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ABSTRACT
Conversational search is a crucial and promising branch in infor-

mation retrieval. In this paper, we reveal that not all historical

conversational turns are necessary for understanding the intent

of the current query. The redundant noisy turns in the context

largely hinder the improvement of search performance. However,

enhancing the context denoising ability for conversational search

is quite challenging due to data scarcity and the steep difficulty

for simultaneously learning conversational query encoding and

context denoising. To address these issues, in this paper, we present

a novel Curriculum cOntrastive conTExt Denoising framework,

COTED, towards few-shot conversational dense retrieval. Under a

curriculum training order, we progressively endow the model with

the capability of context denoising via contrastive learning between

noised samples and denoised samples generated by a new conver-

sation data augmentation strategy. Three curriculums tailored to

conversational search are exploited in our framework. Extensive

experiments on two few-shot conversational search datasets, i.e.,

CAsT-19 and CAsT-20, validate the effectiveness and superiority of

our method compared with the state-of-the-art baselines.
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1 INTRODUCTION
With the rapid development of conversational AI, a new research

direction, Conversational Search (CS), has raised more and more

attention in the field of information retrieval (IR) in recent years.

A conversational search system can interact with users through

multiple rounds of dialogues, as shown in Figure 1, to help satisfy

users’ more complex information-seeking needs [9]. It has been

deemed as the next-generation search paradigm [3], especially

for facilitating search in more resource-constrained scenarios and

promoting social care for people with visual disabilities.

q1: What is the climate like in Utah?
MR: What is the climate like in Utah?

q2: How does Salt Lake City differ?

q3: What is its main economic activity?
MR: What is the main economic activity 

of Salt Lake City?

q4: What was the impact of the 2002 games?
MR: What was the impact of the 2002 Olympic 
winter games on the economy of Salt Lake City?

NT:
q2, q3

NT:
q2

NT:
q1

NT:
-

The climate of Utah is…

…Salt Lake City by 
extensive …

The economy of Salt …
service-oriented…

…… ……

MR: How does the climate of Salt Lake 
City differ from Utah overall?

Figure 1: A case of conversational search. MR and NT mean
“manual rewrite” and “necessary turns”, respectively. The red
words should be recovered from the conversation context for
accurate conversational search.

Different from ad-hoc search, users will use multi-round natural

language-based queries instead of the traditional keyword-based

ones to express their complex information needs in conversational

search. Such changes in the search form yield big challenges for

query understanding since human conversations usually contain

more linguistic problems, such as omissions, references, and am-

biguities [33]. Thus, recovering the underlying information needs

from the conversation context is crucial. To solve this problem,

a series of query reformulation based methods [21, 36, 39, 43] are
first proposed. These methods first train a query rewriting model

to create an explicit de-contextualized query and then use this re-

formulated query to perform standard ad-hoc search. Although

such a two-stage way is straightforward and appealing, its draw-

backs are also apparent: the query rewriting model is hard to be

optimized directly towards retrieval performance and the separate
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query reformulation phase further increases search latency [10, 20],

resulting in unsatisfactory effectiveness and efficiency.

Recently, Conversational Dense Retrieval is proposed to over-

come the above limitations. Without the generation of an explicit

reformulated query, this integrated approach implicitly represents

the conversational query together with its dialog context in a con-

textualized vector via a conversational query encoder. Different

from the previous two-stage approaches, this is an end-to-end so-

lution for conversational search: the learned query vector can be

directly optimized for the downstream retrieval. However, it is

well-known that dense retrieval needs a large number of labeled

query-document pairs for training [? ], which is contradictory to the
reality of conversational search. Unlike the case of ad-hoc search

where a large quantity of pseudo query-document relevance signals

can be extracted from search click logs, in practice, we cannot get

such large-scale search logs for conversational search since nature

language based conversational search engines have not been widely

deployed [10]. Therefore, the research of conversational search in-

evitably faces the intractable few-shot learning problem. To the

best of our knowledge, there are only a few works [20, 44] focusing

on training an effective conversational query encoder under the

few-shot scenario. Specifically, Yu et al. [44] developed a few-shot

learning framework based on knowledge distillation, where the

conversational query encoder learns to mimic the output of a well-

trained ad-hoc dense retrieval query encoder [41]. From another

perspective, Lin et al. [20] proposed to leverage external datasets

to produce more pseudo relevance signals to satisfy the common

training requirement of dense retrieval.

The above two pioneering works lay a solid foundation for the

research of few-shot conversational dense retrieval. However, their

considerations for conversational query encoding are far from op-

timal. In particular, they simply leverage all historical queries to

learn the contextualized representation of the current query turn,

but in fact, not all historical conversational turns are necessary for

understanding the current turn. In Figure 1, we show necessary

turns of each query. For example, for understanding 𝑞4, turns 𝑞2
and 𝑞3 are necessary, while 𝑞1 is not, which is considered as a noisy

turn. We argue that including noisy turns will affect the search

performance, since they will probably degrade the quality of the

representation. For example, they may cause the contextualized

query representation to mistakenly include undesirable semantics

(e.g., “climate” (in 𝑞1) for 𝑞4), leading to retrieval of wrong docu-

ments. Our preliminary studies in Section 3 will show that if we

remove noisy turns from the input of the conversational query

encoder for each query, we can get better search effectiveness.

Denoising noisy turns is non-trivial for few-shot conversational

dense retrieval. First, limited by the amount of training data, we

cannot design a new conversational query encoder architecture and

train it from scratch to enable context denoising as it is hard to be

fully trained to take effect with very little training data. Currently,

a common practice is to employ a pre-trained dense retrieval query

encoder as a start point and fine-tune it to get the ability of handling

conversation context [20, 44]. Second, the multi-task learning of

conversational query encoding and context denoising from zero

further aggravates learning difficulty for the conversational query

encoder, especially under such a few-shot scenario.

To overcome the aforementioned challenges, in this paper, we

propose a novel Curriculum cOntrastive conTExt Denoising frame-

work (COTED), towards few-shot conversational dense retrieval.
On the whole, we progressively endow the conversational query

encoder with the capability of context denoising via a contrastive

learning between noised conversational samples and denoised con-

versational samples, under a tailored curriculum training order.

Concretely, for each conversational turn, we assemble its query, its

corresponding manual oracle query, its all previous turns, and its

necessary turns to be a conversational sample. A conversational

sample which does not have noisy turns in its context is a denoised
sample, otherwise, it is a noised sample. In our framework, we first

generate much more noised samples from the original training data

via a new conversation data augmentation strategy. Then, we de-

velop a contrastive denoising loss by aligning the representations

of the same turns in the noised sample to those in its corresponding

denoised sample. This denoising loss is optimized together with a

knowledge distillation loss through a two-step multi-task learning

approach to simultaneously enhance the context denoising and

conversational query encoding abilities of the conversational query

encoder. To alleviate the difficulty of multi-task learning, we exploit

three curriculums tailored to conversational search and form an

easy-to-hard training order to further improve the learning process.

