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Abstract—We consider the task scheduling scenario where the
controller activates one from K task types at each time. Each
task induces a random completion time, and a reward is obtained
only after the task is completed. The statistics of the completion
time and the reward distributions of all task types are unknown
to the controller. The controller needs to learn to schedule tasks
to maximize the accumulated reward within a given time horizon
T . Motivated by the practical scenarios, we require the designed
policy to satisfy a system throughput constraint. In addition,
we introduce the interruption mechanism to terminate ongoing
tasks that last longer than certain deadlines. To address this
scheduling problem, we model it as an online learning problem
with deadline and throughput constraints. Then, we characterize
the optimal offline policy and develop efficient online learning
algorithms based on the Lyapunov method. We prove that our
online learning algorithm achieves an O(

√
T ) regret and zero

constraint violations. We also conduct simulations to evaluate
the performance of our developed learning algorithms.

I. INTRODUCTION

We consider the scenario that a controller processes tasks
with stochastic completion time and reward/utility that are
unknown in advance, and the controller schedules these tasks
to maximize the cumulative reward within a given time in-
terval. Specifically, consider a Base Station (BS) that gath-
ers time-sensitive information from K heterogeneous sensing
sources to make real-time decisions [23], [26]. Each source
connects with the BS through a unique uplink channel for data
transmission. Due to channel interference, only one channel
(i.e., one source) can be activated for transmitting packets at
any time. Suppose the BS needs to schedule the transmission
trails within a time period T ≥ 0 to obtain information from
these sources. In each trial n = 1, 2, 3, ...., the BS activates
a source k ∈ K to transmit one data package. If the n-th
trial is transmitted through channel k, it takes a time period
of Xk,n > 0, and yields a reward of Rk,n ≥ 0 for the
BS upon successful transmission (e.g., the value of updated
information).

Following common assumptions in previous literature,
where the reward and the transmission time of each source
is independent and identically distributed [22], [26], [36], the
server’s scheduling problem can be naturally modeled as a
budget-constraint multi-armed bandit problem (e.g., [8], [34],
more discussions on literature in Section I-B). That is, an
agent is maximizing the accumulated stochastic rewards from
pulling arms (i.e., sources). Each arm is associated with some
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time consumption, and the budget is the total time horizon T .
Thus, the agent needs to wisely pull arms, and the process
ends once time is up.

However, such a budget-constraint bandit model fails to
capture two unique challenges in the networking scenarios:
data freshness and throughput constraint. The first challenge
of data freshness arises in many time-sensitive applications,
where they have requirements on the information freshness,
or the age of information (AoI) of the received packets. Thus,
if the data transmission of a trial exceeds some certain time
threshold, the data becomes outdated and the transmission is
worthless [20]. For example, a transmission trial to the BS that
lasts more than some time threshold d > 0 is considered failed,
which wastes time and generates zero reward. In fact, many
practical task scheduling processes introduce the interruption
mechanism to terminate ongoing tasks that exceeds its time
deadlines (e.g., [7], [9], [32]). Results in [32] show that the
interruption mechanism improves the system throughput, espe-
cially when the distribution of task completion time is heavy
tailed. The second challenge on throughput comes from the
common Quality of Service (QoS) requirement in practices.
For example, the BS would like to guarantee a certain aggre-
gate throughput for timely and efficient decision-making [20],
[23]. As a consequence, the exploration-exploitation trade-off
in our considered scenario is more complicated than traditional
learning problems due to the interruption mechanism and QoS
constraint.

In our paper, we investigate the exploration-exploitation
trade-off in the context of task scheduling under the inter-
ruption mechanism and throughput constraint. With the multi-
armed bandit (MAB) setting, each arm corresponds to a task
type, and each task takes a random completion time and yields
a random reward after completion. The controller maximizes
the accumulated reward within the given time horizon, without
knowing the statistics of each arm’s reward and completion
time at the beginning. Beyond the budget-constrained multi-
armed bandit (MAB) model discussed above, we introduce
the interruption mechanism where a task will be terminated
after a deadline. The interruption mechanism leads to zero
reward. Moreover, motivated by practical applications, we
introduce the throughput constraint for the controller. The
throughput constraints substantially complicates the design of
the exploration-exploitation trade-off. To fully capture these
properties, we propose an online algorithm that incorporates
new design and analysis techniques from bandit theory, Lya-



punov optimization, and statistical estimation.
We summary our main contributions as follows:

• We consider a general task scheduling problem with
both deadline and throughput constraint. As far as we
know, we are the first to model the problem as an MAB
problem that (a) incorporates random time consuming and
interruption mechanism for each trial (or decision); (b) is
subject to a stringent “budget”-type time constraint; and
(c) has (stochastic) throughout constraint as required by
many applications.

• When arm statistics are given, we determine a tractable
randomized policy with O(1) optimality gap using tools
from renewal theory.

• When arm statistics are unknown, we propose a novel
Lyapunov-based methodology to develop an efficient al-
gorithm with provably sharp performance, i.e., achieving
O(

√
T ) regret over a time interval T and zero constraint

violation. Our analysis for this algorithm is based on a
combination of renewal theory, bandit optimization, and
novel concentration inequalities for rate estimation.

Before showing the specific problem formulation in Section
II, we present more motivating scenarios of our problem and
discuss the related literature in the rest of this section.

A. More motivating scenarios

Here we provide more motivating examples including server
allocation in cloud computing, wireless video streaming, etc.

Job allocation in cloud computing. Formally, there are K
heterogeneous servers (or we can call them workers to avoid
confusions) that can be hired sequentially for each job [9], i.e.,
exactly one worker can be hired at any point. If the worker
k ∈ [K] is chosen for the n-th job, the job lasts for a random
time Xk,n and generates a random reward of Rk,n if it is
successfully completed. The job is successfully completed if
Xk,n ≤ d, where d is the deadline for the job. Otherwise,
the job fails and generates no reward for the controller, but
wastes time until the deadline. The objective of the controller
is to maximize the total utility within a given time-horizon,
subject to some throughput requirements of the system, i.e.,
the number of jobs completed in a unit of time.

Wireless video streaming. Consider a user requests video
streaming from a remote server (e.g., [3], [5], [15], [18]). The
video streaming consists of multiple chunks, and each chunk
has K available bitrate versions for downloading (different
bitrate version has different chunk size and yields different
utility to user). The user downloads these chunks in order,
one chunk after the other. Here the chunk download is time-
constrained due to the video streaming protocols or the limited
connection time (e.g., user is fast-moving in vehicular Ad Hoc
networks), i.e., the chunk’s download session is terminated
when the download time exceeds a threshold d. If a chunk
fails to download, the user would download it again until it
succeeds. Note that the low loading rate of chunks may lead
to poor user Quality of Experience like application playback
failures. Thus, the objective of the user is to maximize its

total obtained utility within a given time subject to a minimum
successful chunk download rate.

