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Abstract

The rapid extension of context windows in
large vision-language models has given rise to
long-context vision-language models (LCVLMs),
which are capable of handling hundreds of im-
ages with interleaved text tokens in a single for-
ward pass. In this work, we introduce MMLONG-
BENCH, the first benchmark covering a diverse
set of long-context vision-language tasks, to eval-
uate LCVLMs effectively and thoroughly. MM-
LONGBENCH is composed of 13,331 examples
spanning five different categories of downstream
tasks with broad coverage of image types. To
assess models on different input lengths, all ex-
amples are delivered at five standardized input
lengths via a cross-modal tokenization scheme
that combines vision patches and text tokens. By
thoroughly benchmarking 46 LCVLMs, we find
that all models face challenges in our multimodal
long-context tasks. Then, we also provide a com-
prehensive analysis of the current models’ long-
context ability. With wide task coverage, various
image types, and rigorous length control, MM-
LONGBENCH provides the missing foundation
for developing the next generation of LCVLMs.

1. Introduction

Recent advances in long-context modeling unlocked a wide
array of new capabilities for both large language mod-
els (LLMs; Dubey et al., 2024; Yang et al., 2024) and
large vision—-language models (LVLMs; Kamath et al., 2025;
Meta, 2025). In particular, long-context vision—language
models (LCVLMs) represent an important step forward by
enabling LVLMs to process hundreds of images and thou-
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sands of interleaved text tokens in a single forward pass.
This allows applications such as document-level visual ques-
tion answering (Ma et al.), multi-hop reasoning across web
pages (He et al., 2024), and instruction following in complex
visual contexts (Shridhar et al., 2020; Li et al., 2022).

To support such capabilities, researchers have proposed
various techniques to extend the context windows of
LVLMs (Chen et al., 2024a; Hurst et al., 2024). However,
the development of effective evaluation benchmarks is lag-
ging behind. It remains unclear how well current LCVLMs
perform in long-context settings, what types of tasks they
struggle with, and how robust they are to input length vari-
ation. Here, we take a closer look and find that existing
benchmarks suffer from the following shortcomings and
provide key feature comparisons in Table 1:

* Limited task coverage: Existing benchmarks often target
a single long-context vision-language task, like needle-
in-a-haystack (Wang et al., 2024a) or long-document
VQA (Ma et al.), which fails to capture the broader capa-
bilities needed for diverse applications (Hsieh et al.).

* Insufficient image-type coverage: Most existing bench-
marks are limited to either natural images (Wang et al.,
2024a; Wu et al., 2024b) — such as photographs of every-
day scenes, objects, or people — or synthetic images (Ma
et al.; Deng et al., 2024), such as scanned documents,
web pages, or app screenshots. This limitation leads to an
incomplete understanding of model performance across
diverse image types.

* Lack of context length control: Existing benchmarks
miss a consensus on cross-modality length control, es-
pecially image tokens. For example, MM-NIAH (Wang
et al., 2024c) follows InternVL1.5 (Chen et al., 2024c¢)
to compute text and image tokens together, but other
works (Wu et al., 2024b; Deng et al., 2024) only report
the number of images as the context length. This incon-
sistency makes it difficult to compare model performance
across different benchmarks.

* Single context length: Many text-only long-context
benchmarks use a few standardized context lengths
(e.g., 32K, 128K), providing examples at each standard
length (Hsieh et al.; Yen et al., 2024). Hence, model de-
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Table 1. Benchmark comparison for LCVLMs: MM-NIAH, Visual Haystack, MMNeedle, MMLongBench-Doc (MMLB-Doc), M-
Longdoc, LongDocURL, and our MMLONGBENCH. “Summ” and “DocVQA” refer to summarization and long-document VQA. “L”
means the number of input tokens. “Mixed” indicates that the dataset includes both natural and synthetic images.

Type of tasks Benchmark features
VRAG NIAH ICL Summ DocVQA Image Type L Control Multiple L
MM-NIAH (Wang et al., 2024c) X v X X X Mixed v X
Visual Haystack (Wu et al., 2024b) X v X X X Natural X v
MMNeedle (Wang et al., 2024a) X v X X X Natural X v
MMLB-Doc (Ma et al.) X X X X v Synthetic X X
M-Longdoc (Chia et al.) X X X X v Synthetic X X
LongDocURL (Deng et al., 2024) X X X X v Synthetic X X
MMLONGBENCH (Ours) v v v v v Mixed v v

velopers can easily know the performance change with
different lengths. However, such practice is not followed
in LCVLM evaluations. For example, MM-NIAH (Wang
et al., 2024c¢) builds contexts with web pages of randomly
varying lengths, complicating systematic analysis of con-
text length effects.

In this paper, we introduce MMLONGBENCH, a com-
prehensive benchmark covering a diverse set of long-
context vision-language tasks across five different cate-
gories. Specifically, in addition to multimodal needle-in-a-
haystack (NIAH) and long-document VQA (DocVQA), we
also include visual retrieval-augmented generation (VRAG),
many-shot in-context learning (ICL), and summarization
in our benchmark. VRAG examples are from knowledge-
based VQA (Chen et al.), and ICL examples involve on-the-
fly image classification. For summarization, models need
to summarize image-based documents. Overall, our bench-
mark includes diverse downstream tasks and image types.
In addition, we use a unified token-count method that counts
image tokens based on the number of patches produced by
vision encoders, followed by a 2 x 2 pixel unshuffle. This
approach is consistent with most recent models (Bai et al.,
2025), making it well-suited for long-context evaluation.
We also equip all examples with five standardized context
lengths, from 8K to 128K tokens, enabling a thorough anal-
ysis of performance changes as the context length increases.

Finally, we thoroughly evaluated 46 frontier LCVLMs and
find that: i) performance on a single task poorly reflects
overall long-context ability; ii) long-context vision-language
tasks present significant challenges for all frontier models;
and iii) models with stronger reasoning ability tend to ex-
hibit better long-context capabilities. Furthermore, our error
analysis reveals that Optical Character Recognition (OCR)
and cross-modality retrieval abilities remain bottlenecks in
current LCVLMs.

2. Our Benchmark — MMLONGBENCH

In our work, we seek to address the limitations of current
benchmarks by meeting the following criteria: i) broad
coverage of both vision-language downstream tasks and

image types, ii) a unified token-count method across differ-
ent modalities and datasets, and iii) multiple standardized
context lengths for each example, from 8K to 128K tokens.
In this section, we describe the task categories in MM-
LONGBENCH, highlighting the improvements over existing
benchmarks. A benchmark overview is provided in Table 2,
and several concrete examples are given in Appendix F.

2.1. Diverse Long-Context Applications for LCVLMs

Visual retrieval-augmented generation (VRAG) evaluates
an LCVLM'’s ability to locate relevant information from a
large corpus. Here, we use the factual knowledge VQA,
which requires answering questions about the named entity
shown in an image, such as “Who designed the building
in this picture?” We include InfoSeek (Chen et al.) and
ViQuAE (Lerner et al., 2022) in this category.

We insert the gold passage(s) among a large set of distract-
ing passages retrieved from Wikipedia. For VIQUAE, we
use gold passages from KILT (Petroni et al., 2021), as it
is constructed upon TriviaQA (Joshi et al., 2017). For In-
foSeek, we choose the lead section of the named entity’s
Wikipedia page as the gold reference and remove all ex-
amples for which the answer cannot be found. We split
Wikipedia pages into 100-word passages and add retrieved
passages that do not contain the answer or the named entity
until the input length L. We use the substring exact match
(SubEM) as the metric, following previous work (Asai et al.,
2023). See more details in Appendix B.1. We also test
different needle positions to eliminate bias (Appendix D).

Needle-in-a-haystack (NIAH) measures how well an
LCVLM can recall a piece of information embedded within
a long, unrelated multimodal input. We adopt tasks
from Visual Haystack (VH; Wu et al., 2024b) and MM-
NIAH (Wang et al., 2024c). VH requires retrieving images
of target objects in an image haystack, with VH-Single and
VH-Multi for finding one or multiple images, respectively.
MM-NIAH includes retrieval (Ret), counting (Count), and
reasoning (Reason) tasks with interleaved text and images;
each featuring both text and image needles.

In VH, needle images and target objects are from the origi-
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Table 2. Overview of MMLONGBENCH. We include 16 datasets and 13,331 examples in total. Image types are shown per dataset;
“Mixed” indicates both natural and synthetic images. SUbEM and Acc indicate substring exact match and accuracy.

Category Dataset Metrics Image Size Description

Visual RAG InfoSeek SubEM Natural 1,128  Long-tail entity question answering
ViQuAE SubEM Natural 1,144  Question answering based on TriviaQA
VH-Single Acc Natural 1,000 Retrieve an image from an album

Needle-in-a- VH-Multi Acc Natural 1,000 Retrieve multiple images from an album

Havstack MM-NIAH-Ret SubEM/Acc  Mixed 1,200 Retrieve text/image needles in web pages

Y MM-NIAH-Count Acc Mixed 1,178 Count text/image needles in web pages

MM-NIAH-Reason SubEM/Acc  Mixed 1,158 Reason about text/image needles in web pages

Manv-Shot Stanford Cars Acc Natural 458  50-category car classification

In- Czn text Food101 Acc Natural 500 50-category food classification

Learnin SUN397 Acc Natural 500 50-category scene classification

g iNat2021 Acc Natural 500 50-category species classification

Summarization GovReport Model-based  Synthetic 241 Summarizing government reports in PDF
Multi-LexSum Model-based  Synthetic 146 Summarizing multiple legal documents in PDF
MMLongBench-Doc  SubEM/Acc  Synthetic 961 Long PDF document VQA

Long-Document .

VOA LongDocURL SubEM/Acc  Synthetic 1,153 Long PDF document VQA
SlideVQA SubEM/Acc  Synthetic 1,064  Slide deck understanding and reasoning

nal datasets. We accompany needle images with negative
images until a given input length L. We report accuracy fol-
lowing the original work (Wu et al., 2024b). In MM-NIAH,
the haystacks are composed of web pages (Laurencon et al.,
2023), and we include all three tasks of retrieval, counting,
and reasoning. Similar to VRAG, we split text in web pages
into 100-word passages and add passages and images to
reach the input length. Following the original work (Wang
et al., 2024c), we use SUbEM and accuracy for retrieval and
reasoning. For counting, we use the needle count accuracy
due to better robustness. See Appendix B.2 for details.

Many-shot in-context learning (ICL) tests models’ ability
to adapt to new tasks on the fly using in-context examples.
Following prior work (Yen et al., 2024; Li et al., 2024c;
Bertsch et al.), we focus on image classification with large
label spaces. We collect four datasets with diverse domains:
Stanford Cars (Krause et al., 2013), Food101 (Bossard et al.,
2014), SUN397 (Xiao et al., 2010), and iNat2021 (Van Horn
et al., 2021). We adjust the number of shots to reach the
length L, and exemplars in each class are balanced. We
randomly sample 50 classes per dataset to ensure sufficient
shots, since the 128K context window accommodates 500
images. We report accuracy as the metric.

Summarization (Summ) evaluates the ability to generate
concise outputs of salient information from long multimodal
documents. We choose GovReport (Huang et al., 2021) and
Multi-LexSum (Shen et al., 2022), as their PDF-formatted
documents are long and easily accessible. Our evaluation
provides models with PDF-formatted documents rather than
OCR-extracted text used in previous works (Tay et al.; Gao
et al., 2024). We truncate the document from the end based
on the input length L. Following previous work (Yen et al.,
2024), we use LLM-based evaluation for both datasets in-
stead of the commonly used ROUGE-L. More details are
provided in Appendix B.4.

Long-document VQA assesses models’ aptitude to answer
questions that require reasoning over multiple images and
text segments. We include commonly adopted datasets:
SlideVQA (Tanaka et al., 2023), MMLongBench-Doc (Ma
et al.), and LongDocURL (Deng et al., 2024). For docu-
ments longer than L, we truncate them evenly from both
sides while keeping the answer pages. For shorter docu-
ments, we alternately pad both sides with random negative
documents up to L. Padding documents may occasionally
contain information related to the question and change the
answer. To ensure the validity, we preface each question
with the prompt “Based on the Document <Original Doc
ID>, answer the following question.” We follow the metrics
used in LongDocURL but remove questions with long an-
swers, thereby avoiding LLM-based answer extraction. We
list specific details in Appendix B.5.