We conduct extensive experiments on two widely used few-shot

conversational search datasets CAsT-19 [5] and CAsT-20 [4]. Exper-

imental results show our proposed method significantly improves

search effectiveness over existing state-of-the-art baselines.

In summary, the main contributions of this work are:

(1) We empirically demonstrate that the noisy turns in the con-

versational context are a critical bottleneck for the improvements

of model performance in conversational dense retrieval.

(2) We propose to use contrastive learning to train the conver-

sational query encoder for context denoising, and design a data

augmentation strategy to enhance the model learning via generat-

ing more noised conversational samples.

(3)We exploit three curriculums tailored to conversational search

to further improve the multi-task learning process of conversational

query encoding and context denoising.

2 RELATEDWORK
To promote the research of conversational search, the TREC Con-

versational Assistant Track (CAsT) holds an evaluation bench-

mark [4, 5]. They annually design dozens of artificial conversations

to simulate the conversational search process based on the rich

voice search experience in Bing. Users express their information

needs through multiple turns of dialogue queries, and the task is

to retrieve the desired passages for each conversational turn. Qu

et al. [30] design an open-domain conversational question answer-

ing (QA) task named OR-QuAC, which uses the crowed sourced

questions as the query and the target is to retrieve the evidence

passages. While the open-domain conversational QA task is very

similar to conversational search and can be seen as a sub-domain of

conversational search to some extent, some important limitations

of OR-QuAC hinder it to be an ideal evaluation benchmark. First, al-

though OR-QuAC provides much more synthetic labels than CAsT

datasets, it is originally designed for QA but not for search. The



questions in OR-QuAC aremainly factoid questions while queries in

conversational search are much more diverse. Second, in OR-QuAC,

there is usually one passage containing evidence for the system

to extract the answer, while multiple passages can be regarded

as positive to a query in conversational search [17, 30]. Further-

more, all the relevant passages of a dialogue in OR-QuAC reside

in the same section of a Wikipedia document due to its synthetic

nature [30], which is not the real case of conversational search

in practice. Hence, in this work, we focus on more realistic con-

versational search using two CAsT datasets, facing the intractable

few-shot learning problems.

Many studies use query reformulation based methods to build an

explicit rewritten query to perform conversational search. Specifi-

cally, a few researches study how to select important terms from the

previous context turns to expand the current query turn, such as de-

signing rules [21] or training a binary term classifier [39]. Another

group of work [23, 32, 36, 37, 43] leverages the powerful pre-trained

generative language model to directly generate the reformulated

queries. There are also some studies [14, 22] that combine the term

selection and query generation methods.

In addition to the query reformulation, some researchers try

to boost the retrieval performance by introducing dense retrieval

into conversational search or conversational QA. The core of con-

versational dense retrieval is to train an effective conversational

query encoder, which can encode the current query turn and its

dialogue history. Qu et al. [30] propose a common conversational

query encoding paradigm by extending the pre-trained language

model (e.g., BERT) to encode the concatenation of all conversational

queries in the context. The architecture of the conversational query

encoder is inherited from the pre-trained language model without

modification. They show that the conversational query encoder

can achieve good performance on the open-retrieval conversational

QA task if trained with sufficient query-document relevance labels

using a widely used ranking loss [13, 30]. Some other works [16, 17]

also demonstrate the effectiveness of conversational dense retrieval

for conversational QA if trained with sufficient data.

However, as aforementioned, conversational search currently

faces a serious data scarcity problem. To the best of our knowl-

edge, there are only a few works [20, 44] study how to train the

conversational query encoder under the few-shot case, towards con-

versational search. Specifically, Yu et al. [44] propose a knowledge

distillation loss with limited data, which forces the conversational

query encoder to mimic the output of a well-trained dense retrieval

query encoder. From a different perspective, Lin et al. [20] propose

to create a large number of pseudo query-document relevance la-

bels using other related datasets and train with the normal ranking

loss. Based on these great works, we study how to enhance the

context denoising ability of the conversational query encoder with

limited available data for conversational search, which is a crucial

problem but is neglected by existing studies.

Besides, it is worth emphasizing that the architecture of the

conversational query encoder is usually based on a well-trained

ad-hoc dense retrieval query encoder without modification [20, 44],

because we do not have large-scale high-quality data to train a new

sophisticated architecture to take effect. This is also one of the main

challenges for our work as we cannot enable context denoising by

modifying the model architecture. Therefore, although there exist

some complex architectures for context modeling in the related

tasks of conversational search, such as HAM [31] for conversational

QA and HBA-Transformers [29] for session search, they are not

applicable to our work.

3 STUDY OF CONVERSATIONAL TURNS
Before diving into our proposed method, we first conduct prelimi-

nary experiments to empirically justify our motivation, i.e., noisy

conversational turns will impair the model performance for conver-

sational dense retrieval.Wewill first introduce the general paradigm

of conversational dense retrieval and our experimental model, then

elaborate our experimental settings, results, and findings.

3.1 Conversational Dense Retrieval
Conversational dense retrieval is an important research branch of

conversational search. Formally, the target of conversational search

is to find the relevant document 𝑑 from a collection of 𝐷 for each

query turn in a multi-round conversation 𝑄 = {𝑞𝑘 }𝑛𝑘=1, where 𝑛
is the number of turns of the conversation. Different from tradi-

tional ad-hoc search, the conversational query 𝑞𝑘 itself is usually

ambiguous, context-dependent, and requires more sophisticated

query understanding approaches to recover its real search intents

from the conversation context 𝑄
1:𝑘−1 [5, 44].

To achieve this goal, the idea of conversational dense retrieval is

to directly maps the current query turn together with its context

and documents into a unified embedding space to perform dense

retrieval, without generation of a new explicit query:

q′k = CQE(𝑞𝑘 , 𝑄1:𝑘−1), (1)

d = DE(𝑑), (2)

where CQE and DE denote the conversational query encoder and

the document encoder, respectively. The retrieval score is computed

as the dot product between the contextualized query representation

q′k and the document representation d, which can be efficiently done

with many libraries (e.g., Faiss [12]). As the meaningful information

in a document probably has no difference when serving ad-hoc

search and conversational search, the document encoder is usually

set to the same as in ad-hoc dense retrieval [25, 44] and frozen.