B. Related work

Budget-constrained bandits. As the total (stochastic) time
consuming should satisfy the stringent budget constraint T in
our model, our problem can be viewed as a kind of budget-
constrained bandit problem. There is a large body of work
on the classical model of budget-constrained bandits wherein
the objective is to maximize the accumulated reward under
knapsack constraints in a stochastic setting [8], [14], [34]. This
basic model has been extended to linear contextual setting
[2], combinatorial semi-bandit setting [35], adversarial setting
[21], [24], etc. Our model has a substantial difference from
these works in that they do not incorporate an interruption
or cancellation mechanism and throughput constraint into the
learning problem.

Learning to tasks scheduling. Our online learning prob-
lem of tasks scheduling have been investigated in different
contexts, e.g., server allocation [9], job dispatching [13], [25],
[38], and wireless flow scheduling [6], [37], etc. In these
works, [13], [25], [38] focus on the queue length minimization
in job dispatching with unknown service rates (i.e., unknown
completion times); [6], [37] aim to develop efficient scheduling
policies that eventually avoid any interruptions without know-
ing channel statistics in deadline-constrained flow scheduling.
The mostly related work is [9] which also employed an in-
terruption mechanism into the server allocation problem from
an online learning point-of-view. However, they considered
the full-information feedback model where the reward and
completion time of all arms for each trial are revealed to
the controller. Besides, they focus solely on maximizing the
total utility as a function of each arm’s accumulated reward,
therefore do not address the QoS considerations.

Learning-aided Lyapunov optimization. Lyapunov-based
methods have been widely used for online learning problems
in recent years, where the objective is to maximize the total
reward subject to a knapsack (resource) constraint [10]–[12],
[29], [30], fairness constraint [19], [27], [39], energy constraint
[40], age of information (AoI) constraint [26], or switching
cost constraint [28], etc. The recent work [31] also utilized
Lyapunov-based methods for constrained online learning in the
linear contextual bandits setting. Our work differs from these
works as the rewards yielded by arms could be “rejected” due
to the interruptions and the superposition of stochastic time
consuming per trial and QoS considerations.

II. PROBLEM FORMULATION

We study a sequential decision-making process within a
given time horizon T > 0, and there are K arms (or task
types) available for each trial (or decision). If arm k is chosen
for the n-th trial, it takes a completion time of Xk,n > 0, and
the controller could obtain a reward/utility of Rk,n ∈ [0, Rmax]

upon successful completion. (Xk,n, Rk,n) is independent across
k while identically distributed (iid) over n, but the statistics of
them are unknown to the controller. Note that in our model, the



reward Rk,n and completion time Xk,n could be correlated. We
also allow the completion time Xk,n to be possibly unbounded
and even heavy-tailed. Without loss of generality, we assume
that 1 ≤ E[Xk,1] < +∞,∀k. In our framework, due to the
timing & deadline requirement, the controller would interrupt
the ongoing trial if it is not completed by the deadline
d (d ≥ mink E[Xk,1]) and no reward would be obtained1.
The sequential decision process continues until a given time-
horizon T is exceeded. Therefore, the completion time of an
arm is as important as its yield reward.

To mathematically describe this process, we denote Iπ
n as

the selected arm for n-th trial under a policy π, which makes
decisions based only on past observations, without knowledge
of the future. In our model, we consider the bandit-feedback
setup, i.e., the controller can only observe the vector after the
decision for trial n:(

I{XIπ
n ,n ≤ d}, RIπ

n ,nI{XIπ
n ,n ≤ d}, min{XIπ

n ,n, d}
)
,

where I{·} is the indicator function. In words, the information
about (XIπ

n ,n, RIπ
n ,n) is obtained only if the trial n is finished

in d units of time, (i.e., the n-th trial is successfully completed)
and only I{XIπ

n ,n ≤ d} is obtained otherwise. For convenience,
we denote Xπ

n = XIπ
n ,n, Rπ

n = XIπ
n ,n. Thus, given a time-

horizon T , the number of pulls or the trials that are initiated
under the policy π is:

Nπ(T ) = inf{n :

n∑
i=1

min{Xπ
i , d} > T}. (1)

Note that Nπ(T ) is a random variable and relies on the
controller policy π. While in the traditional bandit models,
the number of trials is a given deterministic quantity, which is
equal to the time-horizon. Accordingly, the total/accumulated
reward under the policy π is given by:

Rπ(T ) =

Nπ(T )∑
n=1

I{Iπ
n = k}Rk,nI{Xk,n ≤ d}

=

Nπ(T )∑
n=1

RIπ
n ,nI{XIπ

n ,n ≤ d}.

(2)

Note that designing policies that aim to maximize the accumu-
lated reward may lead to low throughput (the number of trials
successfully finished in a unit of time). In order to address
this quality of service (QoS) consideration, we introduce the
following throughput constraint for the controller:

E[
1

T

Nπ(T )∑
n=1

I{XIπ
n ,n ≤ d}] ≥ α. (3)

Therefore, the goal of the controller is to find an online policy
πOPT that satisfies:

πOPT = argmax
π

Rπ(T ), s.t. (3) holds.

However, since the sequence of {Rk,n, Xk,n} and their
statistics are unknown in advance, finding πOPT is impossible
and our objective is designing an online leaning policy π
that have a good competitive performance w.r.t πOPT. The

1In Section V, we extend the design and analysis of our algorithm to the
setting that the controller can decide interruption times from a finite set.

performance metrics for this objective are the regret and
constraint violation, defined as follows,

Regretπ(T ) = OPT(T )− E[Rπ(T )],

Vioπ(T ) = αn − E[
1

T

Nπ(T )∑
n=1

I{XIπ
n ,n ≤ d}],

where OPT(T ) is the expected accumulated reward of policy
πOPT. Note that maximizing the accumulated reward is equiv-
alent to minimizing the regret. We aim to obtain a sublinear
regret and a vanishing constraint violation that decays rapidly
with the given time-horizon T . Since the arm statistics are
unknown, to achieve this goal, we have to balance the trade-
off between exploitation and exploration from bandit-type
feedback. In our problem, this trade-off with low regret is
complicated by the stochastic constraints and interruption
mechanism. Later we will design an efficient online policy
to optimize this trade-off for optimal learning.

In our paper, we make the following assumption to ensure
the constraint is feasible and facilitate our policy design:

Assumption 1 (Slater condition). There exists an arm k and
constant ϵ > 0 such that E[α ·min{Xk,1, d} − I{Xk,1 ≤ d}] ≤
−ϵ. We only need ϵ to be a positive lower-bound of the actual
value.

The intuition behind Assumption 1 is that there exists a
static policy, which always selects the same arm at each trial,
can satisfy the throughput constraint. In other words, there
exists an arm k such that E[I{Xk,1≤d}]

E[min{Xk,1,d}]
> α.

III. APPROXIMATION OF THE OPTIMAL OFFLINE POLICY

Note that even in the offline setting, calculation of the
optimal policy for our problem has a very high computational
complexity, which makes it intractable for online learning. In
order to obtain a tractable benchmark for learning algorithm
design and regret analysis, in this section we study the ap-
proximation algorithm with provably good performance when
all the statistics are known. Firstly, we show that there exists
an offline stationary randomized policy with only a bounded
regret. Before introducing this stationary randomized policy,
we next formally define some relevant concepts.