2.2. Cross-Modality Token Counting

Various long-context tasks of LCVLMs involve varying text-
to-image ratios. For example, VRAG contains only one
image related to a named entity, whereas the context in
Long-Document VQA primarily consists of images. A key
challenge in benchmarking LCVLMs lies in standardizing
the context length of diverse datasets with different text-
image combinations. In this work, we count both text and
visual tokens together as the input length L, unlike prior
works (Wang et al., 2024a; Wu et al., 2024b; Lu et al., 2024c)
that simply use the image number as context length. We use
the Llama2 tokenizer (Touvron et al., 2023) to calculate the
number of text tokens following previous practice (Yen et al.,
2024). Then, we divide each image into 14 x 14 patches
and apply a 2 x 2 pixel unshuffle to compress the visual
token number. The patch size and pixel unshuffle are both
commonly adopted in current LVLMs (Chen et al., 2024c;
Bai et al., 2025; Zhu et al., 2025; Abouelenin et al., 2025).
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VRAG NIAH ICL
GPT-40 74.2 NGRS 99.0 982 96.0 92.4 884
Claude-3.7-Sonnet 66.7 67.6 63.1 61.2 N/A  N/A 97.0 942 YRS
Gemini-2.5-Pro 84.7 827 79.8 76.0 73.4 99.5 985 97.2 950 94.2
Qwen2.5-VL-32B167:8 655 61.9 64.6 619 61.1 | 585 416 975 917 512 412
Qwen2.5-VL-72B|{ 67.6 67.7 64.0 543 503 f 683 635 619 558 ikl 98.5 955 92.8
InternVL2.5-26B- 56.6 53.3 48.1 50.0 47.9 67.8 63.1 52.2 438 98.5 89.2 850 | 72.5 | =L
InternVL3-38B{65.7 60.8 52.2 50.4 40.3 66.4 52.0 99.5 95.0 88.5
Ovis2-34B| 634 61.5 555 57.2 45.7 [ 65.7  60.4 [ 57.0  -v) REON)
Gemma3-27B{64.8 62.1 588 57.5 515 61.2 [156:2 NEHHRREENS 98.0 94.8 935 838 73.8
8k 16k 32k 64k 128k 8k 16k 32k 64k 128k 8k 16k 32k 64k 128k
Summ DocVQA Avg
GPT-40- 25.1 31.1 343 [410 424 67.8 70.5  67.2 62.9 592 70.4  69.7 62.9
Claude-3.7-Sonnet- 27.6 34.6 349 345 375 56.7 52.0 [ 2=l 485 659 64.8 N/A

Gemini-2.5-Pro- 32.0 428 48.1
Qwen2.5-VL-32B- 22.8 263 25.8 23.0 25.2
Qwen2.5-VL-72B- 20.5 26.9 31.1 38.0 285
InternVL2.5-26B- 19.1 23.8 26.3 27.8 29.5

InternVL3-38B- 20.7 24.8 33.1 384 436

Ovis2-34B- 23.5 29.8 357 39.6 416

Gemma3-27B- 229 285 32.0 355 407

8k 16k 32k 64k

71.5
67.8 66.0 658 58.4 | 536 63.6 629 585 45.2
71.4 67.5 65.8 57.3  48.7 65.2 642 63.1 559

446 328 591 554 533 |

66.3 63.8 62.9 522 479 |
17555 550 | 336 235

128k 8k

70.0

16k 32k 64k 128k 8k

70.8 69.2 70.4 73.5 75.0 752 758 77.2

41.6

62.2 593 545 509 )
60.4 59.3

16k 32k 64k 128k

Figure 1. Performance on MMLONGBENCH for selected frontier models, and the full results of all models are provided in Figure 22. Note
that Claude-3.7-Sonnet supports at most 100 images, and we mark the results as N/A for cases with more images (More in Appendix E.8)

This method ensures compatibility with modern LVLMs,
making it well-suited for evaluation.

2.3. Standardized Input Length

Input length L is crucial in evaluating long-context ability,
as longer inputs offer more information but also introduce
distracting information. As aforementioned in Section 2.1,
we can control the input length L for each dataset either by
adjusting the number of passages, images, or exemplars, or
by truncating the PDF-formatted documents. This allows
us to present each example at multiple standardized input
lengths and better understand how performance changes as
the context length increases. Specifically, our benchmark
provides five input lengths L: 8K, 16K, 32K, 64K, and
128K tokens, using binary prefixes K = 210,

3. Evaluation and Analysis

In total, we evaluate 46 LCVLMs on MMLONGBENCH.
As we know, our evaluation provides the most thorough and
controlled comparison of the vision-language long-context
ability. We list all models evaluated in Table 10. More
experimental details are in Appendix D. We provide the full
results and analysis in Appendix E.

We present the performance of selected frontier LCVLMs
in Figure 1, and the full results of all 46 models are reported
in Figure 22. We analyze model performance from multiple
perspectives and summarize our main findings as follows:

All models struggle, but closed-source models perform
better. Considering the performance at 128K tokens, all
models struggle on our long-context tasks. Even GPT-40
only achieves 62.9 on average, while open-source models
perform even worse. We find that Gemini-2.5-Pro is the
strongest LCVLM, outperforming open-source models by
roughly 15-20 points across all tasks. While other closed-
source models generally outperform open-source ones, the
margin is usually less than 10 points. Notably, Qwen2.5-

VL-32B almost matches GPT-40 on VRAG, and InternVL3-
38B even surpasses GPT-40 on summarization, showing the
competitiveness of open-source models.

Different models exhibit different strengths. We find
that model performance varies considerably across dif-
ferent tasks. For example, Qwen2.5-VL-32B outper-
forms InternVL3-38B on VRAG, but underperforms on
NIAH. Ovis2-34B excels at summarization but struggles on
DocVQA. These findings support the necessity of a compre-
hensive benchmark covering diverse downstream tasks.

Reasoning can improve long-context ability. We include
Gemini-2.0-Flash-T in Figure 22, the thinking variant of
Gemini-2.0-Flash. From the results, we observe that the
reasoning ability can consistently improve the performance
on all tasks. In particular, summarization and DocVQA
exhibit improvements of 25.3% and 10.1%, respectively.
Then, Gemini-2.5 models exhibit even stronger perfor-
mance, which are natively designed as thinking models.

4. Conclusion

In this work, we have introduced MMLONGBENCH, the
first comprehensive benchmark for evaluating long-context
vision-language models (LCVLMs) across a wide spectrum
of downstream tasks. By covering five distinct task cat-
egories—while unifying cross-modal token counting and
standardizing context lengths, MMLONGBENCH provides a
rigorous, extensible foundation for diagnosing the strengths
and weaknesses of frontier LCVLMs. We conducted a
comprehensive evaluation of 46 LCVLMs, yielding several
insightful findings—for example, that evaluation on a single
task does not reliably predict overall long-context capability.
Looking forward, we hope MMLONGBENCH will serve as
a standard yardstick for the community, driving research on
more efficient vision-language token encodings, more robust
position-extrapolation schemes, and improved multi-modal
retrieval and reasoning capabilities.
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Impact Statement

The long-context ability of LVLMs unlocked a large range of
applications, including understanding documents with hun-
dreds of pages and reasoning over dozens of web pages au-
tomatically. This ability can also help users to summarize a
long document or revise a large-scale code repository. Mean-
while, there are a large number of instruction-following sce-
narios grounded in complex vision-language contexts, such
as long-term dialogue with humans or dialogue-based nav-
igation for robots. Looking ahead, our MMLONGBENCH
will serve as a standard evaluation for the whole community
to benchmark new LCVLMs and to stimulate the develop-
ment of models with more efficient vision-language token
encodings, more robust position-extrapolation schemes, and
improved OCR, multi-modal retrieval, and reasoning capa-
bilities.
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A. Related Work

Long-context vision-language models (LCVLMs). The context window of LLMs has experienced a fast growth from less
than 8K (Touvron et al., 2023; Jiang et al., 2023) to 128K tokens (Hurst et al., 2024; Dubey et al., 2024) or more (Team
et al., 2024; Anthropic, 2024). To support this, techniques such as longer pre-training length (Dubey et al., 2024; Fu
et al., 2024; Young et al., 2024), position extrapolation (Peng et al.; Ding et al., 2024; Chen et al., 2023), and efficient
architectures (Beltagy et al., 2020; Bertsch et al., 2023; Gu & Dao) have been developed. With this progress, recent
literature also investigated how to extend the context length of LVLMs to build LCVLMs, such as Gemini-2.5 (Google,
2025), Qwen2.5-VL (Bai et al., 2025), and others (Abouelenin et al., 2025; Zhu et al., 2025; Kamath et al., 2025; Ye et al.,
2024). In addition, several recent works on LVLMs made efforts to compress vision tokens to accommodate longer input
sequences (Shi et al., 2016; Wang et al., 2024b; Wu et al., 2024c; Laurencon et al., 2024b;a; Abdin et al., 2024). Meanwhile,
a growing body of works has adopted various techniques from LLMs to extend LVLMs’ context length, such as position
extrapolation (Ge et al., 2024) and more efficient model architectures (Wang et al., 2024d). With extended context lengths,
LCVLMs can support various applications, such as multi-hop reasoning across web pages (He et al., 2024) and instruction
following grounded in complex visual contexts (Shridhar et al., 2020; Li et al., 2022; Wang et al., 2024e).

Long-context benchmarks. Needle-in-a-haystack (NIAH) (Kamradt, 2024) is one of the first commonly adopted tasks to
evaluate the text-pure long context ability of LLMs, as it can be procedurally generated with arbitrarily long lengths and
needle position (Liu et al., 2024a). This task inserts a “needle” at specific depths of a long essay and tests models’ ability to
recall it. Recent works have also extended the NIAH task to more complex versions (Li et al., 2024b; Levy et al., 2024;
Arora et al.). However, several benchmarks (Yen et al., 2024; Hsieh et al.) discover that using a single NIAH task only
partially reflects LLMs’ overall long-context ability. As a result, numerous benchmarks with broad coverage of diverse
downstream applications have been constructed (Bai et al., 2024a; Shaham et al., 2023; Hsieh et al.; Yen et al., 2024; Bai
et al., 2024b; Zhang et al., 2024; Kwan et al., 2024) to provide a comprehensive evaluation.

In contrast, the evaluation of LVLMs’ long-context capability remains limited. Existing benchmarks only involve either
NIAH (Wang et al., 2024c;a; Wu et al., 2024b; Lu et al., 2024c) or long-document VQA (Ma et al.; Deng et al., 2024),
lacking comprehensive coverage across diverse vision-language applications. As a result, frontier LCVLMs (Hurst et al.,
2024; Team et al., 2024) only report long-context performance on other modalities, such as video (Chen et al., 2024a; Wu
et al., 2024a; Song et al., 2024b) or audio (Team et al., 2024; Hurst et al., 2024), and neglect the prevalent use cases of
long-context vision-language inputs. While recent MileBench (Song et al., 2024a) claims to be a comprehensive long-context
benchmark with various text-image tasks, our closer inspection reveals that it actually contains a lot of short-context tasks,
and the average length is only about 9K tokens. Datasets like DocVQA(Mathew et al., 2021), WebQA (Chang et al., 2022),
and OCRVQA (Mishra et al., 2019) contain only one image per sample and minimal context, making MileBench unqualified
as a true long-context benchmark. In this work, we introduce the first comprehensive benchmark that evaluates a wide range
of vision-language downstream applications across five standardized input lengths.

B. Dataset Details

In this appendix, we provide more details on how to build long-context examples based on existing datasets.

B.1. Visual Retrieval-Augmented Generation

Gold Passage. InfoSeek (Chen et al.) is a large-scale dataset for factual knowledge-based VQA featuring long-tail entities
from Wikipedia (Hu et al., 2023). For InfoSeek, we use the lead section of the Wikipedia page of the named entity in the
question image as gold passages, which is the first section on each page and serves as a summary of the whole page. The
lead section may be long, so we chunk it into multiple 100-word passages. We remove all the queries whose corresponding
lead section does not contain the correct answer.

ViQuAE (Lerner et al., 2022) repalces the named entities in questions from TriviaQA (Joshi et al., 2017) with corresponding
entity images from Wikimedia Commons'. We obtain gold passages for each question from the KILT benchmark (Petroni
et al., 2021), which provides human annotations of gold passages for queries in TriviaQA.

"https://commons.wikimedia.org/
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Length Control. We populate the context with hard negative passages from Wikipedia, and the version we used is the
Wikipedia 2019-08-01 dump (Petroni et al., 2021). We follow the KILT benchmark to preprocess Wikipedia articles into
100-word passages. For retrieval, we adopt a retrieval-and-rerank pipeline, where BM25 is first used for coarse retrieval,
followed by reranking with dense embedding from Alibaba-NLP/gte-large—en-v1.5 (Lietal., 2023). Here, we
replace the image in each question with its original entity name for better retrieval accuracy, because text-based retrieval
achieves higher recall and provides harder distractors.

Previous work (Yen et al., 2024) shows that this pipeline presents a significantly greater challenge than randomly sampled
passages. Also, using a real embedding model for retrieval is consistent with various downstream visual retrieval-agumented
generation tasks and can better reflect downstream application performance.

B.2. Needle-in-a-Haystack

Length Control. For the Visual Haystack dataset (Wu et al., 2024b), we directly use the needles and target objects from
the original dataset. Then, we change the number of negative distractors to build long-context examples with a given input
length L. Note that the original dataset simply reports the image number as context length, ignoring different image sizes.
Here, we count image tokens based on patches split by vision encoders as discussed in Section 2.2. There are two tasks in
the dataset: VH-Single and VH-Multi, where the target objects are contained in a single needle image or multiple needle
images, respectively.

For MM-NIAH (Wang et al., 2024c), the contexts in the original dataset are composed of entire web pages from
OBELICS (Laurengon et al., 2023). However, using full web pages makes it difficult to control input length at a fine
granularity since web pages typically contain tens of thousands of tokens. To solve the issue, we chunk the text content of
web pages into 100-word passages, as we did for the Wikipedia corpus in VRAG. Meanwhile, the images in MM-NIAH
contain only a few hundred tokens. Thus, we can achieve fine-grained control over the context length and incrementally add
text passages and images to reach a given length L.

Metrics. We report the accuracy on Visual Haystack, exactly the same as in the original work. The MM-NIAH dataset
contains three different tasks: needle retrieval, counting, and reasoning. We use MM-NIAH-Ret, MM-NIAH-Count, and
MM-NIAH-Reason as their abbreviations, respectively. In each task, there are both text-needle and image-needle examples.
In MM-NIAH-Ret and MM-NIAH-Reason, we use substring exact matching (SubEM) for text-needle examples and accuracy
for image-needle examples, exactly following the original paper (Wang et al., 2024c). In MM-NIAH-Count, we find that the
soft accuracy metric proposed in the original paper (Wang et al., 2024c) can be exploited: simply predicting a list of zeros
([0, 0, ...]) results in a score over 30 on image-needle counting. Thus, we report the accuracy of the total count of the needle
in the haystack instead of comparing the list of needle counts, which we find is more reliable. Last but not least, we sample
text-needle and image-needle examples evenly in all three tasks.