Therefore, the core of research in conversational dense retrieval is

to study how to get a better conversational query encoder (CQE).

However, a unique challenge in this area is that we can hardly

design a new CQE architecture and train it from scratch, due to the

limited amount of training data. Hence, a common practice is to

employ a pre-trained dense retrieval query encoder as a start point

and fine-tune it to be an effective CQE [20, 44].

In this section, we choose ConvDR [44] as the experimental

model to validate our motivation, because it is the state-of-the-art

and the most representative model for few-shot conversational

dense retrieval. Specifically, ConvDR adopts a state-of-the-art ad-

hoc dense retriever ANCE [41], which is a BERT-Siamesemodel [15],

as its architecture:

q′k = BERT([CLS] ◦ 𝑞1 ◦ [SEP] ◦ ... ◦ [CLS] ◦ 𝑞𝑘 ◦ [SEP]),(3)
d = BERT([CLS] ◦ 𝑑 ◦ [SEP]) . (4)

The input of CQE is the concatenation of all tokens in the conversa-

tional queries 𝑄
1:𝑘 , and it uses the BERT first [CLS] embeddings as



the representations of the query turn and the document. Under the

few-shot scenario, ConvDR is trained with the knowledge distilla-

tion technique. It first uses the same well-trained ANCE [41] as the

teacher model to get the representation q∗
𝑘
of the corresponding

manual oracle query 𝑞∗
𝑘
. Then, it is trained with a MSE loss to make

the distance between the conversational query 𝑞𝑘 and its oracle

counterpart 𝑞∗
𝑘
closer in the embedding space:

q∗k = TM(𝑞∗
𝑘
), (5)

LKD = MSE(q′k, q
∗
k), (6)

where TM is the teacher model (i.e., ANCE). The intuition of using

knowledge distillation is that the underlying information needs in

the manual oracle 𝑞∗
𝑘
and the conversational query 𝑞𝑘 are the same

and thus their embeddings should be the same [44].

Note that CQE in ConvDR can also be trained with the ranking

loss which is widely used in dense retrieval [? ]. However, in [44], it

has been demonstrated that the ranking loss needs a large number

of query-document relevance signals to take effect, which is useless

for training ConvDR for few-shot conversational dense retrieval.

Therefore, we do not consider the ranking loss and only adopt the

KD training strategy for ConvDR in our experiments.

3.2 Necessary Turns Annotation
To validate our motivation, a straightforward method is to com-

pare the performances of ConvDR on queries with noisy turns and

without noisy turns. However, the existing conversational search

datasets (i.e., CAsT-19 [5] and CAsT-20 [4]) do not provide the ex-

plicit information of turn dependency that indicates which previous

turns are necessary for understanding the current turn
1
. There-

fore, to solve this obstacle, we manually annotated the necessary

turns on these two datasets. Specifically, for each conversational

turn 𝑞𝑘 , we manually select the necessary turns from its actual

context queries 𝑄
1:𝑘−1 by comparing them with the oracle query

𝑞∗
𝑘
. Necessary turns and noisy turns are defined as follows.

Definition 1. Necessary turns of a query 𝑞𝑘 are the smallest
sufficient subset of 𝑄

1:𝑘−1 which can provide enough information for
humans to complete the lost information of 𝑞𝑘 compared with 𝑞∗

𝑘
.

Definition 2. Noisy turns of a query 𝑞𝑘 refer to the remaining
turns of 𝑄

1:𝑘−1 except the necessary turns.

Every conversational turn is annotated by at least three infor-

mation retrieval researchers, and we resolve the inconsistent cases

of annotation through discussion and majority rule. The whole

process of annotation finally takes us around nine hours.

The statistics of manual annotation results are shown in Table 1.

As can be seen, from the human perspective, the average number

of necessary turns that a conversational turn depends on is just a

little more than 1. On average, necessary turns only make up less

than 40% of the actual context of a turn. Therefore, there indeed

exists lots of noise in the conversation context, especially for those

later conversational turns since they have more preceding queries.

We argue that the large proportion of noisy turns may affect the

training process and further hurt the model performance.

1
Although there are part of turn dependency annotations in CAsT 20, we find it is not

very accurate and sufficient

Table 1: Statistics of annotated necessary turns on two CAsT
datasets. Note that the first turn of each conversation is not
considered since it has no context.

Statistics CAsT-19 CAsT-20

# Conversations 50 25

# Turns (queries) 479 208

# Avg. Question Tokens 6.1 6.8

# Avg. Questions / Conversation 9.6 8.6

# Avg. Necessary Turns / Turn 1.02 1.25

# Avg. Necessary Turns Ratio / Turn 0.31 0.39

3.3 Denoising Control Experiments
Since we have got the annotation of necessary turns, then we con-

duct a series of control experiments to investigate the impact of

noisy turns on ConvDR. For a conversational turn 𝑞𝑘 , we denote its

actual context 𝑄
1:𝑘−1 as 𝐴𝐶𝑘 , its necessary context as 𝑁𝐶𝑘 . Thus

the noisy context is𝐴𝐶𝑘 \𝑁𝐶𝑘 . Specifically, we design the following
four comparative experiments for ConvDR:

• Training with the necessary context 𝑁𝐶 and test with 𝑁𝐶

(𝑁𝐶→𝑁𝐶): For each query turn, we use its necessary context

instead of its original actual context as the input of ConvDR

(i.e., changing q′k = CQE(𝑞𝑘 , 𝐴𝐶𝑘 ) into q′k = CQE(𝑞𝑘 , 𝑁𝐶𝑘 )),
in both training and testing.

• Training with 𝐴𝐶 and test with 𝑁𝐶 (𝐴𝐶→𝑁𝐶): For each

query turn, we only use its necessary context for testing but

still use its actual context for training.

• Training with 𝑁𝐶 and test with 𝐴𝐶 (𝑁𝐶→𝐴𝐶): For each

query turn, we only use its necessary context for training

but still use its actual context for testing.

• Training with 𝐴𝐶 and test with 𝐴𝐶 (𝐴𝐶→𝐴𝐶): For each

query turn, we use its actual context for both training and

testing, which is the same as the original ConvDR.

The settings and implementations follow the open-source code

of ConvDR
2
and the same five-fold cross-validation is used for fair

comparisons. Besides, in the original paper of ConvDR, they warm

up ConvDR on an external query rewrite dataset CANARD [7] be-

fore training on CAsT-20. Since our work targets complete few-shot

conversational dense retrieval (i.e., only limited data is available),

we remove this warm-up, but we will also show the results of Con-

vDR with warm-up for reference. Following ConvDR, we use MRR

and NDCG@3 as the evaluation metrics.