For any p = (p1, ..., pK) ∈ ∆K , we denote π(p) as the
randomized policy that chooses arm k with probability pk for
all trials. According to the results from renewal theory [4],
under randomized policy π(p), the time average reward per
unit time limT→∞ Rπ(p)(T )/T and time average throughput
limT→∞ E[

∑Nπ(p)(T )
n=1 I{XIπ(p)

n ,n
≤ d}/T ] converge to positive

constants r(p) and c(p), respectively, which are defined as:

r(p) =

∑
k pkE[Rk,1I{Xk,1 ≤ d}]∑

k pkE[min{Xk,1, d}]
,

c(p) =

∑
k pkE[I{Xk,1 ≤ d}]∑
k pkE[min{Xk,1, d}]

.

(4)

Hence, we call these constants the reward rate and completion
rate, respectively. Intuitively, a randomized policy with higher
reward rate can obtain more reward until the time budget T
is used up while with higher completion rate can guarantee
larger throughout. However, since arms with higher rewards
may also have higher completion times, any randomized policy



Algorithm 1 Offline policy πoff

1: Input: the first-order statistics of Rk,1, Xk,1, ∀k.
2: Initialization: Q0 = 0, n = 1.

3: while
∑n−1

i=1 min{d,XIi,i} ≤ T do
4: qn = argmaxp∈∆K Φn(p, Qn)

5: Select server In according to qn
6: (i.e., select server In that satisfies In =

argmaxk Φn(k,Qn))
7: Receive bandit feedback
8: Qn+1 = [Qn + (α+ δ)min{d,XIn,n} − I{XIn,n ≤ d}]+

9: end while

increases its reward rate may decrease its completion rate.
Thus, when choosing arms according to a randomized policy,
the controller should balance the trade-off between its reward
rate and complete rate to maximize the obtained reward
while guaranteeing the throughput constraint. Obviously, under
a randomized policy π(p), the accumulated reward of the
controller is as follows,

Rπ(p)(T ) = r(p)T + o(T ),

and the number of tasks completed by he/she is

E[

Nπ(p)(T )∑
n=1

I{XIπ(p)
n ,n

≤ d}] = c(p)T + o(T ).

Since the random varibales Rk,n and min{Xk,n, d} are
bounded, the additive term o(T ) is O(1) according to the
Lorden’s theorem [4] in renewal process. In the following,
we present the optimal stationary randomized policy for our
problem and show it achieves an O(1) optimality gap.

Proposition 1. (Optimal stationary randomized policy) Let
p∗ be the solution of the following optimization problem:

max
p∈∆K

r(p), s.t. c(p) ≥ α. (5)

Under Assumption 1 and for any T > 0, π(p∗) ensures that

Regretπ(p∗)(T ) = O(1), Vioπ(p∗)(T ) ≤ 0. (6)

We remark that when Assumption 1 holds, the optimization
problem (5) is feasible, hence π(p∗) exists. Proposition 1
implies that π(p∗) almost achieves the optimality in the offline
setting and could be used as the tractable benchmark for the
regret analysis of our learning algorithms. However, we may
not be able to solve (5) in a polynomial time. We also cannot
obtain a closed-form solution of (5). To obtain an efficient
benchmark for our online learning algorithm, in the following
we use the Lyapunov optimization method to address the
computational-complexity issue of policy π(p∗).

Offline Lyapunov-based policy. Here we develop an effi-
cient offline algorithm based on the Lyapunov methodology.
Our idea is to optimize the (partial) Lagrangian of (5) at each
trial n:

max
p∈∆K

r(p) + λn · c(p). (7)

In (7), we omit the constant term −λn · α and λn is the
Lagrange multiplier associated with the constraint c(p) ≥ α at
trial n. The main challenge is how to design λn to balance the
trade-off between maximizing the reward and satisfying the

constraint. To address this challenge, we construct a virtual
queue Qn to keep track of the “debt” of constraint violation
up to n-trial, i.e., Qn+1 = [Qn +αmin{XIn,n, d}− I{XIn,n ≤
d}]+, and let λn = 1/V · Qn, where 1/V is the balance
parameter. However, this Lagrange multiplier design can only
guarantee the constraint to be satisfied asymptotically, i.e.,
limT→∞ Vioπ(T )/T = 0. To yield zero constraint violation,
we incorporate the virtual queue update with a “pessimistic”
mechanism so that the virtual queue overestimates the con-
straint violation, i.e.,

Qn+1 = max{0, Qn + (α+ δ)min{XIn,n, d} − I{XIn,n ≤ d}},

where δ is the tightness parameter of the constraint. Similar
idea has been used in [31]. From (7), at each trial n, we choose
arm according to the distribution qn that

max
p∈∆K

Φn(p, Qn) = V · r(p) +Qn · c(p). (8)

Furthermore, we remark that the optimal solution of (8), i.e.,
qn, is deterministic in our K-arm setting. Thus, problem (8)
is equivalent with the following optimization problem:

max
k

Φn(k,Qn) = V · rk +Qn · ck, where

rk =
E[Rk,1I{Xk,1 ≤ d}]
E[min{Xk,1, d}]

, ck =
E[I{Xk,1 ≤ d}]
E[min{Xk,1, d}]

.
(9)

Here rk and ck could be viewed as the reward rate and
completion rate of arm k, respectively. It is obvious that (9)
can be solved in O(K) running time. We illustrate this offline
policy, πoff, in Algorithm 1.

Intuition in πoff. The virtual queue and parameter V could
control the trade-off between constraint satisfaction and reward
maximization. Specifically, when Qn is small, the controller
tends to choose the arm with the highest reward rate to
maximize the obtained reward under the time budget T . When
Qn is large, i.e., when the algorithm has substantially violated
the constraint, the controller tends to select the arm with the
highest completion rate aiming to meet the constraint. Thus,
πoff can maximizes the total reward as much as possible while
keeping the constraint violation below a certain value. The
following Theorem provides the performance bounds for πoff.

Theorem 1. Under Assumption 1, when the statistics of
(Rk,n, Xk,n) are known for all k, our Lyapunov-based policy
πoff, i.e., Algorithm 1, ensures that

Regretπ
off
(T ) = O(

α2d3T

V x2
min

+
rmaxd

2

ϵx2
min

δT ),

Vioπoff
(T ) ≤ O(

V rmaxd
2

ϵxminT
− 2δd

xmin
),

where xmin = mink E[min{d,Xk,1}], rmax = maxk rk. Specifi-
cally, setting V = O(

√
T ) and δ = O(1/

√
T ), we have

Regretπ
off
(T ) = O(

√
T ), Vioπoff

≤ O(−1/
√
T ). (10)

Theorem 1 shows that πoff can guarantee an O(
√
T ) regret

and zero constraint violation when T is sufficiently large in the
offline setting. Later, πoff will serve as a guide for our efficient
algorithm design in the online learning setting.