Please refer to the original MM-NIAH paper (Wang et al., 2024c) for comprehensive details of all three tasks and two needle
modalities.

B.3. Many-Shot In-Context Learning

Class Sampling. We include Stanford Cars (Krause et al., 2013), Food101 (Bossard et al., 2014), SUN397 (Xiao et al.,
2010), and iNat 2021 (Van Horn et al., 2021). Since the 128K context length can accommodate only about 500 images, 50
different classes are randomly sampled from each dataset. With 50 classes, we can ensure that there are about 10 exemplars
from each class, which is sufficient. For iNat 2021, since the dataset contains substantially more classes (over 10,000
species), we randomly sample 50 classes from the “Birds” supercategory and 50 classes from the “Plants” supercategory.
For every single example, all the exemplars and the test image are either from the “Birds” classes or the “Plants” classes,
ensuring the task remains a 50-way classification problem. Meanwhile, for shorter input lengths, we need to reduce the class
number to ensure sufficient shots per class. Specifically, we randomly sample 5, 10, 20, and 40 classes for the input length
of 8K, 16K, 32K, and 64K tokens. With those class numbers, we find that the number of exemplars per class is similar to
that when there are 128K tokens.

Label mapping and length control. We employ a label mapping strategy to ensure that models perform classification
based on in-context exemplars instead of relying on their pre-trained knowledge. Each label is randomly mapped to an
integer i € {0,1,..., N — 1}, where N is the number of classes, following established practices (Pan et al., 2023; Yen et al.,
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GovReport Multi-LexSum
ROUGE-L GPT-40 Eval ROUGE-L GPT-40 Eval

GPT-40-32.5 32.4 33.4 37.2 381 -149 19.7 241 364 37.6 - 253 -352 425 445 455 47.2
InternVL2.5-4B- 20.1 183 17.0 15.5 13.9 - 10.5 12.3 13.2 11.2 - 253 25.1 25.2 1258 347 354 350 254
InternVL2.5-8B- 215 224 218 206 214 - 9.6 130 135 162 194 - 25.1 25.2 252 252 -31.2 33.4 357 348 358
InternVL3-2B-31.6 329 338 363 355 - 12.4 9.6 16.3 - -26.6 29.1 25.6 26.6 28.5
InternVL3-14B-32.1 332 341 36.6 377 -103 11.6 141 208 31.7 -251 262 26.2 -34.4 39.6 40.4 39.7 39.9
Gemma3-4B 286 299 298 30.7 313 </ 86 108 169 89 - “hlcll - 26.8 322 31.6 31.0 32.4
Gemma3-12B{30.6 322 333 343 355 - 93 83 101 145 - -34.2 387 420 421 415

Gemma3-27B-30.6 319 33.2 348 365 -10.1 16.0 21.2 28.8 36.3 - -35.7 40.9 42.8 422 45.1
8k 16k 32k 64k 128k 8k 16k 32k 64k 128k 8k 16k 32k 64k 128k 8k 16k 32k 64k 128k

Figure 2. Comparison between ROUGE-L and the GPT-40 evaluation on summarization datasets. GPT-40 evaluation reflects the
performance gain on Gemma3-27B with increased input length, and it also clearly sets apart open-source models with different sizes. In
comparison, ROUGE-L remains almost the same for all models and input lengths.

2024). Throughout the evaluation, we provide models with images and their corresponding integer labels. Following Li
et al. (2024c), we arrange exemplars into demonstration rounds, each of which includes exactly one exemplar per label in a
random order. We concatenate these demonstration rounds, with the last round truncated if needed, to build examples of
input length L. Thus, the label distribution is balanced in all datasets and input lengths.

B.4. Summarization

Preprocessing. GovReport (Huang et al., 2021) consists of reports written by the U.S. Government Accountability Office
(GAO)? and the Congressional Research Service (CRS)*. GAO reports constitute the majority of the dataset (more than 12K)
and provide enough coverage for evaluation. Since CRS reports have a different format from GAO reports and there are only
a few CRS reports available, we only use GAO reports in our benchmark. Summaries of GAO reports are written by experts
and are structured into three aspects: “Why GAO did this study,” “What GAO found,” and “What GAO recommends.” Those
summaries are written at the beginning pages of the PDF-formatted GAO documents. We use PyMuPDF * to detect those
answers and remove the corresponding pages to ensure no answer leakage in the inputs.

Multi-LexSum (Shen et al., 2022) consists of multi-document summarization problems about civil rights lawsuits, and the
summaries are written by domain experts (i.e., lawyers and law students).

Both datasets are constructed using the OCR-extracted plain text as the input. In our evaluation, we replace the OCR-
extracted plain text with the original PDF-formatted documents. We screenshot each page of a PDF-formatted document
with 144 DPI, following common practices (Ma et al.). Different from previous works (Ma et al.; Deng et al., 2024), we do
not concatenate images to reduce the token numbers and instead directly feed them into LCVLMs since we are stress-testing
the model’s long-context capability.

Length Control. To control the input length L, we truncate document pages from the end. When there are multiple
documents in Multi-LexSum, we truncate each document evenly from the end. Additionally, we discard examples that
exceed the 128K context length by more than 24K tokens, as adding them would require truncating too many pages to fit
within the context window of 128K. In this way, we can avoid confounding effects on model performance caused by the loss
of key information during page truncation.

Data Scale. In long-form generation tasks, each summary typically contains many atomic claims to be verified, in contrast
to short outputs of other categories, such as VRAG. There are 15,951 claims in 387 examples in these two datasets, indicating
a large scale for evaluation.

Model-Based Metric The N-gram overlap metrics, such as ROUGE-L (Lin, 2004), have long been condemned for their
poor correlation with human judgment for long-form generation (Goyal et al., 2022; Deutsch et al., 2022). To ensure reliable
evaluation for summarization, we adopt the reference-based LLM evaluation method proposed in HELMET (Yen et al.,

2www.gao.gov
3crsreports.congress.gov
4https ://pymupdf.readthedocs.io
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2024). Specifically, we first break down the gold reference summary into a set of atomic claims with GPT-4o, following
prior work (Kamoi et al., 2023; Zhang & Bansal, 2021; Cattan et al., 2024). Next, we ask the model to check for three
properties of model predictions: precision, recall, and fluency. We utilize GPT-40 to assess if each sentence in the generated
summary is supported by the gold reference (precision) and if each claim in the gold reference is present in the generated
summary (recall). The F1 score is computed from the recall and precision. We also prompt GPT-40 to assess the fluency of
the generated summary. The fluency is assigned a value of O if the output is incoherent, incomplete, or repetitive, and a
value of 1 if it is fluent and coherent. The final score, Fluency-F1, is the product of fluency and F1 score.

Our empirical study in Figure 2 demonstrates that InternVL3-2B achieves ROUGE-L scores comparable to GPT-4o.
Moreover, ROUGE-L exhibits minimal difference across different input lengths from 8K to 128K tokens. These observations
reveal that ROUGE-L has low discriminative capacity and often fails to effectively distinguish between the quality of
generated texts. In contrast, GPT4-o evaluation shows a significant gap across different input lengths and shows lower scores
for models with shorter context windows, such as InternVL2.5.

Atomic Claims Verification. We manually checked 100 atomic claims from 25 Multi-LexSum summaries and another
100 atomic claims from 25 GovReport summaries. We found that only one claim was not factually accurate. Then, we
checked the coverage of the claims and found no key facts were missing. This manual verification shows that GPT-40 is
virtually always reliable for the decomposition task. For Multi-LexSum, we follow HELMET (Yen et al., 2024) and use the
short summary to obtain atomic claims, where the dataset also provides a long and tiny summary for each case.

GPT-40 Judgment Verification. We show the detailed prompts for evaluating the fluency, precision, and recall in Tables 4
to 9, following previous works (Kamoi et al., 2023; Yen et al., 2024; Chang et al.; Kim et al.). We further conduct human
analysis to verify the evaluation metric.

Quantitatively, we found that GPT-40 can consistently distinguish fluent and non-fluent outputs. The agreement between
the model judgements and human judgements is 100% for randomly sampled outputs from GovReport and Multi-LexSum.
Then, we sample 10 generated summaries for both GovReport and Multi-LexSum (20 in total) and check 5 atomic claims
evaluations for each summary. The models we used are Gemini-2.5-Pro and Qwen2.5-VL-32B. We follow a similar
procedure to the GPT-40 evaluation and manually check the precision and recall of those sampled summaries. For precision,
we observed Cohen’s k = 0.90 for GovReport and x = 0.89 for Multi-LexSum, suggesting almost perfect agreement.
Meanwhile, for recall, we observed Cohen’s x = 0.90 for GovReport and £ = 0.93 for Multi-LexSum, which are also near
perfect.

Qualitatively, inspecting the disagreements, we find that most disagreements come from partially supported cases. We
identified two common underlying reasons for partially supported cases when measuring precision and recall, respectively.
First, a sentence in a generated summary may contain two points: “While agencies generally documented their review,
inconsistencies and documentation gaps existed.” We found the reference summary only supports “inconsistencies and
documentation gaps existed,” and the “agencies generally documented” part is an entailment inferred by the model. Such
inferred (entailed) information causes a lot of partially supported cases when measuring precision. Second, the claims in
the gold reference may include specific details, such as some geographic locations or organization names. These details may
not be explicitly mentioned in the generated summary, causing the partially supported cases for recall.

B.5. Long-Document VQA

Preprocessing. MMLongBench-Doc (Ma et al.) and LongDocURL (Deng et al., 2024) contain questions on various kinds
of documents, such as financial reports, guidebooks, and academic papers, and the answer formats include string, integer,
float, and list. More importantly, the rule-based evaluation method commonly adopted on those datasets depends on answer
formats.

First, we find that there is a proportion of noisy answer format annotations. For example, a list answer like [ *Top 10 File
Categories Sorted By Disk Space’, ‘Last 12 Months Modified Disk Space History’] is
annotated as being in string format. Conversely, answers in string format are also annotated in list format, such as
[ 'PRIVACY SCREEN OPTIONS’ ]. Therefore, our first step with these datasets is to correct the mislabeled answer
formats and discard the instances for which the correct answer format cannot be recovered.

Second, both datasets rely heavily on LLMs, such as GPT-4o, to extract the answer from model predictions. This leads to
high evaluation costs and poses challenges for large-scale evaluation, like 46 models in our work. Then, we take a closer
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MMLB-Doc Answer Sources MMLB-Doc Answer Format LongDocURL Answer Sources LongDocURL Answer Format
9 9
Others None
o o
Chart String (0.2%) Eigure (0.8%)
Pure-text None String List
16.1% 17.2% Pi -Text 20.8%
25.6% ° ° 23.2% ure-ex ° 26.1% 23.9%
45.0%
10.6% 28.5% Lo ] 37.2%
Layout Figure 34.1% List Table 15.2%
20.5% Integer HEH5 27.2% 34.1% Float
Table Float Layout Integer

Figure 3. Data distribution of MMLongBench-Doc and LongDocURL after our pre-processing. Both datasets remain well-distributed,
and their distributions are similar to the ones in the original paper.

examination of different formats of answers: (1) For integer and float answers, we find that numbers can be extracted with
regular expressions; (2) For string answers, if the answer is short (less than 5 words), we find that model predictions are also
short. Thus, we can directly use automatic metrics like ROUGE F1 without the need for answer extractions; (3) As a result,
only long-form string answers require LLM-based extraction; Since long-form string answers (> 5 words) constitute only
a small proportion of these datasets, we simply discard those instances to enable scalable evaluation without relying on
GPT-4o for answer extraction. We find that the retained short string answers are mostly entity names; (4) Note that for list
answers, we evaluate each element in the list (i.e., integer, float, or string) separately (then task average), and the answer
evaluation is determined for each element by its type.

After all the filtering, we find both datasets remain well-distributed as shown in Figure 3.

Evaluation Metrics. We follow previous works (Ma et al.; Deng et al., 2024) and employ the same rule-based scoring
method that applies different strategies depending on the format of the reference answer: (1) For String format answers, we
initially use regular expressions to determine whether the answers require exact matching (e.g., telephone numbers, email
addresses, website addresses, filenames, times, dates, etc.). If the answer needs an exact match, we perform a substring
exact matching (SubEM) with a score of O or 1. Otherwise, we follow previous works (Tanaka et al., 2023; Zhang et al.,
2024; Kocisky et al., 2018; Yen et al., 2024) and calculate ROUGE F1 scores; (2) For integer answers, we perform an exact
match comparison, and the score is either O or 1; (3) For float answers, we treat the model prediction and gold reference as
the same if the relative error is less than 1%; (4) For list answers, we evaluate each element separately based on its answer
type and take the average. Here, we follow LongDocURL to use the Greedy List Match: for each element in the reference
list, we compute its score against all elements in the prediction list and greedily select the highest score as its matching
score. This metric does not require the predicted list to follow the same element order as the reference list, thereby providing
greater tolerance in evaluation.

Different from them, SlideVQA (Tanaka et al., 2023) features questions based on 20-page slide decks, which contain rich
layout information and less dense text. The answer formats in the dataset are string, integer, and float, and do not cover list
answers. We use the same rule-based scoring method as described for MMLongBench-Doc and LongDocURL.

