset {τ1, τ2, . . . }
Require: Reward Model rϕ(s, z)
Require: Prior p(z)
Require: Policy π(a|s, z)

1: for each trajectory τi = {(st, at, st+1)}Tt=1 in D do
2: Sample z ∼ p(z)
3: for each state st in τi do
4: Compute reward rt = rϕ(st, z) # Alternatively, rt = rϕ(st+1, z)
5: Update dataset with (st, rt, z)
6: end for
7: end for
8: Train policy π(a|s, z) using IQL =0

Algorithm 3 Policy Optimization using IQL and SPO + VPL (Note the changes from Algorithm 2)

Require: Offline Dataset {τ1, τ2, . . . }
Require: Preference Model pϕ(sA, sB , z)
Require: Prior p(z)
Require: Policy π(a|s, z)
Require: Comparison set C = {s1, s2, . . . , sC} # Sampled randomly from the offline dataset

1: for each trajectory τi = {(st, at, st+1)}Tt=1 in D do
2: Sample z ∼ p(z)
3: for each state st in τi do
4: Compute reward rt = 1

∥C∥
∑
s′∈C pϕ(st, s

′, z)

5: Update dataset with (st, rt, z)
6: end for
7: end for
8: Train policy π(a|s, z) using IQL =0
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NeurIPS Paper Checklist721

1. Claims722

Question: Do the main claims made in the abstract and introduction accurately reflect the723

paper’s contributions and scope?724

Answer: [Yes]725

Justification: We highlight the claims and contributions in the abstract and the introduction.726

Guidelines:727

• The answer NA means that the abstract and introduction do not include the claims728

made in the paper.729

• The abstract and/or introduction should clearly state the claims made, including the730

contributions made in the paper and important assumptions and limitations. A No or731

NA answer to this question will not be perceived well by the reviewers.732

• The claims made should match theoretical and experimental results, and reflect how733

much the results can be expected to generalize to other settings.734

• It is fine to include aspirational goals as motivation as long as it is clear that these goals735

are not attained by the paper.736

2. Limitations737

Question: Does the paper discuss the limitations of the work performed by the authors?738

Answer: [Yes]739

Justification: We highlight the limitations of our approach in the Conclusion.740

Guidelines:741

• The answer NA means that the paper has no limitation while the answer No means that742

the paper has limitations, but those are not discussed in the paper.743

• The authors are encouraged to create a separate "Limitations" section in their paper.744

• The paper should point out any strong assumptions and how robust the results are to745

violations of these assumptions (e.g., independence assumptions, noiseless settings,746

model well-specification, asymptotic approximations only holding locally). The authors747

should reflect on how these assumptions might be violated in practice and what the748

implications would be.749

• The authors should reflect on the scope of the claims made, e.g., if the approach was750

only tested on a few datasets or with a few runs. In general, empirical results often751

depend on implicit assumptions, which should be articulated.752

• The authors should reflect on the factors that influence the performance of the approach.753

For example, a facial recognition algorithm may perform poorly when image resolution754

is low or images are taken in low lighting. Or a speech-to-text system might not be755

used reliably to provide closed captions for online lectures because it fails to handle756

technical jargon.757

• The authors should discuss the computational efficiency of the proposed algorithms758

and how they scale with dataset size.759

• If applicable, the authors should discuss possible limitations of their approach to760

address problems of privacy and fairness.761

• While the authors might fear that complete honesty about limitations might be used by762

reviewers as grounds for rejection, a worse outcome might be that reviewers discover763

limitations that aren’t acknowledged in the paper. The authors should use their best764

judgment and recognize that individual actions in favor of transparency play an impor-765

tant role in developing norms that preserve the integrity of the community. Reviewers766

will be specifically instructed to not penalize honesty concerning limitations.767

3. Theory Assumptions and Proofs768

Question: For each theoretical result, does the paper provide the full set of assumptions and769

a complete (and correct) proof?770

Answer: [NA] .771
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Justification: We do not claim any substantial theoretical results that requires a proof.772