IV. ONLINE LYAPUNOV-BASED POLICY

In this section, we present our efficient algorithm with low
regret and constraint-violation in the online learning setting.

Since we do not have the knowledge of (rk, ck) in the
online learning setting,, our idea is to use an empirical
estimator for (rk, ck) with an upper-confidence correction to
encourage exploration. To ensure the regret and constraint
violation contributed by exploration is bounded, we need to
find a high-probability confidence radius for the empirical
mean estimate of (rk, ck). We remark that rk and ck are
all the quotients between two expected values, hence the
traditional concentration inequalities from bandit community
cannot apply into our case. To address this challenge, next
we develop the novel concentration radius for our estimated
reward rate and constraint rate.

Concentration for a quotient between two sample means.
The following Proposition yields a useful advance to obtain
the concentration bounds for a quotient between two sample
means.

Proposition 2. [8] Let θ̂1 and θ̂2 be the mean empirical
estimators for θ1 ≥ 0, θ2 ≥ 0, respectively. Let r = θ2

θ1
and

λ > 1. If η ∈ (0, θ1(λ−1)
λ

), then we have the following result:

P

(
|r − θ̂2

θ̂1
| > λη(1 + r)

θ1

)
≤ P(|θ̂1 − θ1| > η) + P(|θ̂2 − θ2| > η).

For the convenience of confidence radius design and analy-
sis, we derive the following corollary to Proposition 2, which
involves fewer free variables.

Corollary 1. Let {(Un, Vn)}n≥1 be a sequence of i.i.d
vectors with mean µ = (E[U1], E[V1]). Assume µ̃s = (Ũs, Ṽs)
is the mean empirical estimate for µ = (E[U1], E[V1]). Then
for any 0 < η ≤ E[U1], we have

P
(∣∣∣∣ Ṽs

Ũs

− E[V1]

E[U1]

∣∣∣∣ > 2η

E[U1]
(1 +

E[V1]

E[U1]
)

)
≤ P

(
||µ̃s − µ||1 > η

)
.

Corollary 1 will be used to construct the high-probability
confidence radius for our empirical mean estimate of (rk, ck).
Define ẼS [Z] = 1

|S|
∑

i∈S Zt, where S is a subset of indices
and {Zn} is a stochastic process, and let hπ

n(k) be the number
of selects for arm k under policy π until n-th trial. Then the
empirical mean estimates of rk and ck under policy π at the
n-th trial could be expressed as:

r̃k(n) =
ẼIπ

n(k)[RkI{Xk ≤ d}]
ẼIπ

n(k)[min{Xk,1, d}]
, c̃k(n) =

ẼIπ
n(k)[I{Xk ≤ d}]

ẼIπ
n(k)[min{Xk, d}]

.

Then according to Corollary 1, we have the following lemma.
Lemma 1. The following two events hold with high-

probability (at least 1− 1/n2) ∀n:

{|r̃k(n)− rk| ≤ Radk(β, n)
1 + rk

E[min{d,X1,k}]
},

{|c̃k(n)− ck| ≤ Radk(β, n)
1 + ck

E[min{d,X1,k}]
};

(11)

which means the following two events also hold with high-
probability:

{|r̃k(n)− rk| ≤ Radk(β, n)
1 + rmax

xmin
},

{|c̃k(n)− ck| ≤ Radk(β, n)
1 + cmax

xmin
};

(12)

Algorithm 2 Online policy πon

1: Input: β, β0

2: Initialization: Q0 = 0, n = 1.

3: Select each server ⌈β0 log
2 T ⌉ times.

4: Compute (r̂k(n), ĉk(n)) for all k
5: while

∑n−1
i=1 min{d,XIi,i} ≤ T do

6: Select server In that satisfies In = argmaxk Φ̂n(k,Qn)

7: Qn+1 = [Qn + (α+ δ)min{d,XIn,n} − I{XIn,n ≤ d}}+

8: Receive bandit feedback and update (r̂k(n), ĉk(n)) ∀k
9: end while

where cmax = maxk ck, Radk(β, n) =
√

2β logn
hπ
n(k)

, and β ≥ 1.
The purpose of presenting (12) is that the controller does not

know the true value of rk, ck, and E[min{d,X1,k}] for any k,
but can estimate rmax, xmin and cmax in many practical scenar-
ios. In fact, we can simply replace rmax with Rmax, xmin with
1, and cmax with 1 since xmin ≥ 1, rmax ≤ Rmax/xmin ≤ Rmax,
and cmax ≤ 1/xmin ≤ 1. And (12) obviously holds with high-
probability in such case.

Now we present our online Lyapunov-based policy. Define
Φ̃n(k,Qn) = V · r̃k(n) + Qnr̃k(n), then Φ̃n(k,Qn) could be
seen as the empirical estimate of Φn(k,Qn). To balance the
exploration-exploitation trade-off, at each trial n, we choose
the arm that maximizes the the sum of Φ̃n(k,Qn) and an upper-
confidence correction term given in Lemma 1, i.e., the high-
probability upper bound of Φn(k,Qn):

Φ̂n(k,Qn) = Φ̃n(k,Qn) + Radk(β, n)fn(V,Qn), (13)

where fn(V,Qn) = (V (1+rmax)
xmin

+ Qn(1+cmax)
xmin

).
However, there exists an issue in selecting arms purely based

on the upper-confidence bound of Φn(k,Qn). Note that the
holding of Corollary 1 requires that the radius level parameter
η be constrained. Thus, we need to ensure that the confidence
radius is small enough when selecting arms according to (13).
To achieve this, we have an initial exploration phase that
selects each arm ⌈β0 log

2 T ⌉ times to guarantee Lemma 1 and
the concentration event in Lemma 7 of Appendix C, where
β0 is an arbitrary constant that does not rely on xmin, ϵ, rmax

and T , i.e., instance-independent. We can verify that Lemma
1 holds for all n after the initial phase if the given T is
sufficiently large.

We illustrate our online policy, πon, in Algorithm 2. We give
the performance guarantee of πon in the following Theorem.

Theorem 2. Suppose T > exp{ 8βd2(1+cmax)
2

ϵ2x2
minβ0

}. Under As-
sumption 1, the regret and constraint violation of our policy
πon satisfy:

Regretπ
on
(T ) = O(

α2d3T

V x2
min

+
d3rmaxTδ

ϵx2
min

+
d2(1 + rmax)

√
βKT log T

x2
min

+Kβ0 log
2 T ),

Vioπon
(T ) ≤ O(

V drmax

Tϵxmin
− 2dδ

xmin
+

Kβ0 log
2 T

T
).

Specifically, setting V = O(
√
T ) and δ = O(1/

√
T ), we have

Regretπ
off
(T ) = Õ(

√
T ), Vioπoff

≤ Õ(−1/
√
T ).