Length Control. The input lengths of DocVQA tasks are also easy to control. If an example exceeds a given length L, we
truncate the document evenly from both sides while preserving the answer pages. If the document cannot fill the length L,
we alternately pad the left and right sides with randomly sampled negative documents until the required length is reached.
Notably, we may also truncate a few pages of the last padding document as needed to control the length at the granularity of
pages, instead of documents.

The randomly sampled padding documents are not guaranteed to be truly irrelevant or negative. They may occasionally
contain information related to the question, which could potentially change the answer. To ensure models attend to the
original document, we preface each question with the prompt “Based on the Document <Original Doc ID>, answer the
following question.”
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Table 3. Average number of images per example in all datasets and input lengths. The values in subscript denote the standard deviations.
(T) and (I) represents the text and image needle in each task of MM-NIAH.

Data Length 8K 16K 32K 64K 128K
InfoSeek 1.00.0 1.00,() 1.0()‘0 1.0(].0 1.0()'0
VRAG VIQUAE 1.00,0 1.00.0 1.00.0 1.00,0 1.00.0
VH-Single 21.70.9 44.71_3 90.91_9 183.42_9 368.24,3
VH-Multi 21709 44.815 91019 183455 368243
MM-NIAH-Ret (T) 3814 7620 15457 30435 59355
NIAH MM-NIAH-Count (T) 3714 7.62.9 15.49 7 30.33.9 59.35.7
MM-NIAH-Reason (T) 3.81,4 7.62,0 15.52,7 30.53,9 59.35‘7
MM-NIAH-Ret (I) 8110 11.815 19.39 5 3423 4 63.85 5
MM-NIAH-Count (I) 5715 9316 16925 317352  61.55
MM-NIAH-Reason (I) 6.5, ¢ 102;4 17.60; 32534 62357
Stanford Cars 36.11,3 72.62,3 156309 324053 628890
ICL Food101 25'00.8 52«00.8 106.11_4 215.52,3 432.50,9
SUN397 37.020 80.137 161345 326.852 656.65
Inat2021 31.20_6 66.10,8 134614 271016 543818
.. GovReport 2.00.1 6.00.0 12.09.0 25.00.0 50.7¢.5
SUmmarization -y i T exSum 3001 6002 12105 25200 5131s
MMLongBench-Doc 3313 6.95 4 13.845 28.032 56.4191
DOCVQA LOHgDOCURL 3.62_1 7.24,5 14-28.1 28.614_4 55-318.3
SlideVQA 7509 16291 33297 67235 13525,

B.6. Image Resizing and Statistics

The number of tokens per image is determined by the image size in our benchmark, as we discussed in Section 2.3. In
MM-NIAH, we find that many images from the OBELICS dataset are unnecessarily large (up to 8000x 6000 pixels) and are
not text-rich. Then, we resize those images’ longer edge to 1024 pixels while preserving their aspect ratio.

We calculate the average number of images per example in all the datasets and input lengths in Table 3. From the table,
we can find that our benchmark covers various text-to-image ratios. For example, VRAG tasks are text-centric and only
contain one image per example, while ICL represents image-centric tasks with hundreds of images. MM-NIAH tasks are
intermediate and feature both substantial text and multiple images.

B.7. License

All the data collected are based on previously open-sourced datasets, and all licenses are publicly available.

C. Full Model List

We list all 46 models (Hurst et al., 2024; Google, 2025; 2024; Anthropic, 2024; Wang et al., 2024b; Bai et al., 2025;
Chen et al., 2024b; Zhu et al., 2025; Lu et al., 2024b; Kamath et al., 2025; Laurencon et al., 2024b;a; Abdin et al., 2024;
Abouelenin et al., 2025; Liu et al., 2024b; Agrawal et al., 2024) we evaluated in Table 10. All 46 models have a pixel
unshuffle operation to reduce the token counts of images. This is consistent with our token counting methods (Section 2.2).
The only exception is Pixtral-12B, but we can resize its image (to 0.5 x on each side) to reduce the image tokens. Thus, we
can fit Pixtral-12B on our GPU server and avoid extremely long input sequences.
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Table 4. GovReport Fluency Evaluation Prompt

Task: GovReport Metric: Fluency

Please act as an impartial judge and evaluate the fluency of the provided text. The text should be coherent, non-repetitive, fluent, and
grammatically correct.

Below is your grading rubric:

- Score 0 (incoherent, repetitive, or incomplete): Incoherent sentences, repetitive sentences (even if not by exact words), incomplete
answers, or gibberish. Note that even if the answer is coherent, if it is repetitive or incomplete, it should be given a score of 0.

- Examples:

- Incomplete: "Summary:"

- Incoherent: "Summary: U.S. agencies engaged export and controls controls controls
controls diversion prevent items U.S. activities compliance allies transshipment
risk misuse exported misuse misuse illicit illicit against interests or."

- Repetitive: "Summary:The audit focused on determining the cost and schedule performance
of selected programs. The audit focused on determining the cost and schedule
performance of selected programs. The audit focused on determining the cost and
schedule performance of selected programs. The audit focused on determining the
cost and schedule performance of selected programs."

- Score 1 (coherent, non-repetitive answer): Coherent, non-repetitive, fluent, grammatically correct answers. If the text is coherent,
non-repetitive, and fluent, but the last sentence is truncated, it should still be given a score of 1.
Examples:

- "Why GAO Did This Study: Tobacco use is the leading cause of preventable death and
disease in the United States. 1In 2009, the Family Smoking Prevention and Tobacco
Control Act (Tobacco Control Act) granted FDA, an agency within the Department of
Health and Human Services (HHS), authority to regulate tobacco products, including
marketing and distribution to youth. The act established CTP, which implements the
act by educating the public on the dangers of tobacco use; developing the science
needed for tobacco regulation; and developing and enforcing regulations on the
manufacture, marketing, and distribution of tobacco products. The act authorized
FDA to assess and collect user fees from tobacco manufacturers and importers.

The Tobacco Control Act mandated that GAO review the authority and resources
provided to FDA for regulating the manufacture, marketing, and distribution of
tobacco products. This report examines (1) how FDA spent tobacco user fees for
key activities using its authorities granted in the act, and (2) any challenges
FDA encountered in using its authorities. GAO analyzed data on tobacco user

fees collected and spent on key activities by FDA as of March 31, 2014; reviewed
documents related to FDA’s key activities, as well as relevant laws, regulations,
and guidance; and interviewed CTP, public health, and tobacco industry officials...
[about 150 more words]"

Now, read the provided text, and evaluate the fluency using the rubric. Then output your score in the following json format:
{"fluency": 1}.
Text: "{text}"
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Table 5. Multi-LexSum Fluency Evaluation Prompt

Task: Multi-LexSum  Metric: Fluency

Please act as an impartial judge and evaluate the fluency of the provided text. The text should be coherent, non-repetitive, fluent, and
grammatically correct.

Below is your grading rubric:

Score 0 (incoherent, repetitive, or incomplete): Incoherent sentences, repetitive sentences (even if not by exact words), incomplete
answers, or gibberish. Note that even if the answer is coherent, if it is repetitive or incomplete, it should be given a score of 0.

- Examples:

- Incomplete: "Summary:"

- Incoherent: "Summary: The plaintiff the the the the able the the the the the the the
the the the able the the the the the A2\n"

- Repetitive: "Summary: The U.S. government brought a criminal case against four
defendants. Summary: The U.S. government brought a criminal case against four
defendants. Summary: The U.S. government brought a criminal case against four
defendants. Summary: The U.S. government brought a criminal case against four
defendants."

Score 1 (coherent, non-repetitive answer): Coherent, non-repetitive, fluent, grammatically correct answers. If the text is coherent,
non-repetitive, and fluent, but the last sentence is truncated, it should still be given a score of 1.
- Examples:

- "This case is about an apprenticeship test that had a disparate impact on Black
apprenticeship applicants. The Equal Employment Opportunity Commission (EEOC)
filed this lawsuit on December 27, 2004, in U.S. District Court for the Southern
District of Ohio."

- "The plaintiffs sought declaratory and injunctive relief, as well as attorneys’
fees and costs, under the Americans with Disabilities Act, the Rehabilitation
Act of 1973, the Social Security Act, and the Nursing Home Reform Act. The case
was certified as a class action on behalf of all Medicaid-eligible adults with
disabilities in Cook County, Illinois, who are being, or may in the future be,
unnecessarily confined to nursing facilities and with appropriate supports and
services may be able to live in a community setting. The defendants denied the
allegations and argued that the plaintiffs’ claims were not typical of the class
and that the class definition was too broad. The case is ongoing, with discovery
and expert testimony scheduled for the fall of"

Now, read the provided text, and evaluate the fluency using the rubric. Then output your score in the following json format:
{"fluency": 1}.

Text: "{text}"
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Table 6. GovReport Precision Evaluation Prompt

Task: GovReport Metric: Precision

Please act as an impartial judge and evaluate the quality of the provided summary of a government report from U.S. Government
Accountability Office (GAO). The summary should discuss one or more of the following: why GAO did this study, what GAO found,
and what GAO recommends.

Below is your grading rubric:
Precision:

- Evaluate the provided summary by deciding if each sentence in the provided summary is supported by the information provided
in the expert summary. A sentence is still supported even if some minor details (e.g., dates, entity names, or locations) are not
explicitly mentioned in the expert summary. A sentence is not supported if its major facts are not mentioned, contradicted, or
introduce new information not present in the expert summary (e.g., extra analysis or commentary).

- Score: the number of sentences in the provided summary that are supported by the expert summary.
- Examples: use the following examples to guide your evaluation.
Example 1:

Expert summary: <start of summary>Why GAO Did This Study: The Congressional Budget Office projects that federal deficits will
reach $1 trillion in 2020 and average $1.2 trillion per year through 2029, further adding to the more than $16 trillion in current debt
held by the public. As a result, Treasury will need to issue a substantial amount of debt to finance government operations and refinance
maturing debt. To support its goal to borrow at the lowest cost over time, Treasury must maintain strong demand from a diverse
group of investors for Treasury securities. GAO prepared this report as part of continuing efforts to assist Congress in identifying and
addressing debt management challenges. This report (1) identifies factors that affect demand for Treasury securities and (2) examines
how Treasury monitors and analyzes information about the Treasury market to inform its debt issuance strategy. GAO analyzed data
on investor holdings of Treasury securities; surveyed a non-generalizable sample of 109 large domestic institutional investors across
10 sectors (67 responded); reviewed Treasury analysis and market research; and interviewed market participants across sectors, experts
on foreign investors, and Treasury officials... [about 300 more words] <end of summary>

Provided summary: <start of summary>The U.S. Government Accountability Office (GAO) conducted a performance audit from
June 2018 to December 2019 to assess the management of federal debt by the Department of the Treasury. The audit aimed to evaluate
how Treasury manages its debt to finance the federal deficit and refinances maturing debt while minimizing costs. Treasury issues
various types of securities, including Treasury bills, notes, bonds, and inflation-protected securities, with maturities ranging from a few
weeks to 30 years, to attract a diverse investor base and maintain a healthy secondary market. The audit found that Treasury’s regular
and predictable framework for issuing securities supports reliable demand, but changes in market conditions and policies pose risks
to the liquidity, depth, and safety of Treasury securities. Treasury uses market outreach, auction and market metrics, and analytical
models to inform its debt issuance decisions but lacks policies for bilateral market outreach and quality assurance for analytical models.
The report recommends Treasury finalize its market outreach policy and establish a quality assurance policy for analytical models to
ensure transparency and appropriate documentation. Treasury agreed with the recommendations and plans to implement them.<end of
summary>

Reasoning: Sentence 1 is not supported (audit dates and "performance audit” not mentioned). Sentence 2 is supported (aligns with
Treasury’s goal of borrowing at lowest cost). Sentence 3 is not supported (specific security types and maturity ranges not listed).
Sentence 4 is supported (risks to liquidity, depth, safety are mentioned). Sentence 5 is supported (mentions the three inputs and missing
policies). Sentence 6 is supported (matches the recommendations). Sentence 7 is supported (Treasury agreed). Therefore, the precision
score is 5.

Output: {"precision": 5, "sentence_count": 7}

Example 2: ...

Now, read the provided summary and expert summary, and evaluate the summary using the rubric. First, think step-by-step and provide
your reasoning and assessment on the answer. Please keep your response concise and limited to a single paragraph. Then output your
score in the following json format: {"precision": 7, "sentence_count": 20}.

Expert summary: <start of summary>{expert_summary }<end of summary>

Provided summary: <start of summary>{ summary }<end of summary>
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Table 7. Multi-LexSum Precision Evaluation Prompt

Task: Multi-LexSum  Metric: Precision

Please act as an impartial judge and evaluate the quality of the provided summary of a civil lawsuit. The summary is based on a set of
legal documents, and it should contain a short description of the background, the parties involved, and the outcomes of the case.

Below is your grading rubric:
Precision:

- Evaluate the provided summary by deciding if each sentence in the provided summary is supported by the information provided
in the expert summary. A sentence is considered supported if its major facts align with the information in the expert summary.
A sentence is still considered supported even if some of its minor details, such as dates, entity names, or the names of laws and
previous court cases, are not explicitly mentioned in the expert summary. A sentence is not supported if its major facts are not
mentioned or contradicted in the expert summary.