Guidelines:773

• The answer NA means that the paper does not include theoretical results.774

• All the theorems, formulas, and proofs in the paper should be numbered and cross-775

referenced.776

• All assumptions should be clearly stated or referenced in the statement of any theorems.777

• The proofs can either appear in the main paper or the supplemental material, but if778

they appear in the supplemental material, the authors are encouraged to provide a short779

proof sketch to provide intuition.780

• Inversely, any informal proof provided in the core of the paper should be complemented781

by formal proofs provided in appendix or supplemental material.782

• Theorems and Lemmas that the proof relies upon should be properly referenced.783

4. Experimental Result Reproducibility784

Question: Does the paper fully disclose all the information needed to reproduce the main ex-785

perimental results of the paper to the extent that it affects the main claims and/or conclusions786

of the paper (regardless of whether the code and data are provided or not)?787

Answer: [Yes]788

Justification: We describe all the algorithms, datasets, models and hyperparameters in detail789

in the paper.790

Guidelines:791

• The answer NA means that the paper does not include experiments.792

• If the paper includes experiments, a No answer to this question will not be perceived793

well by the reviewers: Making the paper reproducible is important, regardless of794

whether the code and data are provided or not.795

• If the contribution is a dataset and/or model, the authors should describe the steps taken796

to make their results reproducible or verifiable.797

• Depending on the contribution, reproducibility can be accomplished in various ways.798

For example, if the contribution is a novel architecture, describing the architecture fully799

might suffice, or if the contribution is a specific model and empirical evaluation, it may800

be necessary to either make it possible for others to replicate the model with the same801

dataset, or provide access to the model. In general. releasing code and data is often802

one good way to accomplish this, but reproducibility can also be provided via detailed803

instructions for how to replicate the results, access to a hosted model (e.g., in the case804

of a large language model), releasing of a model checkpoint, or other means that are805

appropriate to the research performed.806

• While NeurIPS does not require releasing code, the conference does require all submis-807

sions to provide some reasonable avenue for reproducibility, which may depend on the808

nature of the contribution. For example809

(a) If the contribution is primarily a new algorithm, the paper should make it clear how810

to reproduce that algorithm.811

(b) If the contribution is primarily a new model architecture, the paper should describe812

the architecture clearly and fully.813

(c) If the contribution is a new model (e.g., a large language model), then there should814

either be a way to access this model for reproducing the results or a way to reproduce815

the model (e.g., with an open-source dataset or instructions for how to construct816

the dataset).817

(d) We recognize that reproducibility may be tricky in some cases, in which case818

authors are welcome to describe the particular way they provide for reproducibility.819

In the case of closed-source models, it may be that access to the model is limited in820

some way (e.g., to registered users), but it should be possible for other researchers821

to have some path to reproducing or verifying the results.822

5. Open access to data and code823

Question: Does the paper provide open access to the data and code, with sufficient instruc-824

tions to faithfully reproduce the main experimental results, as described in supplemental825

material?826
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Answer: [Yes]827

Justification: We do not provide immediate access to the data and code, but will do so in the828

future.829

Guidelines:830

• The answer NA means that paper does not include experiments requiring code.831

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/832

public/guides/CodeSubmissionPolicy) for more details.833

• While we encourage the release of code and data, we understand that this might not be834

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not835

including code, unless this is central to the contribution (e.g., for a new open-source836

benchmark).837

• The instructions should contain the exact command and environment needed to run to838

reproduce the results. See the NeurIPS code and data submission guidelines (https:839

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.840

• The authors should provide instructions on data access and preparation, including how841

to access the raw data, preprocessed data, intermediate data, and generated data, etc.842