Theorem 2 shows that, compared with πoff, πon only slightly
increases the regret bound by a factor of a O(

√
K log T ),

which is an acceptable price to pay for unknown statistics.
The main challenge in analyzing πon is that Qon

n is correlated
with the sample path of stochastic processes. To address this
challenge, we derive the drift and uniform bounds for Qon

n

under a concentration event (See Lemma 7 in Section VI).
Remark 2. Could we abandon exploration after the initial

exploration phase in πon just like explore-then-commit (ETC)
policies [16], [33]? The answer is no. Note that even in the
standard bandit setting, it turns out that only O(T

2
3 ) regret

can be achieved for ETC in the absence of the knowledge of
the suboptimality gap ∆ [16]. While by setting ∆-dependent
length of the initial phase, ETC can guarantee a logarithmic
regret [16]. We remark that in πon, the setting of β0 is instance-
independent and the initial exploration phase only aims to
ensure the confidence radius below a certain level to guarantee
the concentration inequality. Moreover, the value of Φk(k,Qn)

is varying w.r.t n, i.e., the non-stationary property of ground
truth (Φk(k,Qn) can be seen the virtual ground truth of arm
k). Therefore, πon still requires enough exploration after the
initial exploration phase to achieve O(

√
T ) regret.

V. MULTIPLE INTERRUPTION TIME CHOICES

We now consider the setting that the controller can deter-
mine interruption times for each trial. Specifically, after each
arm selection, the controller can decide an interruption time
for it that chosen from a finite discrete set T = {t1, t2, ..., tL},
e.g., hours/days in cloud sourcing or time-slots in channels
scheduling. Here tL could be +∞, i.e., the controller thinks it
is optimal to wait until it is completed. In this setting, note that
for any pair (k, b) ∈ [K] × T , the observed stochastic process
under the static policy that deterministically chooses it is i.i.d
over n. Thus any pair (k, t) from [K] × T could be viewed
as one super-arm, and we can define its reward rate r(k,t) and
completion rate c(k,t) as follows:

r(k,t) =
E[Rk,1I{Xk,1 ≤ t}]
E[min{Xk,1, t}]

, c(k,t) =
E[I{Xk,1 ≤ t}]
E[min{Xk,1, t}]

.

Then our offline policy πoff becomes selecting the server-
deadline pair that:

max
(k,t)∈[K]×T

Φn((k, t), Qn) = V · r(k,t) +Qn · c(k,t). (14)

The same argument can also be applied to our online policy
πon by using the empirical statistics of all pairs (k, t) ∈ [K]×T
and our developed confidence bounds. Therefore, our theorems
and corresponding analysis are still valid in such a setting.

In some practical scenarios in which the type of completion
time distributions are known priorly, we could improve the
computational-complexity of (14) and our online policy based
on the following interruption properties for some specific
completion time distributions.

Theorem 3. Consider the case where Rk,n is independent of
Xk,n. (a) If Xk,n ∼ Exp(λ), then rk,t = E[Rk,1]λ and ck,t = λ

for all t > 0, i.e., the choice of interruption time does not
impact the reward rate and completion rate. (b) rk,t and ck,t are
monotonically increasing functions of t for Gaussian, uniform,
logistic and gamma completion time distributions.

Some observations from Theorem 3: (a) the interruption
does not make a difference when the completion time is
exponentially distributed as a consequence of the memoryless
property. (b) The optimal interruption time is infinite for many
light-tailed completion time distributions.

VI. ANALYSIS

This section presents the proof of Theorems 1 and 2. All
the proofs of listed lemmas are given in our online report [1].
For the notational convenience, we let Zπ

n = RIπ
n ,nI{XIπ

n ,n ≤
d}, Y π

n = I{XIπ
n ,n ≤ d} and Sπ

n = min{d,XIπ
n ,n}. We also

let the history until n-th trial under the policy π be Fn−1 =

σ({Iπ
i , I{XIπ

i ,i ≤ d}, RIπ
i ,iI{XIπ

i ,i ≤ d},min{XIπ
i ,i, d}}n−1

i=1 ),
where σ(Z) is the sigma-field of a random variable Z, and we
have Iπ

n+1 ∈ Fπ
n .

A. Preliminary technical lemmas

We first present some preliminary results. Lemma 2 pro-
vides a high-probability upper bound for counting process
Nπ(T ) based on the renewal theory and concentration equal-
ity for martingale difference sequence. Lemma 3 provides
the decomposition of regret and constraint violation for any
policy π based on Lemma 2 and the facts that E[Zπ

n ] =

r(pπ
n)E[Sπ

n |Fπ
n−1] = r(pπ

n)
∑

k p
π
n,kE[Sn,k|Fπ

n−1] and E[Y π
n ] =

c(pπ
n)E[Sπ

n |Fπ
n−1] = c(pπ

n)
∑

k p
π
n,kE[Sn,k|Fπ

n−1], where pπn,k =

I{Iπ
n = k}. Lemma 4 provides the Lyapunov drift bound for

Qn that plays a key role in proving our performance bounds.
Lemma 2. (High-probability bound for Nπ(T )) Define

n0(T ) = 2T/xmin. Then under any policy π, we have that
for any n > n0(T ):

P{Nπ(T ) ≥ n} = P{
n∑

i=1

Sπ
i ≤ T} ≤ exp(−nx2

min

8
). (15)

Lemma 3. (Regret and constraint-violation decomposition)
For any policy π, the regret and constraint-violation w.r.t
the optimal stationary randomized policy π(p∗) could be
decomposed as follows, respectively,

E[Rπ(p∗)(T )]− E[Rπ(T )]

≤ (r(p∗)−
E[
∑n0(T )

n=1 Zπ
n ]

E[
∑n0(T )

n=1 Sπ
n ]

)E[

n0(T )∑
n=1

Sπ
n ] + 9rmax/x

2
min, (16)

T · Vioπ(T ) ≤ (α−
E[
∑n0(T )

n=1 Y π
n ]

E[
∑n0(T )

n=1 Sπ
n ]

)E[

n0(T )∑
n=1

Sπ
n ] +

8α

x2
min

. (17)

Lemma 4. (Lyapunov Drift) Define Lyapunove function
L(x) = x2/2. For any policy π, the Lyapunov drift ∆(Qπ

n) =
E[L(Qπ

n+1)− L(Qπ
n)|Fπ

n−1] satisfies

∆(Qπ
n) ≤ V E[Zπ

n |Fπ
n−1] + 1 + (α+ δ)2d2

+ E[Sπ
n |Fπ

n−1](−Φn(Q
π
n) + (α+ δ)Qπ

n).
(18)

B. Proof of Theorem 1

To bound the incurred regret and constraint violation for
πoff, we first have the following supportive lemma for virtual
queue property under πoff.