- Score: the number of sentences in the provided summary that are supported by the expert summary.
- Examples: use the following examples to guide your evaluation.
Example 1:

Expert summary: "This lawsuit, brought in the the U.S. District Court for the Central District of California, was filed on June 3,
2020. The plaintiffs were represented by attorneys from the ACLU of Southern California. This lawsuit followed nation-wide protests
that occurred in response to the killing of George Floyd by a police officer in Minneapolis. While most protests were peaceful, some
ended in violence, property destruction, rioting, and looting. Many cities, including Los Angeles and San Bernardino, issued curfews
in an attempt to quell these riots. This action challenged these curfews as violations of free speech and assembly, free movement, due
process, and challenged the San Bernardino curfew as a violation of the establishment clause (the San Bernardino curfew included a
provision that exempted attendants of religious meetings from the curfew.)... [about 100 more words]."

Provided summary: "In June 2020, Black Lives Matter - Los Angeles and several individuals filed a lawsuit in the U.S. District Court
for the Central District of California against Los Angeles Mayor Eric Garcetti, other city officials, and the City of San Bernardino,
challenging the constitutionality of curfew orders imposed during protests against police violence. The plaintiffs, represented by the
ACLU of Southern California, argued that the curfews violated their First Amendment rights to free speech and assembly, as well as
their freedom of movement, by suppressing political protests and other activities. The lawsuit also claimed that the curfews were not
narrowly tailored to address any emergency and lacked sufficient notice. However, the plaintiffs voluntarily dismissed the case in July
2020 after the defendants lifted the curfew orders and did not reinstate them in the following weeks."

Reasoning: The first sentence in the provided summary is well supported by the expert summary even though some entity names are
not explicitly mentioned. The second sentence is also well supported by the expert summary, as it mentions the ACLU of Southern
California and the First Amendment rights. The third sentence is not supported by the expert summary, as it does not mention the lack
of narrow tailoring or sufficient notice. The fourth sentence is well supported by the expert summary, as it mentions the voluntary
dismissal of the case in July 2020. Therefore, the precision score is 3.

Output: {"precision": 3, "sentence_count": 4}

Example 2: ...

Now, read the provided summary and expert summary, and evaluate the summary using the rubric. First, think step-by-step and provide
your reasoning and assessment on the answer. Please keep your response concise and limited to a single paragraph. Then output your
score in the following json format: {"precision": 2, "sentence_count": 6}.

Expert summary: "{expert_summary}"

Provided summary: "{ summary}"
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Table 8. GovReport Recall Evaluation Prompt
Task: GovReport Metric: Recall

Please act as an impartial judge and evaluate the quality of the provided summary of a government report from U.S. Government
Accountability Office (GAO). The summary should discuss one or more of the following: why GAO did this study, what GAO found,
and what GAO recommends. The text should contain all the major points in the expert-written summary, which are given to you.

Below is your grading rubric:
Recall:

- Evaluate the provided summary by deciding if each of the key points is present in the provided summary. A key point is
considered present if its factual information is mostly-supported by the provided summary. If a key point contains multiple
facts, it is considered supported if most of the facts are present.

- Score: the number of key points mostly-supported by the provided summary.
- Examples: Use the following example to guide your evaluation.
Example 1:

Key points:

1. The Future Combat System (FCS) program is the centerpiece of the Army’s effort to transition to a lighter combat force.
2. The FCS program is the centerpiece of the Army’s effort to transition to a more agile combat force.

3. The FCS program is the centerpiece of the Army’s effort to transition to a more capable combat force.

4. By law, GAO is to report annually on the FCS program.

5. Law requires the Department of Defense (DOD) to hold a milestone review of the FCS program.

6. This milestone review is now planned for 2009.

7. This report addresses (1) what knowledge will likely be available in key areas for the review.

8. This report addresses (2) the challenges that lie ahead following the review.

9. To meet these objectives, GAO reviewed key documents and performed analysis.

10. GAO attended demonstrations and design reviews to meet these objectives.

11. GAO interviewed DOD officials to meet these objectives.

12. The Army will be challenged to demonstrate the knowledge needed to warrant an unqualified commitment to the FCS program.
13. This challenge will occur at the 2009 milestone review.

14. The Army has made progress.

15. Knowledge deficiencies remain in key areas. [31 more points]

Summary: <start of summary>Why GAO Did This Study: The Future Combat System (FCS) program is the centerpiece of the Army’s
effort to transition to a lighter combat force. By law, GAO is to report annually on the FCS program. This report addresses (1) what
knowledge will likely be available in key areas for the review, and (2) the challenges that lie ahead following the review. To meet these
objectives, GAO reviewed key documents and interviewed DOD officials.

‘What GAO Found: The Army will be challenged to demonstrate the knowledge needed to warrant an unqualified commitment to the
FCS program. While the Army has made progress, knowledge deficiencies remain in key areas. Specifically, all critical technologies
are not currently at a minimum acceptable level of maturity. Actual demonstrations of FCS hardware and software have been limited.
Network performance is also largely unproven. DOD could have at least three programmatic directions to consider for shaping
investments in future capabilities. [106 more words]<end of summary>

Reasoning: The summary covers: FCS as Army’s transition centerpiece (point 1), GAO’s reporting requirement (point 4), report
objectives (points 7, 8), GAO’s methods (points 9, 11), Army’s challenges (point 12), progress and deficiencies (points 14, 15),
technology issues (points 16, 19, 21), three programmatic directions (points 27, 29, 31, 33, 34, 36, 38, 41-43). It omits: "more
agile/capable" (points 2, 3), 2009 milestone review (points 5, 6, 13), demonstrations attendance (point 10), design requirements issues
(points 17, 18), small-scale concepts (point 20), program immaturity explanation (points 22, 23), funding competition (points 24-26),
challenges after review (point 28), production before design demonstration (points 30, 32), technology testing issues (point 35), $50
billion funding (point 37), surrogate systems (points 39, 40), and increment justification (points 44-46). The summary supports 22 key
points.

Output: {"supported_key_points": rr, 4, 7, 8, 9, 11, 12, 14, 15, 16, 19, 21, 27, 29, 31,
33, 34, 36, 38, 41, 42, 43], "recall": 22}

Now, read the provided summary and key points, and evaluate the summary using the rubric. First, think step-by-step and provide your
reasoning and assessment on the answer. Please keep your response concise and limited to a single paragraph. Then output your score
in the following json format: { "supported_key_points": [1, 4, 7, 8, 9, 11, 12, 14, 15, 16, 19, 21,
27, 29, 31, 33, 34, 36, 38, 41, 42, 43], "recall": 22}, where "supported_key_points" contains the key
points that are present in the summary and "recall” is the total number of key points present in the summary.

Key points:
{keypoints}

Summary: <start of summary>{ summary }<end of summary>
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Table 9. Multi-LexSum Recall Evaluation Prompt
Task: Multi-LexSum  Metric: Recall

Please act as an impartial judge and evaluate the quality of the provided summary of a civil lawsuit. The summary is based on a set of
legal documents, and it should contain a short description of the background, the parties involved, and the outcomes of the case. The
text should contain all the major points in the expert-written summary, which are given to you.

Below is your grading rubric:
Recall:

- Evaluate the provided summary by deciding if each of the key points is present in the provided summary. A key point is
considered present if its factual information is well-supported by the provided summary.

- Score: the number of key points present in the provided summary.
- Examples: use the following examples to guide your evaluation.
Example 1:

Key points:

. The case challenged curfews in Los Angeles and San Bernardino, California.

. The curfews were issued in response to the nationwide protests following the police killing of George Floyd in Minneapolis.
. The complaint argued that the curfews violated free speech, free assembly, free movement, and Due Process.

The complaint also argued that the San Bernardino curfew violated the Establishment Clause.

. The complaint sought injunctive and declaratory relief.

. The plaintiffs voluntarily dismissed the case on July 7, 2020.

. The dismissal occurred because the city had rescinded the curfews and not attempted to reinstate them.

Nk W~

Summary: In June 2020, Black Lives Matter - Los Angeles and several individuals filed a lawsuit in the U.S. District Court for the
Central District of California against Los Angeles Mayor Eric Garcetti, other city officials, and the City of San Bernardino, challenging
the constitutionality of curfew orders imposed during protests against police violence. The plaintiffs, represented by the ACLU of
Southern California, argued that the curfews violated their First Amendment rights to free speech and assembly, as well as their
freedom of movement, by suppressing political protests and other activities. The lawsuit also claimed that the curfews were not
narrowly tailored to address any emergency and lacked sufficient notice. However, the plaintiffs voluntarily dismissed the case in July
2020 after the defendants lifted the curfew orders and did not reinstate them in the following weeks.

Reasoning: The summary states that the plaintiffs challenged the constitutionality of curfew orders against Los Angeles and San
Bernadino, so key point 1 is present. The summary does not mention that the curfew orders were issued in response to the nationwide
protest that resulted from the police killing of George Floyd in Minneapolis, so key point 2 is missing. The summary does mention that
the complaint argued that the curfews violated the First Amendment rights to free speech and assembly, so key point 3 is present. The
summary does not mention that the complaint argued that the San Bernardino curfew violated the Establishment Clause, so key point 4
is missing. The summary does not mention that the complaint sought injunctive and declaratory relief, so key point 5 is missing. The
summary mentions that the plaintiffs voluntarily dismissed the case in July 2020 after the defendants lifted the curfew orders and
did not reinstate them in the following weeks, so key point 6 and 7 are present. Finally, key points 1, 3, 6, and 7 are present in the
summary, so the recall score is 4.

Output: {"recall": 4}

Example 2: ...

Now, read the provided summary and key points, and evaluate the summary using the rubric. First, think step-by-step and provide your
reasoning and assessment on the answer. Please keep your response concise and limited to a single paragraph. Then output your score
in the following json format: {"recall": 2}.

Key points: {keypoints}

Summary: "{summary}"
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Table 10. Length means the training length (default) or claimed context window (denoted by T). All LCVLMs are instruction-tuned.
“Image Porc.” stands for Image Processing, which is mainly Dynamic Resolution ViT (Wang et al., 2024b) or Dynamic Tiling (Wu et al.,
2024c). The positional embedding includes RoPE (Su et al., 2024), M-RoPE (Wang et al., 2024b), Linear Scaling (Chen et al., 2023;
kaiokendev, 2023) LongRoPE (Ding et al., 2024), Dynamic-NTK, NTK-by-parts or YaRN (Peng et al.).

Name Length Image Proc. Positional Emb.  # Params
Proprietary (No model details except the claimed context lengths.

gpt-40-2024-11-20 128,000f ? ? ?
claude-3-7-sonnet-20250219 200,0007 ? ? ?
gemini-2.0-flash-001 1,048,576" ? ? ?
gemini-2.0-flash-thinking-exp-01-21 1,048,576} ? ? ?
gemini-2.5-flash-preview-04-17 1,048,576" ? ? ?
gemini-2.5-pro-preview-03-25 1,048,5761 ? ? ?
QOwen2-VL & Qwen2.5-VL

Qwen2-VL-2B-Instruct 32,768 Dynamic-Resolution ViT M-RoPE 2B
Qwen2-VL-7B-Instruct 32,768 Dynamic-Resolution ViT M-RoPE 7B
Qwen2-VL-72B-Instruct-AWQ 32,768 Dynamic-Resolution ViT M-RoPE 72B
Qwen2.5-VL-3B-Instruct 32,768 Dynamic-Resolution ViT M-RoPE 3B
Qwen2.5-VL-7B-Instruct 32,768 Dynamic-Resolution ViT M-RoPE 7B
Qwen2.5-VL-32B-Instruct 32,768 Dynamic-Resolution ViT M-RoPE 32B
Qwen2.5-VL-72B-Instruct-AWQ 32,768 Dynamic-Resolution ViT M-RoPE 72B
InternVL2, InternVL2.5, & InternVL3

InternVL2-1B 8,192 Dynamic Tiling RoPE 0.9B
InternVL2-2B 8,192 Dynamic Tiling Dynamic-NTK 2.21B
InternVL2-4B 8,192 Dynamic Tiling LongRoPE 4.15B
InternVL2-8B 8,192 Dynamic Tiling Dynamic-NTK 8.08B
InternVL2_5-1B 16,348 Dynamic Tiling RoPE 0.9B
InternVL2_5-2B 16,348 Dynamic Tiling Dynamic-NTK 2.2B
InternVL2_5-4B 16,348 Dynamic Tiling RoPE 4.2B
InternVL2_5-8B 16,348 Dynamic Tiling Dynamic-NTK 8.1B
InternVL2_5-26B 16,348 Dynamic Tiling Dynamic-NTK 25.5B
InternVL3-1B 32,768 Dynamic Tiling Dynamic-NTK 0.9B
InternVL3-2B 32,768 Dynamic Tiling Dynamic-NTK 1.9B
InternVL3-8B 32,768 Dynamic Tiling Dynamic-NTK 8.1B
InternVL3-14B 32,768 Dynamic Tiling Dynamic-NTK 15.1B
InternVL3-38B 32,768 Dynamic Tiling Dynamic-NTK 38.4B
Ovis2

Ovis2-1B 32,768 Dynamic Tiling RoPE 1B
Ovis2-2B 32,768 Dynamic Tiling RoPE 2B
Ovis2-4B 32,768 Dynamic Tiling RoPE 4B
Ovis2-8B 32,768 Dynamic Tiling RoPE 8B
Ovis2-16B 32,768 Dynamic Tiling RoPE 16B
Ovis2-34B 32,768 Dynamic Tiling RoPE 34B
Gemma-3

gemma-3-4b-it 131,0721 Dynamic Tiling Linear Scaling 4B
gemma-3-12b-it 131,0721 Dynamic Tiling Linear Scaling 12B
gemma-3-27b-it 131,072f Dynamic Tiling Linear Scaling 27B
Idefics2

idefics2-8b 8,192  Dynamic-Resolution ViT RoPE 8B
idefics2-8b-C (chatty) 8,192  Dynamic-Resolution ViT RoPE 8B
Mantis-8B-Idefics2 8,192 Dynamic-Resolution ViT RoPE 8B
Idefics3

Idefics3-8B-Llama3 10,240 Dynamic Tiling NTK-by-parts 8B
Phi-based

Phi-3-vision-128k-instruct 131,072 Dynamic Tiling LongRoPE 4.2B
Phi-3.5-vision-instruct 131,072 Dynamic Tiling LongRoPE 4.2B
Phi-4-multimodal-instruct 131,072 Dynamic Tiling LongRoPE 5.6B
NVILA

NVILA-Lite-2B-hf-preview 32,768 Dynamic Tiling RoPE 2B
NVILA-Lite-8B-hf-preview 32,768 Dynamic Tiling RoPE 8B
Pixtral

pixtral-12b 131,072  Dynamic-Resolution ViT RoPE 12B
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Table 11. The number of tokens produced by models without pixel unshuffle for the inputs (64K and 128K tokens) of the ICL and Visual
Haystack (VH) datasets. The numbers are in thousands (K). These models cannot process long sequences of images efficiently.