The comparison results are summarized in Table 2. By analyzing

this table, we gain the following observations:

(1) By comparing 𝑁𝐶→𝑁𝐶 and 𝐴𝐶→𝑁𝐶 to 𝐴𝐶→𝐴𝐶 , we can

find that filtering out noisy turns during both training and testing

or only during testing can significantly improve 12.2% and 4.7%

model performance w.r.t. NDCG@3 on CAsT-20, respectively.

(2) The improvement of removing noisy turns on CAsT-19 is

not as significant as that on CAsT-20. For example, compared with

𝐴𝐶→𝐴𝐶 , 𝑁𝐶→𝑁𝐶 just has 0.6% improvements w.r.t. NDCG@3

on CAsT-19. This is because CAsT-19 is an “easier” dataset com-

pared with CAsT-20. Through the comparison with “ANCE with

Oracle Query”, we can find that the original𝐴𝐶→𝐴𝐶 (i.e., ConvDR)

2
https://github.com/thunlp/ConvDR

https://github.com/thunlp/ConvDR


Table 2: Performance comparison between different ConvDR
variants on two few-shot CAsT datasets. 𝐴𝐶→𝐴𝐶 (warmed)
is ConvDR warmed up on CANARD. ‡ denotes significant
differences (𝑝 < 0.05) with respect to ConvDR (i.e., 𝐴𝐶→𝐴𝐶).

Method

CAsT-19 CAsT-20

MRR NDCG@3 MRR NDCG@3

𝐴𝐶→𝐴𝐶 0.740 0.466 0.476 0.319

𝐴𝐶→𝑁𝐶 0.740 0.467 0.484‡ 0.334‡

𝑁𝐶→𝐴𝐶 0.627 0.384 0.396 0.259

𝑁𝐶→𝑁𝐶 0.743‡ 0.469‡ 0.513‡ 0.358‡

𝐴𝐶→𝐴𝐶 (warmed) 0.746 0.463 0.510‡ 0.340‡

ANCE with Oracle Query 0.740 0.461 0.591 0.422

has already reached the performance of using oracle queries on

CAsT-19, but still has significant gaps on CAsT-20. In fact, the con-

versational search cases in CAsT-20 are more complex and realistic

than those of CAsT-19 (See Section 5.1 for details). In our anno-

tation process, we also find that it is much easier to recover the

conversational queries to the oracle query in CAsT-19 from human

views. Therefore, such improvements gaps on the two datasets are

reasonable.

(3) When we use the denoised context for training but use the

noisy actual context for testing (i.e., 𝑁𝐶→𝐴𝐶), the model perfor-

mance degrades significantly on both two datasets. This is probably

caused by the large difference between the distribution of test data

and training data, but it also indicates that the context denoising

ability of the current model is not strong.

In general, the overall results justify our claim that noisy turns

can hurt model performance for conversational dense retrieval.

4 OUR METHODOLOGY
Through the preliminary experiments in Section 3, we prove context

denoising is beneficial to few-shot conversational dense retrieval.

However, since we cannot leak the annotation information in the

test phase, how to help CQE learn to automatically denoise becomes

a key problem, which faces the following unique challenges:

(1) Although there are many existing studies [27, 45, 46] about

context denoising or sequence denoising in various research fields,

most of them usually resort to designing a specific trainable de-

noising module, such as attention mechanism [46]. However, as

shown in Table 1, the number of conversation data is extremely

small, which is insufficient to train any new parameterized denois-

ing module. Thus, we can only use the existing pre-trained ad-hoc

dense retrieval query encoder (e.g., ANCE) as the conversational

query encoder and can hardly modify its architecture (as afore-

mentioned in Section 2 and Section 3.1). How to perform context

denoising under such a data scarcity challenge has seldom been

explored by existing studies.

(2) Simultaneously teaching the ad-hoc dense retrieval query

encoder to effectively encode conversational queries (i.e., Conversa-
tional Adaption) and have the context denoising ability (i.e., Context
Denoising) further aggravates the learning difficulty, especially un-

der the few-shot learning scenario.

In this section, we elaborate our proposed curriculum contrastive

context denoising framework (COTED), which can effectively solve

the above challenges for few-shot conversational dense retrieval.

Figure 2 shows an overview of our proposed COTED framework.

Basically, it consists of three components, namely Conversation

Data Augmentation, Curriculum Sampling, and Two-step Multi-

task Learning. We will first describe the general training workflow

of our framework, and then introduce each component in detail.

4.1 Training Workflow
An illustration of the training workflow of COTED is shown at the

bottom of Figure 2. First, we perform a conversation data augmen-

tation on the original dataset to obtain a new augmented dataset

containing much more training samples. Then, we use a curriculum

sampling strategy to sample a batch of training samples from the

new augmented dataset, and finally adopt a two-step multi-task

learning method to optimize conversational query encoder for both

context denoising and conversational adaption with the samples.

The three important components, including conversation data aug-

mentation, curriculum sampling, and two-step multi-task learning,

are organically organized together to jointly help CQE achieve

better context denoising and generalization abilities.

4.2 Conversation Data Augmentation
Inspired by the idea of contrastive learning [24], we try to teach

CQE context denoising through the contrast between noised con-

versational samples and denoised conversational samples. Formally,

in our task, a conversational sample 𝑠 can be created from a conver-

sational turn and is defined as: 𝑠 = (𝑞, 𝑞∗, 𝑁𝐶,𝐴𝐶), where 𝑞, 𝑞∗, 𝑁𝐶 ,
and 𝐴𝐶 denote the query, the corresponding manual oracle query,

the necessary context, and the actual context of the conversational

turn, respectively. If 𝑁𝐶 = 𝐴𝐶 , we call 𝑠 a denoised sample, other-
wise, it is a noised sample. We can easily get the denoised version

of a noised sample by setting its 𝐴𝐶 to its 𝑁𝐶 .

For better learning, we develop a new conversation data aug-

mentation method to create more noised samples. Specifically, for a

sample 𝑠 , we first randomly select𝑚 turns from its noisy turns (i.e.,

𝐴𝐶 \ 𝑁𝐶), and then combine the selected turns with the necessary

turns to form a new noised actual context. Finally, we assemble this

new actual context with the query, the oracle query, and the neces-

sary context of the original sample 𝑠 to be a new noised sample. An

example of conversation data augmentation is shown in Figure 2.