Lemma 5 (Drift bound and uniform bound for Qoff
n ) Under

Assumption 1, the offline policy πoff ensures that

E[(Qoff
n+1 −Qoff

n )I{Qoff
n >

V rmaxd

ϵ
}|Foff

n−1] ≤ − ϵ

2
. (19)



Moreover, we have the following uniform bound for Qoff
n :

E[Qoff
n ] ≤ O(

V rmaxd

ϵ
). (20)

Now we prove Theorem 1. Recall that Ioff
n =

argmaxk Φn(k,Q
off
n ), Φn(Q

off
n ) = Φn(Ioff

n , Qoff
n ) = Φn(qn, Q

off
n ),

qn = argmaxp∈∆K Φn(p, Q
off
n ), and qn,k = I{Ioff

n = k}, thus we
have the following fact:

Φn(Q
off
n ) = Φn(qn, Q

off
n ) ≥ Φn(p

∗, Qoff
n ). (21)

In the later proof, we skip the superscript of “off” for notation
simplicity. By Lemma 4, we have that

∆(Qn)− V E[Zn|Fn−1]

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1](−Φn(Qn) + (α+ δ)Qn)

(a)

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1](−V r(p∗)− αQn + (α+ δ)Qn)

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1](−V r(p∗) + δQn),

where (a) comes from (21) and the definition of p∗. Take
expectation on both sides and sum it from n0(T ) to 0 gives

E[L(Qn0(T ))]− E[L(Q0)] ≤ n0(T )[1 + (α+ δ)2d2]

+ V

n0(T )∑
n=1

E[Zn]− V r(p∗)

n0(T )∑
n=1

E[Sn] + δ

n0(T )∑
n=1

E[Qn].

Rearrange the terms and combine the fact that E[L(Qn0(T ))]−
E[L(Q0)] ≥ 0 we obtain

E[
∑n0(T )

n=1 Zn]

E[
∑n0(T )

n=1 Sn]

≥ r(p∗)− n0(T )[1 + (α+ δ)2d2]

V E[
∑n0(T )

n=1 Sn]
−

δ
∑n0(T )

n=1 E[Qn]

V E[
∑n0(T )

n=1 Sn]

≥ r(p∗)− 1 + (α+ δ)2d2

V xmin
−

δ
∑n0(T )

n=1 E[Qn]

V n0(T )xmin
.

(22)

Substitute (22) into (16) gives

E[Rπ(p∗)(T )]− E[Rπ(T )]

≤ [
1 + (α+ δ)2d2

V xmin
+

δ
∑n0(T )

n=1 E[Qn]

V n0(T )xmin
]E[

n0(T )∑
n=1

Sπ
n ] +

9rmax

x2
min

≤ [
1 + (α+ δ)2d2

V xmin
+

δ
∑n0(T )

n=1 E[Qn]

V n0(T )xmin
]
2T

xmin
d+

9rmax

x2
min

(20)
≤ [

1 + (α+ δ)2d2

V xmin
+

δrmaxd

ϵxmin
]
2T

xmin
d+

9rmax

x2
min

= O(
α2d3T

V x2
min

+
rmaxd

2

ϵx2
min

δT ).

(23)

The definition of Qn implies that

Qn+1 ≥ Qn + (α+ δ)Sn − Yn

⇒
n0(T )∑
n=1

(α+ δ)Sn −
n0(T )∑
n=1

Yn ≤ Qn0(T )

⇒
n0(T )∑
n=1

(α+ δ)E[Sn]−
n0(T )∑
n=1

E[Yn] ≤ E[Qn0(T )]

⇒α−
∑n0(T )

n=1 E[Yn]∑n0(T )
n=1 E[Sn]

≤
E[Qn0(T )]∑n0(T )
n=1 E[Sn]

− δ ≤
E[Qn0(T )]

n0(T )xmin
− δ.

(24)

Substitute (24) into (17) we obtain

T · Vioπ(T ) ≤ (α−
E[
∑n0(T )

n=1 Y π
n ]

E[
∑n0(T )

n=1 Sπ
n ]

)E[

n0(T )∑
n=1

Sπ
n ] +

8α

x2
min

≤ (
E[Qn0(T )]

n0(T )xmin
− δ)E[

n0(T )∑
n=1

Sπ
n ] +

8α

x2
min

≤ (
E[Qn0(T )]

2T
− δ)

2Td

xmin
+

8α

x2
min

.

(25)

From (20), E[Qn] ≤ O(V rmaxd
ϵ

). Thus,

Vioπ(T ) ≤ O(
V rmaxd

2

ϵxminT
− 2δd

xmin
). (26)

Then we complete the proof.

C. Proof of Theorem 2

We first have the following supportive lemmas for virtual
queue property and bounds of Φn under πon.

Lemma 6 (Bounds for Φn under πon). Define V on
n =

∩n
i=1 ∩k {|r̃k(i) − rk| ≤ Radk(n, β)

1+rmax
xmin

} ∩ {|c̃k(i) − ck| ≤
Radk(n, β)

1+cmax
xmin

}. We can verify that V on
n holds with high-

probability by Corollary 1. Let kn = argmaxk Φ(k,Q
on
n ), then

we have that
I{V on

n } (Φn(kn, Q
on
n )− Φn(Ion

n , Qon
n ))

≤ 2RadIon
n
(n, β) ·

(
V (1 + rmax)

xmin
+

Qon
n (1 + cmax)

xmin

)
,

(27)

and
I{V on

n } (Φn(kn, Q
on
n )− Φn(Ion

n , Qon
n ))

≤ V rmax + (α+ δ)ndcmax.
(28)

Lemma 7 (Drift and uniform bound for Qon
n ). Under As-

sumption 1, our online policy πon ensures that

E[(Qon
n+1 −Qon

n )I{V on
n , Qon

n ≥ 1 + rmax

1 + cmax

+
2V rmaxd

ϵ
}|Fon

n−1] ≤ − ϵ

2
.

(29)

Moreover,

E[Qon
n ] ≤ O(

1 + rmax

1 + cmax
+

2V rmaxd

ϵ
+ αd+ δd). (30)

Now we prove Theorem 2. For notation simplicity, we skip
the superscript of “on” (just keep this superscript in V on

n ). The
first step in our proof is to bound ∆(Qn)− V E[Zn|Fn−1]. We
consider two cases: V on

n holds or not.
Case 1: If I{V on

n } = 1, by Lemma 4 we have:

E[L(Qn+1|Fn−1)− E[L(Qn|Fn−1)− V E[Zn|Fn−1]

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1] · [−Φn(Qn) + (α+ δ)Qn]

(a)

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1] · [−Φn(p
∗, Qn)+

2RadIn(n, β) · (
V (1 + rmax)

xmin
+

Qn(1 + cmax)

xmin
) + (α+ δ)Qn],

where (a) holds due to the Lemma 6 (27) and the fact
that Φn(kn, Qn) ≥ Φn(p

∗, Qn). Since Φn(p
∗, Qn) = V r(p∗) +

Qnc(p
∗) and −c(p∗) < −α (the definition of p∗), we can obtain

that: E[L(Qn+1|Fn−1)−E[L(Qn|Fn−1)− V E[Zn|Fn−1] ≤ 1+

(α+δ)2d2+E[Sn|Fn−1]·[−V r(p∗)+2RadIn(n, β)·(
V (1+rmax)

xmin
+

Qn(1+cmax)
xmin

) + δQn].