Model ICL VH
64K 128K 64K 128K
Llama-3.2-11B 1,821K  3,626K 1,174K 2,358K

Llava-onevision-7b 558K 1,142K 496K 996K
mPLUG-OwI3-7B  1,398K 2,786K 930K 1,870K

C.1. LVLMs Beyond our Evaluation

Token Efficiency. Beyond the models in our evaluation, there are also a lot of excellent models, such as Llava-onevision (Li
et al., 2024a), Llama3.2 (Dubey et al., 2024), mPLUG-OwI3 (Ye et al., 2024). However, we find that those models don’t
have pixel unshuffle operations. While Pixtral-12B’s ViT can take images with dynamic resolution, the ViTs of these three
models use dynamic tiling, such as 560 x 560 tiles for Llama3.2-11B. Thus, unlike Pixtral-12B, we cannot reduce the
number of image tokens by simply resizing the input image, since these models do not accept images smaller than the
predefined tile size. As shown in Table 11, these models cannot efficiently process high-resolution images as a whole,
generating a number of tokens that is at least ten times the pre-defined input length (64K or 128K). This causes extremely
long input sequences, and we cannot fit them on our GPU server.

Challenge for Model Integration. DeepSeek-VL (Lu et al., 2024a), DeepSeek-VL2 (Wu et al., 2024c), and Long-
Llava (Wang et al., 2024d) are also excellent, but they present additional challenges. These models do not provide a standard
API in the HuggingFace Transformers framework (Wolf et al., 2019), which we used for inference. Therefore, these models
cannot be loaded directly via Transformes, and we need to develop them based on their GitHub repositories. As a result,
integrating these models requires a prohibitive amount of engineering effort to adapt their codebases, making it impractical
within our current scope. We leave their integration for future work.

D. Experimental Setup

As previously described, we evaluate all 46 models across different input lengths L € {8192, 16384, 32768, 65536, 131072}.
We evaluate the proprietary models using their API. The specific versions we used are as follows:

GPT-40: gpt-40-2024-11-20

Claude-3.7-Sonnet: claude—-3-7-sonnet—-20250219

Gemini-2.0-Flash: gemini-2.0-flash-001

Gemini-2.0-Flash-T: gemini-2.0-flash-thinking-exp-01-21

- Gemini-2.5-Flash: gemini-2.5-flash-preview-04-17

Gemini-2.5-Pro: gemini-2.5-pro-preview-03-25

For all open-source models, we evaluate them on an 8 X A100 (80GB) GPU server. We use the HuggingFace Transformers
framework (Wolf et al., 2019) to deploy models and generate outputs. Since all models are instruction-tuned, we apply
the chat templates to all datasets. We load models in BF16 with FlashAttention2 (Dao) for faster inference. The largest
open-source models tested in our work have 72B parameters. Our computational resources are limited to 8 x A100 GPUs;
thereby, we cannot evaluate models with over 100B parameters, such as Llama4 (Meta, 2025), at 128K tokens.

We sampled 100 examples from each dataset to evaluate models. This amount actually results in 600 examples for single-
needle tasks: VIQuAE, VH-Single, and MM-NIAH-Ret, and 300 examples for multi-needle tasks: InfoSeek, VH-Multi, and
MM-NIAH-Count. This is because we test 6 different depths (i.e., [0, 0.2, 0.4, 0.6, 0.8, 1.0]) for single-needle examples
and 3 different permutations for multi-needle examples to mitigate the positional bias. Note that in MM-NIAH, we sample
the text-needle and image-needle examples evenly, with 50 of each type. The MM-NIAH-Reason is more complex since
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GPT-40- 251 31.1 343 41.0 424

Claude-3.7-Sonnet- 27.6 34.6 349 345 37.5
Gemini-2.0-Flash- 24.4 27.1 30.1
Gemini-2.0-Flash-T- 27.7
Gemini-2.5-Flash- 29.2
Gemini-2.5-Pro- 32.0
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Qwen2.5-VL-7B- 23.5 29.1 30.8 32.7 60.7 57.1
Qwen2.5-VL-32B- 22.8 26.3 25.8 23.0 252 67.8 66.0
Qwen2.5-VL-72B- 20.5 26.9 31.1 38.0 285 714  67.5
InternVL2.5-26B- 19.1 23.8 26.3 27.8 29.5 535 47.6
InternVL3-8B- 22.2 286 325 36.6 58.1 53.7
InternVL3-14B- 22.3 25.6 27.2 30.3 63.3 54.1
InternVL3-38B- 20.7 24.8 33.1 384 43.6 66.3 63.8
Ovis2-8B- 23.0 29.3 30.5 32.9 283 59.1 | 49.3 303 109

Ovis2-16B- 25.3 30.0 335 37.0 66.5 61.2 354 193
Ovis2-34B- 23.5 29.8 357 39.6 59.9  55.2 336 235

Gemma3-12B- 21.0 24.0 252 26.1 28.0

Gemma3-27B- 22.9 285 320 355 40.7 455 462 45.6 6 59.3 57.2 55.0 512
Idefics3-8B- 15.7 20.4 192 21.8 17.7 26.4 17.3 - 340 294 278 247 215
Phi-4-Multimodal- 123 17.4 175 188 15.9 455  47.9 26.0 30.8 26.6 209
NVILA-Lite-8B- 12.8 153 19.3 19.9 233 324 258 216 206 26.9 18.4

56.5 54.6 524
8k 16k 32k 64k 128k

55.0 48.1
8k 16k 32k 64k 128k

Pixtral-12B- 22.7 29.6 33.5
8k 16k 32k 64k 128k

Figure 4. Performance on MMLONGBENCH. We report results for selected frontier models, and the full results of all models are provided
in Figure 22. Note that Claude-3.7-Sonnet supports at most 100 images, and we mark the results as N/A for cases with more images
(More in Appendix E.8)

image-needle (I) examples have a single needle, while text-needle (T) ones have multiple needles. There are 300 examples
for MM-NIAH-Reason (I) (50 x 6 depths) and 150 examples for MM-NIAH-Reason (T) (50 x 3 permutations). Due to this
depth imbalance in MM-NIAH-Reason, we compute the average score for each subset separately and report their mean as
the final result. Together, we evaluate each model on 4,050 examples across five different input lengths, resulting in a total
of 20,250 examples.
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E. Evaluation and Analysis

With broad task coverage, unified token counting, and standardized input length, we are now able to thoroughly examine
LCVLMSs’ long-context ability across multiple dimensions. In total, we evaluate 46 LCVLMs on MMLONGBENCH. To
the best of our knowledge, our evaluation provides the most thorough and controlled comparison of the vision-language
long-context ability on broad real-world applications. These models include closed-source models GPT-4o0 (Hurst et al.,
2024), Claude-3.7 (Anthropic, 2024), and Gemini 2 and 2.5 (Google, 2024; 2025), as well as open-source model families,
such as Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025), and Gemma3 (Kamath et al., 2025). We also consider
position extrapolation methods, such as YaRN (Peng et al.) and V2PE (Ge et al., 2024) (See Appendix E.9). The full list
of evaluated models is provided in Table 10. Following existing works (Yen et al., 2024), we use greedy decoding for all
models for consistency and randomly sample 100 examples from each dataset. More details are in Appendix D.

E.1. Evaluation on MMLONGBENCH across Tasks and Context Lengths

We present the performance of selected frontier LCVLM:s in Figure 4, and the full results of all 46 models are reported in
Figure 22. We analyze model performance from multiple perspectives and summarize our main findings as follows:

All models struggle, but closed-source models perform better. Here, we consider the performance at the longest input
length of 128K tokens. In general, we observe that all models struggle on our vision-language long-context tasks. For
example, even GPT-40 only achieves 62.9 on average, while open-source models perform even worse. We find that
Gemini-2.5-Pro stands out as the strongest LCVLM. Other than ICL, Gemini-2.5-Pro outperforms open-source models by
about 20 absolute points. On ICL, although the gap is relatively smaller, due to the strong performance of Qwen2-VL-72B,
there is still a difference of about 14 points. While the other closed-source models continue to surpass open-source models,
the margin is often under 10 points. Further, Ovis2-34B achieves a score of 41.6 on summarization, similar to GPT-40
(42.4). Qwen2.5-VL-32B achieves a SUbEM score of 64.6 on VRAG, even better than Gemini-2.0-Flash. These findings
show that while current closed-source models generally perform better, open-source ones are also competitive.

Models can generalize to longer context lengths. Another interesting observation is that some models can generalize to
longer context lengths than they are officially designed for. For example, although the context window for Qwen2-VL-72B
during training is only 32K tokens, the model can generalize to a 128K input length and still achieve an average score of
51.9. We also observed similar effects on other models, such as Ovis2-34B and InternVL2.5-26B. This phenomenon is
likely because the underlying LLMs of those LCVLMs have been trained with longer context windows (Bai et al., 2025).
We leave further investigation to future work.

Reasoning can improve multimodal long-context ability. We include VH-Multi
Gemini-2.0-Flash-T in our evaluation, which is the thinking variant of GPT-40+ 65.0 63.3 61.0 50.7
Gemini-2.0-Flash. From the results, we observe that the reasoning ability can Gemini-2.5-Pro

consistently improve the Gemini-2.0-Flash on all tasks. While the changes Qwen2.5-VL-7B- 54.8 53.7 54.0 55.2 54.8

for VRAG, Recall, and ICL are modest, summarization and DocVQA exhibit Qwen2.5-VL-32B- 57.5 56.0 55.8 56.2 53.7
marked improvements of 25.3% and 10.1%, respectively. Then, Gemini-2.5  Qwen2.5-VL-72B-64.3 57.7 54.5 54.0 55.0
models exhibit even stronger performance, which are natively designed as Gemma3-4B- 52.7 59.0 52.8 56.5 52.7
thinking models. Gemma3-12B- 56.3 51.3 52.5 51.0 53.2
Gemma3-27B- 57.2 53.5 56.3 60.3 57.0

Different models exhibit different strengths. Generally, we find that Bk 16k 32k 64k 128K

model performance varies considerably across different tasks. For instance,

Qwen2.5-VL-32B outperforms InternVL3-38B on VRAG, but underper- ~ Figure 5. Model performance on VH-Multi
forms on NIAH. Similarly, Ovis2-34B excels at summarization but struggles ~ dataset. Random guess yields 50% accuracy,
on DocVQA. These findings further support the necessity of a comprehen- highlighting its difficulty.

sive benchmark covering diverse downstream tasks.

E.2. Can Needle-in-a-Haystack Task Reflect LCVLM’s Overall Long-context Ability?

The needle-in-a-haystack (NIAH) task has been primarily used to evaluate LCVLMs’ long-context abilities. However, it
remains unclear whether strong performance on NIAH reliably reflects overall long-context capability on diverse tasks. In
this section, we first analyze the difficulty of existing NIAH benchmarks and find that current NIAH tasks are challenging,
resulting in limited differentiation between models. Further, we compute Spearman’s rank correlation (p) between NIAH
performance and that on other tasks. Our results show that none of these NIAH tasks consistently correlates with performance
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Figure 6. Distribution of long-document VQA (DocVQA) with respect to performance on MM-NIAH variants. We find that the models

are concentrated in the coral-shaded areas.

across diverse, practical scenarios.

VH-Single - 0.45

Text-image interleaved NIAH tasks are challenging. In Figure 5, we find that

even state-of-the-art models like GPT-40 and Gemini-2.5 struggle to surpass 80% VH-Multi4 M

accuracy on VH-Multi when the context length is just 8K tokens (approximately

22 images). Most models are just slightly better than a random guess (50%). NIAH-Ret S 0.75 [HO:828880.52
This demonstrates that locating objects in a large set of images is still hugely

challenging for current LCVLMs. See more discussion in Appendix E.5. Then, we NIAH-Count 0.78 0.62 0.69 0.68

plot the performance of different models on the retrieval, counting, and reasoning
tasks of MM-NIAH against their performance on long-document VQA in Figure 6.  NIAH-Reason{ 0.86  0.74 0.79 0.79

We find that most models achieve low performance on the counting and reasoning ‘

tasks, with scores below 30 and 40, respectively. The difficulty of the tasks and \\QYO ¢ & &
low performance result in poor separability between models. While the retrieval Q

is an easier task, it still does not align well with DocVQA tasks. In short, we find ~ Figure 7. Spearman’s p across all 46
that both VH and MM-NIAH present significant challenges to current LCVLMs, ~ models at 128K tokens.

thus showing limited differentiation between models and weak alignment with other tasks.