For example, we can sample 𝑞1 and 𝑞3 (𝑚 = 2) from the noisy turns

(i.e., {𝑞1, 𝑞3, 𝑞4, 𝑞6}), and combine them with the necessary context

(i.e., {𝑞2, 𝑞5}) to be a new actual context {𝑞1, 𝑞2, 𝑞3, 𝑞5}.
Theoretically, for an original sample which has𝑀 noisy turns,

we can produce at most

∑𝑀−1
𝑚=1

(𝑀
𝑚

)
new samples based on it, which

is a considerable amount of data augmentation for our few-shot

learning task. In practice, to control the number of augmented

samples and balance the number of their noisy turns, we set a

sampling threshold 𝑝 . Then, we only perform at most 𝑝 times non-

repetitive sampling for each original sample with𝑚 sampling rate.

Our conversation data augmentation provides much more con-

trastive samples (i.e., noised samples vs. their denoised versions) to

facilitate the later learning to denoise for CQE. Besides, similar to

data augmentation in other fields [8, 34], it may also help to improve

the generalization ability of CQE for conversational search.
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Figure 2: Overview of our proposed COTED.

4.3 Curriculum Sampling
Considering the steep difficulty of simultaneously learning adap-

tion to conversational queries and context denoising for CQE, we

adopt an easy-to-hard training strategy inspired by curriculum

learning [2, 28, 40, 42] to facilitate the model training. Curricu-

lum learning is to train from easier data to harder data to improve

the learning, which mimics the human learning process. The core

of curriculum learning is to design an appropriate Difficulty Mea-
surer which evaluates the learning difficulty of each sample, and

a Training Scheduler which decides the sequence of data subsets

throughout the training process. Therefore, we elaborate our cur-

riculum sampling strategy from these two aspects.

4.3.1 Difficulty Measurer. A suitable difficulty measurer is very

important for curriculum learning to take effect. However, to the

best of our knowledge, it is still unknown what difficulty measurers

are effective for conversational search. In this work, we propose to

use Token Difference Length (TDL) to measure the difficulty of the

conversational sample. Specifically, for a conversational sample 𝑠 =

(𝑞, 𝑞∗, 𝑁𝐶,𝐴𝐶), we first get the two token sets TS(𝑞∗) and TS(𝐴𝐶 +
𝑞), which contains all of tokens in 𝑞∗ and𝐴𝐶 +𝑞, respectively. Then,
its TDL is defined as:

TDL(𝑠) = | (TS(𝑞∗) ∪ TS(𝐴𝐶 + 𝑞)) \ (TS(𝑞∗) ∩ TS(𝐴𝐶 + 𝑞)) |. (7)

where | · | denotes the number of tokens in the set. TDL counts how

many unique tokens do we need to delete and add to transform

𝐴𝐶 + 𝑞 into 𝑞∗, which also reflects the semantic difference between

𝐴𝐶 + 𝑞 and 𝑞∗. Intuitively, a sample with larger TDL tends to be

harder to learn to encode for CQE. Thus, TDL is suitable to measure

the sample difficulty with respect to the conversational adaption

task. Besides, as introduced in Section 4.2, for all new generated

samples 𝑆aug (𝑠) based on the same original sample 𝑠 , they will all

share the same necessary context and the same oracle query with

𝑠 . Thus, in 𝑆aug (𝑠), a sample with larger TDL generally tends to

have more noisy turns and be harder to denoise, so TDL is also

suitable to measure the sample difficulty with respect to the context

denoising. We stipulate that a larger TDL indicates a harder
sample. Moreover, to investigate the effect of TDL, we also design

another two difficulty measurers for comparisons (See Section 5.4.2).

4.3.2 Training Scheduler. While difficultymeasurers vary among

different data types and tasks, the choice of the training scheduler is

usually data (or task) agnostic [40]. In this work, we choose to study

the effectiveness of curriculum learning for conversational search

with one of the most popular schedulers, i.e., Baby Step [1, 35]. An

illustration is shown in the middle of Figure 2. With all training

samples D = {𝑠1, 𝑠2, ..., 𝑠𝑁 } sorted by their difficulty scores, we

employ the widely used baby step paradigm to arrange them into a

learning curriculum . Specifically, we first averagely distribute D
into 𝑅 buckets {𝐵1, 𝐵2, ...𝐵𝑅} from easy to hard, and then train with

each bucket one-by-one. When training with the current bucket

𝐵𝑟 at stage 𝑡𝑟 , for each training step, we randomly select two half

batches of samples D𝑟 and D𝑟 ′ from 𝐵𝑟 and all previous buckets

𝐵1:𝑟−1, respectively. After all of the buckets are used, we get back to
a normal training mode that randomly samples from D and finish

the pre-defined training epochs.

In this way, CQE finally enjoys a better learning curriculum, i.e.,

first learning how to encode and denoise from easier conversational

samples and then gradually learning from harder ones, effectively

improving the final model performance (See Section 5.4.2).

4.4 Two-step Multi-task Learning
We design a simple and effective two-step multi-task learning strat-

egy to teach CQE how to perform context denoising as well as

encoding conversational queries. An illustration is shown on the

right side of Figure 2. Specifically, for a conversational sample

𝑠 = (𝑞, 𝑞∗, 𝑁𝐶,𝐴𝐶), we use CQE to encode it from both a noised

view and a denoised view:

qnoi,QAC = CQE(𝑞,𝐴𝐶), (8)

qden,QNC = CQE(𝑞, 𝑁𝐶), (9)

where qnoi and qden denote the noised and denoised query rep-

resentation of this conversational sample, respectively. QAC =

[qAC1 , ..., qAC|AC |] and QNC = [qNC1 , ..., qNC|NC |] are the representation
matrices of all turns of the actual context and the necessary context,

respectively. |AC| and |NC| are number of turns contained in 𝐴𝐶

and 𝑁𝐶 . The architecture of CQE in this work follows ConvDR

(Equation 3) except that we move the current query to the first of

the input so that the first [CLS] belongs to the current query. We use

the [CLS] embedding of the query turn as its representation. But

note that our method is a general framework and is not restricted

to any specific CQE architecture.



Without introducing any new parameters, we propose a context

denoising loss from a contrastive view, by aligning the represen-

tations of the same turns in the noised context (i.e., QAC
) and the

denoised context (i.e., QNC
):

L
den

=
1

𝐶

|𝐴𝐶 |∑︁
𝑖=1

|𝑁𝐶 |∑︁
𝑗=1

I𝑔 (𝑖)=𝑔 ( 𝑗) ·MSE(qACi , qNCj ), (10)

where 𝑔(·) is an index mapping function to map the index of a turn

in the (actual or necessary) context to its index in the all previous

turns. Thus, 𝑔(𝑖) = 𝑔( 𝑗) means that these two turns are the same

turn. I is the indicator function. 𝐶 is the number of the same turns

in these two contexts. Note that we detach the gradients of QNC
,

so this is a unidirectional alignment from QAC
to QNC

.