Case 2: If I{V on
n } = 1, we have:

E[L(Qn+1|Fn−1)− E[L(Qn|Fn−1)− V E[Zn|Fn−1]

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1] · [−Φn(In, Qn) + (α+ δ)Qn]

(a)

≤ 1 + (α+ δ)2d2+

E[Sn|Fn−1] · [V rmax + (α+ δ)ndcmax + (α+ δ)Qn],

where (a) holds due to the Lemma 6 (28) and Φn(kn, Qn) > 0.
Therefore, combine the above two cases we can obtain:

E[L(Qn+1|Fn−1)− E[L(Qn|Fn−1)− V E[Zn|Fn−1]

≤ 1 + (α+ δ)2d2 + E[Sn|Fn−1] · {−V r(p∗)

+ 2RadIn(n, β) · (
V (1 + rmax)

xmin
+

Qn(1 + cmax)

xmin
)

+ I{V on
n }(V rmax + (α+ δ)ndcmax + αQn) + δQn}.

(31)

Take expectation on both sides of (31) and sum it from n0(T )
to 0 gives:

E[L(Qn0(T ))]− E[L(Q0)]

≤ n0(T )[1 + (α+ δ)2d2] + V

n0(T )∑
n=1

E[Zn] + δ

n0(T )∑
n=1

E[SnQn]

− V r(p∗)

n0(T )∑
n=1

E[Sn] + 2

n0(T )∑
n=1

E[SnRadIn(n, β)]
V (1 + rmax)

xmin
+

2

n0(T )∑
n=1

E[SnRadIn(n, β)Qn]
(1 + cmax)

xmin
+ V rmax

n0(T )∑
n=1

E[SnI{V on
n }]

+ α

n0(T )∑
n=1

E[SnI{V on
n }Qn] + (α+ δ)ndcmax

n0(T )∑
n=1

E[SnI{V on
n }].

Since E[L(Qn0(T ))] − E[L(Q0)] ≥ 0 and E[
∑n0(T )

n=1 Sn] ≥
xminn0(T ), rearranging terms of the above inequality yields:

E[
∑n0(T )

n=1 Zn]

E[
∑n0(T )

n=1 Sn]
≥ r(p∗)− 1 + (α+ δ)2d2

V xmin

−
δ
∑n0(T )

n=1 E[SnQn]

V n0(T )xmin
−

2
∑n0(T )

n=1 E[SnRadIn(n, β)]

n0(T )

(1 + rmax)

x2
min

−
2
∑n0(T )

n=1 E[SnRadIn(n, β)Qn]

V n0(T )

(1 + cmax)

x2
min

− rmax

∑n0(T )
n=1 E[SnI{V on

n }]
n0(T )xmin

− α

∑n0(T )
n=1 E[SnI{V on

n }Qn]

V n0(T )xmin

−
∑n0(T )

n=1 E[SnI{V on
n }]

V n0(T )xmin
(α+ δ)ndcmax.

Using the fact that E[
∑n0(T )

n=1 SnQn] ≤ n0(T )dE[maxn Qn],
E[SnRadIn(n, β)Qn] ≤ E[maxn Qn] · E[SnRadIn(n, β)]

and
∑n0(T )

n=1 E[SnRadIn(n, β)] ≤ d
∑n0(T )

n=1 E[
√

2β logn
hIn (n)

] ≤
3d
√

2βKn0(T ) log(n0(T )), we can obtain:

E[
∑n0(T )

n=1 Zn]

E[
∑n0(T )

n=1 Sn]
≥ r(p∗)− 1 + (α+ δ)2d2

V xmin

− dδE[maxn Qn]

V xmin
−

6d
√

2βKn0(T ) log(n0(T ))

n0(T )

(1 + rmax)

x2
min

−
6d
√

2βKn0(T ) log(n0(T ))E[maxn Qn]

V n0(T )

(1 + cmax)

x2
min

− rmax·∑n0(T )
n=1 E[SnI{V on

n }]
n0(T )xmin

−
∑n0(T )

n=1 E[SnI{V on
n }]

V n0(T )xmin
(α+ δ)ndcmax−

α
E[maxn Qn] ·

∑n0(T )
n=1 E[SnI{V on

n }]
V n0(T )xmin

(a)

≥ r(p∗)− 1 + (α+ δ)2d2

V xmin

− dδE[maxn Qn]

V xmin
−

6d
√

2βKn0(T ) log(n0(T ))

n0(T )

(1 + rmax)

x2
min

−
6d
√

2βKn0(T ) log(n0(T ))E[maxn Qn]

V n0(T )

(1 + cmax)

x2
min

− rmaxdπ
2

6n0(T )xmin
− nd2π2(α+ δ)cmax

6V n0(T )xmin
− αdπ2E[maxn Qn]

6V n0(T )xmin
,

(32)

where (a) follows from the facts that E[I{V on
n }] ≤ 1/n2 and∑n0(T )

n=1 E[I{V on
n }] ≤ π2

6
. Substitute (32) into (16) gives

E[Rπ(p∗)(T )]− E[Rπ(T )]

≤ E[

n0(T )∑
n=1

Sπ
n ] · {

1 + (α+ δ)2d2

V xmin
+

dδE[maxn Qn]

V xmin

+
6d
√

2βKn0(T ) log(n0(T ))

n0(T )

(1 + rmax)

x2
min

+
rmaxdπ

2

6n0(T )xmin

+
6d
√

2βKn0(T ) log(n0(T ))E[maxn Qn]

V n0(T )

(1 + cmax)

x2
min

+
nd2π2(α+ δ)cmax

6V n0(T )xmin
+

αdπ2E[maxn Qn]

6V n0(T )xmin
}+ 9rmax

x2
min

.

(33)

Note that E[
∑n0(T )

n=1 Sπ
n ] ≤ n0(T )d and n0(T ) = 2T/xmin,

therefore,

E[Rπ(p∗)(T )]− E[Rπ(T )]

≤ O(
α2d3T

V x2
min

+
d3rmaxTδ

ϵx2
min

+
d2(1 + rmax)

√
βKT log T

x2
min

).
(34)

For the constraint violation, continuing from (25) and using
Lemma 7 (30) we have that

Vioπ(T ) ≤ 1

T
(
E[Qn0(T )]

2T
− δ)

2Td

xmin
+

8α

x2
minT

≤ O(
V drmax

Tϵxmin
− 2dδ

xmin
).

(35)

The results in Theorem 2 are obtained by adding the maximal
performance loss O(Kβ0 log

2 T ) during initial exploration and
the (near-)optimality of π(p∗) (Proposition 1).

VII. EXPERIMENT RESULTS

In this section, we conduct numerical experiments to vali-
date the theoretical guarantees of our developed algorithm.