NIAH tasks fail to reflect overall long-context abilities. As shown in Figure 7, none of the NIAH tasks exhibit
strong correlation with the broader set of long-context tasks. This suggests that performance on NIAH tasks may not be
a reliable indicator of general long-context capabilities. In particular, Visual Haystack (VH) tasks show especially low
correlations due to their high difficulty, as discussed above, which results in limited ability to distinguish between models.

In MM-NIAH, counting and reasoning tasks show weak correlations with
several downstream tasks, with coefficients below 0.8. The retrieval task also
shows weak alignment with ICL performance. Interestingly, simpler tasks
— like retrieval with a single needle in unrelated essays — tend to correlate
better with diverse task categories, which is consistent with our findings
in Figure 6. We further examine the differences between text-based and
image-based needles in Appendix E.6.

E.3. Cross-Category
Correlations Identify Long-Document VQA as a Reliable Proxy

We perform a cross-category correlation analysis of model performance. We
find that different categories do not consistently show strong correlation (<
0.85) with each other, as shown in Figure 8. Specifically, VRAG and NIAH
closely correlate because retrieval is the central capability of both tasks. A
further investigation shows that VRAG achieves its highest correlation (of

VRAG- 1.00 0.92 0.82 0.81 0.81 .84l

NIAH- 0.92 = 1.00 . 0.83 0.83 .834006
ICL+{ 0.82 . 100 0.82 0.85 .810004

Summ- 0.81 0.83 0.82 1.00 0.88 .835002

DocVQA - 0.81 0.83 0.85 0.88 1.00 .844¢;
6 & O & F O
& & \ & O O
S < & ro ©

Figure 8. Spearman’s p between all categories
with L =128K. For each category, the Avg ex-
cludes the correlation with itself.

0.93) with the retrieval task (MM-NIAH-Ret) in Figure 14, reinforcing the shared emphasis on retrieval. Meanwhile,
summarization and long-document VQA show a high correlation of 0.88, likely due to their shared input format — image-
formatted PDF documents. This suggests that image types affect category correlations. In contrast, ICL tasks show relatively
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Figure 9. Error Analysis on MMLongBench-Doc. Instead of PDF-formatted documents, we feed OCR-extracted plain text to LCVLMs
(¢ w/ OCR) and also test corresponding LLMs: Qwen2.5-7B and Qwen2.5-32B (¢ w/ LLM). We also show scores on examples with
different answer sources.

weak correlations with other categories. The ICL tasks evaluate models’ ability to induce new classification rules from
numerous exemplars, a skill orthogonal to recalling facts in long contexts. This further demonstrates that model developers
should consider various long-context skills to draw a more holistic picture of LCVLMs. See Appendix E.7 for detailed
dataset-level correlations and additional category-wise insights.

Long-document VQA as a reliable proxy for long-context capabilities. As shown in Figure 8, long-document VQA
achieves the highest average correlation with other categories, indicating that it is more aligned with the broader range of
long-context tasks. For example, questions from LongDocURL (Deng et al., 2024) cover not only simple retrieval but also
complex understanding and reasoning. Meanwhile, long-document VQA exhibits the smallest standard deviation, showing
that it is also stable and balanced. Taken together, these findings suggest long-document VQA is a more representative and
reliable proxy than the commonly adopted NIAH for reflecting overall system performance, allowing model developers to
iterate more rapidly without the overhead of full-scale evaluation.

E.4. Error Analysis

Our evaluation shows that current LCVLMs have significant room VIQUAE

for improvement. To better understand their limitations, we analyze Qwen2.5-VL-7B-54.8 52.3 45.8 34.6 22.5
model predictions in detail. 0w/ name 588 615 463 33.7
In Figure 9, we show the performance of using another pipeline for * w/LLM- 70.0 70.3 68.2
DocVQA on MMLongBench-Doc. Here, we convert PDF-formatted Qwen2.5-vL-32B GG 60.5 L
documents to plain text with OCR (¢ w/ OCR) and feed them to WIS 243 802 82.8 83.7 75.8
LCVLMs. Therg 1s no clear winner between th'e PDF-formatted and W™ - 0 540 847 888 823
OCR-extracted pipelines across all models. While Qwen2.5-VL mod-

els perform better with imaged-formatted PDF documents in most Gemma3-278 LAt CRRELRY 61.3
cases, Gemma3-27B prefers plain text for shorter input lengths (< MRS 86.5 [78.8° 80.2 85.0 87.7
32K). Furthermore, we performed a fine-grained analysis by catego- 8k 16k 32k 64k 128k

rizing examples according to their answer sources into two groups:

text-pure and vision-needed. As expected, using PDF documents leads ~ Figure 10. Error analysis on ViQUAE. We replace the
to higher scores in vision-needed cases, whereas plain text yields bet- ~ image with its original entity name (o w/ name) and also
ter performance in text-pure cases, especially with longer inputs (64K ;ezs];tizt;)/nlliiz;mtemartsz Qwen2.5-7B and Qwen2.5-
and 128K). This suggests that OCR capability remains a bottleneck '

for current LCVLMs when handling long-context inputs. Future work could explore combining both pipelines to further
enhance performance. Meanwhile, when using OCR-extracted text, replacing LCVLMs with the corresponding LLMs,
Qwen2.5-7B and Qwen2.5-32B (¢ w/ LLM), yields better results in text-pure cases of DocVQA.

We also examine the sources of errors in the VRAG category in Figure 10. Since ViIQuAE is built on TriviaQA (Joshi et al.,
2017), we replace all images in VIQuAE questions with their corresponding entity names and feed those text-only questions
into LCVLMs. All models show varying degrees of improvement, with Gemma3-27B achieving the largest gain of 26.4
points (at 128K), suggesting that a bottleneck of LCVLMs lies in cross-modality information retrieval. Besides, providing
entity names as input to corresponding LLMs improves model performance. These results illustrate a common trade-off
between multimodal and text-only long-context abilities during the training of LCVLMs.
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Figure 11. The performance of selected models on VH-Single and VH-Multi. The accuracy of a random guess is 50%. We find that these
two tasks are very challenging.

E.5. The Difficulty of Visual Haystack

We discussed the difficulty of Visual Haystack in Appendix E.2. As shown in Figure 5, current LCVLMs achieve the
performance only slightly higher than random guessing on VH-Multi. Here, in Figure 11, we present the performance of the
selected models on both VH-Single and VH-Multi, providing a complete view. We find that models also perform poorly on
VH-Single.

Task Correctness. We manually checked a number of examples from the Visual Haystack dataset and didn’t find any
errors in the task labels. As shown in Figure 11, Gemini-2.5-Pro achieves an accuracy of 85.4 on VH-Single, and GPT-40
achieves an accuracy of 70.3 on VH-Multi. These results are higher than a random guess (50%), which demonstrates the
correctness of the dataset labels and our implementation.

E.6. Correlation between NIAH and Various Downstream Tasks

We discussed the correlation between NIAH tasks and various downstream applications in Appendix E.2. Here, we provide
a detailed version of the task correlation in Figure 12. For the three tasks in MM-NIAH, we also report the correlations
on the subsets containing only text-needle or only image-needle examples. We can find that subsets of image-needle
examples correlate less with various downstream tasks compared to text-needle examples, especially MM-NIAH-Count (I)
and MM-NIAH-Reason (I)

We further show the performance of the selected models on the text-needle and image-needle subsets in Figure 13. From it,
we observe that models exhibit weak performance on MM-NIAH-Count (I) and MM-NIAH-Reason (I). This challenging
nature leads to a low degree of separability between different models.

E.7. Correlation between Datasets

We plot the correlation between all MMLONGBENCH datasets and category averages in Figure 14. Generally, the datasets
in each category strongly correlate with each other. The VH-Single and VH-Multi are exceptions, due to their high difficulty.
Also, MM-NIAH-Count exhibits relatively weak correlations with MM-NIAH-Ret and MM-NIAH-Reason, suggesting that
counting is a different skill from retrieving needles (key information) and subsequently reasoning over them.

E.8. Performance of Claude

At the time of our evaluation, the Claude 3 family of models can take up to 100 images’ in a single request. However, a
few datasets, such as Food101, VH-Single, or SlildeVQA, contain hundreds of images at input lengths of 64K and 128K
tokens. As a result, it is impossible to process all images in a single pass through the model. For each input length, if one or
more datasets within a category contain samples with more than 100 images, we exclude that category from evaluation at
that input length. We provide the statistics about the average image number per example in each dataset at all five input

Shttps://docs.anthropic.com/en/docs/build-with-claude/visionfbasics-and-1limits
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Figure 12. Spearman’s correlation at 128K input length, calculated across 46 LCVLMs, between all NIAH and other downstream tasks.
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Figure 13. Results of selected models on the subsets of MM-NIAH containing only text-needle or image-needle examples. (T) and (I)
represent text-needle and image-needle examples, respectively.

lengths in Table 3 and Appendix B.6. When testing Claude-3.7-Sonnet, we mark those untestable cases as “N/A” in
our results to distinguish them from genuine model failures (which receive a score of 0).
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Figure 14. Spearman’s correlation at 128K input length, calculated across 46 LCVLMs, between all MMLONGBENCH datasets and
category averages.

E.9. Positional Embedding Extrapolation Experiments

In this section, we evaluate two positional embedding extrapolation methods, namely YaRN (Peng et al.) and V2PE (Ge
et al., 2024). Experimental results indicate that the current positional extrapolation methods still pose significant challenges
for effectively extending the context window of LCVLMs.

Adding YaRN to Qwen2.5-VL. According to its technical reports (Bai et al., 2025), Qwen2.5-VL models are pre-trained
with a context length of 32K tokens during the “Long-Context Pre-Training” stage. Meanwhile, its HuggingFace model card

32



MMLONGBENCH: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly

VRAG NIAH ICL
Qwen2.5-VL-3B/ 439 386 358 327 98 450 387 21.6 195 75 9.0
ow/Yarn: 437 393 335 346 30.0 S 503 483 397 12.2
Qwen2.5-VL-7B | Slil Gl 432 368 316 33.2
o w/ Yarn 38.9 325 44.6
Qwen2.5-VL-32B 41.6

o w/ Yarn
Qwen2.5-VL-72B
o w/Yarn

8k 16k 32k 64k 128k 16k 32k 64k
Summ DocVQA

Qwen2.5-VL-3B- 18.8 232 249 271 [302  [555 520 517 450 356
ow/Yarn- 185 21.4 245 28.6 ] 48.3 - 452 445
Qwen2.5-VL-7B- 23.5 (20.1 30.8 50.7 40.2
o w/Yarn- 21.5 26.7 27.8
Qwen2.5-VL-32B- 22.8 26.3 25.8 23.0 25.2
ow/Yarn- 21.3 23.4 244 235 235
Qwen2.5-VL-72B- 20.5 26.9 28.5
ow/Yarn- 20.1 24.1 239 265 25.6

8k 16k 32k 64k 128k 8k 16k 32k 64k 128k

8k 16k 32k 64k 128k

Figure 15. Results of applying YaRN (Peng et al.) to Qwen2.5-VL models. We find that YaRN only improves the performance of
Qwen2.5-VL-3B substantially. However, the SoTA performance from larger models (i.e., 32B and 72B) only fluctuates slightly.

VRAG NIAH ICL

InternVL2-2B IEEBIEEER N 44 1340 306 26.4 289 27.6 30 22 10 12
V2PE (16) -10.3 53 0.1 - 345 329 328 280 207

1.8 0.0 0.0 0.0

V2PE (64)| o0 144 49 51 02 - 341 345 317 285 207 22 00 00 0.0
V2PE (256) IR RN - 6.2 712 725 70.9 67.1 [QEIRY 108 88 45 15
8k 16k 32k 64k 128k 8k 16k 32k 64k 128k 8k 16k 32k 64k 128k
Summ DocVQA Avg.

InternVLZ-ZB 21.7 - 141 5.1 17.9 16.4 117
v2PE(16)- 85 1.0 03 0.2 - 91 90 33 11 07 1186 134 95 7.0 43
V2PE (64)- 102 94 27 06 03 - 55 89 48 1.7 09 - 179 139 88 72 4.4
v2pe (256) SECRRYERRECERCENECEY
8k 16k 32k 64k 128k 8k 16k 32k 64k 128k 8k 16k 32k 64k 128k

Figure 16. Results of applying V2PE (Ge et al., 2024) to InternVL2-2B. We find V2PE is very sensitive to the visual increment ¢ and
overfitted to NIAH tasks. Note that we use ROUGE-L for summarization here, since it is already sufficient to distinguish between models.
Thus, there is no need to use the costly GPT-40 evaluation. The numbers in parentheses (i.e., 16, 64, and 256) correspond to the visual
increment § € {%, 6%1, ﬁ}, respectively.

shows that we can use YaRN (Peng et al.), with a scaling factor of 4, to extend its context length to 128K tokens®. Note
that YaRN is evaluated in a zero-shot manner, as there is no continual training for YaRN on Qwen2.5-VL. In Figure 15,
we test the performance of using YaRN. We have two observations: (1) Using YaRN may hurt the performance on shorter
input lengths. For example, at 8K tokens, the DocVQA score of Qwen2.5-VL-32B decreases from 67.8% to 63.4%; (2) On
average across the entirce MMLONGBENCH, YaRN only substantially improves the performance of Qwen2.5-VL-3B (from
21.2 to 30.2 at 128K). However, the SoTA performance from large models (i.e., 32B and 72B) only fluctuates slightly.

To ensure a fair comparison, we do not apply YaRN to Qwen2.5-VL in our main evaluations. Since YaRN is used in a
zero-shot way here, applying it would lead to an unfair comparison over other models.