The intuition of the proposed denoising loss is that, if CQE has

a good context denoising ability, its output representations under

different input contexts should be close to those under the necessary

context, since noisy turns are expected to not affect the output of

CQE. Besides, it is notable that, similar to BYOL [11], our denoising

loss is a special contrastive loss which does not need negative

samples. We avoid collapsed solutions through multi-task learning

with a knowledge distillation loss (See below).

Similar to ConvDR, we also adopt knowledge distillation to distill

knowledge from a dense retriever teacher into CQE to learn how

to encode conversational queries:

q∗ = TM(𝑞∗), (11)

L
kd

= MSE(qnoi, q∗) + 𝛼 ·MSE(qden, q∗), (12)

where 𝛼 is a hyper-parameter to balance two losses.

Intuitively, if CQE has even not known how to do the basic con-

versational adaption, it would be harder to learn context denoising

since the representations of turns may be meaningless. Therefore,

we choose a two-step optimization way for multi-task learning .

Specifically, for a batch of training samples, we first train CQE with

L
kd
, update the model parameters, and then train it with L

den
. In

practice, we use two optimizers to control the training with these

two losses, respectively.

5 EXPERIMENTS
We carried out a series of experiments to justify the effectiveness of

our COTED for few-shot conversational dense retrieval, and provide

comprehensive analysis for a better understanding of COTED.

5.1 Datasets
We use the only two available datasets for (few-shot) conversational

search, i.e., TREC CAsT 2019 [5] and TREC CAsT 2020 [4], in our

experiments. Table 1 shows their statistics information.

CAsT-19: The TREC Conversational Assistance Track (CAsT)

2019 benchmark provides 50 test conversations (topics) for con-

versational search. Each conversation contains an average of 9 to

10 natural language based-queries with common natural language

issues, such as coreferences and omissions. The query turns often

depend on their previous turns. Besides, each query has a corre-

sponding manual oracle de-contextualized query. Among them, 173

queries in 20 test conversations have relevance judgments. The cor-

pus consists of around 38 million passages from MS MARCO [26]

and TREC Complex Answer Retrieval (CAR) [6].

CAsT-20: This is the dataset of the second year of Conversa-

tional Assistance Track, which contains 25 conversations. Different

from the CAsT-19 dataset, queries in this dataset can refer to pre-

vious answers from system responses and are more realistic and

complex. All queries have the corresponding manual oracle queries

and most of them have relevance judgments. CAsT-20 shares the

same passage corpus as CAsT-19.

5.2 Experimental Settings
5.2.1 Baselines and Evaluation Protocols. We compare the

proposed COTED with the following baselines:

Query Reformulation Methods: (1) Transformer++ [36]: It

fine-tunes GPT-2 on CANARD [7] dataset, and then generates re-

formulated queries. (2) QueryRewriter [43]: It fine-tunes GPT-2

with large-scale synthetic conversation data and then generates

reformulated queries. (3) QuReTeC [39]: It trains a binary tagger

to find relevant terms in the context and then append them to the

original query to be a reformulated query.

Conversational Dense Retrieval Methods: (4) ConvDR [44]:

A state-of-the-art model for conversational dense retrieval, which

is the main direct competitor of our work. We also compare with

its warmed-up version. (5) ContQE [20]: Another state-of-the-art

model for conversational dense retrieval. Note that it employs a

different pre-trained query encoder TCT-ColBERT [19] but not

ANCE [41] as the conversational query encoder. It is trained with

large-scale pseudo relevance signals.

Reference Methods: (5) Raw: The original context-dependent
query. (6) Manual: The manual oracle query. (7) 𝑁𝐶→𝑁𝐶 : We use

the necessary context to replace the original actual context as the

input of ConvDR in both training and test (See Section 3.3).

For the first three query reformulationmethods, we perform both

sparse retrieval and dense retrieval with Pyserini BM25 [18]
3
and

ANCE [41], respectively, on the reformulated queries for evaluation.

The last three baselines involve human intervention (except Raw)

and we include them for reference.

Following the existing works [43, 44], we adopt MRR
4
and

NDCG@3 as the evaluation metrics, and NDCG@3 is the primary

metric as prescribed by TREC CAsT [4, 5].

5.2.2 Implementation Details. We implement COTED with Py-

Torch library. The Adam optimizer is employed with a mini-batch

size 4 and a learning rate of 5e-6. Most of our settings follow Con-

vDR [44] for fair comparisons. Concretely, we use the same ANCE

checkpoint employed in ConvDR as the teacher and the start point

of CQE. All passage embeddings are also encoded by ANCE and

fixed. The input of CQE is the concatenation of context queries and

the current query, and early tokens will be discarded if the con-

catenation length exceeds 256 tokens. On CAsT-20, we adopt the

automatic canonical setting as ConvDR and also concatenate the

last automatic canonical response to the input of CQE. All training

and evaluation exactly follow the five-fold cross-validation setting

as ConvDR.We tune hyper-parameters with grid search. Finally, we

set the sampling threshold 𝑝 to 2 on CAsT-19 and 3 on CAsT-20, the

loss balance weight 𝛼 to 0.01, the number of buckets𝑅 to 5, and train

3
We use the default setting of LuceneSearcher.

4
Following the official evaluation setting [4], we use relevance scale ≥ 2 as positive

for MRR on CAsT-20



Table 3: Overall results. † and § indicate the model uses
ANCE and TCT-ColBERT, respectively. * means the results
are quoted from their original papers. ‡ denotes significant
differences with respect to all compared baselines.

Search Method

CAsT-19 CAsT-20

MRR NDCG@3 MRR NDCG@3

Sparse

Tansformer++ 0.557 0.267 0.162 0.100

QueryRewriter 0.581* 0.277* 0.250* 0.159*

QuReTeC 0.605 0.338 0.262 0.171

Dense

Transformer++
†

0.696 0.441 0.296 0.185

QueryRewriter
†

0.665* 0.409* 0.375* 0.255*

QuReTeC
†

0.709 0.443 0.430 0.287

ContQE
§

- 0.499* - 0.312*

ConvDR
†

0.740 0.466 0.476 0.319

COTED (Ours)
† 0.769‡ 0.478‡ 0.491‡ 0.342‡

For Reference

Sparse

Raw 0.322 0.134 0.160 0.101

Manual 0.671 0.347 0.445 0.301

Dense

Raw
†

0.420 0.247 0.234 0.150

Manual
†

0.740* 0.461* 0.591* 0.422*

Manual
§

- 0.507* - 0.460*
ConvDR (warmed)

† 0.746 0.463 0.510* 0.340*

𝑁𝐶→𝑁𝐶†
0.743 0.469 0.513 0.358

𝑇 = 6 epochs on both two datasets. We conduct the statistical signif-

icance test using the permutation test (𝑝 < 0.05) between COTED

and the compared baselines. Besides, we emphasize that we do not

use any external datasets to assist the training since our work tar-

gets solving the complete few-shot problem (i.e., only limited data is

available). So we do not warm up on CANARD and all experiments

are conducted based on the two CAsT datasets. The annotation data

and our code are released at https://github.com/kyriemao/COTED.