Experiment setting. We evaluate both πoff and πon algo-
rithms for K = 4 arms with Bernoulli distributed rewards and
heavy-tailed distributed completion times. The arm statistics
are desinged as follows:



• E[R1,n] = 0.2, X1,n ∼ Pareto(0.5), c1 = 0.15, r1 = 0.03,
• E[R2,n] = 0.4, X2,n ∼ Pareto(0.4), c2 = 0.12, r2 = 0.05,
• E[R3,n] = 0.7, X3,n ∼ Pareto(0.3), c3 = 0.08, r3 = 0.06,
• E[R4,n] = 1.0, X4,n ∼ Pareto(0.25), c4 = 0.07, r4 = 0.07.

We can observe that arms 1 and 2 are set to have a high
reward rate but a low completion rate, and arms 3 and 4 are
the opposite. We also set deadline d = 10 and α = 0.1 to force
the algorithms to select arms 1 and 2 at a certain frequency to
satisfy the throughput requirement, as the completion rates of
the arms with high reward rate are all lower than 0.1. Thus, the
controller should make a trade-off between these arms as any
static policy that selects one of the arms will result in either
linear regret or linear constraint violation. In our simulation
setup, we choose V =

√
T , δ = d/

√
T , and every point in the

figure is averaged over 100 independent experiments.
Results and analysis. Figure 1 plots the reward rates

R(T )/T of πon, πoff and the optimal randomized policy π(p∗),
with varying time interval T . It shows that both the offline
and the online designs reach the rate of the optimal design, as
indicated by our theoretical results. Figure 1 (b) and Figure
2 (b) confirm the scaling behaviour of the constraint-violation
of πon, i.e., varying with rate O(1/T ) when T is sufficiently
large, which also revealed in our theoretical results. And they
also show that when T is sufficiently large, we can indeed
obtain a negative constraint violation if selecting appropriate
values of V and δ.
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APPENDIX

This section provides the proof sketch of lemmas 5, 6, and
7. Our analysis differs from the standard Lyapunov analysis
due to the incorporation of rate estimation.

A. Proof sketch of Lemma 5
Recall that the offline-policy πoff is deterministic and Ioff

n =
argmaxk Φ(k,Q

off
n ). For convenience, we will skip the super-

script “off” in the proof. Since Assumption 1 holds, there exits

an arm k that satisfies Slater condition, i.e., E[αSk,n−Yk,n] ≤
−ϵ. If there exists a arm k

′
such that E[αSk

′
,n − Yk

′
,n] ≥ 0

at n-th trial, we claim that Φn(k
′
, Qn)− Φn(k,Qn) < 0 when

Qn ≥ V rmaxd
ϵ

since

Φn(k
′
, Qn)− Φn(k,Qn) =

V (
E[Zk

′
,n]

E[Sk
′
,n]

− E[Zk,n]

E[Sk,n]
) +Qn(

E[Yk
′
,n]

E[Sk
′
,n]

− E[Yk,n]

E[Sk,n]
),

V (
E[Zk

′
,n]

E[Sk
′
,n]

− E[Zk,n]

E[Sk,n]
) ≤ V rmax, and

Qn(
E[Yk

′
,n]

E[Sk
′
,n]

− E[Yk,n]

E[Sk,n]
) ≤ Qn(α− α− ϵ

E[Sk,n]
) ≤ −Qn

ϵ

d
.

Hence we can derive that when Qn > V rmaxd
ϵ

, the following
inequality holds: Φn(k

′
, Qn) − Φn(k,Qn) ≤ V rmax − Qn

ϵ
d
≤

V rmax− V rmaxd
ϵ

· ϵ
d
< 0. Thus E[αSIn,n−Ykn,n] < 0 otherwise

we have Φn(In, Qn) − Φn(k,Qn) < 0, which contradicts the
definition of In that In = argmaxk Φn(k,Qn). Therefore,
In must satisfy the Slater condition and then E[(Qn+1 −
Qn)I{Qn > V rmaxd

ϵ
}|Fn−1] ≤ E[(α + δ)SIn,n − YIn,n] ≤

−ϵ+ δd ≤ − ϵ
2
. Finally, from Theorem 2.3 in [17] or following

the proof of Theorem 1 in [39], we can derive that there exists
constants a and b such that P{Qn > c} ≤ ae−bc for any n and
c > V rmaxd

ϵ
, then we could obtain (20).

B. Proof sketch of Lemma 6
In the event of V on

n , if the following inequality holds:
Φn(kn, Q

on
n ) > Φn(Ion

n , Qon
n ) + 2RadIon

n
(n, β)fn(V,Q

on
n ). Then by

the concentration inequality, we can derive that

Φ̂n(kn, Q
on
n ) = Φ̃n(kn, Q

on
n ) + Radkn(n, β)fn(V,Q

on
n )

≥ Φn(kn, Q
on
n ) > Φn(Ion

n , Qon
n ) + 2RadIon

n
(n, β)fn(V,Q

on
n )

≥ Φ̃n(Ion
n , Qon

n ) + RadIon
n
(n, β)fn(V,Q

on
n ) = Φ̂n(Ion

n , Qon
n ),

which contradicts the fact that Ion
n = argmaxk Φ̂n(k,Q

on
n ). And

(28) is obvious since Qon
n ≤ (α+ δ)dn.

C. Proof sketch of Lemma 7
For convenience, we skip the superscript “on” in the proof.

Firstly, according to Lemma 5, the inequality (27) holds in
the event of V on

n . Thus, if Qn > 1+rmax
1+cmax

+ 2V rmaxd
ϵ

> V rmaxd
ϵ

,
by rearranging term of the inequality (27) we have that:
−Qn

E[YIn,n]

E[SIn,n]
≤ −V

E[Zkn,n]

E[Skn,n]
+ V

E[ZIn,n]

E[SIn,n]
− Qn

E[Ykn,n]

E[Skn,n]
+

2RadIn(n, β) ·
(

V (1+rmax)
xmin

+ Qn(1+cmax)
xmin

) (a)

≤ V rmax +Qn(−α−
ϵ

E[Skn,n]
)+2RadIn(n, β)·

(
V (1+rmax)

xmin
+ Qn(1+cmax)

xmin

)
≤ V rmax+

Qn(−α − ϵ
d
) + 2RadIn(n, β) ·

(
V (1+rmax)

xmin
+ Qn(1+cmax)

xmin

) (b)

≤

V rmax − αQn − ϵ
2d
Qn + ϵ

2d
· V (1+rmax)

1+cmax

(c)
< −αQn, where (a)

follows from the proof of Lemma 5 that kn satisfies the Slater
condition when Qn > V rmaxd

ϵ
; (b) is because our initialization

phase ensures that 2Radk(n, β) ≤ ϵxmin
2d(1+cmax)

; (c) is due to Qn >
1+rmax
1+cmax

+ 2V rmaxd
ϵ

. Then we obtain αE[SIn,n] − E[YIn,n] < 0

when Qn > 1+rmax
1+cmax

+ 2V rmaxd
ϵ

. Therefore, in the event of V on
n ,

In will satisfy the Slater condition if Qn > 1+rmax
1+cmax

+ 2V rmaxd
ϵ

.
Then take a same argument in Appendix A we can obtain
(29). The inequality (30) can be proved by considering cases
I{V on

n } = 1 and I{V on
n } = 0 separately.
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