• The authors should provide scripts to reproduce all experimental results for the new843

proposed method and baselines. If only a subset of experiments are reproducible, they844

should state which ones are omitted from the script and why.845

• At submission time, to preserve anonymity, the authors should release anonymized846

versions (if applicable).847

• Providing as much information as possible in supplemental material (appended to the848

paper) is recommended, but including URLs to data and code is permitted.849

6. Experimental Setting/Details850

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-851

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the852

results?853

Answer: [Yes]854

Justification: We provide all details in the main paper and the Appendix.855

Guidelines:856

• The answer NA means that the paper does not include experiments.857

• The experimental setting should be presented in the core of the paper to a level of detail858

that is necessary to appreciate the results and make sense of them.859

• The full details can be provided either with the code, in appendix, or as supplemental860

material.861

7. Experiment Statistical Significance862

Question: Does the paper report error bars suitably and correctly defined or other appropriate863

information about the statistical significance of the experiments?864

Answer: [Yes]865

Justification: We report standard error across multiple seeds for all results.866

Guidelines:867

• The answer NA means that the paper does not include experiments.868

• The authors should answer "Yes" if the results are accompanied by error bars, confi-869

dence intervals, or statistical significance tests, at least for the experiments that support870

the main claims of the paper.871

• The factors of variability that the error bars are capturing should be clearly stated (for872

example, train/test split, initialization, random drawing of some parameter, or overall873

run with given experimental conditions).874

• The method for calculating the error bars should be explained (closed form formula,875

call to a library function, bootstrap, etc.)876

• The assumptions made should be given (e.g., Normally distributed errors).877
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• It should be clear whether the error bar is the standard deviation or the standard error878

of the mean.879

• It is OK to report 1-sigma error bars, but one should state it. The authors should880

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis881

of Normality of errors is not verified.882

• For asymmetric distributions, the authors should be careful not to show in tables or883

figures symmetric error bars that would yield results that are out of range (e.g. negative884

error rates).885

• If error bars are reported in tables or plots, The authors should explain in the text how886

they were calculated and reference the corresponding figures or tables in the text.887

8. Experiments Compute Resources888

Question: For each experiment, does the paper provide sufficient information on the com-889

puter resources (type of compute workers, memory, time of execution) needed to reproduce890

the experiments?891

Answer: [Yes]892

Justification: We indicate the compute resources used in the Appendix.893

Guidelines:894

• The answer NA means that the paper does not include experiments.895

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,896

or cloud provider, including relevant memory and storage.897

• The paper should provide the amount of compute required for each of the individual898

experimental runs as well as estimate the total compute.899

• The paper should disclose whether the full research project required more compute900

than the experiments reported in the paper (e.g., preliminary or failed experiments that901

didn’t make it into the paper).902

9. Code Of Ethics903

Question: Does the research conducted in the paper conform, in every respect, with the904

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?905

Answer: [Yes]906

Justification: We confirm to the code of ethics in every respect.907

Guidelines:908

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.909

• If the authors answer No, they should explain the special circumstances that require a910

deviation from the Code of Ethics.911

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-912

eration due to laws or regulations in their jurisdiction).913

10. Broader Impacts914

Question: Does the paper discuss both potential positive societal impacts and negative915

societal impacts of the work performed?916

Answer: [Yes]917

Justification: We discuss the impact of the work in the concluding section.918

Guidelines:919

• The answer NA means that there is no societal impact of the work performed.920

• If the authors answer NA or No, they should explain why their work has no societal921

impact or why the paper does not address societal impact.922

• Examples of negative societal impacts include potential malicious or unintended uses923

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations924

(e.g., deployment of technologies that could make decisions that unfairly impact specific925

groups), privacy considerations, and security considerations.926
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• The conference expects that many papers will be foundational research and not tied927

to particular applications, let alone deployments. However, if there is a direct path to928

any negative applications, the authors should point it out. For example, it is legitimate929

to point out that an improvement in the quality of generative models could be used to930

generate deepfakes for disinformation. On the other hand, it is not needed to point out931

that a generic algorithm for optimizing neural networks could enable people to train932

models that generate Deepfakes faster.933

• The authors should consider possible harms that could arise when the technology is934

being used as intended and functioning correctly, harms that could arise when the935

technology is being used as intended but gives incorrect results, and harms following936

from (intentional or unintentional) misuse of the technology.937

• If there are negative societal impacts, the authors could also discuss possible mitigation938

strategies (e.g., gated release of models, providing defenses in addition to attacks,939