Same as the experiments in Section 3, the settings and imple-

mentations of ConvDR follow their official open-source code. The

results of QueryRewriter and ContQE are quoted from the original

papers of ConvDR and ContQE, respectively. For Transformer++

and QuReTeC, we use their reformulated queries provided by [38].

5.3 Performance Comparisons
The overall results are listed in Table 3. From the results, we have

the following observations:

(1) Our proposed COTED outperforms the majority of
baselines on two CAsT datasets. In particular, COTED beats

its main competitor ConvDR by 3.0% and 7.2% w.r.t. the main met-

ric NDCG@3 on CAsT-19 and CAsT-20, respectively, showing the

superiority of our designed training framework. Compared with

ConvDR, COTED enjoys more self-augmented data, a more sophis-

ticated training strategy, and a more reasonable training curriculum,

finally resulting in better context denoising and generalization abil-

ities for few-shot conversational dense retrieval.

(2) ContQE seems to outperform our COTED on CAsT-19. How-

ever, note that ContQE is based on a different pre-trained query

encoder (ANCE for COTEDwhile TCT-ColBERT for ContQE). From

the comparison of twoManual results, we can find that TCT-ColBERT

performs better than ANCE on the two CAsT datasets. But even

Table 4: Performance comparisons of COTED training with
different sampling thresholds 𝑝 with respect to NDCG@3.

Dataset

Sampling Threshold 𝑝

0 1 2 3 4 6 8

CAsT-19 0.467 0.473 0.478 0.476 0.473 0.462 0.459

CAsT-20 0.330 0.334 0.339 0.342 0.337 0.331 0.321

Table 5: Performance with different difficulty measurers.

Method

CAsT-19 CAsT-20

MRR NDCG@3 MRR NDCG@3

COTED (Random) 0.762 0.474 0.482 0.332

COTED (ACL) 0.769 0.480 0.486 0.337

COTED (MPS) 0.765 0.477 0.485 0.338

COTED (TDL) 0.769 0.478 0.491 0.342

in this unfair case, our model can still achieve 9.6% improve-
ments than ContQE w.r.t. NDCG@3 on CAsT-20. Further-
more, on CAsT-19, our model can relatively outperformMan-
ual (0.478 vs. 0.461) while ContQE failed (0.499 vs. 0.507), w.r.t.
NDCG@3. Such results prove the advantages of our model.
Besides, since our work targets the complete few-shot scenario

(i.e., only limited data is available), we choose to mainly follow

the experimental settings of ConvDR for fair comparisons, and

leave additional comprehensive comparisons with ContQE, which

leverages external datasets, in future work.

(3) Surprisingly, our COTED even outperforms𝑁𝐶→𝑁𝐶 on
CAsT-19. As we have manually removed the noisy turns for both

training and test in 𝑁𝐶→𝑁𝐶 , it is expected to be a performance

ceiling from the view of context denoising. But in fact, COTED

benefits from three aspects not only from the denoising strategy,

and thus achieves such a desirable breakthrough. Besides, compared

with ConvDR (warmed), which first warms up ConvDR on the large

external CANARD [7] dataset, our COTED can still achieve a slight

performance lead w.r.t. the main evaluation metric NDCG@3 on

the more difficult CAsT-20 dataset. Such good results demonstrate

the effectiveness and superiority of our COTED.

(4) On CAsT-19, both COTED and ConvDR can outperform
ANCE with oracle queries, indicating that the CQE may be able

to surpass its teacher. It is reasonable because the oracle query is

not always absolutely perfect. With better training strategies, CQE

has the potential to encode users’ real information needs from the

comprehensive context to achieve more accurate passage retrieval.

5.4 Component Analysis
In this section, we further analyze the source of the effectiveness

of our COTED. Specifically, we separately explore how the three

important components of our framework affect its performance.

5.4.1 Effect of Conversation Data Augmentation. This com-

ponent produces much more noised samples for training to enhance

the few-shot ability of CQE. We investigate it by conducting ex-

periments with different sampling thresholds 𝑝 ∈ [0, 1, 2, 4, 6, 8] on
two CAsT datasets. Results are shown in Table 4. In the beginning,

https://github.com/kyriemao/COTED
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Figure 3: Ablation study of the multi-task learning.
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Figure 4: Turn-level performance comparisons.

the model performance gradually increased as the number of aug-

mented conversational samples continued to increase. However,

when there are too many augmented noised samples (i.e., large 𝑝),

the performance starts to suffer a large negative impact. It is prob-

ably because too many similar noised samples lead to overfitting,

and it indicates that a proper sampling threshold is important for

the conversation data augmentation to take effect.

5.4.2 Effect of Curriculum Sampling. To investigate the effect

of our curriculum sampling strategy, we test the performance of

COTED using random sampling. Furthermore, except TDL, we also

design another two difficulty measurers, including Actual Context
Length (ACL) and Model Prediction Score (MPS), to further study

the influence of the difficulty measurer. Specifically, for a sample

𝑠 = (𝑞, 𝑞∗, 𝑁𝐶,𝐴𝐶), ACL denotes the number of turns in the actual

context (i.e., |AC|), and a larger ACL indicates a harder sample. Ob-

viously, ACL is simpler than TDL as it only considers the actual

context; Different from TDL and ACL which are heuristically de-

fined by humans, we let the model itself decide the sample difficulty

in MPS. Consistent with the golden metric (i.e., NDCG@3) of our

target task, we adopt 5-fold cross-validation to get the predicted

NDCG@3 for each sample, and use it as the sample difficulty for

MPS. A lower NDCG@3 score indicates a harder sample.