Adding V2PE to InternVL2. Ge et al. (2024) proposed a positional embedding extrapolation method called V2PE, where
it assigns smaller positional increments to visual tokens than textual tokens. They further applied V2PE to InternVL?2
and trained the model to enhance its performance on MM-NIAH-Ret (I). In this experiment, we evaluate the V2PE-256K

6https ://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct#processing-long-texts
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checkpoints’ with the visual increments § € {1—16, 6%1, ﬁ} As shown in Figure 16, we find that (1) V2PE is very sensitive
to different visual increments. For example, when we use % and 6%1, the performance is even worse than InternVL2-2B,
which leads to extra hyperparameter tuning; (2) The V2PE (256) shows extremely high performance on NIAH tasks, which
can be attributed to the fact that it was trained on MM-NIAH. The sharp performance difference on NIAH tasks versus other

categories suggests that V2PE is strongly overfitted to the MM-NIAH dataset.

E.10. Lost in the Middle

Existing works found that text-pure LLMs often struggle to recall needles in the middle of the input sequence, named lost
in the middle (Liu et al., 2024a). On our benchmark, we extend the previous analysis to long-context vision-language
tasks with input length up to 128K tokens. We place the needle at six different evenly spaced depths in the context (i.e.,
[0,0.2,0.4,0.6,0.8,1.0]) and evaluate the LCVLMs’ ability to retrieve it. In our study, the needle may be a gold passage,
an image, or a key sentence. We show the results in Figure 17 for ViQuAE, Figure 18 for VH-Single, Figure 19 for
MM-NIAH-Ret (T), Figure 20 for MM-NIAH-Ret (I), Figure 21 for MM-NIAH-Reason (I).

We observe a similar phenomenon in many LCVLMs on long-context vision-language tasks. For example, the InternVL3-
14B in Figure 19 and Ovis2-34B in Figure 20 both exhibit much better performance when the needle is at depths 0 and
1.0. Furthermore, as we extend the context to longer lengths (e.g., 128K tokens), we observe cases where the model tends
to favor either the very beginning or the very end of the context, but not both simultaneously. For example, as shown in
Figure 17, InternVL3-8B prefers the very beginning of the context (depth 0) at 128K tokens, whereas Qwen2.5-VL-72B
favors the very end (depth 1.0).

E.11. Error Analaysis Details

We conducted two error analyses in Appendix E.4. We provide more details of those two analyses in this section. First,
for MMLongBench-Doc, we used PyMuPDF 8 to extract the plain text from PDF-formatted documents. For ViQuAE, the
entity names are already provided in the dataset, since it is constructed based on TriviaQA. The text-pure LLMs we used,
corresponding to Qwen2.5-VL models, are Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct, which are instruction-tuned
versions.

E.12. Full Model Evaluation Results

In Figure 22, we provide the results of all 46 models. We also plot the performance of all 46 models on each dataset in
Figures 23 to 26.

E.13. Idefics2 Performance

The Idefics2-8B and Idefics-8B-C only have a training context window of 2K tokens (Laurencon et al., 2024b). We find this
leads to very poor long-context generalization. Also, the LLM used in Idefics2 is Mistral-7B-v0.1 (Jiang et al., 2023), whose
training length is only 8K tokens. From Figure 19, we observe that Idefics2 models perform well only when the needle
depth is 1.0 and the context is short (8K or 16K tokens). Additionally, we conduct a sanity check by removing all negative
images and retaining only the needle images in Visual Haystack (i.e., one image for single-needle examples and two or three
images for multi-needle examples). As shown in Table 12, we observe that both models achieve performance much higher
than a random guess (50%), indicating the correctness of the implementation.

Table 12. Sanity check of Idefics2-8B and Idefics2-8B-C. Here we use the Visual Haystack dataset. We remove all negative images and
only retain needle images (i.e., one image for single-needle examples and two or three images for multi-needle examples).

Model VH-Single VH-Multi
Idefics2-8B 79.33 67.67
Idefics2-8B-C 69.00 58.67

"https://huggingface.co/OpenGVLab/V2PE/tree/main/V2PE-256K
8https ://pymupdf.readthedocs.io
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F. Prompts and Data Examples

We list a few data examples with prompts in Figures 27 to 32. For NIAH tasks, we provide examples of both VH and
MM-NIAH, as their input formats are very different.

G. Limitation

For limitation of evaluated models, while we already provide an extensive coverage of 46 frontier LCVLMs, there are
still some models that we cannot cover due to token efficiency or integration challenges of codebases, as we discussed in
Appendix C.1. We leave those works for future study. Meanwhile, the largest open-source models we evaluated are up to
72B in size (Qwen2-VL-72B and Qwen2.5-VL-72B). As we discussed in Appendix D, our computational resources are
limited to 8 x A100 (80G) GPUs; thereby it is hard to deploy and evaluate larger models with over 100B parameters at the
input length of 128K tokens, such as Llama4 (Meta, 2025).

For evaluating summarization, we use a model-based metric (See Appendix B.4) that can provide much better alignment
with human judgment than N-gram overlap metrics, such as ROUGE-L. However, we find using GPT-40 to provide the
evaluation is expensive, which prevents the long-context community from conducting evaluations with hundreds or even
thousands of models. Therefore, it is necessary to find an alternative evaluation method with a lower cost.
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Figure 18. Performance of models on VH-Single at different depths. Depth is the position of the image containing the target object,
and its values are [0.0, 0.2, 0.4, 0.6, 0.8, 1.0], where 0.0 is the beginning of the context (the top of each heatmap) and 1.0 is the end (the
bottom of each heatmap).
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Figure 19. Performance of models on MM-NIAH-Ret (T) at different depths. Depth is the position of the text needle, and its values are
[0.0,0.2,0.4,0.6,0.8,1.0], where 0.0 is the beginning of the context (the top of each heatmap) and 1.0 is the end (the bottom of each
heatmap).
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Figure 20. Performance of models on MM-NIAH-Ret (I) at different depths. Depth is the position of the image needle, and its values are
[0.0,0.2,0.4,0.6,0.8,1.0], where 0.0 is the beginning of the context (the top of each heatmap) and 1.0 is the end (the bottom of each
heatmap).
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Figure 21. Performance of models on MM-NIAH-Reason (I) at different depths. Depth is the position of the needle image used for
reasoning, and its values are [0.0,0.2,0.4, 0.6, 0.8, 1.0], where 0.0 is the beginning of the context (the top of each heatmap) and 1.0 is
the end (the bottom of each heatmap).
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Figure 22. Results of all 46 models on MMLONGBENCH at various lengths.
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Figure 23. Results of 46 models on categories VRAG and Summ at various lengths.
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Figure 24. Results of 46 name on the category NIAH at various lengths.
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Figure 25. Results of 46 models on the category ICL at various lengths.
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Figure 26. Results of 46 models on the category DocVQA at various lengths.
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Use the given documents to write a concise and short answer to the question about the entity shown in the image. Write your answer in the\
following format:
Answer: [answer]

Document (Title: Tropidacris collaris): Tropidacris collaris is a species of grasshopper in the family Romaleidae. A large South American
grasshopper, it is also known as the blue-winged grasshopper although they vary greatly in coloration. It is common in both forests and dry
areas of South America from Colombia to Argentina. In parts of northern Argentina, they are considered a pest. They are also popular
among insect and terrarium enthusiasts.

Document (Title: Anarta myrtilli): [Warren] from Sintra, Portugal, the whole forewing is suffused with blackish, leaving only the white
blotch on vein 2 conspicuous, and the orange of the hindwing, both above and below, is pale lemon yellow; as the insect is decidedly
larger than average typical "myrtilli", it may prove a distinct species; at present I have seen only one - taken in the spring of 1909 by Mr N.
C. Rothschild, and now in the Tring Museum.

Document (Title: Nipponaclerda biwakoensis): This species has become established (as 0f2017) in the United States in the state of
Louisiana, where it has rapidly become a serious pest of roseau cane, damaging over 80% of the reeds in some areas such as the Pass a
Loutre Wildlife Management Area, where it is referred to by the older common name Phragmites scale insect or the more recently-coined
name, roseau cane mealybug.

Document (Title: Dioctria atricapilla): The violet black-legged robber fly, Dioctria atricapilla, is a species of robber fly in the subfamily
Dasypogoninae. This 9- to 12-millimeter long insect has a wingspan of roughly 7 to 9 mm and short, three-segmented antennae. It's a
predatory insect, feeding mainly on smaller flies and predatory hymenopterans. It primarily thrives in grassland, and is seen from May to
July.

Document (Title: Fauna of New Guinea): Notable endemic insect species include "Ornithoptera paradisea", "Ornithoptera chimaera",
"Papilio weymeri", "Graphium weiskei", "Ideopsis hewitsonii", "Taenaris catops", "Parantica rotundata", "Parantica clinias", "Rosenbergia
rufolineata", "Mecopus doryphorus", "Mecopus serrirostris", "Sphingnotus mirabilis", "Sphingnotus insignis", "Belionota aenea",
"Poropterus solidus", "Poropterus gemmifer", "Aesernia splendens”, "Aporhina bispinosa", "Eupholus petitii", "Eupholus bennetti",
"Schizoeupsalis promissa", "Barystethus tropicus", "Eupholus geoffroyi", "Rhinoscapha loriai", "Rhinoscapha funebris", "Rhinoscapha
insignis" "Alcides exornatus", "Alcides elegans", "Xenocerus lacrymans", "Arachnobas sectator", "Arrhenodes digramma", "Eupholus
magnificus", "Mecopus bispinosus", "Callictita" spp.. Also known from New Guinea are "Batocera wallacei", "Ithystenus curvidens",

"non

"Meganthribus pupa", "Sipalinus gigas", "Pelargoderus rubropunctatus", "Rhynchophorus bilineatus", "Gasterocercus anatinus",

"non "non

"Acalolepta australis", "Actinus imperialis", "Megacrania batesii".

Document (Title: Melanopsis brevicula): Melanopsis brevicula is a small species of gastropod endemic to small streams near Agourai,
Morocco. It is distinctive due to its minute size, flattened sculpture, low spire, and small aperture. It is known from a single location 10 km
in area(Oued Ain Maarouf) which has been well surveyed, and found to be threatened by increasing human population, droughts of
increasing extremity, water diversion, and pastoralization. Shell collecting presents a minor threat to populations. The species has been
classified as Critically endangered by the IUCN.

Question: Which place is this insect endemic to?

Figure 27. Example of InfoSeek dataset in the VRAG category.
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f You are given a set of images. Please answer the question in Yes or No \
based on the given images. Write your answer in the following format:
Answer: [answer]

K Question: For the image with an elephant, is there a dog? j

Figure 28. Example of Visual Haystak-Single dataset in NIAH category. Note: The input image list is shown in two columns for display
clarity; in the actual input, the images are arranged in a single sequence.
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You are given interleaved text and images. Please answer the question with the option's letter (A, B, etc.) based on the giveh
text and images. Write your answer in the following format:
Answer: [answer]

He also featured as Cooper in the worldwide tv show Game of Thrones in the episode “The Watchers on the Wall.”He is the
first son of the union between Tim Roth and Nikki Butler. He was named Timothy Hunter Roth; Timothy after his father and
the Hunter after the popular journalist Hunter S.

I like my scones seasoned. Whether it's sweet or savoury, always add some salt to it. In terms of cooking, when you make your
dough don't play with it. Just fold all the crumbs together, and it doesn't matter if it's bubbly. A lot of people play with the
dough because they think it makes it smoother, but when a scone falls to pieces, it's because you've played with the dough too
much."

He was a musician with original compositions, skilled at playing the guitar. In November, 2021 Cormac was diagnosed with 3
germ cell cancer. George of the Jungle Star Brendan Fraser and his family story
Pamela Adlon: The Stardom FamilySmart Watches — Honest review based on my experience

Caretaker Sporting boss Tiago Fernandes said: ‘The players did exactly what I asked them to do. In our game plan we know
we had to be rigorous and they were almost perfect on that. ‘We were aware of the opponent’s quality but we, knowing our
capacity and being creative and aggressive with and without ball, could try to surprise here.’Bruce Willis has reprised his
iconic role as John McClane for a new Die Hard video.

3

Figure 29. Example of MM-NIAH-Ret dataset in NIAH category.
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mou need to recognize entities in images. Use the provided mappir@
from the image to label to assign a label to the testimage. Only
output "label: {label}" and nothing else.

Training examples:

label: 4

N J

Figure 30. Example of the Stanford Cars dataset in the ICL category. Note: The input image list is shown in three columns for display
clarity; in the actual input, the images are arranged in a single sequence.
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fYou are given a government report from U.S. Government Accountability \
Office (GAO), and you are tasked to summarize the report. Write a concise
summary (around 550 words) organized in multiple paragraphs. Where
applicable, the summary should contain a short description of why GAO did
this study, what GAO found, and what GAO recommends.

Government Report:
Document gao-12-156 (page 0):  coews

Document gao-12-156 (page 1):

Now please summarize the report.

Figure 31. Example of GovReport in the summarization category. We only show two pages due to limited space.
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You are given a document with text and images, and a question. Answer the question as \
concisely as you can, using a single phrase or sentence if possible. If the question cannot be

answered based on the information in the article, write '"Not answerable.' Write your answer in
the following format:

Answer: [answer]

Document 4057524 (page 113):

BUILD

Document 4057524 (page 114):

Document 4057524 (page 115):

CCOORDINATE SIT-TO-STAND

U

S
—N;

Question: Based on Document 4057524, answer the following question. Enumerate the
available height-adjustable base options listed under "Coordinate" section. /

Figure 32. Example of LongDocURL dataset in the DocVQA category. We only show three pages due to limited space.
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