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from940

feedback over time, improving the efficiency and accessibility of ML).941

11. Safeguards942

Question: Does the paper describe safeguards that have been put in place for responsible943

release of data or models that have a high risk for misuse (e.g., pretrained language models,944

image generators, or scraped datasets)?945

Answer: [NA]946

Justification: We use publicly available datasets and models, and the synthetic toy dataset947

generated has no risk for misuse.948

Guidelines:949

• The answer NA means that the paper poses no such risks.950

• Released models that have a high risk for misuse or dual-use should be released with951

necessary safeguards to allow for controlled use of the model, for example by requiring952

that users adhere to usage guidelines or restrictions to access the model or implementing953

safety filters.954

• Datasets that have been scraped from the Internet could pose safety risks. The authors955

should describe how they avoided releasing unsafe images.956

• We recognize that providing effective safeguards is challenging, and many papers do957

not require this, but we encourage authors to take this into account and make a best958

faith effort.959

12. Licenses for existing assets960

Question: Are the creators or original owners of assets (e.g., code, data, models), used in961

the paper, properly credited and are the license and terms of use explicitly mentioned and962

properly respected?963

Answer: [Yes]964

Justification: We cite all the datasets, models and other assets used in the paper.965

Guidelines:966

• The answer NA means that the paper does not use existing assets.967

• The authors should cite the original paper that produced the code package or dataset.968

• The authors should state which version of the asset is used and, if possible, include a969

URL.970

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.971

• For scraped data from a particular source (e.g., website), the copyright and terms of972

service of that source should be provided.973

• If assets are released, the license, copyright information, and terms of use in the974

package should be provided. For popular datasets, paperswithcode.com/datasets975

has curated licenses for some datasets. Their licensing guide can help determine the976

license of a dataset.977

• For existing datasets that are re-packaged, both the original license and the license of978

the derived asset (if it has changed) should be provided.979
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• If this information is not available online, the authors are encouraged to reach out to980

the asset’s creators.981

13. New Assets982

Question: Are new assets introduced in the paper well documented and is the documentation983

provided alongside the assets?984

Answer: [Yes]985

Justification: We introduce a new dataset, and provide detailed explanation of the dataset in986

the Appendix.987

Guidelines:988

• The answer NA means that the paper does not release new assets.989

• Researchers should communicate the details of the dataset/code/model as part of their990

submissions via structured templates. This includes details about training, license,991

limitations, etc.992

• The paper should discuss whether and how consent was obtained from people whose993

asset is used.994

• At submission time, remember to anonymize your assets (if applicable). You can either995

create an anonymized URL or include an anonymized zip file.996

14. Crowdsourcing and Research with Human Subjects997

Question: For crowdsourcing experiments and research with human subjects, does the paper998

include the full text of instructions given to participants and screenshots, if applicable, as999

well as details about compensation (if any)?1000

Answer: [NA]1001

Justification: We dont use real humans or crowd sourcing as subjects for any of our experi-1002

ments.1003

Guidelines:1004

• The answer NA means that the paper does not involve crowdsourcing nor research with1005

human subjects.1006

• Including this information in the supplemental material is fine, but if the main contribu-1007

tion of the paper involves human subjects, then as much detail as possible should be1008

included in the main paper.1009

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1010

or other labor should be paid at least the minimum wage in the country of the data1011

collector.1012

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1013

Subjects1014

Question: Does the paper describe potential risks incurred by study participants, whether1015

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1016

approvals (or an equivalent approval/review based on the requirements of your country or1017

institution) were obtained?1018

Answer: [NA]1019

Justification: Our experiments do not require an IRB.1020

Guidelines:1021

• The answer NA means that the paper does not involve crowdsourcing nor research with1022

human subjects.1023

• Depending on the country in which research is conducted, IRB approval (or equivalent)1024

may be required for any human subjects research. If you obtained IRB approval, you1025

should clearly state this in the paper.1026

• We recognize that the procedures for this may vary significantly between institutions1027

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1028

guidelines for their institution.1029

• For initial submissions, do not include any information that would break anonymity (if1030

applicable), such as the institution conducting the review.1031
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