We fine-tune to get the best bucket number 𝑅 for ACL and MPS

for fair comparisons, and show results in Table 5. Generally, us-

ing our three curriculums gains better performance than using

random sampling, verifying the effectiveness of our proposed cur-

riculum sampling for conversational search. In particular, We find

the performances of using different difficulty measurers are close

on CAsT-19, and the performance gain of curriculum sampling

on CAsT-19 is small, compared with that on CAsT-20. It may be

because the conversational turns in CAsT-19 are much easier to

learn to encode, so the curriculum sampling seems to be little help

on CAsT-19. While on the more complex CAsT-20, TDL relatively

outperforms the others. On the whole, the more comprehensive

heuristic difficulty measurer TDL is a better choice.

5.4.3 Effect of Two-step Multi-task Learning. The denoising
loss L

den
plays an important role in teaching CQE for context

denoising. To justify the effectiveness of our designed denoising

loss and the two-step learning strategy, we compare COTED with

the following two variants:

• COTED without the denoising loss: We remove L
den

from

COTED and only optimize it with LKD.

• COTED with one-step training: We perform a one-step joint

optimization of the two tasks by combining the two losses

together with proper weights.

Besides, we also investigate the influence of the hyper-parameter 𝛼

on the performance. Results are shown in Figure 3. We observe that

no matter using one-step or two-step optimization, incorporating

the denoising loss can achieve better performance than not. Over-

all, the two-step optimization is more effective, which is probably

because the more basic conversation encoding should be learned

first to help the learning of context denoising. Besides, we find that

too large 𝛼 will hurt the performance. As one denoised sample cor-

responds to multiple noised samples after performing conversation

data augmentation, too large 𝛼 will further cause the model to pay

too much attention to the optimization of denoised ones.

5.5 Turn-level Performance Comparison
In this section, we compare COTED with ConvDR at a more fine-

grained turn-level. Figure 4 shows the results. It is clear that our

COTED outperforms ConvDR in most of turns on both two datasets.

Particularly, the performance advantages of our COTED are more

significant in later turns (e.g., No.6 ∼ No.11 turns on CAsT-20). As

the conversation goes on, the context becomes longer and more

noise appears. But thanks to the advanced design for context de-

noising, our COTED is more robust to alleviate the negative impacts

of noisy turns and keeps better retrieval performance.

5.6 Case Study
We finally show some typical winning cases in Table 6 to help more

intuitively understand how COTED achieves better performance.

In the first case, the model is expected to understand “the problem”

as “provide a habitat for bees” in the current turn, which only

needs the 1st, the 3rd, and the 5th previous turns as the necessary

context. From the clue words “native” and “region” in the retrieved

passage, we can identify that COTED correctly recovers the lost

semantic information. While ConvDR seems to be overwhelmed by

the long context and confused about what “the problem” is, as its

retrieved passage is not related to “habitat”. Similarly, in the second

case, ConvDR is not sure “what to get started” (“snowboarding” or

“strap-in bindings”), while our COTED accurately recognizes that

the omitted object should be “snowboarding”. We also find that the

learned query representations provide some hints to understand the

different behaviors of COTED and ConvDR. Specifically, compared

with ConvDR, COTED tends to give less attention to the noisy

turns. The larger attention scores that ConvDR pays to the 4th turn

in the first case (i.e., 302.1) and to the 3rd and 5th turns (i.e., 317.9

and 315.3) in the second case may illustrate its results.



Table 6: Two typical winning examples of COTED on CAsT-20. The current query is underlined. The blue turns are necessary
turns. The first disagreed retrieved passages of COTED, ConvDR andDense-Manual are shown. For each turn, the two [bracketed]
numbers are the dot product similarities between its representation and the representation of the whole conversation in COTED
(first) and ConvDR (second), respectively. The red words in passages are clues to help understand the model behaviors.

CAsT-20 Topic-83 CAsT-20 Topic-94

1: What are some interesting facts about bees? [300.1] [299.3]

2: Why doesn’t it spoil? [280.7] [281.3]

3: Why are so many dying? [295.5] [298.2]

4: What can be done to stop it? [294.5] [302.1]

5: What has happened to their habitat? [316.7] [309.2]

6: What can I do to help with the problem?

1: How did snowboarding begin? [337.0] [332.6]

2: Interesting. That’s later than I expected. Who were the winners? [289.2] [296.5]

3: What are strap-in bindings? [304.3] [317.9]

4: What’s an alternative to this binding style? [290.1] [296.0]

5: What else do I need for my first time? [292.7] [315.3]

6: How can I teach myself to get started?

Manual Oracle: What can I do to help provide a habitat for bees? Manual Oracle: How can I teach myself to get started snowboarding?

First Disagreed Retrieved Passages
COTED: Plant native flowers. Native flowers help feed your bees and are

uniquely adapted to your region. Select single flower tops such as daisies

and marigolds, rather than double flower tops such as double impatiens ...

COTED: ... boots should be well-fitted, with toes snug in the end of the boot

when standing upright ... To further help avoid injury ... recommended to use

the right technique ... one should be taught by a qualified instructor ...

ConvDR: ... commercial beekeepers specialize in minimal care ... hobbyists can

keep their bees going with care ... Bees are highly susceptible to insecticides ...

ConvDR: Snowboard boots and bindings are normally far simpler than their

downhill counterpart ... when the sport was first ... more common to use semi ...

Dense-Manual: ... plant a bee garden and create an oasis for bees and ... Dense-Manual: Learn to snowboard in a day. 1. Being strapped to a board at ...

6 CONCLUSION
In this paper, we empirically identify the negative impacts of noisy

turns on the few-shot learning of the conversational query encoder.

To tackle it, We present a new framework COTED. The three impor-

tant components of COTED jointly help to achieve better context

denoising and generalization abilities for the model. Extensive ex-

periments and analysis on two CAsT datasets justify the superiority

of our method over the state-of-the-art baselines.

Limitations and Futurework: Ourwork shows the importance

and feasibility of context denoising for conversational search. Nev-

ertheless, it needs human efforts to annotate the necessary turns of

the training conversations, making it quite laboursome to be tested

on other large-scale conversational search-related data (e.g., OR-

QuAC). Designing an automatic annotation method (even coarse-

grained) may be a possible solution to complement our method. Due

to the lack of data in the current conversational search field, our

work presents a solution, i.e., COTED, to improve the performance

of the conversational search model in the few-shot scenario. But

the idea of COTED is scalable to large-scale scenarios. It is also in-

teresting to explore how the ranking loss can fit into our framework

after we can get the necessary turns of large-scale conversations.

We leave them to future work.

Developing better model architectures requires a large amount

of training data. Now, the development of conversational search

is largely hindered by the data scarcity problem. More and richer

conversational search-related data, such as search-oriented conver-

sations, conversational query-passage/answer relevance labels, and

conversational query rewrites, would all be a huge boost to this

promising research field. Therefore, in the future, it is important to

study the data augmentation method for conversational search.
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